
Overlapping Computation and Communication

through Offloading in MPI over InfiniBand

by

Grigori Inozemtsev

A thesis submitted to the

Graduate Program in Electrical and Computer Engineering

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

May 2014

Copyright c© Grigori Inozemtsev, 2014

Abstract

As the demands of computational science and engineering simulations increase, the size

and capabilities of High Performance Computing (HPC) clusters are also expected to grow.

Consequently, the software providing the application programming abstractions for the

clusters must adapt to meet these demands. Specifically, the increased cost of interprocessor

synchronization and communication in larger systems must be accommodated. Non-blocking

operations that allow communication latency to be hidden by overlapping it with computation

have been proposed to mitigate this problem.

In this work, we investigate offloading a portion of the communication processing to

dedicated hardware in order to support communication/computation overlap efficiently.

We work with the Message Passing Interface (MPI), the de facto standard for parallel

programming in HPC environments. We investigate both point-to-point non-blocking

communication and collective operations; our work with collectives focuses on the allgather

operation. We develop designs for both flat and hierarchical cluster topologies and examine

both eager and rendezvous communication protocols.

We also develop a generalized primitive operation with the aim of simplifying further

research into non-blocking collectives. We propose a new algorithm for the non-blocking

allgather collective and implement it using this primitive. The algorithm has constant

resource usage even when executing multiple operations simultaneously.

We implemented these designs using CORE-Direct offloading support in Mellanox

i

InfiniBand adapters. We present an evaluation of the designs using microbenchmarks and

an application kernel that shows that offloaded non-blocking communication operations can

provide latency that is comparable to that of their blocking counterparts while allowing most

of the duration of the communication to be overlapped with computation and remaining

resilient to process arrival and scheduling variations.

ii

Acknowledgments

First I would like to express my sincere appreciation for the guidance and support of my

supervisor, Dr. Ahmad Afsahi, throughout this work. I also would like to thank the Natural

Science and Engineering Research Council of Canada (NSERC) and Queen’s University for

providing me with financial support. I also thank the HPC Advisory Council and Mellanox

Technologies for the technical resources used to conduct the experiments in this thesis.

Thanks for stimulating discussions go to my coworkers at the Parallel Processing Research

Lab: Ryan Grant, Judicael Zounmevo, Reza Zamani, Mohammad Rashti, Iman Faraji, and

Hessam Mirsadeghi.

Last but not least I say a heartfelt thank you to my wife Laura without whose support

this would not have been possible.

iii

Table of Contents

Abstract . i

Acknowledgments . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Glossary . x

Chapter 1: Introduction . 1

1.1 Motivation . 2

1.2 Research Objectives . 3

1.3 Contributions . 4

1.4 Outline . 6

Chapter 2: Background . 8

2.1 Cluster Hardware . 10

2.2 Programming Models . 12

2.3 Message Passing Interface . 15

2.4 Effects of Process Arrival Pattern and Operating System Noise 19

2.5 Non-blocking Communication Progression 20

iv

2.6 InfiniBand . 22

2.7 Summary . 28

Chapter 3: Offloaded Point-to-point Rendezvous Progression 29

3.1 Background and Related Work . 30

3.2 Design for Offloading Non-blocking Point-to-point Communication 41

3.3 Experimental Results and Analysis . 46

3.4 Summary . 51

Chapter 4: Flat and Hierarchical Non-blocking Offloaded Collectives . . . 52

4.1 Related Work . 53

4.2 Non-blocking Collective Design . 55

4.3 Flat Collective Design . 63

4.4 Hierarchical Collective Design . 65

4.5 Experimental Evaluation and Analysis . 69

4.6 Summary . 84

Chapter 5: Process Arrival Pattern Tolerant Pipelined Hierarchical Offloaded

Collectives . 86

5.1 Motivating Example . 87

5.2 Related Work . 89

5.3 Design of the Pipelined Collective . 92

5.4 Implementing the Pipelined Collectives . 99

5.5 Performance Evaluation . 108

5.6 Summary . 115

v

Chapter 6: Conclusions and Future Work 116

6.1 Summary of Findings . 116

6.2 Future Work . 117

Bibliography . 119

vi

List of Tables

2.1 CORE-Direct QP initialization options . 24

2.2 CORE-Direct tasks for recursive doubling barrier 28

3.1 Percentage of injected noise delay propagated from receiver to sender 50

4.1 Eager protocol task list for rank 0 in single-port standard exchange among

8 ranks . 64

4.2 Flat communicator per-process memory usage by allgather algorithm 75

4.3 Hierarchical communicator per-process memory usage by allgather algorithm 75

4.4 Radix kernel run time percentage improvement over MVAPICH2 using flat

single-port standard exchange on Cluster A (128 processes) 81

4.5 Radix kernel run time percentage improvement of 1-port and 3-port flat

standard exchange over MVAPICH2 on Cluster B (16 processes) 82

4.6 Radix kernel run time percentage improvement over MVAPICH2 using single-

port hierarchical standard exchange algorithm on Cluster A (128 processes) 83

4.7 Radix kernel run time percentage improvement of 1-port and 3-port hierarchical

standard exchange over MVAPICH2 on Cluster B (16 processes) 83

5.1 Properties of allgather algorithms . 99

5.2 Receive-Store-Replicate units at rank 0 of the pipelined Bruck allgather . . 106

vii

List of Figures

2.1 Architecture of a cluster using multi-core processors 11

2.2 Process skew in a blocking collective operation 18

2.3 Recursive doubling communication pattern for 8 ranks 27

3.1 Non-blocking MPI send and receive C function prototypes 31

3.2 Conventional rendezvous protocols . 36

3.3 Receiver-initiated rendezvous protocol . 38

3.4 Inefficiency in RDMA read rendezvous protocol 39

3.5 Offload endpoint queues at the start of communication 46

3.6 Offloaded rendezvous progression for early receiver case 46

3.7 Offloaded vs. host-progressed rendezvous message latency 48

3.8 Offloaded vs. host-progressed rendezvous overlap capability 49

4.1 Execution of the standard exchange allgather algorithm with 8 ranks and

single-port modelling . 56

4.2 Execution of the standard exchange allgather algorithm with 9 ranks and

2-port modelling . 57

4.3 Execution of the Bruck allgather algorithm with 5 ranks and single-port

modelling . 59

4.4 Execution of the ring allgather algorithm with 4 ranks 61

4.5 Two-group allgather algorithm with 16 ranks 67

4.6 Single-port flat allgather latency on Cluster A (128 processes) 71

viii

4.7 Single-port hierarchical allgather latency on Cluster A (128 processes) . . . 72

4.8 Single-port flat allgather overlap on Cluster A (128 processes) 73

4.9 Single-port hierarchical allgather overlap on Cluster A (128 processes) . . . 74

4.10 k-port flat allgather latency for Bruck and standard exchange algorithms on

Cluster B (16 processes) . 76

4.11 k-port flat allgather overlap for Bruck and standard exchange algorithms on

Cluster B (16 processes) . 77

4.12 k-port hierarchical allgather latency for Bruck and Standard Exchange

algorithms on Cluster B (16 processes) . 78

4.13 k-port hierarchical allgather overlap for Bruck and standard exchange algorithms

on Cluster B (16 processes) . 79

5.1 Recursive doubling allgather communication pattern 88

5.2 Propagation of the contribution of rank 0 in recursive doubling allgather . . 89

5.3 Propagation of the contribution of rank 0 in pipelined single-port standard

exchange allgather . 96

5.4 Incomplete 4-Cayley tree for a communicator of size 9 98

5.5 Receive-Store-Replicate control flow . 102

5.6 Receive-Store-Replicate primitive structure 104

5.7 Propagation of the contribution of rank 0 in 2-port pipelined Bruck allgather 105

5.8 Non-blocking pipelined allgather collective message latency 110

5.9 Non-blocking pipelined allgather collective overlap potential 111

5.10 Improvement of latency in parallel instances of the allgather collective . . . 112

5.11 Degradation of overlap potential due to parallel instances of the allgather

collective . 114

ix

Glossary

allgather a collective operation in which each participating process sends a block of data

and receives the concatenation of all the blocks in process rank order, p. 55.

cluster a computer system comprised of interconnected subsystems that can cooperatively

solve a computational problem; each subsystem is also capable of independent

operation, p. 10.

collective (communication) having well-defined semantics performed by a group consisting

of one or more processes, p. 17.

communicator a logical grouping of MPI processes in a point-to-point or collective operation

for the purpose of referring to the group, p. 15.

