
ROCm-Aware Leader-based Designs for
MPI Neighbourhood Collectives

*Yıltan Hassan Temuçin, +Mahdieh Gazimirsaeed, *Ryan E. Grant, *Ahmad Afsahi
*ECE Department, Queen’s University, Kingston, ON, Canada

+DCGPU and Accelerated Processing Advanced Micro Devices Inc Austin, TX, USA
*{yiltan.temucin | ryan.grant | ahmad.afsahi}@queensu.ca

+mahdieh.ghazimirsaeed@amd.com

Abstract—MPI neighborhood collectives were introduced in the
MPI-3.0 standard to support sparse communication patterns used
by many applications. Simultaneously, GPU-Aware MPI commu-
nication has become a prominent part of modern systems. With
the rise of AMD GPUs and their incorporation into upcoming
exascale systems like Frontier, it has become essential to optimize
communication libraries for AMD platforms. In this paper,
we take advantage of the hardware and networking features
of AMD GPUs to design efficient and scalable neighborhood
collective operations: allgather and allgatherv. We evaluate the
performance of the proposed design for Random Sparse Graph
and Moore neighborhood micro-benchmarks as well as an SpMM
kernel. The results show that we obtain up to 7.03x speedup for
the Random Sparse Graph micro-benchmark, up to 3.82x for the
Moore neighborhood micro-benchmark, and up to 2.29x speedup
for the SpMM kernel.

Index Terms—MPI, Neighborhood Collectives, AMD, ROCm,
Topology

I. INTRODUCTION

Heterogeneous computing has been essential to deploying
Exascale systems. Graphics Processing Units (GPUs) have
played a prominent role in accelerating scientific [1] and
Artificial Intelligence (AI) workloads [2]. The Frontier system
at Oak Ridge National Laboratory (ORNL), which is equipped
with AMD EPYC processors and AMD InstinctTM MI250X
GPUs [3], is the top-ranked supercomputer in the world as
of November 2023 [4]. Moreover, seven of the top ten High-
Performance Computing (HPC) systems use GPUs and four
of them are AMD-based platforms. The broad deployment of
AMD GPUs in top supercomputers emphasizes the importance
of optimizing AMD GPU communications. Improvements to
Inter-GPU communication bandwidth have been found to cor-
respond to improvements in application performance [5]. The
multi-GPU computing nodes in AMD platforms are equipped
with the Infinity FabricTM link. These interconnects provide
significantly improved bandwidth between devices compared
to traditional PCIe interconnects [5], so it is desirable to
utilize the Infinity FabricTM efficiently to provide improved
performance on AMD GPU-based systems.

The Message Passing Interface (MPI) is the de-facto stan-
dard for communication in HPC [17]. MPI offers various
methods such as point-to-point, partitioned point-to-point,
remote memory access (RMA), and collective communica-
tion to handle different communication patterns between the
processes. With point-to-point communication, the user can
implement each pattern with send/receive operations between

pairs of processes. Using point-to-point operations exclusively
burdens the application programmer with optimizing the com-
munication pattern for specific network topologies, ensuring
its correctness, and debugging potential deadlocks. Moreover,
MPI collective operations require all processes in a communi-
cator to participate in the communication, imposing inherent
scalability issues, and only supporting a set of predetermined
communication patterns (e.g., allgather and broadcast). To
address these limitations, the MPI standard introduced Neigh-
borhood Collectives. With neighborhood collective opera-
tions, application developers can define any arbitrary commu-
nication pattern. Application developers construct the topology
graph of the processes by specifying the outgoing/incoming
neighbors of each process. This information is then attached
to the MPI communicator and is passed as the input of the
neighborhood collective operation.

A recent survey on MPI usage within the U.S Exascale
Computing Project (ECP) shows that 29% of exascale appli-
cations use neighborhood collectives in performance-critical
portions of their code [18]. Also, it is recorded that 80%
of applications are expected to use accelerators [18]. To
our knowledge, there is little literature that utilizes GPU
communication for MPI neighborhood collectives. Table I
shows the current literature on neighborhood collectives. Most
of the research on neighborhood collectives is not GPU-
aware. The only exception is recently published work[16],
where the authors optimized GPU-Aware MPI neighborhood
collectives for PETSc by changing the order in which the
messages are sent to the outgoing neighbors. This way they
could avoid contention on certain processes. In contrast to
[16], we consider the physical topology and hierarchy of the
processes and propose leader-based designs to improve the
performance of neighborhood collectives for large messages.
Our contributions in this paper are as follows:

• We develop a hierarchical ROCm-aware MPI Neigh-
borhood Collective that considers the GPU interconnect
topology to optimize the performance. The proposed de-
sign takes advantage of the high bandwidth links between
certain GPUs and reduces the traffic load on links with
lower bandwidth.

• We implement the new neighborhood allgather and all-
gatherv operations based on the proposed communication
pattern design.

TABLE I: Comparison of Related Works
Hoelfer [6] Sameer [7] Hoefler [8] Träff [9], [10], [11], [12] Mirsadeghi [13] Ghazimirsaeed [14] Ghazimirsaeed [15] Khorassani [16] Proposed Design

Any Comm. Pattern ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Msgs. ≥ 1M ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Topology-Aware ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓
Hierarchical ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Load-Aware ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
GPU-Aware ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

• We show the efficiency of the proposed design on two
representative cluster architectures. The results show that
we can achieve up to 7.03x and 3.82x speedup for
Random Sparse Graph and Moore micro-benchmarks,
respectively. We also achieve up to 2.29x speedup for
a distributed SpMM kernel.

II. BACKGROUND

A. MPI Topology Interface and Neighborhood Collectives

HPC applications often communicate in communication
patterns that do not conform to the one-to-all, all-to-one,
or all-to-all communication patterns provided by MPI [19].
Although these can be expressed using MPI point-to-point
communication, it is difficult to optimize an application with-
out unnecessary complexity. MPI allows users to define the
logical topology of its processes. This information, known
as process topology or virtual topology, is attached as an
optional argument to the MPI communicator object. Virtual
topology provides the opportunity to gather information about
the communication pattern among the processes.

One common way to describe virtual topology is through
the distributed graph interface in MPI. The distributed graph
interface describes each process as a vertex of the graph
and presents the communication relationship between the pro-
cesses as edges. MPI_Dist_graph_create_adjacent
is one of the most common distributed graph constructors in
which each process specifies its own outgoing and incoming
neighbors.

In neighborhood collectives, each process only commu-
nicates with the processes that are defined as one of its
outgoing/incoming neighbors. The neighbors are specified
using the communication pattern derived from the virtual
topology graph of the processes. So there are two steps to
handle neighborhood collective operations. First, we need to
create the communication pattern with the virtual topology
interface. This captures the irregular/complex communication
patterns and stores them in an MPI communicator. Then we
use this information to schedule MPI neighborhood collective
operations.

