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The moduli spaces S(D) of non-isotopic vortex knots are introduced for the ideal
fluid flows in invariant domains ©. The analogous moduli spaces of the magnetic
fields B knots are defined. We derive and investigate new exact fluid flows (and analo-
gous plasma equilibria) satisfying the Beltrami equation which have nested invariant
balls BZ with radii Ry =~ (k + 1), k —> co, The first flow is z-axisymmetric; the
other ones do not possess any rotational symmetries. The axisymmetric flow has an
invariant plane z = 0. Due to an involutive symmetry of the flow, its vortex knots in
the invariant half-spaces z > 0 and z < 0 are equivalent. It is demonstrated that the
moduli space S(R?) for the derived fluid flow in R3 is naturally isomorphic to the
set of all rational numbers p/q in the interval J; : 0.25 < q < M, ~ 0.5847, where q
is the safety factor. For the fluid flow in the first invariant ball ]Bf, it is shown that
all values of the safety factor q belong to a small interval of length £ ~ 0.1261. It
is established that only torus knots K, , with 0.25 < p/q < 0.5847 are realized as
vortex knots for the constructed flow in R?. Each torus knot K, , with 0.25 < p/g <
0.5 is realized on countably many invariant tori Ti located between the invariant
spheres S2 and §2, |, while torus knots with 0.5 < p/q < M, are realized only on
finitely many invariant tori. The moduli spaces S,,(B3)(m = 1,2,...) of vortex knots
are constructed for some axisymmetric steady fluid flows that are solutions to the
boundary eigenvalue problem for the curl operator on a ball B2, Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4973802]

I. INTRODUCTION

1. Equations of magnetohydrodynamics' in case of constant density p and vanishing resistivity have
the form

av 1
— + (V- grad)V = —lgradﬁ+ —curl B X B + vAV, (1.1
at p Pu

% =curl{VxB), divV=0, divB=0,

where B is the magnetic field, V is the fluid velocity, f is the pressure, u is the magnetic perme-
ability, and v is the kinematic viscosity. Equations (1.1) imply? that the magnetic field B lines are
transformed in time by the flow diffeomorphisms (or are “frozen in the flow™).

Definition 1. Moduli space S(D) of magnetic field B knots for a solution to Equations (1.1) in
an invariant with respect to the vector field B domain D is a set that is in a one-to-one correspon-
dence with all classes of isotopy equivalence of knots K C D formed by the closed magnetic field B
lines for the considered solution at a given time t.

The frozenness of the magnetic field lines in the magnetohydrodynamic flow yields that the moduli
space S(D) does not depend on time ¢ and hence is an invariant of solutions to Equations (1.1).

II. Euler equations of dynamics of an ideal incompressible fluid with a constant density p have the
form

v 1
wn + (V- grad)V = —;gradp, divV =0. (1.2)
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Here V(z,x) is the fluid velocity and p(z,x) is the pressure.

As is well-known,>* the vortex field curl V is transformed in time by the flow diffeomorphisms
(or “is frozen in the flow”). This yields that any knot formed by a closed vortex line at a time ¢ is
transformed by the flow into an isotopic knot.

Definition 2. Moduli space S(D) of vortex knots for a solution to Equations (1.2) in an
invariant domain D is a set that is in a one-to-one correspondence with all classes of isotopy
equivalence of vortex knots K C D existing for the considered solution at a given time t.

The frozenness of the vortex field curl V implies that the moduli space S(D) does not depend
on time ¢ and hence is an invariant of the fluid flows.

Remark 1. The moduli space S(D) evidently does exist for any hydrodynamic flow (1.2) and
always is either countable or finite. Indeed, this follows from the fact that there is only a countable
number of isotopy classes of knots in R3,3-6

We study the following well-known problem that was around since Kelvin’s works.”

To classify all vortex knots K C R? (up to the isotopy equivalence) for concrete solutions to
Euler equations (1.1).

In this paper, we develop a method to resolve this problem for axisymmetric fluid flows by con-
structing the corresponding moduli spaces S(R?) of vortex knots. As an application of the method
we describe the moduli space S(R?) for the simplest of the derived fluid flows.

For the ideal fluid flows, the problem of finding the moduli space S(D) is closely connected
to Kelvin’s papers.” According to the historical studies by Epple,'? the works by Helmholtz,?
Kelvin,” and Tait'®!! on vortex knots published in the 1850s—1880s had laid the foundation of
what are now called the topological methods of hydrodynamics. Figure 1 represents the knots and
links envisioned by Kelvin.

Remark 2. In Ref. 13 the existence theorem 1.1 is proven that states that for any link L ¢ R?
and any A # 0 “one can transform L by a C! diffeomorphism ® of R? arbitrarily close to the identity
in any C" norm, so that ®(L) is a set of stream lines of a Beltrami field u, which satisfies curl u = Au
in R3” Thus the authors of Ref. 13 have claimed that for any knot X (or link L) there exists a
Beltrami flow such that an isotopic to X knot (or link) is realized by some trajectory of the flow. We
study a completely different problem: for a concrete fluid flow to classify all isotopy types of knots
which are realized by its vortex lines. This problem was not discussed in Ref. 13 and it is not the
inverse problem for the one considered in Ref. 13.

II1. In this paper, we present the moduli spaces S(R*) and S(B2) of vortex knots for an exact steady
solution to Equation (1.2) in the Euclidean space R? and in a ball B3 of radius a and the moduli
spaces S(R%) and S(B2) of the magnetic field B knots for the analogous steady solution to the MHD
Equations (1.1).

The steady ideal MHD equations (v = 0) have the form

51
VxcurlV - ——B x curl B =grad(£+ -|V|2), (1.3)
pu p 2

curl (VxB)=0, divVv=0, divB=0.
For the collinear vector fields V(x) = aB(x), Equations (1.3) reduce to
(e?pp— 1)B x curl B = grad (up + o’pu/B|*/2), divB =0. (1.4)
The simplest case of Equations (1.4) for @ = 0,V = 0 describes the plasma equilibria
B x curl B = grad(-up), divB =0. (1.5)

It is evident that for any constant a # +1/+/p, Equations (1.4) are equivalent to the plasma
equilibrium Equations (1.5).
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FIG. 1. Figures of knots and links obtained from Refs. 8 and .

The steady hydrodynamics equations in the Bernoulli form are
Vxcurl V = grad (p/p + [V]}/2), divV=0. (1.6)

Since plasma equilibrium Equations (1.5) and the steady hydrodynamics Equations (1.6) are equiva-
lent,'* any result proven for one of them is equally applicable to another.

In a pioneering paper in 1958,'5 Kruskal and Kulsrud proved for Equations (1.5) that surfaces
p(x) = const “by B - Vp = 0 are “magnetic surfaces,” in the sense that they are made up of lines of
magnetic force, and simultaneously by j - Vp = O they are “current surfaces.” If such a surface lies
in a bounded volume of space and has no edges and either B or j nowhere vanishes on it then by a
well-known theorem'® it must be a toroid (by which we mean a topological torus) or a Klein bottle.
The latter, however is not realizable in physical space.”

In a paper in 1959,!7 Newcomb stated that “It is easy to verify that the lines of force on a
pressure surface are closed if and only if i(P)/2n is rational; if it is irrational, the lines of force
cover the surface ergodically.” Here i(P) is the rotational transform connected with the safety factor
q(P)'® by the relation q(P) = 2z /i(P).
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In 1965, the analogous results for the equivalent Equations (1.6) were published by Arnold
in Ref. 19 and in Ref. 20 where he added to Refs. 15 and 17 a statement that if a Bernoulli’s surface
M intersects the boundary of the invariant domain D then M has “co-ordinates of the ring” and “all
streamlines on M are closed.”

The results of Refs. 15 and 17 yield that for the plasma equilibrium Equations (1.5) (and hence
for the equivalent hydrodynamics Equations (1.6)) all magnetic field B knots (and correspondently
all vortex curl V knots) are torus knots K, , defined by the rational values p/g of the safety factor
q(P).*® Therefore, to classify the magnetic knots it is necessary to know the range of the safety
factor q(P).

IV. We study in this paper the vector fields B(x) obeying the Beltrami equation
curlB=AB (L7

and therefore satisfying plasma equilibrium Equations (1.5) with # = const. The equivalent hydro-
dynamics equilibria (1.6) are defined by equations

curlV= AV, p=C-p|V[}2. (1.8)

Chandrasekhar,?! Chandrasekhar and Kendall,?> and Woltjer?® presented an infinite basis of
solutions to the Beltrami equation (1.7) in terms of the Bessel and Legendre functions.

In Refs. 24 and 25, we derived an integral representation of Beltrami fields (1.7) which depends
on an arbitrary vector field T(x) tangent to the unit sphere S2,

The spectrum and the eigenvector fields for the boundary eigenvalue problems for the operator
curl on different domains in R? were studied in Refs. 26-30 which use the Bessel and Legendre
functions representation of Refs. 21-23.

V. In Sections II and III we present exact solutions to Beltrami equation (1.7) and (1.8) in terms of
elementary functions. The constructed fluid flows have nested invariant balls Bz. Some of the flows
are axisymmetric; the other ones have no rotational symmetries and allow only discrete symmetries.

A method of construction of the moduli spaces of vortex knots S(D) for the axisymmetric
fluid flows is presented in Section IV. The method is based on the investigation of functions of
periods 1, (H) (in a special time variable 7) of closed trajectories of a certain 2-dimensional dynam-
ical system in invariant domains Dy . C R% The system is obtained by (/) reduction of the main
axisymmetric dynamical system in R3,

dx
Frie curl V(x), (1.9)

in the cylindrical coordinates 7, z, ¢ to a 2-dimensional system on the plane R? with coordinates r, z
and (2) a special choice of the time variable 7 satisfying equation dr/dt = H(r, z)/(2nr?) which
becomes singular at the boundaries H(r,z) = 0 of the invariant domains Dy .. The function H(r,z)
is a first integral of the dynamical system (1.9) and coincides with the Stokes stream function
¥ (r,z) of the axisymmetric flow V(x). The function of periods T(H) of the closed trajectories Cg
(H(r,z) = const) is connected with the safety factor q(H) and the pitch p(H) of the corresponding
helical vortex lines on the invariant tori T2, by the relations
1

2
Therefore, for the analogous magnetic fields B(x), the function of periods 7(H) coincides with the
safety factor q(i).}%3!

