## Fields@Queen's Lecture Series

### Thursday, April 5th, 2018

**Time:** 5:30 p.m. **Place:** Jeffery Hall 127

**Speaker:** Amie Wilkinson, University of Chicago

**Title:** The Mathematics of Deja Vu

**Abstract: ** Dynamics is an area of mathematics concerned with the motion of spaces (" dynamical systems") over time. Dynamics has its roots in the late nineteenth century, when it was developed as a tool to understand physical phenomena, such as the motion of gas molecules in a box and planets around the sun. A simple and yet powerful concept in dynamics is that of recurrence. In everyday language, recurrence is the mathematical version of deja vu: a motion of a space is recurrent if, given enough time, it eventually returns to its original configuration (allowing for a small amount of error). In this talk, I will describe how mathematical results about recurrence can be used to answer surprisingly disparate questions, from the mixing and unmixing of two ideaI gases in a box, to deep properties of the prime numbers, to the discovery of exoplanets in nearby solar systems.

**Amie Wilkinson (University of Chicago):** Prof Wilkinson (University of Chicago) is a leading researcher in ergodic theory and dynamical systems. Among other recognitions of her many achievements, she was an invited speaker at the International Congress of Mathematicians in 2010, was awarded the Satter Prize in Mathematics in 2011, and was elected a fellow of the AMS in 2014. Prof Wilkinson has also been very active in public outreach, giving numerous public lectures, interviews, and recently publishing an article in the New York Times.