B. AMD InstinctTM MI200 Series Accelerators

The AMD InstinctTM MI200 series accelerators are
CDNA2-based compute accelerators for AI and HPC work-
loads [3]. The MI250 accelerator family includes the MI210,
MI250, and MI250X accelerators. Each MI250 and MI250X
GPUs consist of a pair of Graphics Compute Dies (GCDs)
with four HBM2e modules per die for a total of 128GB
memory. Therefore, each GCD has access to 64GB of memory.

The two GCDs are connected within the GPU with a high-
performance interconnect. The key difference between the
MI250 and MI250X is the number of compute units. For
the context of this paper, the number of compute units has
minimal impact on communication optimization, as we do
investigate collectives with a compute component. We use both
variants to evaluate our designs on different Infinity FabricTM

and Networks. See Section VI-A for additional details.
The ROCm (Radeon Open Compute) [20] platform is a

collection of open-source libraries specifically designed for
developing high-performance software targeting AMD GPUs.
Most GPU-Aware MPI implementations including OpenMPI
[21], MVAPICH [22], and Cray MPICH [23] have support for
ROCm.

C. Communication Concerns in MI250 and MI250X GPUs

On MI250 and MI250X GPUs, there are two main methods
to transfer between devices, using the System Direct Memory
Access (SDMA) engines or launching a copy kernel [24].
SDMA engines provide users the ability to overlap computa-
tion and communication, but they are limited to a theoretical
maximum bandwidth of 50 GiB/s between GCDs. This is only
25% of the theoretical bandwidth between GCDs (200GiB/s),
whereas a copy kernel has been shown to provide around
≈70% of the theoretical bandwidth between GCDs when
transferring a 16MiB message[24]. Unfortunately, this is at
the expense of using compute units or CUs (SMs in NVIDIA
terminology) which can increase GPU utilization and less
opportunity to overlap computation and communication. In
this paper, we launch a copy kernel to handle communications
as it provides higher bandwidth.

Figure 1 shows a diagram of a single node with four MI250
GPUs or eight GCDs. Each red box shows a single MI250
GPU with a pair of GCDs as blue circles. The black lines in
the figure represent the Infinity FabricTM link between GCDs.
The figure illustrates varying the number of Infinity FabricTM

links between GCDs. For instance, GCDs within the same
GPU are interconnected with four links, whereas GCDs across
different GPUs are linked by either one or two links. One

GPU
2

GPU
1

GPU
0

G
3

G
2

G
4

G
5

G
1

G
0

G
6

G
7

GPU
3

Fig. 1: Diagram of a node with 4 MI250 GPUs (8 GCDs)

other observation from the figure is that there are varying
numbers of hops between GCDs. For instance, GCD 0 and
4 are connected through a minimum of one hop while GCD 0
and 2 are connected through a minimum of two hops. Having
that said, two factors impact the maximum communication
bandwidth between GCDs: 1) The number of Infinity Fabric
links between GCDs 2) The number of hops between GCDs.
For the remainder of this paper, the diagrams will not include
the red box displaying the GPU for clarity.

III. MOTIVATION

As discussed earlier, the communication bandwidth between
GCDs can vary between 38 GiB/s to 142 GiB/s for the same
message size depending on the number of Infinity FabricTM

links and the number of hops between them [24]. This raises
the question How can we design an efficient neighborhood
collective operation that considers the number of infinity
fabricTM links and the number of hops between GCDs to
improve performance?

To validate the results in [24] within the context of MPI
neighborhood collectives, we developed a simple benchmark
test. Our goal is to show the impact of considering the physical
topology of GPUs when communicating with multiple GCDs
simultaneously. In this test, GCD 6 on GPU 3 sends a message
of size m to GCDs 4 and 5 on GPU 2. The communication is
shown in Figure 2(a). We consider two methods to handle
this communication. In the first method, GCD 6 directly
sends a message of size m to GCDs 4 and 5, as per the
virtual topology. In the second approach, the communication
is done in two steps. First, we send the upper half of the
buffer to GCD 4 and the lower half of the buffer to GCD
5 (Figure 2(b)). Then, we exchange the partial data between
GCDs 4 and 5 (Figure 2(c)). The second approach reduces
the size of the messages in inter-GPU communication at the
expense of increasing intra-GPU communications. Figure 2(d)
shows the speedup of the scattering approach over the direct
send approach, which provides up to 1.75x speedup. This
experiment shows that considering the number of infinity
fabricTM links between GCDs in communication pattern design
can benefit communication performance. This observation
raises the following question: How can we design an MPI
neighborhood collective for large messages that minimizes

inter-GPU communication and offloads it to intra-GPU
links?

In Figure 2, we chose a specific communication pattern and
manually mapped it to the physical topology of the system,
but MPI neighborhood collectives should ideally support any
arbitrary communication pattern. For an MPI application with
n processes, we have 2(

n
2) possible communication patterns

that the MPI neighborhood collective could be invoked with.
This is an incredibly large solution space. Similarly, we would
have the same possible number of physical topologies to
account for in our design. Pragmatically speaking, the system
integrator provides a handful of physical topologies with each
hardware generation, and we have tools to extract this infor-
mation from the system at run-time. AMD provides ROCm
System Management Interface (ROCm SMI) Library [25] for
its platforms. It allows users to gather various metrics about
GPU utilization, the number of Infinity FabricTM links between
GPUs, NUMA domains, bandwidth between GPUs, etc. Al-
though we have these tools to gather the physical topology,
we do not want to create a mapping for each possible virtual
topology. Therefore, we ask ourselves: How can we extract
the intra-node physical topology and create a heuristic that
can map the virtual topology of the neighborhood collective
to suit the hardware for arbitrary communication patterns
and adjust the load between neighbors?

As MPI applications scale, overheads often grow propor-
tionally. MPI provides Cartesian, graph, and distributed graph
topologies to represent the virtual topology of an application.
In this paper, we focus on the distributed graph topologies
as these have the lowest overhead and each process does
not require information from every rank. This restriction
makes optimization challenging, given the presence of partially
incomplete data upon which our decisions must rely. It has
been previously shown that hierarchical collectives improve
collective communication [26], [27], [2]. Although hierarchical
MPI neighborhood collectives have been studied before, they
do not consider GPU communication [15]. This creates a new
challenge that we aim to solve in this work: How can we
design a hierarchical neighborhood collective algorithm
that minimizes inter-node communication while still main-
taining a distributed graph topology and considering the
GCD/GPU proximity?

G
4

G
5

G
6

m
m

(a) Virtual
Topology

G
3

G
2

G
4

G
5

G
1

G
0

G
6

G
7

m/2

m/2

(b) Physical Topology Mapping
(Step 1)

G
3

G
2

G
4

G
5

G
1

G
0

G
6

G
7

m/2

(c) Physical Topology Mapping
(Step 2)

2KB 8KB 32KB 128KB 512KB 2MB 8MB 32MB 128MB 512MB
Message Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

(d) Motivational Results

Fig. 2: An example of how a virtual topology can be mapped to the physical topology to minimize inter-GPU communication
and offload it to intra-GPU links using the proposed GCD scatter approach. Motivational results are shown to highlight its
potential for large message sizes

IV. RELATED WORK

Hoelfer and Träff [6] discuss the challenges of program-
ming with point-to-point communication at scale and how
collectives can simplify programmability for MPI users. They
also note that traditional collectives do not fit common com-
munication patterns such as 9-point stencils or 2D meshes.
Therefore, they propose various MPI neighborhood collective
APIs that can help users. Sameer et al. [7] showed the impor-
tance of neighborhood communication in various applications
such as 3D-FFT, 4D Near Neighbor Exchange, NAno Scale
Molecular Dynamics (NAMD), and Neural Networks. Hoefler
and Schneider [8] used the topology interface to schedule
communication and hardware level optimizations in collectives
using RDMA for inter-node communication and XPMEM for
intra-node messages.

