Queen's University

Initiative, naturally

Queen’s University Biological Station, which has grown from a cluster of shoreline cabins in the 1940s to become one of the largest facilities of its kind in Canada, has earned a well-deserved reputation as a world-renowned biological research facility.

The Queen’s University Biological Station.
Inside QUBS
A few scales are removed from each fish and used to estimate age
Tipping her body to one side, a female bluegill spawns with a male.
A male bluegill attending his nest.
Bluegill sunfish colony at QUBS
Hook-tip moth caterpillars use silk to turn leaves into shelters.
At the microscopes at the annual QUBS open house.

Before Adrienne had a chance to swat at the wasp on her shoulder, a dragonfly swooped in to pluck it away. “Welcome to the food chain,” quipped Scott Colborne from the stern of the boat.

Each spring, Scott and a crew of students from the University of Western Ontario head out on Lake Opinicon twice daily to monitor the bluegill sunfish colonies that dot the shoreline. For his PhD research at the Queen’s University Biological Station, Scott is looking for evidence that the colonies in the Rideau Waterway are segregated based on the kinds of food available – which might indicate that this familiar dockside fish is in the earliest stages of evolving into a new species.

Measuring bluegill sunfish at QUBSMeasuring bluegill sunfish at the UUBS at Lake Opinicon. (Charlie Croskery)

If Scott’s long days on the water pan out, it won’t be the first major scientific catch to come out of the Queen’s University Biological Station (QUBS) a site that has grown from a cluster of shoreline cabins in the 1940s to one of the largest land-based field stations in Canada. Nor will it be the first time bluegill sunfish played a starring role.

In the 1970s, Mart Gross, Artsci'75, was also watching sunfish with the help of a snorkeling mask for his honours thesis with Professor Patrick Colgan at Queen’s. When Gross moved to Utah for his PhD, he felt compelled to follow up with those little fish. He returned to QUBS in 1976 with a new perspective: “I just saw everything differently. It was an amazing thing.” Because of their role in sport fishing, bluegill were widely studied in North America – yet Gross was noticing things that nobody had documented before. “I began to see patterns”, he recalls; “It was tremendously exciting.”

During the annual spawn, a male bluegill will build a nest, using his tail to sweep out a depression in the lake bottom; after that, he waits. If a school of females arrives, and the male manages to attract one to his nest, she might dip down to the lake bottom and tilt her body to one side to contribute a batch of her eggs. The male will then spend a week persistently guarding the site and tending his brood until they hatch.

At QUBS, Gross started noticing other, smaller fish that would sidle up to the nests when females were spawning. They were bluegill, but far too small to be adults. After catching some, Gross realized that despite appearances, these smaller fish were in fact adult males – and they were fertile. But they were breeding in an entirely different way, sneaking into the nests of the larger males and fertilizing some of the eggs there without the parental male noticing.

Gross eventually realized that the life of a male bluegill can take one of two paths: young males will either develop into large parental or small sneaker versions, each with its own distinct set of physical characteristics and behaviours. It was a tension that sparked the interest of biologists everywhere: how could two alternative male types coexist in a single species? In the years following, sneaker males were also reported in reptiles, birds, and crustaceans, as well as several economically important fish species. According to Trevor Pitcher, an expert in fish reproduction and genetics at the University of Windsor, Gross was way ahead of his time. His bluegill research proved that for males, bigger isn’t always better – and the alternative strategy isn’t necessarily a bad thing.

Later in his career, Gross began to apply these principles to Canada’s commercial fisheries. In Pacific salmon, male lives also take one of two pathways: they will either develop into larger hook-nose or smaller jack versions, analogous to the bluegill parentals and sneakers. Gross, now a professor at the University of Toronto, has shown that harvesting too many hook-nose salmon can leave a disproportionate number of jacks behind – and potentially spell trouble for future yields.

A day in the woods led to a scientific breakthrough for Laurie Graham, but one could hardly call it serendipity when she always keeps a few sterile containers on hand in her car.

This dynamic also comes into play in hatcheries that supplement wild salmon stocks. The natural choice for hatchery managers is to breed only the largest hook-nose males, but this can be counterproductive. Salmon jacks, like bluegill sneakers, tend to mature at a younger age, so they might grow more quickly. By excluding them, managers could inadvertently create a population of slow-growing fish.

It’s a balance that Trevor Pitcher takes into account in his work on Chinook salmon, done in partnership with an organic aquaculture company in BC. “The diversity of tactics is important to conserve,” Pitcher maintains; “People are now thinking about this when they create conservation breeding programs.”

Sunfish aren’t the only QUBS wildlife with far-reaching scientific impact. In 2001, Laurie Graham, PhD'96, was cross-country skiing north of Kingston when she noticed that the snow was speckled with black. Crouching down for a closer look, Graham realized that what looked like pepper was in fact alive – and hopping. The tiny specks were snow fleas, microscopic insect-like organisms that thrive in the coldest winter temperatures.

The QUBS research facility at Lake OpiniconThe QUBS research facility at Lake Opinicon                       (Charlie Croskery photo)

A researcher in the Biochemistry Department at Queen’s, Graham headed to QUBS to collect the thousands of snow fleas she would need for chemical analysis. There were bumps along the way: “We didn’t realize snow fleas were such good escape artists,” Graham laughs. Eventually, though, persistence paid off – in 2005, her work revealed that snow flea biochemistry was unlike anything seen before.