Completion Queue (CQ) an InfiniBand queue containing CQEs indicating completions

of WQEs on send and/or receive queues associated with the CQ, p. 23.

Completion Queue Entry (CQE) an entry in a Completion Queue describing the completion

of a WQE; provided information can be used to determine the success or failure

of the WQE, as well as the originating SQ or RQ, p. 23.

compute node a unit in a cluster that performs computation, p. 10.

CORE-Direct an extension of the InfiniBand specification that allows sequences of data

transfers to be offloadedto the HCA for processing, p. 24.

x

Direct Memory Access (DMA) ability of a device to access system memory without

involving the CPU, p. 22.

eXtended Reliable Communication (XRC) an InfiniBand transport mode that enables

an SRQ to be shared among multiple processes, p. 23.

Floating Point Operations Per Second (FLOPS) a measure of computer performance

commonly used in scientific computing. Unlike the measurement of instructions

per second, the FLOPS metric emphasizes the performance of the system in

computations involving floating-point numbers, p. 9.

High Performance Computing (HPC) a collection of technologies focused on delivering

fast solutions to computational problems; performance is usually derived from

parallel computation, p. 10.

Host Channel Adapter (HCA) a device connecting a host in an InfiniBand network to the

fabric. Usually has capability for Direct Memory Access to application memory

buffers, p. 22.

InfiniBand (IB) a specification for a switched high-speed interconnect with applications in

High Performance Computing and enterprise datacentres, p. 22.

interconnect a network connecting the subsystems of a cluster into a single system, p. 10.

Management Queue (MQ) a type of queue provided by InfiniBand devices with CORE-

Direct support; provides features for synchronizing multiple Queue Pairs, p. 26.

Maximum Transmission Unit (MTU) maximum message size that can be transmitted by

a network adapter as a single network packet, p. 101.

Memory Region (MR) a region of main system memory that has been set up for access

by the Host Channel Adapter, p. 23.

xi

Message Passing Interface (MPI) a specification defining a message passing system. MPI

is the de facto message passing standard in High Performance Computing, p. 13.

microbenchmark a measurement of performance of a small and specific part of code,

usually a single feature, p. 5.

Multiple-Program Multiple-Data (MPMD) a paradigm for dividing work among processors

in which the data are partitioned among multiple processes running instances of

several different programs that are written to cooperatively solve the computational

problem, p. 15.

Non-Uniform Memory Access (NUMA) a type of multiprocessor system design in which

the latency of access to a region of memory depends on the location of the

memory relative to the requesting processor, p. 10.

Open Fabrics Enterprise Distribution (OFED) a suite of open-source software providing

support for InfiniBand. Contains both OS kernel drivers and libraries implementing

user application interfaces, p. 22.

OS noise large delays in a cluster system arising from the propagation of small process

scheduling variations due to interference of the operating system services on the

individual nodes, p. 19.

Partitioned Global Address Space (PGAS) a programming model in which an address

space is shared by all processes, yet portions of the space are designated as local

to certain processes, p. 14.

point-to-point (communication) between a pair of processes performed by matching a

send operation on one side with a receive operation on the other, p. 16.

Queue Pair (QP) a communication endpoint abstraction in InfiniBand. Consists of a

Send Queue and a Receive Queue, p. 22.

xii

rank a unique number identifying a process in a communicator. Ranks in MPI are

assigned sequentially starting at 0, p. 15.

Receive Queue (RQ) an InfiniBand queue containing recv WQEs to be processed in

order, p. 22.

Receiver-Not-Ready (RNR) a condition arising when no recv WQE is available on an

RQ at the receiver to match an incoming send WQE. May optionally trigger a

retry sequence with a specified timeout, p. 33.

Remote Direct Memory Access (RDMA) a feature of the Host Channel Adapter where

it performs DMA in response to a remote request, p. 23.

Remote Memory Access (RMA) ability to access the memory of a process executing on

a different processor, p. 16.

Send Queue (SQ) an InfiniBand queue containing send WQEs (and variants thereof, such

as RDMA read/write requests) to be processed in order, p. 22.

Shared Receive Queue (SRQ) a variant of an RQ in which multiple RQs belonging to

the same process share a set of memory buffers, p. 23.

Single-Program Multiple-Data (SPMD) a paradigm for dividing work among processors

in which the data are partitioned among multiple processes running instances of

the same program, p. 15.

supercomputer see High Performance Computing.

TOP500 a biannually updated list of the 500 fastest supercomputers in the world, as

determined by their performance in the LINPACK benchmark, p. 2.

unexpected message queue a queue holding MPI messages that have been received but

not yet handled by the application, p. 34.

xiii

verbs a set of commands defining the application interface to InfiniBand. Verbs

differ from functions in that they specify only semantics, not the function

signatures, p. 22.

Work Queue Element (WQE) an element in a Send Queue or a Receive Queue specifying

a unit of work to be performed by the Host Channel Adapter, p. 22.

Work Request (WR) see Work Queue Element, p. 33.

xiv

Chapter 1

Introduction

Modern High Performance Computing cluster systems support most of the world’s scientific

computing [95]. These systems are responsible for computation that is crucial for research

in fields as diverse as physics, chemistry, climate modelling, and materials science, to name

just a few [69]. Demand for greater computing power from these fields continues to increase.

Larger and faster HPC systems do not just allow research results to be obtained more quickly;

performance improvements also enable larger and more detailed scientific simulations and

therefore new discoveries. Efforts are currently underway to increase the performance of the

fastest HPC systems a thousandfold as part of the Exascale project [1].

Scaling up the hardware capabilities of HPC is not enough. In order to reach the

Exascale target, the software executing on these machines will have to optimally utilize

their capabilities. Clusters are comprised of a number of interconnected processing modules.

Unsurprisingly, efficient interprocessor communication is an issue of utmost importance in

HPC cluster systems, and will only become more critical as clusters grow to exascale and

the number of communicating processors increases [1].

This work is a contribution towards the goal of mitigating the effects of the increasing

communication latencies and synchronization overhead in HPC clusters. We developed

techniques for hiding communication latency by overlapping it with computational work

1

CHAPTER 1. INTRODUCTION 2

and techniques for reducing the interprocessor synchronization implicitly required by com-

munication operations. Our designs make use of specialized hardware to offload certain

communication tasks from the main processor. We showed through experimental evaluation

that communication offloading can efficiently support the overlapping of computation and

communication without incurring significant overhead.

1.1 Motivation

The largest High Performance Computing systems in the world are ranked semiannually

by the TOP500 project [95]. From the project’s statistics it is clear that the available

computing capacity has been growing steadily, with the current combined performance of

the systems on the TOP500 list reaching 250 PetaFLOPS, or 2.50 × 1015 floating point

operations per second. Demands for computing power are unlikely to show a reversal,

thus HPC system performance is also expected to grow. The current milestone for HPC

performance is the exascale goal; the aim of the Exascale project is to build a machine

capable of 1018 floating-point operations per second [1].