Träff et al. [9], [10], [11], [12] propose extensions to the
neighborhoods interface for isomorphic neighborhoods using
Cartesian communicators and further optimize them using
message-combining. Although these extensions outperform
neighborhood collectives, they are not applicable to any sparse
communication pattern. Lubbe [28] formulates performance
expectations for MPI neighborhood collective operations and
presents a micro-benchmark to assess these guidelines. Mir-
sadeghi et al. [13] and Ghazimirsaeed et al. [14] improve
the performance of small message neighborhood collectives
by utilizing message combining techniques and collaborative
communication mechanisms, respectively. Ghazimirsaeed et
al. [15] developed a hierarchical and load-aware design to
improve the performance of large message neighborhood col-
lectives.

All of the works discussed so far are CPU-based MPI
neighborhood collectives. To our knowledge, the only research
paper on GPU-based MPI neighborhood collectives is [16],
where the authors change the order in which messages are
sent to the outgoing neighbors to avoid contention on some
GPUs. In contrast to [16] which focuses on neighborhood
alltoall operations, we improve the performance of neighbor-
hood allgather operations. Moreover, we consider the physical
topology and hierarchy of the processes and propose leader-
based designs to improve the performance of neighborhood
collectives for large messages.

V. DESIGN

The proposed design consists of two main parts. First,
we create the communication pattern based on the physical
GPU topology. The communication pattern design is incor-
porated in MPI_Dist_graph_create_adjacent func-
tion. Then, we use this information dynamically to design a
communication schedule which is incorporated in the neigh-
borhood collective functions, MPI_Neighbor_allgather
and MPI_Neighbor_allgatherv.

A. Terminology and Definitions

To help guide readers through the design section, we first
define the terminology and symbols that will be used in this
section. A summary is shown in Table II. Incoming neighbors

TABLE II: Definition of the symbols used in the Neighborhood
Collective design

Symbol Description
I Incoming Neighbors
It Intra-Node Incoming Neighbors
Ir Inter-Node Incoming Neighbors
O Outgoing Neighbors
Ot Intra-Node Outgoing Neighbors
Or Inter-Node Outgoing Neighbors
Th Intra-Node GPU Hop Topology Matrix
Tl Intra-Node GPU Links Topology Matrix

GLr Inter-Node GCD Leaders
Nout Number of GCD Leaders on a node
Lt Intra-node Communication Load Matrix
Lr Inter-Node Scattered Load Matrix
RM Intra-Node Redistribution Matrix
PEM Peer Exchange Matrix
NIr Intra-node Incoming Neighbors
PIt Peer GCD Incoming Intra-Node Neighbors
PIr Peer GCD Incoming Inter-Node Neighbors

I are defined as processes we are receiving messages from.
We partitioned the incoming neighbors into two disjoint sets,
intra-node incoming neighbors It and inter-node incoming
neighbors Ir. The processes to which we are sending mes-
sages are defined as outgoing neighbors O. We use to same
convention to define the symbols intra-node (Ot) and inter-
node (Or) outgoing neighbors.

We construct two topology matrices, Th to define the
number of hops and Tl to store the number of links between
GCD pairs. The row and column index reference the sending
and receiving GCDs. The value of the matrix at those indexes
is either the number of hops or the number of links. The
construction of these matrices and how we use them will be
explained in detail in Section V-B.

We refer to the GCDs that are located on the same GPU as
peers. For example, on GPU0 we have two GCDs: G0 and
G1. Therefore, G0 is the peer GCD of G1, and vice versa. On
each GPU, we select the even index GCD as the leader. We
create a set from the GCD leaders, and we call them GLr. This
is a 1D vector where each index contains the rank associated
with each leader GCD.

To construct the communication pattern, each GCD needs to
know the intra-node incoming neighbors (It) of its peer. This
information can be obtained with a simple send/receive and
is stored in the intra-node Peer Incoming neighbors matrix
PIt. This is a 1D matrix where each entry is an intra-node
incoming neighbor of the peer GCD.

Using the above topology matrices, we construct an intra-
node Lt load matrix where each matrix value is the amount
of data we send. Again, the rows/columns are GCD indexes
and the value is the load. We have a similar matrix for the
inter-node load Lr. Despite representing load, the structure
differs. It is a list of lists, where we have two lists, one for
incoming and another outgoing neighbors. Each element in the
sub-list is the payload that should be sent to each neighbor.
The specifics of construction and usage of the data structures
outlined above will be discussed in detail in the remainder of
this section.

The inter-node algorithm uses two other matrices that are
yet to be defined: Intra-Node Redistribution Matrix (RM)
and Peer Exchange Matrix (PEM). The RM matrix is a
list of lists, the rows are the number of inter-node incoming
neighbors and each sublist has the GCDs that the data must be
redistributed to. The PEM matrix is a 1D list with a length
equal to the number of inter-node incoming neighbors. The
values of this matrix are either zero or one depending on if
data should be exchanged with the peer GCD.

B. Intra-Node Communication Pattern Design

As mentioned earlier, two main metrics impact the perfor-
mance of the GCD-to-GCD communication: the number of
hops between GCDs and the number of Infinity FabricTM links
between them. We need this information to design efficient
neighborhood collective operations based on the physical
topology of the system. We use ROCm SMI library [25]
to gather these metrics. We save this information into two
matrices Th and Tl which represent the number of hops and
links, respectively.

Although the focus of this work is on AMD GPUs and
Infinity FabricTM links, we believe that the presented collective
algorithms are vendor-neutral. However, our implementation
would need minor modifications, for example, we would
replace rocm-smi with nvidia-smi for it to run on NVIDIA
GPUs.

Using the physical topology of the system and the notion of
GCD peers, we create an intra-node communication pattern.
Our proposal is generalizable to any arbitrary communication
pattern, but we choose two scenarios to aid with our explana-
tion. In Figure 2, we present an example where the neighbors
are not directly connected via any Infinity FabricTM links. In
this scenario, we create the communication pattern based on
the number of hops between the processes. We obtain the total
number of hops (nh) to each outgoing neighbor by summing
the appropriate entries of the Th matrix. Then, we calculate
the load to each outgoing neighbor using Equation 1. Using
the calculated loadH we modify the count parameter of the
MPI_Send/Recv operations in the neighborhood collective
call and use the scattering approach explained in Section III.