What keeps the snow fleas hopping is a unique antifreeze protein, so effective that Graham describes it as “hyperactive”. Along with Professor Peter Davies at Queen’s, Graham is currently working out the details of how the protein works. The antifreeze is beneficial for the animals – snow fleas and their relatives are some of the most abundant on earth, with species living in Antarctica – and it is an advantage that we might be able to exploit as well. Biologically inspired antifreeze proteins have the potential to improve organ transplant surgery and frozen foods.

“It’s a tall order,” says Davies, “but if you learn enough about how proteins work, and how they fold, and the relationship between structure and function, one may be in a situation where you can actually start to design proteins to do a specific job.”

A day in the woods led to a scientific breakthrough for Laurie Graham, but one could hardly call it serendipity when she always keeps a few sterile containers on hand in her car. When comparing her life in the lab to time spent outdoors, Graham confesses that there is no separation. As Davies puts it, “Laurie has never lost touch with the organism.”

The same could be said of Jayne Yack, another QUBS regular who uncovered a hidden microcosm in a local species. Yack worked at the station when she was a graduate student at the University of Toronto, living in cabin 6 for most of her summers in the early 1990s. But it was a quiet morning at home that led to one of her most surprising discoveries, when she heard some unusual ticking sounds. Her first thought was that it might be her refrigerator, but when she looked in a bucket of hook-tip moth larvae that she was raising for her research on insect hearing, Yack was astonished to see that the caterpillars were the source – and they were interacting with each other while they did it.

At the time, almost nothing was known about the acoustic capabilities of caterpillars, but Jayne Yack proved that these creatures have a surprising repertoire of sounds. Hook-tip moth caterpillars drum and scrape on leaves in territorial battles over silk shelters. Their sounds are so soft that it takes a special instrument to record them, but according to Dr. Yack, if you use a laser vibrometer, these 1 mm caterpillars sound just sound just like hippos.

Yack, a professor at Carleton University, has since discovered that many other caterpillars also use sounds as defensive signals. There are species that whistle, click, stridulate and burp – and some that add visual effect by displaying colourful body parts at the same time. Many of the acoustically-inclined species are important agricultural pests, and Yack thinks this could eventually lead to chemical-free pest control: “Anything that we can understand about the sensory ecology of these insects will contribute to understanding how to modify or control their behaviour.”

For Jayne Yack, one small observation opened the doors to a lifetime of discovery – but it might have been overlooked if not for her close connection with nature.

These days, she has a new challenge: bark beetles, a group that includes both the mountain pine beetle and the emerald ash borer. Yack and her students are looking into whether bark beetles use sound to locate the trees they consume, information that could be immensely valuable to forest managers trying to thwart the spread of these destructive pests.

For Jayne Yack, one small observation opened the doors to a lifetime of discovery – but it might have been overlooked if not for her close connection with nature. The environment at QUBS seems to encourage this mindset. According to Raleigh Robertson, Queen’s Professor Emeritus and director of QUBS for over 30 years, “People talk a lot more at the station. You get a more thorough exchange of ideas. It gives you time to digest them a bit more, and think about them in a broader context.” Dan Mennill, PhD'03, another station alumnus, puts it this way: “There is a spirit inside QUBS that has lived on for a long time. Raleigh Robertson infected a lot of people with excitement for natural history.”

Mennill describes his first experience there as an epiphany: on a field course, Queen’s professor Laurene Ratcliffe, Artsci'75, had the class up at dawn to listen to the chorus of birds. It led Mennill to realize that birdsong was the key to combining his dual interests in music and biology, and he has been coming back ever since – first as a PhD student with Dr. Ratcliffe, and now with his own team of scientists in training from the University of Windsor, where Mennill is now a biology professor. And with more alumni like Mennill returning to QUBS with fresh students each year, the output of scientific publications from the station has steadily increased, doubling in the past two decades.

You don’t have to be a current student to find inspiration – the station also hosts a number of open workshops and courses for the general public.

According to Bridget Stutchbury, Artsci'84, MSc'86, the return rate at QUBS speaks to the high quality of the facility. Stutchbury, who studied the tree swallows at QUBS for her MSc, is now internationally renowned for her research on songbirds and has written several popular books on the subject. Like Dan Mennill, she first experienced the station as an undergraduate, and it was an adventure that shaped the rest of her career: “If I hadn’t taken those field trips there I never would have become a professional scientist.”

You don’t have to be a current student to find inspiration – the station also hosts a number of open workshops and courses for the general public. In 2011, QUBS opened the new Elbow Lake Environmental Education Centre in partnership with the Nature Conservancy of Canada – a site that adds more than 3000 hectares of land and a new facility to QUBS’ roster. So far, the Centre has been used to run a workshop on forest ecology, a nature photography course, and an ecology-themed summer day camp for children. In Jayne Yack’s view, these kinds of outdoor experiences are critical for budding scientists of all ages. “It’s this multi-modal stimulation that makes you excited about things” – something her caterpillars would no doubt appreciate.

For more on QUBS research and events, visit the QUBS web site.

Online-only contentOnline-only article
Copyright © Queen's University
Kingston, Ontario, Canada. K7L 3N6. 613.533.2000
Last updated at 3:43 pm EDT, Tue September 2, 2014
iTunes is a trademark of Apple Inc., registered in the U.S. and other countries.