All vortex knots for the derived exact axisymmetric fluid flows are torus knots K, , that corre-
spond to the rational values of a function of periods T(H) = p/q. Therefore, the moduli space of
vortex knots S(D) is the set of all rational numbers in the range of function T(H) that coincides
with the safety factor q(H).

Using two different limiting procedures, we derive the exact lower and upper bounds for the
ranges of the continuous functions 7,(H) for each invariant domain Dy.. Both the bounds are
finite positive numbers that are presented by exact formulae. Our construction of the moduli spaces

T(H) = q(H) = —p(H). (1.10)



013101-5 Oleg Bogoyavienskij J. Math. Phys. 58, 013101 (2017)

S(Dx.) is based on the derived exact lower and upper bounds for all functions of periods 7 (H) for
k=1,2,....

The ranges and domains of functions 7,(H) and pitch functions p,(H) (1.10) are obtained in
exact form in Sections V and VL

In Section II we derive an exact axisymmetric Beltrami flow V,(x) (2.21) for which the moduli
space S(R?) of vortex knots (as we demonstrate in Section VIII) is naturally isomorphic to the set of
all rational numbers p/q in the interval

~ 1
Ji: 025<1< M = —— ~0.5847, (1.11)

241 -6R*

where R, ~ 3.8702 is the smallest positive root of equation tanr = r(r> — 6)/(3r> — 6). The interval
Ji (1.11) is the complete range of function of periods 7(H) in the whole space R3, The complete
range of the pitch function p(H) (1.10) is 27 - J.

The same moduli space S(R?) exists for the magnetic field B knots for the equivalent exact
solution to Equations (1.5) and for the analogous MHD equilibrium solutions to Equations (1.4)

with o # £1/~/pp.

VI In Ref. 32, Moffatt considered the general steady axisymmetric fluid flows corresponding to
arbitrary smooth functions F(¥) and G() in the Grad - Shafranov equation* for the stream function
W(r,2),
1 ,dF dG
'//rr_;wr"'wzz =r E—GEZ
Equation (1.12) is equivalent to the steady axisymmetric Equations (1.6). Moffatt formulated
in Ref. 32, p. 29, the statement.

“The streamlines within these vortices are topologically similar to those of the special case
when F(y) and G(¢) are linear in y, i.e., they are helices wrapped on the family of nested tori
¥ = cst(0 < ¥ < Wmax), the pitch of the helix varying continuously from zero ... to infinity ...”

In this paper we show that constructed in Section II exact axisymmetric flow Vj(x) (2.21)
provides a counterexample to the above statement.?? Indeed, from formulae (1.10) and (1.11) we get
that the pitch function p(y) is changing in the limits

0.57 < p(y) < 1.1694x (1.13)

for all possible values of the function ¥(r,z) = H(r,z) in the whole space R3. Moffatt claims
in Ref. 32 that the pitch function p(y) is “varying continuously from zero to infinity.” The inequal-
ities (1.13) prove that the quoted statement of Ref. 32 does not correspond to the facts.

For the exact flow Va(x) (2.21), Equation (1.11) yields that only those torus knots K, , are
realized as vortex knots for which 0.25 < p/q < 0.5847 and not for any p/q as it would follow from
Moffatt’s statement.*2
VIL In Section VII we study the pitch functions p(y)} = 2mq(y) for the general axisymmetric
fluid flows. We prove that at any stable vortex axis defined by ¢/(r,z) = V¥, (Where ¢y, is a local
maximum or minimum of function ¥(r,z)) the pitch function p(y¥) has a finite non-zero limit
limy .y, P} = p(fm) < co. The number p(,,) # 0 is one of the two exact bounds for the range
of function p(y). The latter therefore cannot change continuously from zero to infinity. This result
holds for any axisymmetric fluid flow and provides counterexamples to one of the statements of
Moffatt’s highly quoted paper Ref. 33, p. 129 about the pitch function p() for some concrete
solutions to Equation (1.12):

“This quantity clearly increases continuously from zero to infinity as i increases from zero (on
R = a) 10 Ypax (on the vortex axis).”

Analogously we get counterexamples to Moffatt’s statement of Ref. 34, pp. 30 - 31 concerning
the spheromak field B satisfying Beltrami equation (1.7):

“Each B-line is a helix and the pitch of the helices decreases continuously from infinity on
the magnetic axis to zero on the sphere r = R as we move outwards across the family of toroidal
surfaces.”

(1.12)
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For any steady axisymmetric fluid flow in an invariant domain 2 the moduli space of vortex
knots S(D) is the set of all rational numbers in the range of the safety factor q(y) = p(y)/(2n).
Therefore, results of Section VII imply that different steady fluid flows have different moduli spaces
of vortex knots. The moduli spaces of vortex knots for the spheromak fluid flow in invariant balls B}
and in the whole Euclidean space R? will be published in Ref. 35.

VIIL In Section IX we construct the moduli spaces Sp(B3) (m = 1,2,...) of vortex knots for the
axisymmetric fluid flows Vj,,(x) inside a ball B3 of radius a which are tangent to the boundary
sphere S2. Here integer m > 1 enumerates a special series of eigenvalues 4,, and the corresponding
axisymmetric eigenvector fields V,,,(x) for the boundary eigenvalue problem for the operator curl
on the ball B3. The spectrum of this eigenvalue problem was studied in Refs. 26-30. We show that
the moduli spaces S,,,(B2) and Sy(B2) are different for m # £, do not depend on the radius a, and
that S,,,(B3) tends to S(R*) when m — oo.

Il. EXACT STEADY FLUID FLOWS

1. Let us construct exact axisymmetric solutions to the steady Euler equation (1.6) which simulta-
neously are solutions to the Beltrami equation

curl V(x) = V(x). 2.1

The change of variables #; = Ax; yields the equivalence of eigenvector fields (1.7) and (1.8) for the
curl operator with eigenvector fields (2.1) corresponding to the eigenvalue A = 1. Chandrasekhar
in Ref. 21 and Chandrasekhar and Kendall in Ref. 22 introduced a representation of Beltrami fields
in the form

V(x) = curl S(x) + curl curl S(x), (2.2)
where S(x) satisfies the vector Helmholtz equation
AS(x) = —-S(x). 2.3)
Applying the identity curl curl S(x) = grad(divS(x)) — AS(x) to (2.2) and using Equation (2.3), we
find
V(x) = S(x) + curl §(x) + grad(divS(x)). 2.4
Tn what follows, we use the representation (2.4) for the Beltrami fields.

We choose solutions to Equation (2.3) in the form S(x) = f(x)&,, where f(x) obeys the scalar
Helmbholtz equation

Af(x) = —f(x) (2.5)

and &, is the unit ort in the Cartesian coordinates x, y,z. We will use cylindrical coordinates r, ¢,z
defined by relations r = \/x2 + y2, x = rcosg, y = r sin ¢. The corresponding orthogonal unit orts
are

Py

8, & =cosypé, +singe,, &, =8& x8& =—sinypeé, +cos @é,. (2.6)

For the Cartesian coordinates x, y, 7, we have

= S‘-Icos —d—(’prsin d_y = Esin +d—‘prcos
@@ ST gy Ty T e
Hence using formulae (2.6) we find
d, . . R dr, dg, dz,
a (xex +ye, + zez) = —Ee, + rae‘p + (—i?ez. .7

II. As known, for the axisymmetric functions f(x) = f(r,z) Equation (2.5) takes the form

Af(rsz)=frr+%fr+fzz="f’ (2.8)
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where we denote partial derivatives as f;, f,,, ;.. Vector field V(x) (2.4) for S(x) = f{(r, 7)é, takes
the form

V(x) = f&, + (gradf) x &, +gradf, = fé, + f,&, x &, + Sor&r + fre6s,

where we used the identity curl (f&;) = (gradf) x &,. Substituting here f,, + f = —f,, - % fr from
Equation (2.8) and formula (2.6) for vector €,, we find

A 1 A 1 .
V(x) =-f,&,+ —r-(r fr)z6r — —r-(r frré,. 2.9)
Hence, the function ~r f,(r, z) coincides with the stream function i (r, z)* of the axisymmetric flow
V(x).
Dynamical system (1.9) for the Beltrami field V(x) = curl V(x) (2.9) takes the form
dr _ 10H dz 18H dp 1
d  rdz' dt ror’ dt rZH‘ 210
Here
H(r,z) = —r f;(r.z) = y(r,2) (2.11)

and we used formulae (2.7). System (2.10) evidently has first integral H(r,z} (2.11). Hence, the
axisymmetric submanifolds H(r,z) = const, 0 < ¢ < 2x are invariant under the flow (2.10).

The Beltrami equation (2.1) and the Helmholtz equation (2.8) are invariant with respect
to the z-differentiation. Therefore, vector field V,(x) = dV(x)/dz is also a Beltrami field. From
Equation (2.9) we find V. (x) = —f,.&, + %(r frz)z8r — }(r frz)r&;. The corresponding dynamical
system (2.10) is obtained by the z-differentiation, where H, = —r f,,,

dr _ 10H, dz _18H, dp 1

H,. (2.12)

dr rdz dt roar & 72

III. Let R = Vr? + 72 be the radius in the Cartesian coordinates x, y,z. Following our paper,®* we
consider the spherically symmetric exact solution to the Helmholtz equation (2.8),

f(r,2)=Gi(R) = Si;R. (2.13)
Evidently we have 4G /dr = rG(R)/R, 8G,/dz = zG{(R)/R. We denote
Go(R) = %dill(f) - % (cosR - Si;R) , (2.14)
G3(R) = %% = '1:_4 ((3 - RZ)S—"‘;—R ~3cos R) , (2.15)
G4(R) = %%}({R) = % ((6R2- 15)SinTR - (R? - 15)cos R) : (2.16)

Using Watson formula for the Bessel functions J,.1/2(R) Ref. 37, p. 56, we find G,(R) =
~V/2R72J35(R). Functions Gi(R) are analytic everywhere and have the following values at
R=0:

Gi0) =1, Gy(0)=-1/3, G3(0)=1/15, G4(0)=-1/105. 2.17

Functions G (R) satisfy the easily verifiable identities
G(R) + 3G3(R) + R*G5(R) = 0, (2.18)
GxR) + 5G3(R) + R’G4(R) = 0. (2.19)

Using formulae (2.14)-(2.6), we present vector field (2.9) with fr = rG, in the Cartesian coordi-
nates x, ¥, z,

Vi(x,y4,2) = (yGa + x2G3)8x + (—xGa + yzG3)é, + (G1 + Gy + 2°G3)8,. (220
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Remark 3. Exact solution (2.20) coincides with the spheromak magnetic field B derived by
Chandrasekhar and Kendall*> and Woltjer> in terms of the Bessel and Legendre functions. The
term “spheromak” for a plasma equilibrium inside a ball was first introduced by Rosenbluth and
Bussac.?¢

Dynamical system (2.10), corresponding to the spheromak flow (2.20), has first integral H(r, z)
= —rG,(R) = —r*Gy(R). For this dynamical system, we have dR/dt= -2z
R7'Gy + zR™'F, = —2zR7'G5(R), where F> = G| + 3G + R?G3 = 0 due to identity (2.18). Hence
system (2.10) has invariant balls B3, bounded by invariant spheres S2, defined by equations R = R,
where G5(R,,) = 0 that is equivalent to tan R,, = R,,,.