The most common platform for High-Performance Computing today is a cluster comprised

of machines built using commodity hardware and connected by a network. Though the first

clusters were small-scale installations, the cluster architecture has since permeated the HPC

world. Clusters have largely replaced other architectures even among the most powerful

supercomputers. Whether the computational power for a scientific project is supplied by

one of the world’s largest supercomputers or a smaller-scale machine, it is likely that this

machine is a cluster. Among the TOP500 machines, 84.6% of the systems were clusters as

of November 2013 [95].

The fact that an HPC cluster is comprised of a number of networked nodes means that

solving a computational problem on a cluster involves both processing that is performed

locally on the cluster nodes, and cooperation between the nodes of the cluster through

CHAPTER 1. INTRODUCTION 3

network communication. In order to make optimal use of the resources provided by a

cluster, it is crucial for the software executing on the cluster to efficiently orchestrate local

processing and network communication. This is not a trivial task; simply speeding up

network communication is not enough. Consider the problems of process arrival pattern

and scheduling noise, which we discuss in more detail in Chapter 2. If computation on a

node depends on communication with another node, any delay at the sending node will be

propagated to the receiver. Small delays propagating through the cluster in a cascading

fashion can lead to dramatic slowdowns, especially in large clusters [72].

It is important for scientific applications to perform well on HPC clusters; however,

burdening computational scientists responsible for implementing these applications with low-

level details such as InfiniBand [39] networking or the interaction between local computation

and network communication is impractical. Although they are intrinsic to the modern

HPC cluster, these issues are outside the research goals of the users of the cluster hardware.

Furthermore, these issues are common to all applications running on clusters, therefore a more

practical approach would be to solve them in a fashion that could be shared among research

projects and would obviate every project from having to duplicate the work. This can be

accomplished by presenting scientific software developers with a higher-level programming

model that provides abstractions to ease programming HPC systems. We briefly review the

existing models for programming HPC clusters in Chapter 2. In this work, however, we

focus on MPI (Message Passing Interface) [64], the most widely used programming model in

HPC.

1.2 Research Objectives

As High Performance Computing clusters grow in scale to address ever-larger computational

challenges, overlapping communication with computation is becoming an increasingly im-

portant tool for maximizing the performance of applications in the cluster environment [43,

CHAPTER 1. INTRODUCTION 4

20, 34].

Scientific application developers could reap the benefits of communication/computation

overlap if they had usable abstractions that allowed them to describe the parts of their

program that could be executed in this fashion. In MPI, this capability is provided by

non-blocking operations, which we discuss in Chapter 2. Although the MPI specification

provides a definition of these abstractions, the issue of ensuring that applications using these

abstraction perform well in cluster environments remains open.

In this work, we examine the non-blocking communication abstractions in MPI that

provide the capability of overlapping communication and computation. We investigate the

issues involved in making these abstractions a reality on modern clusters using InfiniBand

hardware. Having surveyed the problem, we present designs for non-blocking communication

operations that provide consistently high performance for communication and for the

computation that is overlapped with it, while scaling to run on large systems. We aim to

answer the following questions:

• Can we ensure that overlapped communication, whether between pairs or among

groups of processes, does not negatively affect the performance of the computation?

• How can we mitigate the effects of the process arrival pattern and scheduling noise?

• Can we efficiently support multiple concurrent communication operations and overlap

them with computation?

1.3 Contributions

Overlapping communication and computation is an approach to improving application

performance and scalability that has been successfully applied in the past, and continues

to show promise in the face of the increasing performance requirements imposed by the

CHAPTER 1. INTRODUCTION 5

largest clusters [81, 6]. In Chapter 2, we review the background in the area of computa-

tion/communication overlap that lays the foundation for this thesis. The work immediately

related to the contributions of the individual chapters of this thesis will be discussed as the

contributions themselves are presented.

Building on this prior research, we turn our attention to the non-blocking communication

operations in MPI. We investigate both messages exchanged between a pair of processes

(point-to-point messages) and messages that are part of communication of a group of

processes (collective operations). For the investigation of collective operations we focus on the

allgather collective operation. This operation among participating processes communicates

a concatenation of the contributions of all the processes to the entire group.

The overarching theme of this thesis is the design of communication operations that take

advantage of the hardware of a modern cluster and support the Message Passing Interface

that is familiar to most scientific software authors. For each MPI operation that we have

investigated, we have developed a design to support effective non-blocking communication.

To validate these designs, we have implemented them using the recently added capabilities

of Mellanox [61] InfiniBand adapters that support offloading communication processing from

the node’s CPU.

Specifically, we make the following contributions:

1. We introduce a design of hardware offloaded progression of large messages. This

design adapts MPI message matching semantics to the capabilities provided by the

CORE-Direct hardware for exchanging messages between a pair of nodes in a cluster

(point-to-point). An evaluation of this design is conducted using microbenchmarks.

2. We design and implement asynchronous flat and hierarchical network offloaded non-

blocking allgather collective operations using standard exchange [10], Bruck [14], and

ring [93] algorithms with single-port and multiport modelling. We also discuss the

applicability of multileader and multigroup design techniques to the allgather algorithm

CHAPTER 1. INTRODUCTION 6

using offloading.

3. We redesign the radix sort application kernel to utilize the proposed non-blocking

allgather collective to achieve speedup through communication/computation overlap.

The radix sort application kernel was used along with microbenchmarks to evaluate

the non-blocking allgather collective on a 128-core and a 16-core cluster.

4. We propose a pipelined allgather algorithm that preserves the best characteristics of

previously explored algorithms, improves tolerance to process scheduling discrepancies,

and reduces resource consumption. We also propose a new primitive, Receive-Store-

Replicate, to aid with the construction of offloaded collectives. An evaluation of this

design was conducted using microbenchmarks.

The ultimate aim of this work is to contribute towards a general approach to designing

efficient non-blocking communication with hardware offloading in point-to-point and collective

scenarios. The techniques and approaches described in this thesis should be adaptable to

communication operations other than the ones covered. Moreover, all the non-blocking

operations presented are fully compatible with the MPI-3 specification [64], and can be

employed in compliant applications.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the background

information for the remainder of the work and introduces the Mellanox CORE-Direct

offloading technology that supports the implementation of our designs.

Chapter 3 explains how CORE-Direct offloading can be applied to transferring single

messages between a pair of nodes in a cluster while overlapping the transfer with background

computation. In addition to being useful in its own right, this work forms the foundation of

the subsequent chapters.

CHAPTER 1. INTRODUCTION 7

Chapter 4 deals with collective communication in flat and hierarchical environments. In

a flat environment, no special consideration is given to the hierarchical structure of a typical

cluster, which is built using multiple processors and processor cores per node. Consequently,

the investigation of the flat environment focuses on the network communication. Taking

advantage of the hierarchical structure for collective communication is also considered in

Chapter 4.

In Chapter 5, an additional collective optimization is introduced and explored. Com-

munication pipelining is shown to improve the tolerance of the collective to scheduling

variability across the cluster. As part of our design of the pipelined collective, we propose the

Receive-Store-Replicate primitive, which is a general solution that can be used as a building

block for other non-blocking collectives, and show how it can be applied. We also propose

an algorithm for the allgather collective operation based on the structure of a Cayley tree.

We employ this algorithm in a collective design that reduces resource consumption. We then

implement this algorithm using the new primitive, and evaluate its performance.

Chapter 6 concludes the work and discusses directions for future research.