Loadh(neighbor) =
nh − Th[my rank][neighbor]

nh
(1)

The other illustrative case can be seen in Figure 3. In this
example, G1 and G3 are directly connected via an Infinity
FabricTM link while G1 and G2 are not directly connected.
We use the matrix Tl to count to total number of links to each
neighbor and store it in the parameter nl. Then, we set the
appropriate load for each neighbor using Equation 2. For the
example in Figure 3, Loadl(neighbor) would be 1 for G3 and
0 for G2 using Equation 2. So, G1 sends the whole message
directly to G3 (Figure 3(b)) and it is forwarded from G3 to
G2 (Figure 3(c)).

Loadl(neighbor) =
Tl[my rank][neighbor]

nl
(2)

G
3

G
2

G
1

m

m

(a) Virtual
Topology

G
3

G
2

G
1

G
0

m

(b) Physical Topology
Mapping (Step 1)

G
3

G
2

G
1

G
0

m

(c) Physical Topology
Mapping (Step 2)

Fig. 3: Intra-Node communication pattern when GCD has two
neighbors on the same device that are attached with at least
one Infinity FabricTM link.

Now that we have set the stage on how the loads are calculated,
we use Algorithm 1 to explain the proposed intra-node com-
munication pattern design that works for any virtual topology.
First, we construct the intra-node communication load matrix
Lt using intra-node neighbors It and Ot and the topology
matrices Th and Tl. This matrix is populated using Equation 1
and Equation 2, respectively. In the creation of this matrix,
we first iterate over outgoing intra-node neighbors Ot. Then
in Line 2, we check if this neighbor has a peer neighbor and
adjust the load if it exists. In Line 3, we obtain the total number
of links from our GCD to each GCD pair. If we have adjacent
links, we assign a load to each neighbor using Equation 2. If
there are no links, in Lines 8-9, we adjust the load to each GPU
based on the number of hops to each peer using Equation 1.

To calculate the adjusted load for the incoming neighbors
(It), we obtain our peer GCD’s incoming neighbors and store
it in (PIt). This is required since we need information on how
data is now distributed between the two GCDs. In Line 14,
we iterate over It ∩ PIt as we only need to modify common
incoming neighbors. Then as previously explained, we adjust
the load based on the number of links or hops.

Algorithm 1: Intra-Node Communication Load Matrix
Inputs : Ot, It, Tl, Th

Output: Lt

1 foreach nbr in Ot do
2 if nbr has peer GCD in Ot then
3 nl = Tl[rank][nbr] + Tl[rank][peer]
4 if nL != 0 then
5 Lt[nbr] = Loadl(nbr)
6 Lt[peer] = Loadl(peer)
7 else
8 Lt[nbr] = Loadh(nbr)
9 Lt[peer] = Loadh(peer)

10 end
11 end
12 end
13 PIt = get peer in nbrs()
14 foreach nbr in {It ∩ PIt} do
15 nl = Tl[rank][nbr] + Tl[peer rank][nbr]
16 if nL != 0 then Lt[nbr] = Loadl(nbr)
17 else Lt[nbr] = Loadh(nbr)
18 end

C. Inter-Node Communication Pattern Design

In this section, we explain the proposed inter-node commu-
nication pattern design, which is implemented in a hierarchical
manner on top of the intra-node communication pattern dis-
cussed in Section V-B. To better explain the proposed design,
first, we showcase three possible communication patterns
presented in Figure 4, Figure 5, and Figure 6. Then, we discuss
how the proposed design handles each case. Finally, we present
the proposed algorithm that can be applied on any arbitrary
communication pattern.

Figure 4 shows the scenario where a GCD has two neigh-
bors on another node which are peers. Rather than the original
communication pattern in which G9 sends the message to each
neighbor individually, we send the data to one GCD, then
have it forwarded to its peer. This way, instead of sending two
messages of size m across the network, only one message is
sent across the network. In other words, we reduce the number
of inter-node communications and offload it to the intra-
node interconnect. Since the inter-node interconnects have
significantly lower bandwidth than intra-node interconnects
[5], this can improve communication performance.

In Figure 5, we consider the scenario that a GCD has
multiple neighbors on another node where some are peer
GCDs. In this example, Gg on node 1 sends a message of
size m to the GCDs G0, G1, G2, and G3 on node 2, where
G0 and G2 are peers of G1 and G3, respectively. In Step 1,
we select a leader GCD in each GPU and scatter the message
to those GCDs. In this example, G0 and G2 are the leaders.
This way, instead of sending a message of size m across the
network to each GCD (4×m), we send a message of size m/2
to G0 and G2 (2×(m/2)). In other words, we reduce the inter-
node network load by 4X . Then, in Step 2, the leader GCDs
exchange their data so that they have the whole message of
size m. Finally, in Step 3, the leader GCDs send the message
to peer GCDs.

The last illustrative case shown in Figure 6 presents an
example that we have multiple neighbors on another node
where none are peers. This example follows the same scatter-
gather Steps 1 and 2 from the previous example.

So far in this section, we discussed how to create inter-

G
9

m

G
3

G
2

m

(a) Virtual Topology

G
9

G
8

m

Node
1

NIC

NICNIC

Node
0

G
3

G
2

(b) Step 1

G
9

G
8

m

Node
1

NIC

NICNIC

Node
0

G
3

G
2

m

(c) Step 2

Fig. 4: Inter-Node Case 1: A GCD has two neighbors on
another node that are all peer GCDs.

G
3

G
2

G
1

G
0

G
9

(a) Virtual
Topology

G
3

G
2

G
1

G
0

Node
0

NIC

NIC

G
9

G
8

m/2

Node
1NICNIC

m/2

(b) Step 1

G
3

G
2

G
1

G
0

Node
0

NIC

NIC

G
9

G
8

Node
1NICNIC

m/2

(c) Step 2

G
3

G
2

G
1

G
0

m

Node
0

NIC

NIC

G
9

G
8

Node
1NICNIC

m

(d) Step 3

Fig. 5: Inter-Node Case 2: A GCD has multiple neighbors on
another node where some are peer GCDs.

G
2

G
4

G
6

G
15

m

m

m

(a) Virtual
Topology

G
3

G
2

G
4

G
5

G
1

G
0

G
6

G
7

G
9

G
8

G
14

G
15

m/3

m/3

Node
1

Node
0

NIC NIC

NICNIC

NIC NIC

m/3

(b) Step 1

G
3

G
2

G
4

G
5

G
1

G
0

G
6

G
7

G
9

G
8

G
14

G
15

m/3

m/3

m/3

Node
1

Node
0

NIC NIC

NICNIC

NIC NIC

(c) Step 2

Fig. 6: Inter-Node Case 3: A GCD has multiple neighbors on
another node where none are peer GCDs.

node communication patterns for different scenarios. In the
remainder of this section, we explain the proposed inter-
node communication pattern design that works for any virtual
topology. To this purpose, we define three matrices:

1) Inter-Node Scattered Load Matrix (Lr)
2) Intra-Node Redistribution Matrix (RM)
3) Peer Exchange Matrix (PEM)

The three matrices correspond to each step in the given exam-
ples. However, some matrices may be populated with empty
values if the specific neighborhood communication pattern is
not required. For example, in Inter-Node Case 3 shown in
Figure 6, Lr and RM will be populated with values, but
PEM will be empty since there are no peer GCDs. Therefore,
as desired, no Step 3 will occur. The goal of these matrices
is to create a new communication pattern that will minimize
inter-node communication and offload that work within the
node to better utilize the intra-node bandwidth capabilities. To
construct these matrices, we rely upon our inter-node incoming
(Ir) and outgoing (Or) neighbors.