V. Differentiating the spheromak vector field V1(x, y, z) (2.20) with respect to the z-variable we get
anew z-axisymmetric Beltrami field

Va(x,y,2) = (x + y2)G3 + x2°Ga)ésx + ((y — x2)G3 + y22Ga)8, + 2(G2 + 3G3 + 22G)e,.  (2.21)

Remark 4. A detailed analysis of the force free magnetic fields B and Beltrami flows is pre-
sented in Refs. 26 and 27. These works extensively use the Chandrasekhar, Kendall, and Wolt-
jer?!=2 general solution of Beltrami equation in terms of Bessel and Legendre functions. The exact
solution (2.21) is given in terms of elementary functions and was not presented in Refs. 26 and 27.

Corresponding to (2.21) dynamical system, (2.12) has the following explicit form in the Carte-
sian coordinates:

d d d
Ex = (x + y2)Gs + x2°Gy, d—f = (y - x2)Gs + y2°Gu, d—f = 2(Gy+3G3 + 22Gy)  (2.22)
and possesses a first integral

o0H dG2(R

Hy(r,z) = 0Hnz) _ _p3GAR) _ -2r’G3(R). (2.23)
0z dz
Using identity (2.19) we derive from Equations (2.22)
dr 1

Vy,R = e E(RZ— 3z%)G+(R). (2.24)

Therefore system (2.22) has invariant balls Bi where R < Ry, G3(Ri) = 0. Formula (2.15) yields
that Ry, are the roots of equation

3R

tan R = 225
R =z—ps (2.25)

that has infinitely many solutions with the asymptotics
Re=k+ )m, k — co. (2.26)

The first four solutions to Equation (2.25) are
Ry =~ 5.77635, R, =~9.0950, R3;=~12.3229, R,=15.5146. (2.27)

Fluid flow (2.21) has the following properties: (1) Dynamical system (2.22) has invariant plane
z = 0 and therefore invariant hemispheres Hy, and H,_ defined by conditions R < Ry, z > 0 and
R < Ry, z < 0, respectively, where G3(R;) = 0.
(2) Dynamical system (2.22) is invariant under the automorphisms § and T,

S('x) =—X, S(y) =-Y, S(Z) =2, T(x) =X, T(_l/) ==Y, T(Z) = =g, (228)

that generate a group Z, & Z.
V. The z-translational invariance of Equation (2.8) and its linearity imply that together with solution
fo(r,z) = 0G1(R)/dz = zG»(R) an arbitrary linear combinations f(r, z) of its z-translations

fr,2) = i (2~ 21) (cos 2+ (z—z;)? - sinyr?+ (2 - Zk)z) (2.29)

k=1
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also are exact solutions to Equation (2.8). Here ay, z; are arbitrary parameters. The corresponding
Beltrami fields V #(x) are defined by formula (2.9).

VI Consider the vector field Vy(x) obtained from the z-axisymmetric field V(%) (2.21) by the cyclic
permutation of variables x — y,y — z,z — =x,

Va(x) = x(Ga + 3G + x2Ga)é; + (y + x2)G3 + Xy Ga)é, + (z — xy)G3 + x*2G )8,

Vector field Vy(x) is x-axisymmetric and satisfies Beltrami equation (2.1). Analogously to
Equation (2.24), we have

Vy,R = RY(R? - 3x%)Ga(R). (2.30)
We define vector fields
Wo (x) = Va(x) + aVy(x), 2.31)
that depend on an arbitrary parameter . Equations (2.24) and (2.30) yield
Vw,R = R [(1 + 0)R? - 3(ax® + 2%)] G3(R). (2.32)

Equation (2.32) implies that fluid flows (2.31) have nested invariant balls Bi defined by inequalities
R < Ry where G3(Ry) = 0. The fluid flows W, (x) (2.31) satisfy Beltrami equation (2.1), possess the
group Z; & Z, generated by the discrete automorphisms (2.28), and have no rotational symmetries
for any o # 0,1 because Equation (2.32) evidently does not allow one.

. DYNAMICAL SYSTEM IN R?, ITS INVARIANT DOMAINS AND EQUILIBRIUM POINTS
I. Partial derivatives of the function Hy(r,z) = —z7*G3(R) have the form

0, _ —rz(2Gs + r’Gy), oH
ar az

Substituting formulae (3.1) into dynamical system (2.10) with H(r,z) = Hy(r,z) = —zr’G3(R) we
obtain its explicit form

= —r%(G; + 2°Gy). (3.1

dr 2 dz 3

@ = F(G3 +2Z G4), a = Z(2G3 +r G4), (32)
dy
— = —zG3(R). 3.3
o zG3(R) (3.3)

Dynamical system (3.2) is smooth everywhere and has invariant line r = O with equilibrium points
(0,0), (0,0°R,), o = =1 and invariant line z = 0 with equilibrium points (R,,,0).

Lemma 1. All equilibrium points (0,0), (0,0R,), (R,,0) are saddles. The quarter-circles R =
Ry, 2>0,r>0and R=R,, z <0, r >0 are their separatrices which for n = 2k go from point
(0,0 Ry,) to point (R,,0) and for n = 2k + 1 go from point (R,,0) to point (0, R,,).

Proof. At these equilibrium points system (3.2) has the following eigenvalues:
(0,0): 2A,=1/15, A,=-2/15, B4

(0,0R:): Ay = RIG4(R,), A, =—2R2G4(R,),

(Rn,0) 1 2, = R2G4(Rn), A, = —2R2G4(Ry),

where we used G3(0) = 1/15 for the point (0,0), see (2.17). Let us find the values G4(R,) at
the points R, satisfying equation G3(R) =0 that is equivalent to Equation (2.25). Substituting
Equation (2.25) into formula (2.16) we find

cos R,

R}

tan R,

Ry

Ga(Ry) = ((6R,’; ~15) ~R+ 15) = _Cos R

T R(-RY)
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Inserting here the identity cos R = sign(cos R)(1 + tan®(R))~1/? and Equation (2.25) we get

—sign(cos R,,)

#0
R2\R:+3R2+9
Since G4(R,) # 0 we get from (3.4) that all equilibrium points (0,0), (0, R,), (R,,0) are saddles
and the quarter-circles R = R,, z > 0, r >0 and R = R,, z <0, r > 0 are their separatrices. Since
G3(0) = 1/15, we find from formulae (3.5) and (2.26) that G4(R;) < 0, G4(Ry) > 0, G4(Ror1) < 0.
Hence formulae (3.4) yield

(0,0’R2k+1) : A, <0, /11 >0, (0,0'RZk) : A, >0, Az < 0.

Gu(Rn) = (3.5)

These formulae imply that dynarmics on the separatrices is exactly as shown in Figure 2. O

II. For the spherical radius R = Vr? + z2 we find from (3.2)

dR _dRdr ARdz 1 ( dr dz\ _ (r*-27%)
dt  drdr Bzdr R (’ dr +Zdt) =g G® (3.6)
Equations (2.16) and (3.6) imply
d _dG3(R)dR 5
G R = — 4 =~ 229G:(RIGA(R). 37

Equation (3.6) gives another proof of invariance of all spheres Si (R = Ry) where G3(Ry) = 0.

Ry $» ™~ N

D
RsF S \\Dz:\\ \ r- v
S VAR T R

A \\ Dy, \ - \ Eff*— .
. '%\\Dﬁ \\ E. y E";"-‘t‘;ﬁ- ) \
O T i
D Ezw*\ x .
15 -~
—0| LE-E—— 0—*—0—-——3—4—0—-——;—--—--—-1 h———:t—-ﬂ—{—b-———b-
L Df;,/¥~é;.~f.b"wfl ) ] f [ '
L EE A T
-R 4~ Do // Eq /"‘Ez‘m-}_‘_‘j / j
| D / A
~Hy LD e // / 1. el
1 /" ’,/D;-,_ / / P - sz,
~Ry $t g /D... ¥
i /,/ _,/ Vg / /
—~R: // /’ / /;
k - /
i @ ""ﬂ/ e v //

FIG. 2. Invariant domains Dy . of dynamical system (3.2), its equilibrium points and separatrices,
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IIl. Dynamical system (3.2) in view of Equation (3.7) has invariant open domains Dy, . defined by
equations

Div: RE <r*+22<R, k21, r>0, z>0, (3.8)

where G3(R,) = 0 and Ry = 0. Invariant domains D, _ are obtained from (3.8) by the reflection
z — —z.Boundary 8D, , of domain Dy . is

D, =S VL[ USio UL, k>1, 3.9)
Sk: PP+22=RLz>0; Ji: Ry <r<Rz=0, (3.10)
I Ry < z5 R, r=0.
The invariant domains Dy , and Dy _ of system (3.2) are shown in Figure 2.