Chapter 2

Background

Amdahl’s 1967 paper famously asserted that the speedup obtained through parallelism is

necessarily limited by the portion of the program that cannot be executed in parallel [2].

Almost every program will have some amount of sequential code, therefore Amdahl’s Law

predicts diminishing returns from increasing the number of processors that are executing

the program in parallel. However, in practice the situation is often not as dire as Amdahl’s

Law predicts and much higher speedup is attainable with parallel processing. The difference

lies in the definition of speedup. Gustafson pointed out that the fundamental assumption

of Amdahl’s Law – that the aim of parallel computing is to speed up a fixed amount of

computation – often does not hold in practice [28]:

When given a more powerful processor, the problem generally expands to make

use of the increased facilities.

The time taken to execute the serial part of many scientific application programs stays

relatively constant, while the work done in the parallelizable parts of their algorithms scales

with the problem size. Such applications can see an improvement much larger than predicted

by Amdahl’s Law. Instead of considering the time necessary to complete a fixed amount of

work, Gustafson considers the amount of work that can be done in a fixed amount of time.

8

CHAPTER 2. BACKGROUND 9

The speedup predicted by this model is much more optimistic: it scales linearly with the

number of processes.

While this definition of speedup is not the same as that of Amdahl’s Law, Gustafson’s Law

nevertheless strengthens the argument for the usefulness of massively parallel computation

for many problem domains. Problems that are well-served by parallel computing are common

in a number of scientific fields, including chemistry, physics, biology, and geology. In order to

model the phenomena they are studying in greater detail, increase the solvable problem sizes,

and to make discoveries more quickly, researchers in these fields demand ever-increasing

computing power. This power is supplied by High Performance Computing facilities.

The use of commodity systems for parallel computing was researched extensively in the

early 1990s. The best-known projects from this era, the Berkeley Network of Workstations

(NOW) [4] and the Beowulf project [88], used clusters of PC workstations for scientific

computing tasks and found this approach to be cost-effective. Though these first clusters

were small-scale installations by today’s standards, the cluster architecture proved to be

able to scale to the largest deployments. Clusters have largely displaced other architectures

in high-performance computing. They made up 84.6% of the systems in the worldwide

TOP500 supercomputer ranking [95] as of November 2013.

Progress in High Performance Computing is customarily measured in factors of 1000.

The fastest machines at present are able to perform over 1015 floating-point operations

per second (FLOPS), and are part of the petascale generation of systems [69]. The fastest

petascale system at the time of writing, Tianhe-2 at the China National University of Defense

Technology, can reach peak performance of 33.86 PFLOPS in the LINPACK benchmark [21]

that is used to rank systems on the TOP500 list [95].

Exascale machines represent the next landmark on the HPC roadmap. These machines

would be able to perform over 1018 operations per second, providing a 1000-fold increase

in available performance for scientific applications. Although no exascale designs currently

exist, and there is no consensus on how these systems should be designed, there is widespread

CHAPTER 2. BACKGROUND 10

agreement that reaching this milestone will be challenging [1]. An exascale machine using

current processor, memory, and network technologies would consume more power than a

medium-sized city [69]. Clearly, simply scaling up existing petascale designs is impracti-

cal; instead, a new approach must be sought that would achieve exascale computational

performance without a dramatic increase in power consumption.

However, power is not the only obstacle on the road to exascale computing. It is almost

certain that the number of processing modules in an exascale system will be increased

compared to the machines of the present. Coordinating these processing resources effectively

will require involvement from the software that is to run on the exascale machines. One issue

that is already of utmost importance in the petascale era, and will only become more critical

as HPC moves to exascale, is that of interprocessor communication and synchronization [1].

Specifically, as the number of processors increases, the cost of synchronizing them grows

correspondingly. It is therefore beneficial to restrict synchronization to cases where it is

absolutely necessary and to employ asynchronous processing elsewhere. This work is a

contribution towards this goal.

2.1 Cluster Hardware

As we already mentioned, the most common High Performance Computing architecture today

is a cluster of compute nodes connected through an interconnection network. The nodes

making up an HPC cluster contain multiple processing units that share a memory address

space. The processors in the nodes can typically access all of the node’s main memory,

though the access times of the various parts of the main memory may differ if the node is

of a Non-Uniform Memory Access (NUMA) design [69]. Modern processors operate much

faster than main memory and thus typically include one or more levels of cache memories

that serve to speed up access to frequently used data. These caches may be shared or private

to a single processor. Today, multiple processing units are commonly placed on a single

CHAPTER 2. BACKGROUND 11

processor

core core

core core

processor

core core

core core

node

switch

Figure 2.1: Architecture of a cluster using multi-core processors

silicon die. It is also common for multiple dies to be joined into a single package. Processing

units in such a product are usually called processor cores. This packaging provides a natural

hierarchy for cache memories to follow. For example, the Intel Nehalem and Ivy Bridge

processors include two private levels of cache for each core, as well as a shared third cache

level [41].

Because network communication is an integral part of cluster computing, its performance

has a significant impact on the overall performance of the HPC cluster. Accordingly, cluster

network architectures have diverged from those most commonly found in networks of servers

and workstations. It is common for clusters to replace low-cost network technologies such as

Gigabit Ethernet with a high-speed interconnect. The most common technology used to

interconnect the computation nodes of HPC clusters is InfiniBand. InfiniBand is used in

41.4% of the clusters on the TOP500 list [95] and this number has been growing steadily in

recent years. As we will see in Section 2.6, the InfiniBand technology aggressively optimizes

network communication. Unlike many conventional network interfaces, where transferring

data to the network hardware is the responsibility of the operating system (OS), InfiniBand

bypasses the OS and handles networking at the application level. Figure 2.1 shows a visual

representation of the architecture described in this section. It represents a cluster with

multi-core processors and an interconnection network consisting of two levels of switches.

CHAPTER 2. BACKGROUND 12

2.2 Programming Models

Making effective use of the hardware resources in an HPC cluster is a challenging task. It

is important to ease the burden on computational scientists by providing a consistent and

usable programming model that abstracts away the low-level details of the hardware. At the

same time, the implementation supporting the model’s abstractions must be optimized to

extract the most performance from the hardware while letting scientific software developers

focus on their work.

A programming model provides an interface between the application and its execution

on the cluster hardware while hiding the implementation details from the application

programmer. The programming models used in scientific software can be broadly classified

as belonging to one of two groups: message passing models that present the application

developer with a representation of independently executing processes that communicate by

passing messages, and shared memory models that instead present an abstraction of a large

shared memory that all executing processes share. Clearly, the programming model’s choice

of abstraction will favour or discourage certain application designs. The programmers using

the model in their application are much more likely to favour the abstractions that are a

natural fit to their application and the model.

Libraries and programming languages used in practice will often combine certain aspects

of both models. For example, the Message Passing Interface (MPI) specification, while

considered a quintessential example of a message-passing system, introduced shared-memory

programming features in version 2.2 [63].

Although the implementation details of a programming model’s abstractions are hidden,

they are crucial to the performance of the application on the physical hardware of a cluster.

In order to be useful in practice, the abstractions provided by a programming model must

be designed to match real usage scenarios and be implemented efficiently. An abstraction

that is awkward to use or provides poor or inconsistent performance is unlikely to find

CHAPTER 2. BACKGROUND 13

widespread adoption.

2.2.1 Message Passing

The message-passing model is based upon explicitly specified communication between

participating processes. Information is communicated in this model by having one process

construct a message and send it through the interconnection network to another process,

which in turn receives the message. In the message-passing model, each processing unit has

a private memory space that it can access, with no memory being shared between the sender

and the receiver. All communication between processes is accomplished through messages.