1) Inter-Node Scattered Load Matrix: To better utilize
inter-node network bandwidth we want to scatter the data
across the inter-node neighbors so that each node has a partial
copy of the required data. For the outgoing neighbors, this is
relatively simple, as Or contains the necessary information.
First, we create the outgoing GCD leaders GLr by extracting
the neighbors with an even GCD index from the Or list.
This allows us to reduce load to GPUs with two neighboring

processes. Then, in Lines 2-5 of Algorithm 2, we iterate over
GLr to count how many leader GCDs we have on each node
and store it in Nout. In Lines 6-13, we modify the load to each
neighbor. If a neighbor is a non-leader GCD, its load would
be zero. Otherwise, we send a fraction of the data to it. These
loads are placed onto Lr[out].

Obtaining Lr[in] is somewhat more complicated, as we
need to know the incoming neighbors of all ranks on this
node. We use an intra-node allgatherv operation to obtain Ir
from all other ranks. This new matrix NIr is also used in
Section V-C2 and Section V-C3. Please note that the overhead
of the allgatherv operation is minimal since it is a small
message allgatherv happening within a node with a maximum
of 8 processes per node (we have a maximum of 8 GCDs
per node in most platforms). Also, it is called during the
creation of the communication pattern. As stated earlier, the
communication pattern is created once and used several times
for different neighborhood collective calls.

In Line 15 we iterate over each GCDleader and we count
the number of incoming neighbors in Line 16-18 and store it
in Nin. Then in Line 19 we obtain the non-leader GCD and
we iterate over that. In Lines 20-23 we only count a neighbor
if it does not have a common neighbor with the leader GCD.
Finally, in Line 25 we populate Lr[in].

Algorithm 2: Inter-Node Scatter Load Matrix
Inputs : Or, Ir
Output: Lr

1 GLr = get GCD leaders(Or)
2 foreach nbr in GLr do
3 node = get node(nbr)
4 Nout[node]++
5 end
6 foreach nbr in Or do
7 if nbr in GLr then
8 node = get node(nbr)
9 Lr[out][nbr] = 1.0 / Nout[node]

10 else
11 Lr[out][nbr] = 0.0
12 end
13 end
14 NIr = intra node allgatherv(Ir)
15 foreach GCD in GCDleader do
16 foreach nbr in NIr[GCD] do
17 Nin[nbr]++
18 end
19 GCDpeer = get peer(GCD)
20 foreach nbr in NIr[GCDpeer] do
21 if nbr not in NIr[GCD] then Nin[nbr]++
22 end
23 end
24 foreach nbr in Ir do
25 Lr[in][nbr] = 1.0 / Nin[nbr]
26 end

2) Inter-Node Redistribution Matrix: As we intend to scat-
ter the message across neighbors on a remote node, we need
a matrix that will inform us on how to redistribute the data to
the appropriate ranks within the nodes (Step 2 in Figure 5 and
Figure 6). To this purpose, we create the Redistribution Matrix
(RM) as shown in Algorithm 3. We use the matrix NIr from
Section V-C1. For each GCD in the node, we append each of
its neighbors to RM if that neighbor is a leader GCD.

3) Peer Exchange Matrix: Finally, we create the Peer GCD
Redistribution Matrix in Algorithm 4 so that data can be
exchanged within the GPU (Step 2 in Figure 4 and Step 3
in Figure 5). The values of PEM are initialized to zero.
We iterate over our incoming neighbors (Ir) and check if the
neighbor exists on our peer GCD. If the neighbor exists, we
set a flag (PEM) to determine whether we should exchange
data.

D. Neighborhood Collective Design

Sections V-B and V-C discussed the communication pattern
design and saved the communication pattern information in
four matrices. In this section, we use those matrices to develop
the neighborhood collective operations: MPI_Neighbor_
allgather and MPI_Neighbor_allgatherv. The
neighborhood collective design has three main steps:

1) Data is scattered across intra and inter-node neighbors
using the information from Lt and Lr matrices.

2) Then in parallel, intra-node data is exchanged between
peer GCDs using the matrix Lt and our inter-node data
is also redistributed to our leader GCDs using RM .

3) Finally, leader GCDs copy to their intra-node peers.
Algorithm 5 shows the details of each step. Lines 1-17 corre-
spond to the first step of the design. First, we post our MPI_
Irecv calls for each neighbor in I . The load for that neighbor

Algorithm 3: Intra-Node Redistribution Matrix
Inputs : NIr
Output: RM

1 foreach GCD do
2 foreach nbr in NIr[GCD] do
3 if nbr is leader GCD then
4 RM [nbr] += [GCD]
5 end
6 end
7 end

Algorithm 4: Peer Exchange Matrix
Inputs : Ir, PIr
Output: PEM

1 foreach nbr in Ir do
2 if nbr in PIr then
3 PEM [nbr] = 1
4 end
5 end

Algorithm 5: MPI Neighbor allgather Design
Inputs: I , Ir, It, Lt, Lr, O, Or, Ot, RM , PEM

1 foreach nbr in I do
2 if nbr ∈ It then
3 load = Lt[nbr]
4 else if nbr ∈ Ir then
5 load = Lr[in][nbr]
6 end
7 irecv(load, nbr)
8 end
9 foreach nbr in O do

10 if nbr ∈ Ot then
11 load = Lt[nbr]
12 else if nbr ∈ Or then
13 load = Lr[out][nbr]
14 end
15 isend(load, nbr)
16 end
17 wait all
18 foreach nbr in I do
19 if nbr ∈ It then
20 load = Lt[nbr]
21 isend(load, nbr)
22 irecv(load, nbr)
23 else if nbr ∈ Ir then
24 if leader GCD then
25 foreach nbr rdist in RM do
26 load = RM [nbr]
27 isend(load, nbr rdist)
28 irecv(load, nbr rdist)
29 end
30 end
31 end
32 wait all
33 foreach nbr in Ir do
34 if PEM[nbr] == 1 then
35 if Rank is leader GCD then
36 isend(nbr)
37 else
38 irecv(nbr)
39 end
40 end
41 end
42 wait all

is chosen in Lines 2-6 where we check whether the neighbor is
intra- or inter-node and use the appropriate matrix (Lt or Lr).
If the load value in Lt/Lr is zero, MPI_Isend/Irecv does
not transfer any data. We do the same procedure in Lines 9-
16 for the corresponding MPI_Isend calls. To complete this
step, we issue an MPI_Waitall. We communicate with each
neighbor in I ∪O as theoretically, these messages should not
cause any congestion and conflict with each other during this
step as intra-node communication is over the Infinity FabricTM

network and all inter-node messages are transferred with the
InfiniBand/Slingshot network.