Proposition 1. All trajectories of dynamical system (3.2) in the invariant domains Dy, are
closed curves Cy: Hy(r,z) = H # 0. The corresponding trajectories of dynamical system (3.2),
(3.3) move on invariant tori T}i = Cy x S and are either periodic or quasi-periodic.

Proof. Let us show first that inside each invariant domain Dy ; system (3.2) has one and
only one equilibrium point Ey:. Indeed, the equilibrium points (r; # 0,z; # 0) of system (3.2) are
defined by two equations,

G3(R) + 2°G4(R) = 0, 2G3(R) + r’G4(R) = 0. (3.11)
Equations (3.11) imply r; = +V2z;, R = r} + 73 = 323 and equation
3Gy(R)) + (r} + 2)Gul(R;) = 3G3(R;) + R3G4(R;) = 0. (3.12)
Equation (3.12) yields the equation

1 in R
3G3(R) + R*Gy(R) = 3 ((3R2 - 6)% — (R*-6) cos R) =0,
which has the equivalent form
R* -6

tanR = R . 3.1

an AR —6 (3.13)
Hence the equilibrium points of system (3.2) are defined by the relations

ri=v2/3R;, z;==++1/3R;, (3.14)

where R; are all positive roots of Equation (3.13) that has infinitely many solutions R; with the
asymptotics

Ri~(j+1/2)m, j~—> 0. (3.15)
The first four solutions to Equation (3.13) have the form
R ~3.8702, R,~7.4431, R;=~10.7130, R, =~ 13.9205. (3.16)

The asymptotics (2.26) and (3.15) together with the formulae (2.27) and (3.16) prove that
between any two points Ry_; and Ry there is one and only one point Ry.. Hence, in each invariant
domain Dy, ., there is only one equilibrium point E, with positive coordinates (ry, zx) (3.14) and in
each invariant domain Dy _ there is only one equilibrium point E_ with coordinates (ry,—zy).

Equations (2.10) for H = H, imply that at each equilibrium point E; . we have dH,/0z(rr, £21)
=0, dH»/0r(ry, xzx) = 0. Hence each equilibrium point Ey, is a point of extremum of function
Hy(r,z) = —zr?G3(R). Since at the boundary of each invariant domain Dj, , function Hy(r,z) is zero
and inside each domain Dy . it has only one point of extremum Ej..; we get that this point is either
global maximum of function Ha(r,z) in the domain Dy . or its global minimum, In both cases
the curves Cy of constant levels of function Hy(r,z) = H # 0 are closed curves. Since function
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Hy(r,z) = —zr*G3(R) is first integral of system (3.2), we get that all trajectories of system (3.2) in
the invariant domains 9y . are closed curves Cy.

For each closed trajectory Cy, the angular variable ¢ due to Equation (3.3) changes monot-
onously along the circle S'. Hence we get that dynamics of the 3-dimensional system (3.2)
and (3.3) at Hy(r,z) = H # 0 occurs on the invariant tori T = Cy X ! and is either periodic or
quasi-periodic. O

Remark 5. The first three equilibrium points Ey, have the following approximate coordinates
(rr.zx) (3.14):
E1, : (3.1600, 2.2345), E,,:(6.0773, 4.2973), Es.:(8.7471, 6.1852).

The equilibrium points Ej_ have coordinates (ry, —zi) and are reflections of the points Eg.. The
equilibrium points are shown in Figure 2.

Corollary 1. Rotation of the closed trajectories of dynamical system (3.2) in invariant domains
Diy v, Donst.— is clockwise and in invariant domains Doy 11+, Dan - is counter-clockwise.

Proof. Dynamics of separatrices is shown in Figure 2 based on Lemma 2. Hence by the
continuity we get the described directions of rotation of the closed trajectories. O

IV. METHOD FOR CONSTRUCTION OF THE MODULI SPACE S(D)

I 1t is evident that topology of trajectories does not depend on their parametrization. Therefore we
choose a new time variable T that makes the analysis simpler

dr H2

—_=—. 4.1
dt  2nr? @D
In the new time 7, the dynamical system (2.10) for H = H, takes the form
dr _ 27r 0H, dz _ 2nr 0H, 42)
dr ~ H, 8z’ dr = H, 8r’ ’
d
2 - o, 43)

dr
The main advantage of the time change (4.1) is that the T-derivative (4.3) of the angular variable ¢ is
constant (and equals to 27).

Remark 6. The time change (4.1) preserves direction of time in invariant domains D, ; and
Dons1.— where Ha(r,z) = —zr*G3(R) > 0 and reverses it in the domains D, + and D, - where
Hy(r,z) = —zr’Gs(R) < 0. Hence using Corollary 3 we get that after the time change (4.1) all
trajectories of system (4.2) rotate clockwise, as shown in Figure 3.

System (4.2) evidently is a reparametrized Hamiltonian system with the Hamiltonian function
Hy(r, z). Equation (4.3) defines rotation of the angular variable ¢ with constant speed 2x.

Substituting formulae (3.1) and Hy(r,z) = —zr*G3(R), we get the explicit form of the dynam-
ical system (4.2),

:—: _ (1 + zz—g—:) , :—i = 4 + 27rr2—g—:. 4.4)
System (4.4) evidently has an invariant line r = 0. System (4.4) as well as system (4.2) have first
integral Hy(r,z). The invariant with respect to the system (3.2) spheres S? : G3(Ry) = 0 and plane
R2 : z = 0 defined by equation Hy(r,z) = 0 are the singular subsets r2 + z> = R2 and z = 0 of system
4.2)-(4.4).
1I. Applying Proposition 1 we get that all trajectories of system (4.4) in invariant domains Dy .
are closed curves Cy satisfying equation Hy(r,z) = H # 0. Let us define for each invariant domain
Dy + a continuous function 1, (H) of one variable H.
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FIG. 3. Phase portrait of dynamical system (4.2) in invariant domains Dy s, D2 4, and D3 4. All rotations are clockwise.

For any constant H # O we consider the closed trajectory Cy € Dy .+ C RZ: Hy(r,z) = H and
define 7, (H) as the period of the trajectory Cy of dynamical system (4.4) in Dy .. Thus we get a
function 7x(H) that is continuous in its domain due to the general theory of dynamical systems.>®
Since dynamical systems (4.4) in two domains Dy , and Dy _ are equivalent by the automorphism
7 — —z, T — —7 induced by the automorphism 7 (2.28), we get that the functions 7.(|H|) for
them coincide.

Trajectories of system (4.2) and (4.3) move on invariant tori T2, = Cy X S in the 3-dimensional
space r, z, ¢ where the circle S! corresponds to the angular variable ¢gmod(2x).

Proposition 2. Topology of trajectories in an invariant domain Dy + X S 1 is changing from one
torus ']qul to another T%,lz if and only if the function of periods T, .(H) is not constant.

Proof. If the continuous function 7,(H) # const then it takes all rational and all irrational
values in some interval (a, b).

Let a closed trajectory Cp, have a rational period 7.(H1) = p/q. During the time 7 (Hy) the
angular variable ¢ is changed for 277, (H;) because dep/dr = 2x. After g complete turns of trajec-
tory around the closed curve Cp, the angular variable ¢ is changed for g(277,(H;)) = 27p, because
1(H{) = p/q. Hence all trajectories on the torus TI?II are closed curves.



013101-14 Oleg Bogoyavlenskij J. Math. Phys. 58, 013101 (2017)

Now let a closed trajectory Cy, in Dy ; have an irrational period T,(Hz). Then after any N
complete turns of trajectory around the closed curve Cp, the angular variable ¢ is changed for
2n N7 (H,). For any integers N and M we have 2a N7 (Hy) # 2nM because 1, (H,) is irrational,
(H2) # M/N. Hence all trajectories on the torus leiz are non-closed infinite quasipericdic curves.
As known any quasiperiodic trajectory is dense on Tf212'

Hence, the topology of trajectories is changing from one torus to another if the function of
periods 1, (H) is not constant,

If 7(H) = 7, = const for all A then trajectories on all tori either are all closed (if 71 is rational)
or are all dense (if 7y is irrational). This means that if function 7(H) is constant then all trajectories
have the same topology. o

A. Structure of knots

All trajectories on the torus TIZi with the period 7,(H) = p/q (p and q are coprime) are closed
curves which make g complete turns around the meridians and p complete turns around the longi-
tudes of the torus 7. These closed curves form knots in R? which are called torus knots K}, ;.

All trajectories with period 7 (H) = 2/5 make 5 turns around the meridians and 2 turns around
the longitudes. They form a non-trivial knot K> 5 shown in Figure 7 of Section VIII.

Corollary 2. If for some integers p and q a torus knot K, , is realized by vortex lines for the
Sluid flow (2.21) then its mirror image K, 4 is not realized.

Proof. Indeed, any torus knot K, , and its mirror image K ».q have opposite directions of rota-
tion around the meridians. As shown in Remark 6 all closed trajectories Cy of dynamical system
(4.2) rotate in the clockwise direction, see Figure 3. So the opposite (counter-clockwise) rotation is
not realized and hence the mirror image K, , does not appear. a

111, The main method. To construct the moduli space S(D) of vortex knots for the fluid flow (2.21)
it is necessary to find the ranges of all functions of periods 7, (H) for the invariant domains Dy, .
for k = 1,2,3,. ... Indeed, using the proof of Proposition 2 and Corollary 4 we get that all rational
numbers p/q from those ranges define all torus knots K, , realized by the closed vortex lines for the
flow (2.21). To find the ranges of the continuous functions 1,(H) we calculate in Sections V and VI
their limits

nggki T(H), Jim w(H), 4.5)

where Hy. are the values of function Hy(r,z) at the equilibrium points Ey. : (rr,zx). Then since
the limits occur to be different and the functions 7.(H) occur to be monotonous in their domains we
get their ranges between the above limits. This leads to the construction of the moduli spaces S(R?)
and S,,(B3) in Sections VIII and IX.

V. LIMITS OF FUNCTIONS 14(H) ATH — Hj
I For the rest of the paper, the function H(r, z) means Hy(r,z) = —zr’G3(R).

Lemma 2. All maxima and minima of function Hy(r,z) at the points Ey. (rr,zi) (3.14) are
non-degenerate.