The Message Passing Interface (MPI) [64] is one example of this type of system. Although

many other message-passing systems exist [69], MPI is the de facto standard for message

passing in scientific applications. We will discuss MPI in more detail in Section 2.3.

2.2.2 Shared Memory

In contrast to the message-passing model, processes in the shared-memory model coordinate

work by sharing parts of their memory address spaces. Communication between processes

in the shared-memory model is done implicitly, through reads and writes to data structures

residing in shared memory regions [69].

The shared-memory model is frequently said to be easier for programmers to use and

reason about than the message-passing model [30]. Of course, even though no additional

work is required to communicate updates to shared data among processes, coordination of

work among the participating processes is still required in order to ensure that the results are

correct. Coordination can be achieved through mutual exclusion algorithms [26] or lockfree

data structures [19].

Shared-memory programming is the most popular programming model for standalone

multiprocessor machines. Two examples of programming interfaces for this model are

CHAPTER 2. BACKGROUND 14

Pthreads [94] and OpenMP [68]. Even though MPI includes some shared-memory program-

ming features, as we previously mentioned, it is typically not classified as an example of the

shared-memory programming model.

2.2.3 Distributed Shared Memory

As we mentioned in Section 2.2.2, many programmers consider using the shared-memory

model easier than dealing with explicit message passing [30]. For this reason, a shared-

memory programming model can be provided even when multiple machines are involved

that do not physically share memory. In this case, shared-memory semantics are emulated

using message passing to transfer data between the disparate memory address spaces.

Though the abstraction of a large, uniform, globally accessible address space may be

convenient, it can be challenging for the programmer to reason about the performance of an

application written using such a programming model. The time taken by a given processor to

access different parts of the distributed shared memory may vary depending on the physical

location of the memory providing the data in relation to the processor. In a distributed

shared-memory system powered by a cluster of interconnected compute nodes, memory

access times may be highly non-uniform due to the large variation in latency between local

and remote accesses. Because hiding the details of the distributed memory layout from

the programmer can make it difficult to write well-performing software, the Partitioned

Global Address Space (PGAS) [69] model has been developed. Programming languages and

libraries that implement the PGAS model offer the programmer control over the allocation

of data in the distributed memory by specifying affinity between the data and the processing

units that need to access them frequently. Some examples of PGAS languages are UPC [98],

Chapel [17] and X10 [18]. The Global Arrays [66] library also implements PGAS concepts.

CHAPTER 2. BACKGROUND 15

2.3 Message Passing Interface

Let us return to the message-passing paradigm, having briefly looked at the shared memory

programming model. The Message Passing Interface is the dominant message-passing

standard in the area of High Performance Computing. MPI is supported on almost all

platforms used in HPC, and its implementations have as a rule been extensively optimized for

performance on their respective hardware. MPI therefore enables message-passing programs

to be ported between hardware platforms while maintaining a high level of performance

without additional optimization work in the common cases. MPI provides a distributed

memory abstraction, though implementations of MPI work in shared- and distributed-

memory environments, as well as hybrid environments such as clusters.

An MPI program consists of multiple running processes, each with its own private address

space. The processes are started by a launcher, which provides enough information to the

MPI library to establish communication between the processes, largely transparently to the

user. MPI processes are commonly instances of the same program, though it is possible to

create an MPI job with different programs. The former is the Single-Program Multiple-Data

(SPMD) model, while the latter is the Multiple-Program Multiple-Data (MPMD) model.

Once launched, the processes execute asynchronously. When running on a single compute

node or a cluster, the MPI processes sharing the node can use the shared memory to

implement message passing.

For identification, processes are grouped together in communicators. In each communi-

cator, processes are assigned a rank by numbering them sequentially starting at 0. Because

a rank in a communicator uniquely identifies a process, in the rest of this work we will

sometimes use the term rank to refer to an individual process. Note, however, that a process

may belong to multiple communicators, and have different ranks in each.

Once processes know how to address each other by the combination of the communicator

and rank, they can cooperatively solve a computational problem by communicating with one

CHAPTER 2. BACKGROUND 16

another. Because communication operations involve participation of multiple ranks, they

introduce dependencies, and potentially synchronization, into the execution of processes.

MPI communication operations belong to one of three categories: point-to-point, collective,

and remote memory access (RMA) operations. The latter category introduces a distributed

shared-memory programming facility to MPI, as we previously mentioned. We will not

discuss RMA operations further in this thesis, choosing to focus instead on point-to-point

and collective operations.

2.3.1 Point-to-point Communication

Point-to-point communication involves a pair of processes; one executes a send operation,

and the other executes a receive operation. The MPI implementation is responsible for

passing the message that the programmer describes by transferring data from the source

buffer in the sender’s address space to the destination in the receiver’s address space.

The send and receive point-to-point operations have several variants that differ in their

completion timelines and buffering strategies. Blocking operations return control to the

application only after the data transfer is completed from the view of the MPI rank, and the

data have been either sent or received and placed in the correct buffer in the participating

process. In contrast, non-blocking operations are split-phase, with one call beginning

the communication and a separate call confirming its completion. Between these calls,

the application is free to perform other operations that will overlap the execution of the

background data transfer. There also exist several buffering modes that can be specified by

the programmer to optimize the communication performance. All variants of the send and

receive calls are interoperable. For example, a non-blocking receive call can receive data

from a blocking send.

The processes execute asynchronously, meaning it is possible that either the send or the

receive operation is issued first. Furthermore, multiple outstanding operations are possible

due to the non-blocking communication feature. To deal with these possibilities, MPI has a

CHAPTER 2. BACKGROUND 17

well-defined set of message-matching semantics that ensure that communication between

processes follows a predictable pattern. Messages are exchanged within a context of a

communicator. They are further distinguished by the message tag and the sender rank.

Messages in MPI are non-overtaking, meaning that messages satisfying the same matching

rules are received in the same order as they were sent.

Tags allow the programmer to enforce the correct order of message arrival without

concern for issuing outgoing messages in the same order. This capability enables a degree of

non-determinism in the MPI message-matching. For example, messages may originate from

distinct application threads, or be received using a combination of a non-blocking receive

and the MPI Waitany function that completes a single request out of a set. As a further

source of non-determinism, MPI includes a feature that allows the receiver to not specify the

source of the message, and receive a message from any sender (MPI ANY SOURCE). A similar

feature (MPI ANY TAG) exists for tags. Even with these sources of non-determinism, as long

as the programmer supplies correct message matching information, the correctness of the

program remains intact.

2.3.2 Collective Communication

Whereas point-to-point operations involve only a pair of processes, collective operations

carry out communication within a communicator in a specific pattern. For example, the

MPI Bcast operation broadcasts the contents of a buffer belonging to a single process to all

ranks in the specified communicator. Many collective operations are part of MPI, each with

its own set of semantics.

An MPI library is free to substitute any implementation of a collective operation as long

as the operation’s semantics are preserved. For example, the broadcast operation may be

implemented using a tree-based communication pattern rather than with a naive algorithm

in which the process at the root of the broadcast iteratively sends a message to all receivers.

Designing efficient collective communication operations has been an active area of research

CHAPTER 2. BACKGROUND 18

Rank 0 Rank 1 Rank 2

Figure 2.2: Process skew in a blocking collective operation. Processing of messages that
arrive when a process is inactive (indicated by dashed lines) is delayed.

because the performance of collectives significantly affects the execution time and scalability

of MPI applications [27].

Optimizing collectives for large-scale HPC systems presents a number of challenges.