Then in Step 2 (Lines 18-32), we start the redistribution of
the data for the incoming neighbors so we only iterate over I .
For each neighbor we check if it is intra-node (in It); if so, we
obtain the load Lt in Line 20 and exchange the data. If that
neighbor does not need to exchange data, the load value in
Lt would be zero, causing the MPI_Isend/Irecv function
to promptly return without any communication taking place.
For the inter-node incoming neighbors (Ir) we exchange the
data with the GCD leaders using RM so that each leader has
a complete set of data in Lines 24-29.

Finally, we execute Step 3 in Lines 33-42. Here we check
the peer exchange matrix (PEM) and transfer the data to the
peer GCD, if required. We then wait for all communication
on that process before exiting the collective operation.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the proposed design using
two micro-benchmarks and an SpMM kernel. The micro-
benchmarks allow us to find an upper-bound to the proposed
algorithm and the SpMM kernel allows us to project the
expectation for applications.

A. Experimental Setup

The experiments are conducted on two clusters. The first
cluster, which we refer to as Cluster A, has four nodes
connected with Mellanox ConnectX-6 InfiniBand cards. Each
node has four AMD InstinctTM MI250 accelerators [3], so the
cluster has a total of 16 GPUs (32 GCDs). These GPUs are
connected with Infinity FabricTM links as shown in Figure 1.
Cluster A has an AMD EPYC 7643 48-Core processor and
runs the GNU/Linux distribution Red Hat 8.5.0-10.

To evaluate the result on a different topology and at a larger
scale, we use a second cluster which we refer to as Cluster
B. This cluster has the same type of compute nodes as in
Frontier. Each node has an AMD EPYCTM 7A53 64-Core
CPU and four AMD InstinctTM MI250X accelerators. Figure 6
shows the Infinity FabricTM topology of the GPUs in Cluster
B. The nodes are connected with HPE’s Slingshot Interconnect
[29] and runs the GNU/Linux distribution SUSE Linux, kernel
version 5.3.18.

On both of these clusters, we used Open MPI from the
master branch at the commit 450ae3a (roughly version 5.0.x)
and UCX version 1.11.2. At the time of developing this code
libfabrics did not have full ROCm support on the Slingshot
Network. Therefore, on Cluster B, we ran UCX over TCP for
inter-node communication.

B. Random Sparse Graph

To evaluate the proposed design, we use the Erdős–Rényi
Random Sparse Graph (RSG) micro-benchmark which has
also been used in [8], [13], [14], [15]. The graph G(E, V)
is used to model a communication pattern where each vertex
v ∈ V corresponds to an MPI rank and each edge e ∈ E
corresponds to an outgoing neighbor from one process to

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sp

ee
du

p

(a) 8 GCDs

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

(b) 16 GCDs

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

(c) 32 GCDs

Density ()
0.05
0.2
0.4
0.6

Fig. 7: Scaling of MPI Neighbor allgather with the Random Sparse Graph micro-benchmark for different density factors (δ)
on Cluster A

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

(a) δ = 0.05

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

(b) δ = 0.2

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

(c) δ = 0.4

256KB 1MB 4MB 16MB 64MB 256MB
Message Size (B)

0

1

2

3

4

5
Sp

ee
du

p

(d) δ = 0.6

GCDs
8
16
32
64
128

Fig. 8: Scaling of MPI Neighbor allgather with the Random Sparse Graph micro-benchmark for different density factors (δ)
on Cluster B.

another. The outgoing neighbors of random sparse graph are
randomly selected using a density factor δ ∈ (0, 1) ⊂ R.

Figures 7 and 8 evaluate the performance of the proposed
design over the neighborhood allgather design in OpenMPI
on Cluster A and B, respectively. The results are presented for
four density factors (δ) in Random Sparse Graph. Figure 7(a)
shows that for a single node run (8 GCDs) on Cluster A,
we obtain a performance improvement of up to 2.16x and
1.60x for δ = 0.4 and δ = 0.6, respectively. The performance
improvement is considerable for almost all message sizes
shown in the figure. Please note that data points for messages
larger than 256MB are not shown for large densities. The
reason for this is that for large messages and higher densities,
we require more memory as we have more incoming messages,
and we are limited by 64GB memory for each GCD. One
observation from the figure is that for extremely small densities
(e.g., δ = 0.05) we get little to no performance improvement.
The reason for this is that in this case, the communication is so
sparse that there is no room to take advantage of the proposed
hierarchical design as we mostly have a single neighbor on
each GPU.

Figures 7(b) and 7(c) show the same trends for larger

process counts. Figure 7 shows that as we increase the scale
from one node to four nodes, we achieve higher speedups,
which shows the efficiency and scalability of the proposed
inter-node communication pattern design.

Figure 8 evaluates the performance of the proposed design
on Cluster B. For a single node (8 GCDs), we observe a
relatively modest performance improvement of up to 1.35x
when δ = 0.6. This is relatively similar to what we observed
on a single node of Cluster A. These observations show that the
proposed intra-node algorithm is portable as we have verified
its improvement on multiple Infinity FabricTM topologies.

Figure 8 also shows that the proposed design provides
significant speedup as we scale to more nodes. Due to the
larger number of nodes in Cluster B, we could scale up to
128 GCDs, utilizing a total of 16 nodes. The results show that
we can achieve 1.32x to 4.02x as we increase the number of
GCDs, and the speedup is consistent between densities as they
scale.

The overheads with this topology creation went from around
11ms with the default Open MPI implementation to 22ms
with our method for an 8MB message at 128 GCDs. This
results in roughly doubling our overhead but to recover this

cost roughly 22 iterations are needed. Many application iterate
thousands of time so the cost of this topology creation will be
recovered relatively quickly. This was the case regardless of
graph density, so these statements will also hold true to the
the overheads of the Moore neighborhoods we will discuss in
the next section.

C. Moore Neighborhood

Moore neighborhoods are a generalization of the stencil
communication patterns and can be defined with dimension (d)
and radius (r). Stencil codes or Halo-Exchanges are commonly
used to split up a problem that cannot fit on a single node [19].
The dimension corresponds to the number of grid dimensions
and the radius is the maximum number of hops a process
communicates with. The total neighbors can be calculated with
(2r+1)d−1. Using different values of d and r, we can explore
different communication patterns.

Figure 10 shows the performance improvement of the
proposed design for Moore neighborhood on Cluster A. One
observation from this figure is that we get higher speedups
for messages of size 256KB and 512KB. This is because
as the proposed design scatters the message into smaller
chunks, these messages fall below the eager threshold and gain
more performance improvement. For the remaining message
sizes from 1MB to 1GB, the performance improvement is as
expected, and we achieve a higher speedup as we increase the
message size.