Proof. Let Hy, = Ho(ry,z;) and Ry = / r2 + z3. At the two points Ey, and Ej_ the values of Hj
differ only by the sign. For the function Ha(r, z) = —zr2>G3(R) we have

dH 2H zr? AH H 7%? dG;
- __G’, ___=___G', G, = —. 5.1
ar r R 3 dz z R 3 37 dR G-
Hence at the equilibrium points (3.14) the relation holds,
wriRy'GY(Ry) = 2Hy. (5.2)

Differentiating Equations (5.1), we find
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0*H _2H 20H 3zr? ot zrt
— = - +=—— - —-Gj+ =G} - =Gy,
or? r Or R 3 3R

9%H 18H 2z 22 zzr3
=22 e g -y
drdz z Or R 3 R 73 3

Substituting 0H/dr(ry,zi) = 0, 0H/dz{ry, zz) = 0 and formula G" = —G3 - 6G}/R (2.26), we get

82H 2H, 1 Tzir Zirs
—(re,21) = ke R~—G ( 3zkrk k k) + —k75G3,

2 T2 52
or rk k Rk

OH H, 1 T3r2\  2r?
—(re,ze) = ——5 t= G3( T . 1.3 . 2L Yo
Z k

2 2
dz k k Rk
2 2.3 2.3
H 1 5\ | i
rio2k) = =Gy —22r + —5= | + =55 G,
araz( k k) Rk 3( k! k R,f R]E 3

Substituting here formula (5.2) and G3 = —H/(zr?) we derive

9*H 8 14 1z
L i) = Hi|~— :
grz Ve Zk) = "( 2TRR

oH 14 4z 2
— (7, =H. |-—=- SR — T
7z (reszi) k( 2 ri 7R Rl%

BZH( )= zereH 4 . 14 1
Feozi) = AL S
Aoz T T HORTE o nk R

Inserting here formulae (3.14) r} = z R2 2= %ﬁz we find at the equilibrium points (r¢, zx),

6 H 2Hk = 2H Hk zkrka
a7 Tar O R G =3 Cr R, 5o = & 2R
Hence we find using (3.14) for the Hessian
8*H 8%H 0’H :
H(re, z) = w(rk,zk)a—zz("k,ac) - (0r—61(rk,2k)) (5.3)
H? N . 6H? .
o (B =3B +6) - (B - 12) = 4R - 6).
k k

The numbers R, (roots of Equation (3.13)) are given by formulae (3.15) and (3.16). Hence K2 > 6.
Therefore the Hessian H (1, zx) > 0 which means that the extremum of the Hamiltonian function
Hy(r, z) at each equilibrium point (74, z;) is non-degenerate and is either maximum or minimum. 0O

I1. Formula (5.3) leads to a formula for the limit of the function of periods 7 (H).

Lemma 3. The limit value of function of periods 1,(H) at H — Hy is

1
m T(H) = () = ——. (5:4)

2,/1-6F;?

Proof. At the equilibrium point (ry,zx) we find from system (4.2) 8H/6r =0, 0H/dz =0
Since each equilibrium point (ry,zx) is a non-degenerate extremum of the Hamiltonian function
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Hy(r,z), dynamical system (4.2) in a small neighborhood of the point (ry, z¢) is approximated by its
linear part

dr dz
—=—au(z - ) —anr —rn), — =ap(z-z)+ an(r —ry), (5.5)
dr dr
where constant coefficients a;; have the form
2rry O*H 27r, 0°H 2rry 8%H
- ,20), - , == (re,zz). 5.6
= (resze),  an = T Frag Vet an He or2 (re, k) (5.6)
Using formulae (5.6) and (5.3), we get
Dy = anan — a}, = Qarg/ H)*H(re, zi) > 0. 5.7

Linear system (5.5) has first integral F(r,z) = axnr? + 2a12rz + aj1z% Therefore all its trajectories
for Dy > 0 are ellipses F(r,z) = const. As known,*® all solutions to the linear system (5.5) with
Dy > 0 are periodic with the same period 7, = 271/v/Dy.

The limit of the period 7,(H) when H — Hy evidently is 7; because system (4.2) is approxi-
mated by the linear system (5.5) when (r,z) — (r«, zx).*® Using formula (5.7) and expression (5.3)
for H (rr, zx), we find for the limit value of function 7,(H) at the point Hy = Ha(r, zz),

2n _ IHd R
VDr iy H (res zi) rk\/é(ki_@

T(Hy) = Hli_l.nHk w(H) =7 =

Substituting here the expression ry = v2/38; (3.14) we get formula (5.4). a

Remark 7. Using numerical values of R, (3.16) we find from (5.4) the first four values of limit
periods T.(Hy),

Ti(Hy) ~ 0.5847, 7(Hy) = 0.5295, 73(H;) =~ 0.5136, 74(Hy) = 0.5079. 5.8)
It is evident that the function 7.(Hy) (5.4) is monotonously decreasing when k —s oo and has the
limit

Jim 7(Hy) = 05. (5.9)

I Let us derive a formula for the Hy = Hy(ry, zx).

Lemma 4. Function |Hy(r,z)| in each invariant domain Dy, takes the maximal value

2 1
|Hy| = — . (5.10)

3V3 [1 -3/ + 36/RS

Proof. Substituting formulae (3.14) into Ha(ry, zx) = —2x72G3(Ry) (2.25) we find Hy, = O'FR;:
G3(Ry), o = —~sign(zx). Substituting here formula (2.15) we get

2 R tan R
Hy = cos Ry (( o 3). (5.11)
3\/_ Ry Ry
At the equilibrium points E., Equation (3.13) yields
R R-6
R 570 (5.12)
Re 3R -6

Inserting this into (5.11) we find

2 cos R [(3— RH(R? -6) 2 (cos R;C)R3
Hk = -3 =—-0—
3\/_ Ry 3R-6

V3 3RE-6
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Substituting here formula cos Ry, = sign(cos R )(1 + tan?R)~'/2, formula (5.12), and o = —sign(zy)
we get

2 sign(zy cos Ry)R} 2 sign(zxcos Ry)

= —— - . (5.13)
V3 Ja-Rep+ RR-6p  3V3 [1-3/R2 + 36/RS

Since Hy = Hy(rg, z;) is either a maximum or minimum of function H,(r,z) in the domain Dy, we
get from (5.13) formula (5.10). m]

Remark 8. Function Ha(r,z) = —zr’Gs(R) is negative in the invariant domain Dy, Indeed, this
follows from the formula G3(0) = 1/15, see (2.17). Function Hy(r,z) = —zr’G3(R) has opposite
signs in any two neighbouring domains Dy, because it is zero at their common border. Hence using
numerical values of R, (3.16) we get from (5.13) the numerical values of H, at the equilibrium
points Ey,,

H; =~ -0.4276, H,=0.3957, H;=~-0.3900, H=~ 0.3879. (5.14)

At the equilibrium points Ej _, the values of H}, are opposite to (5.14).

Remark 9. Formula (5.10) implies that the values of |H;| monotonously decrease at k — oo
and have the limit limg__,o, [Hy| = 2/(3V3) ~ 0.3849. Hence the functions of periods T (|H|) for all
k are defined in domains which contain the segment [0,0.3849].

VL. LIMITS OF FUNCTIONS 1, (H)ATH — 0

I In view of the automorphism T (2.28), the limits of functions of periods 7(|H|) are the same in
the domains Dy, and Dy_. (3.8). Function Hy(r,z) = —zr’G3(R) (2.25) vanishes at the boundaries
0Dy, +(3.9) of these domains. Hence the limit of 7,(H) at H — 0 is equal to the limit of periods of
closed trajectories Cy (|Ha(r,z)| = & << 1) near the boundaries 4Dy .

The speed V of dynamics defined by system (4.4) satisfies the equation

1 1 [{dr\* [dz)? I
V=l ) =4 5 (R . 6.1
4n2 472 ((dr) (dr) Tt G§( G +6G3Ga) 6.1)
On the circles R = R, we obtain from (3.5),
R*G5 +6G3Gs = REGA(Ry) = (RA(RY +3R2+9))7! > 0. (6.2)

Formulae (6.1) and (6.2) imply that: (a) In the small neighborhoods of points
Py:(r=0,z2=0), Pr:(r=0,z2=Rt), Or:(r=R,z=0) (6.3)

we have V > 4r; (b) at (r* + z%) — RZ we have V — oo in view of Equation (6.2) and G3(Ry) =
0; (c) at z —> 0, the term r%/z2 in (6.1) yields V — oo, (d) at r — 0, formula (6.1) yields
V — 4nm.

II. A trajectory Cy in the invariant domain Dy . at H — 0 moves near the boundary 8D . (3.9)
(see Figure 2) and consists of an arc A; near the quartercircle S; (3.10) having length ~ %7rR1, a
small arc of length £ near point Q; (6.3), an arc B| near the segment J; (3.10) of length ~ R), a small
arc of length £ near point Py, an arc C near the segment /3 (3.10) of length ~ Ry, and a small arc of
length £ near point Py (6.3). The velocity V of dynamics along these arcs in view of {6.1) and (6.2)
has the following limits at H — 0:

Va, —> 00, Vp,Vp, Vo, 241, Vg —> 00, Vg — 4n. (6.4)
The total time of trajectory travel along the closed curve Cy at H — Ois
7(R1 >4 R1 & R1 &

TH) = =+ — + =+ — + — + —,
W) 2VA1 Vo, Vs VPo Ve, Ve
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Using here the limits (6.4) and ¢ — 0 at H — 0 we derive
Aim T(H) = p1 = Ri/(4n). (6.5)

IIl. A closed trajectory Cyy in the invariant domain Dy . (see Figure 2) at H — 0 consists of an arc
Ay, near the quartercircle Sy (3.9) of length = %an, a small arc of length & near point Q; (6.3), an
arc By of length ~ Ry — Ry.; near segment J; (3.9), a small arc of length & near point O (6.3),
an arc Ag_; of length ~ %”Rk-l near the quartercircle Sy, a small arc of length £ near point Py_;
(6.3), an arc Cy of length ~ R, — Ry_; near segment I (3.9), and a small arc of length £ near point
Py (6.3). The velocity V of dynamics along these arcs in view of (6.1) and (6.2) has the following
limits at H — 0:

VAk’VAk—l’VBk — 00, VQk’VQk—l’VPk-I’VPk > 4n, Vck — 4. (6.6)
The total time of trajectory travel along the closed curve Cy at H — 0 is
R Ry — Ry_ R Ry — Ry-
Tl(H)=ﬂ-k+i k k-1 8+7rk+8 k k1+_3_.
2Va Vo VB, Vot 2Var, Ve Vey, Ve,
Using here the limits (6.6) and & — 0 at H — 0 we find
J_}im“‘l'k(fﬂ = pr = (R — Re_y)/(47). 6.7)
IV, Substituting into (6.5) and (6.7) the numerical values of Ry (2.26). we get
p1 = 0.4586, p> =~ 02651, p3=~02569, py=~0.2540, ps=0.2526. (6.8)

From the asymptotics (2.26) and formula (6.7) we find

k]lll'i'l Pr = A.llrl'l (R;‘ - R&-q ];r(-'lﬂ'} =0.25. (69)

Formulae (6.8) demonstrate that convergence to the limit (6.9) is rather fast.