One scalability issue that existed in previous versions of the MPI specification was that all

collectives were defined to be blocking operations. Therefore, no rank in a communicator

could perform any other tasks while in a collective call. Ranks would have to wait until

all operations implementing the collective semantics had been performed, at least from the

point of view of that rank. This usually meant that collective operations were synchronizing :

all ranks would have to wait for the entire communicator to complete the collective call.

The blocking collective operations specified by the MPI-2.2 standard do not allow

for overlap between computation and communication; however, non-blocking collective

operations [35] have recently been introduced in the new MPI-3 standard [64]. Non-blocking

collective operations are similar in concept to non-blocking point-to-point operations discussed

in Section 2.3.1, with one call commencing the operation, and another call completing it.

Unlike point-to-point operations, blocking collective calls do not interoperate with non-

blocking ones [64].

CHAPTER 2. BACKGROUND 19

Like their point-to-point counterparts, non-blocking collectives reduce requirements

for synchronization among processes, and allow for overlap between computation and

communication. The benefits of non-blocking semantics are potentially more significant for

collectives than for point-to-point operations: as illustrated by Figure 2.2, there is greater

opportunity for delays due to synchronization as the number of processes increases. In the

sequence diagram, rank 0 begins a blocking collective operation that depends on a response

from rank 1, which in turn must communicate with rank 2. Any delay in the activation of

the collective call at ranks 1 and 2 results in significantly increased delay at rank 0. The

situation becomes worse when the collective communication consists of multiple steps, as is

usually the case with collective operations in practice.

2.4 Effects of Process Arrival Pattern and Operating System

Noise

Any communication operation, whether point-to-point or collective, necessitates actions

from more than one process. Clearly, an operation cannot complete without the completion

of work assigned to each of the processes. This implies that a delay in starting the work by

any process is likely to contribute to the overall latency of the operation.

Ideally, all processes would begin the collective operation simultaneously, and would

spend no time waiting for each other. This ideal is unachievable in practice due to a

number of factors, such as variance in partitioning of work across ranks, inconsistencies in

network latency, and the interference of operating system services, or OS noise, to name a

few. Scheduling variations can significantly prolong the execution time of communication

operations [72, 42, 38]. Because collectives involve many ranks, they are especially susceptible

to these effects. Reducing the effects of the process arrival pattern and scheduling noise is

crucial in optimizing the performance of collective operations. We will describe these issues

in more detail and present a design aimed at addressing them in Chapter 5.

CHAPTER 2. BACKGROUND 20

2.5 Non-blocking Communication Progression

In Section 2.3.2, we briefly discussed MPI’s collective operations, which offer programmers

a set of useful primitives for communicating information among a group of processes. We

saw that data dependencies often arise in collective communication, and therefore implicit

synchronization is often involved between the participating processes. It is advantageous to

structure scientific code so that it can perform useful work while waiting for network commu-

nication to complete. Efficiently implementing support for the overlap between computation

and communication has been a long-standing goal in high performance computing.

One of the most important factors in achieving a high level of overlap is the ability of

the MPI communication subsystem to make timely progress on the outstanding background

communication operations. Furthermore, the overhead of message processing in non-blocking

operations must be kept low to ensure maximum availability of the host processor for

computation.

Non-blocking communication progression methods can be broadly categorized into

approaches that make use of the host processor for progression and those that offload this

task to a dedicated hardware device. Although we focus on offloading in this thesis, we will

review the host-based techniques to provide context.

2.5.1 Host-based Progression

When using the host processor to progress communication while performing computation,

the MPI progress engine must be periodically invoked to attend to the network and make

progress on pending operations. The function of the progress engine is described in more

detail in Chapter 3.

One way to accomplish this is to manually restructure the application code to periodically

call the MPI Test function [36]. Although this approach has low overhead, it leads to

complicated code and cannot be easily applied when using libraries to perform computation.

CHAPTER 2. BACKGROUND 21

Additional complications arise from the need to keep the workload balanced across the

processes involved in the communication. For optimal performance, calls to MPI Test on all

processors should occur at similar intervals, which need to be tuned for the specific workload.

A second option is to use a helper thread to handle message progression [36]. This

approach works well with libraries and results in cleaner application code. Unfortunately,

the context switching overhead and competition for the processor between the computation

and communication threads lead to an increase in latency and a corresponding drop in

application performance. Thread-based solutions are also susceptible to the negative effects

of process arrival pattern variations and OS noise [72, 38].

Making communication progression the responsibility of the OS kernel is a third host-

based approach. It generally results in lower overhead compared to designs that employ

userspace threads, and allows for better communication/computation overlap for small

messages [67, 83]. However, installation of custom kernel modules may not be permitted in a

shared environment of a supercomputing facility. Additionally, the host processing resources

must still be shared between computation and communication in this approach.

Reserving a processor core for handling communication can ameliorate the issues associ-

ated with host-based progression at the cost of reducing the processing power available for

computation. Alternatively, communication can be offloaded to special-purpose networking

hardware. This is the approach that we will describe next.

2.5.2 Offloaded Progression

Offloading communication progression to dedicated hardware has been shown to reduce

the effects of OS noise and to allow for effective communication/computation overlap by a

number of studies. Previous investigations of hardware offloading of collective operations

have been performed by Buntinas et al. using Myrinet network interfaces [16], Yu et al. on

Quadrics Elan [103], and Hemmert et al. using the proprietary Cray interconnect [29].

We have investigated the effects of using a different offloading technology, namely Mellanox

CHAPTER 2. BACKGROUND 22

CORE-Direct on the InfiniBand interconnect. We will describe the CORE-Direct technology

in Section 2.6.1 using an example of its use for offloading communication progression.

2.6 InfiniBand

The InfiniBand Architecture (IBA) [39] is an open standard for a high-speed switched system-

area network. Hosts are connected to the network by Host Channel Adapters (HCAs). One

defining feature of InfiniBand is its operating system bypass capability. Using direct memory

access (DMA), HCAs can directly access application memory buffers without relying on

a software network stack in the operating system kernel. Operating system bypass is an

important feature for High Performance Computing because the overhead of calling into the

OS kernel from the application can be significant [53].

Software support for InfiniBand is provided by the open-source Open Fabrics Enterprise

Distribution (OFED) [39], which includes both OS kernel drivers and userspace application

libraries that implement an interface to InfiniBand. The main abstraction used to program

InfiniBand is IB verbs. The InfiniBand standard defines the semantics of the verbs, but

not the exact programming interface. The functions in the library supporting the verbs

specification implement the abstraction.

An application communicates over InfiniBand by invoking verbs that manage Work

Queue Elements (WQEs) on the HCA. IB WQEs include send, recv, RDMA write and

read, and atomic operations. WQEs are posted to a Send Queue (SQ) or a Receive Queue

(RQ), which together form a Queue Pair (QP) – a communication endpoint in the IB network.

QPs may use one of several transport types that provide different ordering and reliability

characteristics. For the designs presented in this thesis, we use the Reliable Connection (RC)

transport type that guarantees reliable in-order delivery of messages, as well as extensions to

the RC transport. There are three other transport types: Reliable Datagram (RD), which

removes the ordering requirement, Unreliable Connection (UC), which has ordering but not

CHAPTER 2. BACKGROUND 23

reliability guarantees, and Unreliable Datagram (UD), which does not guarantee message

ordering or successful delivery.

IB Send and Receive Queues are associated with Completion Queues (CQs). This

mapping is not necessarily one-to-one: multiple queues can share a CQ. The application

fetches Completion Queue Entries (CQEs) from a CQ to determine the completion of WQEs.

InfiniBand adapters access memory by directly using physical addressing, bypassing the

operating system’s paging mechanism. Because RDMA operations target application buffers,

the expected buffer must always be found at a known physical address. This requirement

is met through Memory Region (MR) registration: the user buffer is pinned in physical

memory so that it cannot be swapped out, and the address translation is communicated to

the HCA.