Figure 9 shows the Moore neighborhood speedup on Cluster
B. In Moore neighborhood, the dimension and radius values
are constrained by the number of ranks. Since we have access
to more GCDs on Cluster B, we are able to explore more

neighborhood dimensions and radiuses as can be seen in
Figures 9(b) and 9(c). Figure 9 shows an almost similar trend
as cluster A for different radiuses and diameters. In general,
the experimental results in this section show that regardless
of the platform and Moore neighborhood metrics (d and r),
the proposed design provides considerable speedup for large
messages.

D. Sparse Matrix Matrix Multiplication Kernel

Sparse matrix matrix multiplication (SpMM) is an important
kernel in computational linear algebra and big data analytics
[30]. SpMM calculates the multiplication of two matrices
A×B = C where A is a sparse matrix and B is a dense matrix.
To distribute the data among the processes, we employ the
row-wise block-striped decomposition of the input matrices.
The Allgather operation is used to gather the columns of
matrix B at all processes. Due to the sparsity of matrix A, we
can selectively collect data only for its non-zero elements and
establish the communication pattern accordingly. For this, we
extend the SpMM algorithm used in [14] so that computation
and communications happen on GPUs. Where Random Sparse
Graph and Moore neighborhood are developed using MPI_
Neighbor_allgather, MPI_Neighbor_allgatherv
is used to implement the SpMM kernel as it can account for
different receive counts and displacements.

For the evaluations in this section, we use a variety of
matrices from The University of Florida Sparse Matrix Col-
lection [31]. To evaluate our design fairly, the cost of topology
creation is included in our measured values and in our subse-
quent speedup calculation. Figure 11 shows that the proposed
design provides 0.85x to 2.29x speedup depending on the the

256KB 1MB 4MB 16MB 64MB 256MB 1GB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

GCDs
16 32 64 128

(a) d = 2, r = 1

256KB 1MB 4MB 16MB 64MB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

GCDs
64 128

(b) d = 2, r = 2

256KB 1MB 4MB 16MB 64MB
Message Size (B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

GCDs
64 128

(c) d = 3, r = 1

Fig. 9: Moore Neighborhood Speedup of MPI Neighbor allgather for different r and d values on Cluster B.

256KB 1MB 4MB 16MB 64MB 256MB 1GB
Message Size (B)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

GCDs/Ranks
16 32

Fig. 10: Speedup of MPI Neighbor allgather with the Moore
neighborhood on Cluster A with radius (r = 1) and diameter
(d = 2).

Ha
m

rle
2

bf
ly

_G
_0

7
bf

ly
_G

_0
8

bf
ly

_G
_0

9
cc

a_
G_

07
cc

a_
G_

08
cc

a_
G_

09
cc

c_
G_

06
cc

c_
G_

07
cc

c_
G_

08
cc

c_
G_

09
cr

ac
k

de
br

_G
_0

8
de

br
_G

_1
0

de
br

_G
_1

1
de

br
_G

_1
2

de
br

_G
_1

3
de

la
un

ay
_n

10
de

la
un

ay
_n

12
de

la
un

ay
_n

13
de

la
un

ay
_n

14
de

la
un

ay
_n

15
dw

10
24

dw
20

48
dw

40
96

dw
81

92
dw

b5
12

pf
21

77
rd

b2
04

8
rd

b2
04

8_
no

L
rg

g_
n_

2_
15

_s
0 se

se
_G

_0
7

se
_G

_1
0

se
_G

_1
2

Matrix

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Fig. 11: Speedup of MPI Neighbor allgatherv with the SpMM
Kernel for different matrices on Cluster A with 32 GCDs.

TABLE III: Sizes for the Matrices of Interest

Matrix Rows Columns Non-Zeros
ccc G 06 384 384 1152
debr G 08 256 256 1018

delaunay n10 1,024 1,024 6,112
crack 10,240 10,240 60,760

number of non-zero elements, the size of the matrices and the
distribution of the non-zero element. We see a slowdown for
small matrices such as ‘ccc G 06‘ as the message sizes fall
below the large message threshold of 256KB we have designed
our collective for. The matrix ‘debr G 08’ and ‘delaunay
n10’ are similar in size but ‘delaunay n10’ has more non-zero
elements and this is reflected in their speedups.

Table III shows the number of rows, columns, and the
non-zero elements for a few matrices in Figure 11. The
highest speedup belong to matrix ‘crack‘. This matrix has
more number of non zero elements and consequently has more
room to take advantage of the proposed hierarchical design.
On the other hand, matrices ‘ccc G 06‘ and ‘debr G 08‘ have
fewer number of non-zero elements and they achieve lower
speedup.

VII. CONCLUSION

HPC workloads have become ever more GPU-centric, and
we have seen the uptake of AMD InstinctTM MI200 Series
Accelerators on large-scale state-of-the-art systems such as
Frontier. In this paper we address the challenges associated
with ROCm-Aware MPI neighborhood collectives using the
complex Infinity FabricTM topology that connects the GPUs.
We have proposed an intra- and inter-node communication
pattern creation that uses ROCm-SMI to obtain system topol-
ogy information to create a hierarchical and leader-based com-
munication pattern. Using these new communication pattern,
we have proposed new MPI_Neighbor_allgather and
MPI_Neighbor_allgatherv collectives. We evaluate the
performance of the new MPI implementation using a variety
of benchmarks and a SpMM kernel on multiple platforms.
For Sparse Random Graph micro-benchmark, we observe up
to 2.16x speedup for intra-node algorithm and up to 7.03x for
inter-node. With the Moore neighborhood micro-benchmark,
we observe up to 3.82x speedup. Finally, with SpMM kernel,
we obtain up to 2.29x speedup.

A. Future Work

In Section VI-C we saw significant speedup for the Moore
neighborhood communication pattern. As a Moore neighbor-
hood is a generalized stencil computation, we believe that
porting an MPI application which uses this pattern such as as
NekBone/hipBone could yield good performance improvement
[32]. For inter-node communication we adjust the amount of
data sent to each neighbor based upon whether it is a GCD
peer. We would like to extend this to more complex heuristics
to adjust communication between nodes but this also faces
the challenges of maintaining the distributed topology require-
ments that we desire. As we saw our proposals were successful

for dense neighborhoods, we should certainly explore the
possibility of including these ideas in to traditional MPI
collectives as they are inherently dense. Finally, as AMD’s
MI300 APUs are becoming available in the near future we
would like to this design for that platform as there are more
complex GCD arrangements on each GPU.

VIII. ACKNOWLEDGEMENTS

We would like to thank AMD colleagues Christopher Kime
and Alex Habeger for providing access to compute resources,
Edgar Gabriel for advice on installing ROCm-Aware Open
MPI, and Bill Brantley for reviewing the paper.

REFERENCES

[1] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A.
Millan, D. C. Morse, and S. C. Glotzer, “Strong scaling of general-
purpose molecular dynamics simulations on gpus,” Computer Physics
Communications, vol. 192, pp. 97–107, 2015.