VIl. PITCH FUNCTION FOR GENERAL AXISYMMETRIC FLOWS
I. Axisymmetric steady fluid flows have velocity vector fields

19y 13y,  w(rz)
v =———8, + ——8, + —f 1

(na) ==&+~ o8 + — =8, (.n

where ¥(r,z) is a stream function and §&,, &,, €, are unit orts in the cylindrical coordinates r, z,
. The steady axisymmetric Euler equations (1.6) are reduced to the nonlinear Grad - Shafranov
equation (1.12) for the stream function y/(r, z) where arbitrary smooth functions F(i%) and G() are

connected with vector field V (7.1) and pressure p by the relations?
1
LasIVP=F@), (o) =W

The vortex field of the fluid flow V(r, z) (7.1) has the form

Gy),. G 1 1 A
CUI‘IV(F,Z) = —'_(:_[/—)Zer + &ez - ;’(wrr - 'r"/’r + ‘/’zz)eq:- (7.2)
Therefore, the dynamical system of vortex lines
dx d, A~ o " A o
pril (x8y + y&, + 28,) = 7&, + rg8, + &, = curl V (7.3)

by virtue of Equations (1.12) and (7.2) takes the form

1 1
F===GWWe 2= -GWWn (7.4)

¢ =~F§) + 56UCW) (7.5)
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II. Suppose that the stream function ¥(r,z) has a local non-degenerate maximum or minimum
¥m = ¥(am) at a point a,, with coordinates (r,,, z,,) and G’(1f,,,) # 0,

Yr(am) =0, Ylam) =0, Hpu = rr(@m¥ z(am) - 'J/fz(am) > 0. (7.6)

The function G(y) also has a non-degenerate maximum or minimum at the point a,,: the cor-
responding Hessian is Hoy) = (G'(¥m))*Hm > 0. Therefore system (7.4) has the center equilib-
rium point a,, and system (7.4) and (7.5) has a stable trajectory —vortex axis S,.: 7 = 71y 2 = Zims
0 < ¢ < 2x. All trajectories of system (7.4) near the center are closed curves Cy : y(r,z) = const
encircling the point a,,. The corresponding trajectories of system (7.4) and (7.5) are either infinite
helices or closed curves—knots—lying on the invariant tori T2 = Cy X S! where circle S! corre-
sponds to the angle ¢. Let t(i) be the period of the closed trajectory Cy. The pitch function p(y) of
the helices on the torus Tf;', is defined by the formula

1) de
p(Y) = /0 adz. (7.7)

Formula (7.7) agrees with Moffatt’s definition® of function p(y). If p(¥)/(27) = p/q where p and
g are coprime integers then all helices on the torus ’]I‘:‘;, after g turns around meridians make p turns
around the latitudes and hence are closed curves that are called the torus knots K, 4.

Substituting Equation (7.5) into formula (7.7) we get

1)
P = ~F W)+ 60w [ .

In the limit 4 — ,,, we have r{t}) — r,,, for all ¢, hence
PWm) = Bm p(y) = tm) [-F'Wm) + GWm)GWm)/r], (7.8)
where () = limy_,,, 1(4).

II. Dynamical system (7.4) near the equilibrium point (r,,, z,) is approximated by the system in
variations®®

dor déz
—_— = — 14} —_— = .
m a0z — aiadr, i apdz + andr, (7.9)
G'(Y,
a = le//zz(am)a ap = cm‘prz(am)a an = Cm'prr(am)a Cm = M’ (7.10)
where 6r(t) = r(t) — rm, 6z(¢) = z{t) — z. From Equations (7.6), (7.10) we get
D, = anjan - a%z = c,z,ﬂ-(m > 0. (7.11)

Linear system (7.9) has a quadratic first integral Q(8r,6z) = axn(6r)? + 2a12(6r)(8z) + a1,(62)?
that in view of (7.11) is either positive or negative definite. Hence its level curves Q(ér,8z) = const
are nested ellipses and therefore all solutions to (7.9) are periodic. Due to the scaling invariance of
system (7.9) all its solutions have the same period ¢, = 27/v/D,,..

From the general theory of dynamical systems,*® it follows that the limit at ¥ —> i, of the
function of periods () is the period ¢,, of the system in variations (7.9). Using formula (7.11) we
find

2n

. 2
tm) = Mm 1(y) = B e (7.12)
Substituting (7.12) and (7.10) into (7.8) we get
Pm) = lim py) = —2 | Fg) ¢ — GG Wn|.  (13)
y—m |G Wm) N "

This formula proves that for the case of arbitrary functions F(y), G(¢) in Equation (1.12) the
pitch function p(¥) has a finite and non-zero limit at ¢ — 1,,,. The limit (7.13) is one of the two
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exact bounds for the range of the pitch function p(i). Hence we get one of the two exact bounds
p(¥m)/(2n) for the range of the rationals p/q for the torus knots K, , which can be realized as
vortex knots for the considered fluid flow V(r, z) (7.1). Since the exact bound p(i,,) # 0, the pitch
function p{y) cannot change continuously from zero to infinity.

Vill. MODULI SPACE S(R% OF VORTEX KNOTS
I

Proposition 3. For the exact solution to the steady Euler equations

Va(x) = ((x + y2)Gs + x2°G9)éx + ((y — x2)Gs + y2°Ga)é, + (8.1)

G2 +3G3 +22Ga)e,,  p(x) = C - p|V,(x)*/2,

the dynamics of its vortex lines is non-degenerately integrable in each invariant domain Dy . x S,
k=1,2,.... Here Gy,G3,Gy4 are analytic functions (2.14), (2.15), and (2.16) of the spherical radius

R=x2+y?+22

Proof. Vector field Vy(x) (8.1) has form (2.9) in the cylindrical coordinates r, z, ¢ with function
f(r,2) = 2G»(R). Hence vector field (8.1) satisfies Beltrami equation (2.1) and therefore together
with the pressure p(x) = C — p|Va(x)|?/2 is an exact solution to the steady Euler Equations (1.6).
The dynamical system dx/d¢ = curl V,(x) was transformed into system (4.2) and (4.3) in Section IV
where we proved in Proposition 2 that the system is non-degenerately integrable if and only if the
functions of periods 7.(H) are not constant. In Sections V and VI we derived the limits of functions
7x(H) when the Hamiltonian function Ha(r, z) is changing between its maximum or minimum Hy, in
the invariant domains Dy, . and the zero value at their boundaries Dy, .. Since functions 7, (H) are
continuous, we conclude that each function 7. (H) takes all values between its limits (6.5), (6.7), and
(5.4),

1 1
Pr = E(Rk = Re-1) < w(H) < T T(Hy), 8.2)
2,/1-6R;
where p; = R;/(4n). Numerical calculations show that functions 1.(|H|) are changing monoto-
nously between their limits py (6.7) (or p; (6.5)) and 7 (H;) (5.4). Results of the numerical

calculations are presented in Figure 4 for k = 1,2,3,4.
Using the numerical values (6.8) and (5.8) we find for the invariant domains Dy .,

Di.: 04586 <7(H)<0.5847, Dp.: 02681 < 1o(H) < 0.5295, (8.3)

Ds.: 02569 < 5(H) < 0.5136, Ds.: 0.2540 < 14(H) < 0.5079.

Remark 10. The first inequalities (8.3) prove that all values of the safety factor q(H) = 7(H)
for the flow V,(x) (8.1) in the first invariant ball ]Bi‘ belong to those presented in (8.3) interval of
small length £ ~ 0.1261.

The plots of functions 7(|H|) are shown in Figure 5 for &£ = 1 and in Figure 6 for k > 2. The
sequences of numbers py and 7(H)) monotonously decreases as k —» oo to the limits (6.9) and
(5.9,

khm Pr = 025, klim Tk(Hk) =(0.5. (84)
The limits (8.2)-(8.4) prove that the functions 7,(H) are not constant for all £ > 1. Hence

applying Proposition 2 we get that dynamical system dx/dt = curl Va(x) (4.2) and (4.3) is non-
degenerately integrable in all invariant domains Dy, X S*. =]
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Proposition 4. The functions f(r,z) (2.29) define vector fields Va(x) (2.9) which are exact
solutions to the Euler equations (1.6) and provide the non-degenerate integrability of system
dx/dr = curl V(x) if

aj+tan=1, a =0, |ul <e<<l. (8.5)
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FIG. 5. Function of periods 71(|H|) for invariant domains D ..
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T

= fone
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FIG. 6. Function of periods T (|H|) for invariant domains Dy 4, k > 2.