The InfiniBand send verb and the corresponding recv verb invoked at the destination

together provide the information about the memory locations on the sender and receiver

systems that is sufficient to perform the data transfer. Alternatively, the Remote Direct

Memory Access (RDMA) verbs rdma write and rdma read permit one-sided communication

that can be performed as long as all the requisite address information is provided.

The Shared Receive Queue feature provided by most modern InfiniBand adapters allows a

number of RQs to share a single pool of memory buffers. eXtended Reliable Communication

(XRC) is an extension of the SRQ feature that enables receive queue sharing across processes

on the same node.

In this work, we make use of Mellanox CORE-Direct extensions to the InfiniBand

Architecture that enable sequences of WQEs to be managed by the HCA. We will describe

these extensions in Section 2.6.1.

2.6.1 CORE-Direct Extensions to InfiniBand

As discussed in Section 2.6, a communication endpoint in InfiniBand is represented by a

Queue Pair (QP), which consists of a Send Queue and a Receive Queue. Tasks posted

CHAPTER 2. BACKGROUND 24

Table 2.1: CORE-Direct QP initialization options

Flag Description

IBV M QP EXT CLASS 1 Enable CORE-Direct functionality
IBV M QP EXT CLASS 2 Hold SQ WQEs until explicitly enabled
IBV M QP EXT CLASS 3 Hold RQ WQEs until explicitly enabled

to these queues describe the data transfer operations to be carried out by the InfiniBand

adapter. Mellanox CORE-Direct extends this model by introducing three new types of tasks,

or Work Queue Elements (WQEs). Like the send and recv WQEs described in Section 2.6,

these WQEs become the responsibility of the InfiniBand HCA once they are posted to the

QP. The execution of the WQEs is thus decoupled from the code executed by the host

processor. The completion of a WQE is still reported as a Completion Queue Entry (CQE)

on a CQ.

We describe the functionality of the CORE-Direct tasks individually at first, followed by

an illustration of how these WQEs can be combined to achieve offloading of communication

progression.

Enable WQE

Send and receive tasks usually begin executing as soon as they are posted to a Queue Pair.

Therefore, if the aforementioned tasks make up a sequence of communications that requires

progression based on incoming data, a host-based progression implementation must wait

before posting the tasks to the HCA.

When a QP is configured for use with CORE-Direct, it can optionally hold send and/or

receive tasks in the corresponding queue instead of immediately processing them, in ac-

cordance with the flags listed in Table 2.1. The job of send enable and receive enable

WQEs is to enable a task being held in a queue. These WQEs receive the number of tasks

to enable and the relevant QP as parameters.

CHAPTER 2. BACKGROUND 25

Wait WQE

As we previously mentioned, the completion of a task is signaled by a Completion Queue

Entry arriving on a Completion Queue. The wait WQE provides a way for the HCA to

react to the arrival of a CQE on a given CQ. A wait WQE receives a CQ reference and the

number of entries to wait for as parameters. The execution of a wait WQE completes once

these conditions are met.

Calc WQE

In addition to handling communication progression, the processor on an HCA with CORE-

Direct support is capable of performing arithmetic and logic operations on data elements.

This feature can be used to implement operations that combine data movement with

computation, such as the MPI Reduce and MPI Allreduce collectives [46]. Even though

the computational performance of the HCA is lower than that of the host CPU, offloading

computation from the host is beneficial for certain applications. However, we do not deal

with computation offloading in this work.

Management Queues

In the current implementation of CORE-Direct, enable, wait, and calc tasks are posted

to Send Queues, where they can be interleaved with regular send tasks. Revisiting the

discussion on QP initialization for CORE-Direct gives rise to the following question: how

can we progress communication if a QP is set up to hold tasks in the Send Queue until an

enable task activates them, and enable tasks are themselves treated as sends? The answer is

that the enable tasks act across QPs.

We can envision two possible scenarios for implementing cross-QP synchronization. One

possibility is to set up QPs to not hold their send tasks and instead use only wait tasks

for synchronization. In the second approach, a separate QP can be set up to manage other

CHAPTER 2. BACKGROUND 26

QPs using enable WQEs. This Management Queue (MQ) does not hold send tasks, but the

remaining Data QPs do. The two approaches can also be combined for greater flexibility in

representing communication patterns.

2.6.2 Barrier Example

Non-blocking collectives using CORE-Direct were first studied by Graham et al. [24, 25]

targeting the barrier collective operation. We use a simplified version of the barrier operation

to illustrate the use of the CORE-Direct concepts we described in the previous section.

The barrier collective as defined in MPI has the following semantics: a barrier is considered

completed by any process only once all processes have started the collective call. Unlike

the communication operations we will discuss in subsequent chapters, a barrier does not

exchange any user data, and is used purely to synchronize processes. Even though a barrier

can be considered the simplest collective operation, it is nevertheless an important one,

and is a useful starting point for discussing the implementation of offloaded non-blocking

collectives.

One of the possible algorithms to implement the barrier operation is recursive doubling

[93]. In this algorithm, log2 n steps are taken to complete a barrier among n processes,

where n is a power of 2. In each step i, process p communicates with another process q

separated by 2i ranks from p to confirm that process q has entered the barrier. As can be

seen from Figure 2.3, carrying out communication in this pattern allows the processes to

infer the arrival at the barrier of the processes they do not directly communicate with. For

example, by the time rank 2 communicates with rank 0 in step 1, rank 2 has previously

synchronized with rank 3. Therefore, rank 0 can infer the arrival of rank 3 when it receives

a message from rank 2.

We could envision a naive barrier algorithm in which every process communicates with

every other process. The benefit of the recursive doubling barrier is that the number of

messages sent by a process is reduced to log2 n. However, unlike the naive algorithm,

CHAPTER 2. BACKGROUND 27

0 1 2 3 4 5 6 7

0

1

2

step:

Figure 2.3: Recursive doubling communication pattern for 8 ranks

recursive doubling relies on the order of message arrival. A process cannot simply send all

its messages at once: it must do so in response to incoming messages. Returning to the

problem of non-blocking collective implementation, we see that this requirement necessitates

the use of collective progression, either through software intervention or hardware offloading.

To see how the barrier collective can be implemented using CORE-Direct, let us consider

the collective communication from the point of view of a single participating process. As

can be seen from Figure 2.3, the process with rank 0 communicates with ranks 1, 2, and 4.

During initialization, Queue Pairs are set up and connected to those ranks. Receive Queues

are configured to process their tasks immediately, while the Send Queues hold their tasks

until explicitly enabled. We use a single Management Queue for this example.

When rank 0 initiates the barrier call, the tasks shown in Table 2.2 are posted to their

respective queues. The send to rank 1 is enabled immediately after being posted by the first

send enable task in the MQ. The next send (to rank 2) is only enabled once a message

arrives from rank 1. This ensures that rank 2 can infer the arrival of both ranks 0 and 1 once

it receives the message. The message to rank 4 is processed similarly. Finally, an additional

wait task is used to detect the arrival of a message from rank 4 and signal the completion

of the collective operation by rank 0.

In this example we saw how CORE-Direct features can be used to express dependencies

among messages comprising the collective. We note that the tasks are handled entirely

by the InfiniBand HCA once they are posted in the MPI Ibarrier call that initiates the

non-blocking barrier. The only interaction required from the host is the detection of collective

completion in an MPI Wait call. While the barrier communication is in progress, the user

application is free to perform useful work.