[2] Y. H. Temuçin, A. H. Sojoodi, P. Alizadeh, B. Kitor, and A. Afsahi,
“Accelerating Deep Learning Using Interconnect-Aware UCX Commu-
nication for MPI Collectives,” IEEE Micro, vol. 42, no. 2, pp. 68–76,
2022.

[3] AMD. (2022) AMD INSTINCT™ MI200 SERIES ACCELERATOR.
[Online]. Available: https://www.amd.com/system/files/documents/amd-
instinct-mi200-datasheet.pdf

[4] T. 500. (2023) TOP500 November 2023. [Online]. Available:
https://www.top500.org/lists/top500/2023/11/

[5] K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen,
H. Subramoni, and D. K. Panda, “Designing a ROCm-Aware
MPI Library for AMD GPUs: Early Experiences,” in High Performance
Computing: 36th International Conference, ISC High Performance
2021, Virtual Event, June 24 – July 2, 2021, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2021, p. 118–136. [Online]. Available:
https://doi.org/10.1007/978-3-030-78713-4 7

[6] T. Hoefler and J. L. Traff, “Sparse collective operations for MPI,” in 2009
IEEE International Symposium on Parallel and Distributed Processing,
2009, pp. 1–8.

[7] S. Kumar, P. Heidelberger, D. Chen, and M. Hines, “Optimization of
applications with non-blocking neighborhood collectives via multisends
on the Blue Gene/P supercomputer,” in 2010 IEEE International Sym-
posium on Parallel & Distributed Processing (IPDPS), 2010, pp. 1–11.

[8] T. Hoefler and T. Schneider, “Optimization principles for collective
neighborhood communications,” in SC ’12: Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, 2012, pp. 1–10.

[9] J. L. Träff, F. D. Lübbe, A. Rougier, and S. Hunold, “Isomorphic,
Sparse MPI-like Collective Communication Operations for Parallel
Stencil Computations,” in Proceedings of the 22nd European MPI
Users’ Group Meeting, ser. EuroMPI ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2802658.2802663

[10] J. L. Träff, A. Carpen-Amarie, S. Hunold, and A. Rougier,
“Message-Combining Algorithms for Isomorphic, Sparse Collective
Communication,” CoRR, vol. abs/1606.07676, 2016. [Online]. Available:
http://arxiv.org/abs/1606.07676

[11] J. L. Träff and S. Hunold, “Cartesian collective communication,”
in Proceedings of the 48th International Conference on
Parallel Processing, ser. ICPP 2019. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3337821.3337848

[12] J. L. Träff, S. Hunold, G. Mercier, and D. J. Holmes, “Collectives and
Communicators: A Case for Orthogonality: (Or: How to Get Rid of
MPI Neighbor and Enhance Cartesian Collectives),” in 27th European
MPI Users’ Group Meeting, ser. EuroMPI/USA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 31–38. [Online].
Available: https://doi.org/10.1145/3416315.3416319

[13] S. H. Mirsadeghi, J. L. Traff, P. Balaji, and A. Afsahi, “Exploiting
Common Neighborhoods to Optimize MPI Neighborhood Collectives,”
in 2017 IEEE 24th International Conference on High Performance
Computing (HiPC), 2017, pp. 348–357.

[14] S. M. Ghazimirsaeed, S. H. Mirsadeghi, and A. Afsahi, “An Efficient
Collaborative Communication Mechanism for MPI Neighborhood Col-
lectives,” in 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2019, pp. 781–792.

[15] S. M. Ghazimirsaeed, Q. Zhou, A. Ruhela, M. Bayatpour, H. Subramoni,
and D. K. D. Panda, “A Hierarchical and Load-Aware Design for Large
Message Neighborhood Collectives,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2020, pp. 1–13.

[16] K. S. Khorassani, C.-C. Chen, H. Subramoni, and D. K. Panda, “Design-
ing and optimizing gpu-aware nonblocking mpi neighborhood collective
communication for petsc*,” in 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2023, pp. 646–656.

[17] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 4.0, Jun. 2021. [Online]. Available: https://www.mpi-
forum.org/docs/mpi-4.0/mpi40-report.pdf

[18] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata,
R. E. Grant, T. Naughton, H. P. Pritchard, M. Schulz, and G. R.
Vallee, “A survey of mpi usage in the us exascale computing
project,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 3, pp. 1–19, 2020, e4851 cpe.4851. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4851

[19] P. G. Raponi, F. Petrini, R. Walkup, and F. Checconi, “Characterization
of the communication patterns of scientific applications on blue gene/p,”
in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, 2011, pp. 1017–1024.

[20] AMD. (2023) AMD ROCm™ Open Ecosystem. [Online]. Available:
https://www.amd.com/en/graphics/servers-solutions-rocm

[21] O. MPI. (2022) Open MPI: Open Source High Performance Computing.
[Online]. Available: https://www.open-mpi.org/

[22] MVAPICH. (2022) MPI over InfiniBand, Omni-Path, Ethernet/iWARP,
and RoCE. [Online]. Available: http://mvapich.cse.ohio-state.edu/

[23] C. MPICH. (2023) Cray MPICH documentation. [Online]. Available:
https://cpe.ext.hpe.com/docs/mpt/mpich/index.html

[24] AMD. (2023) GPU-aware MPI with AMD ROCm™. [Online].

Available: https://gpuopen.com/learn/amd-%20lab-notes/amd-lab-notes-
gpu-aware-mpi-readme/

[25] ——. (2022) ROCm System Management Inter-
face (ROCm SMI) Library. [Online]. Available:
https://github.com/RadeonOpenCompute/rocm smi lib

[26] I. Faraji, S. H. Mirsadeghi, and A. Afsahi, “Topology-aware gpu
selection on multi-gpu nodes,” in 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2016, pp.
712–720.

[27] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni,
and D. K. D. K. Panda, NV-Group: Link-Efficient Reduction for
Distributed Deep Learning on Modern Dense GPU Systems. New
York, NY, USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3392717.3392771

[28] F. D. Lübbe, “Micro-benchmarking mpi neighborhood collective opera-
tions,” in Euro-Par 2017: Parallel Processing, F. F. Rivera, T. F. Pena,
and J. C. Cabaleiro, Eds. Cham: Springer International Publishing,
2017, pp. 65–78.

[29] K. Shafie Khorassani, C. C. Chen, B. Ramesh, A. Shafi, H. Subramoni,
and D. Panda, “High performance mpi over the slingshot interconnect:
Early experiences,” in Practice and Experience in Advanced
Research Computing, ser. PEARC ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3491418.3530773

[30] S. Acer, O. Selvitopi, and C. Aykanat, “Improving performance
of sparse matrix dense matrix multiplication on large-scale
parallel systems,” Parallel Computing, vol. 59, pp. 71–96, 2016,
theory and Practice of Irregular Applications. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819116301041

[31] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[32] N. Chalmers, A. Mishra, D. McDougall, and T. Warburton, “HipBone:
A performance-portable GPU-accelerated C++ version of the NekBone
benchmark,” 2022. [Online]. Available: https://arxiv.org/abs/2202.12477