Proof. Vector fields V(x) (2.9) satisfy Beltrami equation (2.1) and hence define solutions
to Euler equations (1.6) with p(x) = C — pIVf(x)|2/2. Function f(r,z) (2.29) at the conditions
(8.5) is a small e-perturbation of function f (rz\ z) = zG(R) which corresponds to the exact solu-
tion (8.1). Hence the function Hf(r, 2) = —rfy(r,z) also is a small e-perturbation of function
Hy(r,z) = —r f»(r,z) (2.25). Hence trajectories CHf of the perturbed dynamical system (4.2) in the
plane (r, z) also are closed curves. Since function of periods T(H}) of closed trajectories Cy £ contin-
uously depends on perturbations we get that 7(H}) is not constant since all functions 7,(H) (8.2)
are not constant. Therefore applying Proposition 2 we get that the corresponding dynamical system
(4.2) and (4.3) is non-degenerately integrable. ]

Il Let us consider trajectories of dynamical system (4.2) and (4.3) on the invariant tori
T} = Cy x S where closed curves Cy C R? are defined by equations Ha(r,z) = H = const and
circle S! corresponds to the angular variable ¢. Suppose that for H = Hy the function of periods
7(H) has a rational value T(Hy) = p/q with relatively prime p and q. Then all trajectories of system
(4.2) and (4.3) on torus Tp, make g complete turns over meridians and p complete turns over the
longitudes. Hence all these trajectories form a torus knot K, ,.

One of the topological invariants of any knot is its Alexander polynomial that is defined up to
an arbitrary factor +¢"1. The equality of the Alexander polynomials A(%’) and A(.L) of two knots K
and .L is the necessary condition for their isotopy equivalence but not the sufficient one.

The Alexander polynomial for a torus knot X, , has the form®
(P -1)(t-1)
Bp.a(t) = (P -1)@a-1)

The polynomial A, ,(¢) has degree n = pg + 1 — p— g = (p — 1)(g — 1). Since p and g are relatively
prime, the degree n is always even. For p/q = 1/q and for p/q = p/1 the polynomial A, ,(f) = 1
and the corresponding closed curves are unknots.

(8.6)

Lemma 5. If two torus knots Ky, 4 and K5 5 are equivalent then either p/§ = p/q or §/p = p/q.
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Proof. If the two knots are equivalent then their Alexander polynomials (8.6) after multiplica-
tion by factors +:"¢ coincide

@i-1)-1) @PI-1(-1)

(P -1)a-1) @@ -1)ri-1)
Polynomial A, 4(t) (8.6) does not have any real roots and all its complex roots lie on the unit
circle |¢| = 1. The root with minimal argument is 7 = exp(27i/(pq)). The equality of polynomials
(8.7) yields exp(27i/(pq)) = exp(27i/(5g)). Hence we get pg = p§. Since the degrees of polyno-
mials (8.7) coincide, we have pg+1—p—g=pg+1—p ~ . Therefore p+qg =p + g. The two
equalities pg = pg and p + g = p + § imply that either 5 = p,§ = gor = p,j = q. O

8.7

Lemma 6 evidently implies the following

Corollary 3. The torus knots K, 4 and Kz 4 with p/q <1 and j/§ < 1 are not isotopic if
p/q#plq.

Remark 11. Lemma 6 was first published in Ref. 39 as Theorem 2.2.2. Its proof is given in
sections 6.1.17 and 12.2.15 of Ref. 39 and is based on “Kurosh subgroup theorem” and uses the
notions of “non-slice and non-amphicheiral” knots. Neither of those are necessary to prove Lemma
6, as follows from the above presented straightforward proof.

Lemma 6. For the exact fluid flow (2.21), the vortex knots in the invariant upper half-space H3,
z > 0, are isotopic to the vortex knots in the invariant lower half-space H?, 7 < 0.

Proof. Evidently, the plane z = 0 is an invariant submanifold of the dynamical system (2.22)
corresponding to the flow (8.1) for which curl V,(x) = Va(x). Hence all closed trajectories of
this system lie either in the upper half-space H2 or in the lower half-space H2. Dynamical sys-
tem (2.22) is invariant under the automorphism T (2.28) which transforms trajectories in domain
z >0 into trajectories in domain z < 0. The automorphism T can be included into the isotopy
To(x.y,2) = (x, cos 8y —sinfz, sinfy + cosfz), 0 < @ < . Indeed, for 6 = 0 we get 75 = id and
for § = we find 77 = T. Therefore any vortex knot K in the upper half-space H3 is smoothly
isotopic by the transformations 75(K) to the vortex knot T(K) in the lower half-space H3 and vice
versa. O

Theorem 1. For the exact fluid flow (8.1) in the Euclidean space R? and in the half-spaces H2,
2> 0and H?, z < 0, the moduli spaces S(R?), S (H3), and S(H?) of vortex knots coincide and are
naturally isomorphic to the set of all rational numbers p/q in the interval

1 . 1
Ji: 1 <T<M = ——~_2 = 7y(H) » 0.5847, (8.8)
2,/1-6R]7)

where Ry ~ 3.8702 is the first positive solution (3.16) to the equation tan R = R(R? - 6)/(3R% - 6).
The vortex torus knots K, o with p/q € J1 are mutually non-equivalent. All vortex knots K. p.q have a
clockwise rotation around the meridians; the mirror images of the knots K p.q are not realized by the
vortex lines.

Proof. Applying Lemma 7 we get that the vortex knots in the upper half-space H2, z > 0 are
isotopic to the vortex knots in the lower half-space H2, z < 0. Hence the corresponding moduli
spaces for R%, H2, and H? coincide.

Proposition 3 and Equation (8.2) imply that for all fractions p/q from the range of a function
of periods 7;(H) the corresponding torus knots K, , are realized by the vortex lines in the invariant
domain Dy . x S', k > 1. We have shown in Sections V and VI that the lower and upper limits of
ranges (8.2) of functions 7,(H) monotonously decrease when k — oo,

1
l l (8.9)

2/1-6k2 2

j 1 T(Hi) =

41
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Hence the union of the ranges (8.2) of all functions 1,(H) is the interval J; (8.8). Hence for any
rational number p/q € J; the corresponding torus knot K, , is realized by the closed vortex lines.

The mutual non-equivalence of the torus knots K, , for p/q € J; follows from Corollary 5
since p/q < mi(H;) < 1. Their clockwise rotation around the meridians follows from Remark 6 of
Section IV and the non-realisation of the mirror images of the vortex knots K, , follows from
Corollary 4.

Hence we have a one-to-one correspondence between all non-isotopic vortex knots for the fluid
flow (8.1) in R?, or HZ, or H? and the set of all rational numbers from the interval .J;. This proves the
above description of the moduli space S. m]

III. Let us define two intervals J, and J3,
S (0.25, 0.9), J: (0.5, Ml). (8.10)

Let # c R' be the union of three intervals F = (0, 0.25)|J (M1, M[") (4, ). For any x € 7,
wehave x ¢ Jyand x7! ¢ J;.

Proposition 5. (a) Any torus knot K, , with p/q from the interval J, (8.10) is realized by the
closed vortex lines in infinitely many invariant domains Dy, . x S..

(b) Any torus knot K 5 with p/G from the interval J5 (8.10) is realized only in finitely many
invariant domains Dy, X SL.

(c) All torus knots K 5,5 with rational numbers g belonging to the set F (8.10) are not isotopy
equivalent to any torus knot realized by closed vortex lines for the exact solution (8.1).

Proof. (a) Since limy . pr = 1/4 (8.9) and 7 (Hy) > 1/2, we get that any fraction p/g € J,
belongs to the ranges of all functions 7,(H) starting from some k;. Therefore the corresponding
knot K}, , is realized in infinitely many invariant domains Dy x S! for k > k;.

(b) Since limy—,o 7x(Hy) = 1/2 (8.9) we find from (8.2) that any 5/§ > 1/2 does not belong
to the ranges of all functions 7,(H) starting from some integer k,. Hence applying Corollary 5 we
find that the torus knot K 5 for §/§ € Js is realized by the closed vortex lines only in finitely many
invariant domains Dy . x Sl for1 < k < k.

(c) For p/G € ¥ we have that both 5/g ¢ J; and §/p ¢ J;. Hence by Lemma 6 the Alexander
polynomial A ;(t) (8.6) is different from the Alexander polynomials A,, ,(¢) for all torus knots K. pg
with p/q € J;. Therefore the torus knot K5, ; is not isotopic to any torus knot Kpqwithp/ge Ji. O

Example 1. The torus knot K, 5 (see Figure 7) is realized by the closed vortex lines in all
domains Dy, . x S* for k > 2 because the fraction 2/5 € J, is in the ranges of all functions 7.(H),
k > 2, see formulac (8.3) and Figure 6. Applying Corollary 5 we find that the knot Ky s is not
realized in the two domains D ;. X ' because 2/5 does not belong to the range of function n(H|),
see formulae (8.3) and Figure 5. The Alexander polynomial of the torus knot Kj s has the form
A s(t) =t* =13+ 12—t + 1. This is the only quartic Alexander polynomial possible for the torus
knots.

Example 2. Another simple torus knot that is realized in all domains Dy, . x 8! for k > 2 and is
not realized in the two domains D; , % §! is the knot K> 7. Indeed, the fraction 2/7 ~ 0.2857 € L, is
in the ranges of all functions 7;(H) (8.3) for k > 2 and is not in the range of function 7;(|H|). The
corresponding Alexander polynomial (8.6) has degree 6: Ag7(1) =16 — S + 14~ 3+ 2 — ¢ + 1.

The simplest torus knots K, 3 (the trefoil knot) and K34 are not realized by the closed vortex
lines for the exact solution (8.1) because the fractions 2/3 and 3/4 do not belong to the interval
(8.8).

IX. MODULI SPACES Sy,(B3) OF VORTEX KNOTS

1. In this section we present the moduli spaces of vortex knots for the fluid flows V(x) inside a
ball B} (x> + y* + z% < a®) which are solutions to the boundary eigenvalue problem?-° for the curl
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FIG. 7. The torus knot K> 5 with period 7 (hz)=2/5 is realized by the closed vortex lines in each invariant domain Dy, .+
fork >2.

operator
curl V(x) = AV(x), (V(x) n(x)| o83 = 0. 9.1)

Here n(x) = x/a is the unit normal vector field on the boundary sphere S2 = dB>. The second
equation in (9.1) is called the non-penetration condition and means that the boundary sphere S2 is
an invariant submanifold for the fluid flow V(x).

Let us construct for the vector field V,(x, y, z) (8.1) an infinite series of axisymmetric solutions
to the boundary eigenvalue problem (9.1),

V2m(x1 Y, Z) = V2(lmx’ /1m Y, /lmz)’ /lm = a_lRm’ (92)

where R,, is the mth positive solution to the equation tan R = 3R/(3 — R?) (2.25). Since the vector
field Vo(x, y,z) (2.21), (8.1) satisfies Equation (2.1), we find that for any A vector field V,(Ax, 1y, 12)
satisfies Beltrami equation curl V(x) = AV(x). The first integral Hy(r,z) = —zr’Gs(R) (2.25) of the
vector field Va(x, y,z) (2.21) yields the first integral Hy (r,z) = —232r2G3(AR) of the vector field
Va(Ax, Ay, Az). Since all invariant submanifolds Hy(r, z) = C with a non-zero constant C # 0 are tori
'I[‘ZC, we get that the sphere S2 of radius a is an invariant submanifold for the vector field Vo(1x, 1y, 12)
if and only if the equation H,(r,z) = —A3zr’G3(1a) = 0 holds on S2. Therefore, Aa must satisfy
equation G3(R) = 0 (2.15), which means that 1a must be equal to one of the roots R,, of equation
tan R = 3R/(3 — R%) (2.25). Hence we get an infinite series of eigenvalues A,, = a~'R,, and eigen-
vector fields V3,,(x, y, z) (9.2) for the boundary eigenvalue problem (9.1).

Theorem 2. The moduli space S,(B3) of vortex knots for the mth fluid flow (9.2) inside the
ball B? is naturally isomorphic to the set of all rational numbers p/q in the interval

Iy Zl;r-(Rm —Rei) < T < M; =0.5847, 9.3)

where number M, is defined by Equation (8.8). The space S,,(B2) does not depend on the radius a.
The vortex torus knots Kp, 4 with p/q € Jp, are mutually non-equivalent. All vortex knots K, ; have
a clockwise rotation around the meridians.

Proof. The equation for the vortex lines for the mth flow (9.2) has the form

% = curl V3(4,,x). 9.4)
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Substituting here Beltrami equation (9.1) and multiplying with A,,, we get d(4,,x)/dt = A2,Vy(4,,X).
Hence the vortex lines for the vector field (9.2) inside the ball B (|x| < @) after change of time
dr/dr = A2, and substitution 1,,x = y satisfy the equation

L = el Vafy) = Valy), ©.5)
Since [y| = [Am[[X] £ Ry, the vortex lines (9.4) for the flow (9.2) inside the ball B} are mapped by
the diffeomorphism y = A;x into the vortex lines (1.9) and (9.5) for the axisymmetric fluid flow
Va(x, y,z) (8.1) inside the invariant sphere S2, of radius R,,,.

The interior of the invariant with respect to the flow (9.5) sphere S, is the union of 2m
invariant domains Dy + % S', k = 1,2,...,m, the disk x?+ y?> < R, in the plane z = 0, the in-
terval —~R,, < z < Ry, r =0, and m — 1 intermediate invariant spheres §2, k =1,2,....m~1.In
each domain Dy , x S!, the function of periods 7(H) (see Section IV) is changing in the interval
(8.2): px = (Rx — Rx—1)/(4n) < Te(H) < Ti(Hy). Since any two subsequent intervals (py, Te(Hy))
and (pg+1, Te+1(Hi41)) have non-zero intersection and both bounds py and 7(H,) monotonously
decrease when k grows, we find that the union of intervals (py, Te(Hy)) for k = 1,2,...,m is the

interval I,,, (9.3).
As is shown in Section IV, any vortex knot X, , of the considered axisymmetric flow in R?

corresponds to the rational value p/q of some function of periods 1,(H) and vice versa. All vortex
knots K, , realized by the system (9.4) and (9.5) have a clockwise rotation around the meridians
because by virtue of Theorem 1 this is true for all vortex knots for the flow V,(x) (8.1). Hence
using Theorem 1 we obtain that the moduli space S,,(B3) of vortex knots for the mth flow (9.2) is
isomorphic the set of all rational numbers p/q in the interval I, (9.3) and does not depend on the
radius a of the ball B2, o

Using formulae (6.8) for the numbers py = (Ry ~ Ri-1)/(4m) for k =1,2,3,4 we find the
approximate bounds of the first six intervals I,,, (9.3),

Ii: (0.4586, 0.5847), L: (0.2651, 0.5847), L: (0.2569, 0.5847),

I: (0.2540, 0.5847), Is: (0.2526, 0.5847), Is: (0.2519, 0.5847).

In the limit m — oo we find from Equation (6.9) that I,,, — J; where the interval J; : (1/4, 0.5847)
is defined by formulae (8.8). Hence we get from Theorems 1 and 2 that each vortex knot of the axisym-
metric fluid flow (8.1) in the whole Euclidean space R is realized for a sufficiently large m as a vortex
knot for the eigenvector field V,,(x, y, z) (9.2) inside the ball B,

X. CONCLUSION

1. We have derived exact axisymmetric solutions to the steady Euler equations (1.6) with velocity

vector fields
_1a(af\, 14 (af\, of.
Vix) = pl (r ar)e, i (r ar)ez &p, (10.1)

and pressure p = C — pc|V#(x)|/2, where functions f(r, z) have the form

by N _ak(z - ze) — sinyP+ G- up
f(r,Z)_Zﬂ—'f'(Z—_Zk)z<cos r2+(Z Zk)2 m ), (10.2)

and ay,zy are arbitrary constants. Functions (10.2) satisfy the Helmholtz equation Af = —f. The
vector fields V (x) (10.1) - (10.2) obey also the Beltrami equation curl V = V.

We have proved in Propositions 3 and 4 that dynamical systems of vortex lines dx/df =
curl Vf(x) (1.9) for a;j+---+an=1, ar 2 0, |zx| <& < 1 are non-degenerately integrable and
their dynamics occurs on invariant tori T3, = Cy x S, defined by equation H(x) = H = const,
H(x) = —rd f(r,z)/8r. Here Cy C R* is a closed curve H(r,z) = H = const and circle S' corre-
sponds to the angular variable ¢.

k=1
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The simplest of the exact solutions (10.1) and (10.2) is the flow V,(x) (8.1) which has the form
(10.1) with function

~ i 2 2
f= 1.2 = 2Ga(R) = (cos V2t - S“:/—r__— ”;:j) (10.3)

For the fluid flow V,(x), system (1.9) has a closed subsystem (3.2) in the (r,z)-plane R? Sub-

system (3.2) has infinitely many invariant domains Dy . bounded by the semi-circles R = R, and
R = Ry_y, r 2 0, satisfying equation Ha(r,z) = —rd f2/8r = 0 and the line z = 0. Here R, are roots
of equation tan R = 3R/(3 — R?). For each invariant domain D ; the function T¢(H) of periods of
closed trajectories Cy; C R? is not constant. The rational values of functions of periods 7. (H) = p/q
define tori Ti, on which all trajectories of system (1.9) are closed curves that make g complete turns
around the meridians and p complete turns around the longitudes. These trajectories form the torus
knots K, , (p and g are coprime).
II. We have proved in Theorem 1 that all vortex knots for the exact axisymmetric flow V,(x) =
V5, (x) (2.21), (8.1) are torus knots K, , with 1/4 < p/q < 0.5847. This gives a counterexample to
Moffatt’s statement of Ref. 32 from which it would follow that all torus knots K, , for any p/g are
realized as vortex knots for any steady axisymmetric fluid flow. Therefore the claimed uniformity
in Ref. 32 (see the quote between Equations (1.12) and (1.13) of Section I) does not correspond to
the facts.

For any axisymmetric steady fluid flows for which the stream function (r,z) has a non-
degenerate maximum or minimum , at a point a,,(r, z,»), we have proved in Section VII that the
pitch function p(y) has a finite and non-zero limit at i — ¥,

. 271 1
= lim =—— |-F + =G G'Wm)| . 104
plm) = Mm py) I (¥m) ) m)G'(¥rm) (104)
Formula (10.4) implies that presented in Refs. 33 and 34 with no proof Moffatt’s statements that for
the studied special flows limy .., p(¥) = oo are incorrect,

Formula (10.4) yields a plethora of counterexamples to the concluding part of Moffatt’s state-
ment of Ref. 32, p. 29:

“... the pitch of the helix varying continuously from zero ... to infinity ”.

Indeed, for the generic functions F(y) and G(i) in the Grad—Shafranov Equation (1.12) the

limit value p(y,,) (10.4) evidently is finite and non-zero and is one of the two exact bounds of the
range of the function p(). Since the bound p(i,,) # 0 we get that the pitch function p(y) does not
change “continuously from zero to infinity.”
I1l. We have demonstrated in Theorem 1 of Section VIII that the moduli space S(R?) of all non-
isotopic vortex knots for the fluid flow Vp,(x) (8.1) is naturally isomorphic to the set of all rational
numbers p/q in the interval J; : 0.25 < 7 < M; ~ 0.5847. In Proposition 5 we proved that torus
knots K, , with 0.25 < p/g < 0.5 are realized on infinitely many invariant tori T%i C Dy.+ X §! for
k 2 2, while torus knots with 0.5 < p/q < M) are realized only on finitely many tori.

We have shown in Section IX that the axisymmetric fluid flows V,,,(x, y,2) = V6 AmX, Amy,
Am2) are solutions to the boundary eigenvalue problem for the curl operator on a ball B3 of radius
a, provided that A,, = a”'R,, and tan R,, = 3R,,/(3 - R%). We have proved in Theorem 2 that
the corresponding moduli space S,,(B2) of vortex knots is the set of all rational numbers in the
interval I, : (Rp — Rim—1)/(47) < T < My = 0.5847, where Ry is the kth positive root of equation
tan R = 3R/(3 — R?) (2.25). Therefore the moduli spaces S,,(B2) do not depend on the radius a of
the ball B3, all spaces S,,(B3) are different (for different m’s) and tend to the moduli space S(R?)
when m — co because (R, — Rpy-1)/(47) — 0.25.

In view of the equivalence of the steady Equations (1.5) and (1.6) as well as Equations (1.5)
and (1.4) the above results are equally applicable to the moduli spaces of magnetic knots formed
by the magnetic field lines for the solutions Bf(x) and By, (x) (10.1)~(10.3) to the plasma equilib-
rium Equations (1.5) with pressure 5 = const and for the more general MHD equilibria (1.4) with
V(x) = aB(x).
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