CHAPTER 2. BACKGROUND 28

Table 2.2: CORE-Direct tasks for recursive doubling barrier. The first column lists the tasks
posted to the MQ on rank 0. The Send and Receive Queues are connected to ranks 1, 2,
and 4

MQ RQ (1) SQ (1) RQ (2) SQ (2) RQ(4) SQ (4)

send enable (1) recv send recv send recv send

wait (1)

send enable (2)

wait (2)

send enable (4)

wait (4, signal)

2.7 Summary

In this chapter, we briefly described the programming models for High Performance Com-

puting and set the stage for the remainder of the work. We described MPI, the de facto

standard for supporting the message-passing paradigm in clusters. We discussed the host-

based techniques that can be used for progression of non-blocking operations, as well as

offloaded progression.

We also introduced the InfiniBand interconnect and its programming abstractions. We

then provided an introduction to the offloading technology used in the rest of this work:

Mellanox CORE-Direct. In the following chapters, we will discuss our designs for offloading

MPI point-to-point and collective operations, along with our optimization decisions and

performance evaluations.

Chapter 3

Offloaded Point-to-point

Rendezvous Progression

In the previous chapter, we described the most common programming models for high-

performance computing and noted that we will focus our attention on MPI, which is an

example of a model using the message-passing paradigm. Recall that MPI provides two kinds

of communication primitives: point-to-point and collective. MPI communication functions

exist in a blocking form, in which the function must complete before control is returned

to the calling program, and a non-blocking form which executes communication in parallel

with other work done by the caller. This thesis focuses on non-blocking communication.

In Chapter 2, we introduced the hardware technology that we use to support the designs

developed in this work: the InfiniBand architecture (IBA) and the Mellanox CORE-Direct

communication offloading extensions to the IBA. We illustrated the primitives of CORE-

Direct with an example design and implementation of the MPI Ibarrier collective operation

that could synchronize MPI processes in the background while the processes continued their

computation. Although the barrier operation served as a convenient demonstration of the

use of offloading to deal with communication dependencies, it did not address an important

29

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 30

aspect of communication in MPI: the transfer of user data. Communicating data among

processes is a key feature of MPI: it must be provided in all communication operations except

the barrier. Therefore, it behooves us to discuss data transfers in the context of offloaded

non-blocking MPI operations and to make sure that our designs can support data transfer in

an efficient manner. In this chapter, we will deal with non-blocking point-to-point operations.

Since point-to-point operations do not need to address communication dependencies between

more than two processes, we will be able to narrow our focus exclusively to the issue of data

transfer.

Prior to the appearance of non-blocking collectives, the MPI Isend and MPI Irecv

family of routines specified in MPI-2.2 [63] were the only way to obtain overlap between

communication and computation. Because these operations are well-established, many MPI

applications rely on them. In addition to being useful in their own right, point-to-point

communication operations can serve as a basis for collective communication designs. In

subsequent chapters, we will build upon our point-to-point design to support non-blocking

collectives that are specified as part of the MPI-3 standard [64].

In this chapter, we will discuss point-to-point message transfers. We will begin by

providing the background on this area of MPI, as well as discussing related work, in

Section 3.1. This section will also specify the semantics of MPI message matching that

our design will have to respect. Section 3.2 will describe the design of our offloaded eager

and rendezvous protocols, as well as their implementation using Mellanox CORE-Direct

technology. In Section 3.3, we will present the experimental evaluation of our design and

discuss the implications of the results we obtained. Section 3.4 concludes the chapter.

3.1 Background and Related Work

We first introduced MPI point-to-point operations in Section 2.3.1. Recall that a point-to-

point communication operation involves a pair of processes: a sender and a receiver. Before

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 31

point-to-point communication can occur, the sender and the receiver must have a way of

addressing their counterpart and setting up a communication channel. We talked briefly

about connection setup and addressing in MPI in Chapter 2. Recall that processes in MPI

belong to one or more communicators, and that a process in a communicator is identified

by a rank. The MPI library handles the translation of communicators and ranks to the

addressing information specific to the communication channel. Connection setup is largely

outside the scope of this work: we will describe the structure of the channel necessary for

our designs, but will assume that setting up a communication channel is a solved problem,

because MPI implementations typically include connection management [11, 104]. We will,

however, discuss the addressing of the processes communicating over these channels, and

the mapping between the channel addressing scheme and that of MPI.

3.1.1 Message Matching in MPI

When non-blocking communication is employed, the application is free to start a communica-

tion operation, and then start another one before the first operation completes. Thus, in the

general case, there may be multiple messages in flight between any pair of MPI processes at

any given time. Therefore, a method is needed for making message delivery non-ambiguous.

As illustrated by the prototypes of the non-blocking point-to-point calls in Figure 3.1,

during the invocation of a point-to-point operation, the programmer must indicate both

the rank and the communicator of the process to communicate with. The communicator is

necessary to fully specify the destination because an MPI process may belong to multiple

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request *request);

Figure 3.1: Non-blocking MPI send and receive C function prototypes

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 32

communicators. Messages between the same processes are further disambiguated by the

tag field. It is also worth restating that messages in MPI are non-overtaking, meaning that

messages satisfying a set of matching rules are received in the same order as they were sent.

Even when multiple messages are in flight simultaneously, the non-overtaking property of

MPI messages must be preserved.

MPI message matching by the receive operation includes wildcards for both the rank and

the message tag. Specifying the value MPI ANY SOURCE for the sender rank allows a receive

operation to match a message from any process in the communicator. The MPI ANY TAG

value allows the same semantics for tags. This feature offers additional flexibility to the

programmer, because in some scientific applications the source of data to be received may

be initially unknown. However, wildcards complicate message matching semantics because

they introduce a degree of non-determinism into the communication. When wildcards are

used, it is not possible for the receiver to unambiguously determine ahead of time which

incoming message will match the receive. The programmer must take additional care to

ensure the correctness of message passing in an MPI application using wildcards.

3.1.2 InfiniBand Semantics and Message Passing

In point-to-point communication, the sender specifies a memory buffer in its address space

that supplies the data to be transferred to the receiver. The receiver specifies a receiving

buffer of the same or larger size into which incoming data will be placed. In order for

data transfer to occur, the send operation must be matched with its corresponding receive

operation and a message buffer must be ready on both sides of the exchange. However,

because MPI processes execute asynchronously, it is possible that either the send or the

receive operation is issued first. This means that it is possible for a receiver to find that it

does not yet have available data to receive, or for a sender to find that no message buffer is

available at the destination.

Generally speaking, similar problems often arise in networking. They can be dealt with

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 33

either by buffering or by synchronization. In MPI, this corresponds to two broadly defined

categories: eager and rendezvous protocols. In an eager protocol, a receiver that is late to

start its receive operation will buffer any unmatched incoming messages and copy data to

the final destination once the destination becomes known. When a rendezvous protocol is

used, the sender and the receiver will instead be synchronized, ensuring that the message

can be placed into the final location without an intermediate copy operation. Choosing

between an eager protocol and a rendezvous protocol involves the tradeoff between the cost

of synchronization and the cost of copying the message. Intuitively, short messages are quick

to copy, so it would follow that we should prefer the eager protocol for short messages. This

assumption is supported by empirical results [23].

Eager Protocols

Let us consider the issues in supporting eager and rendezvous protocols using InfiniBand

hardware. We will begin with a discussion of an eager protocol using InfiniBand send/receive

semantics. Recall from Chapter 2 that IB adapters directly access application memory buffers

and do not have built-in memory for buffering incoming messages. Instead, the InfiniBand

send WR expects a corresponding recv WR to have made a memory buffer available at the

destination. The target HCA then places the incoming data into the receiving buffer. If

no receive verb has been invoked at the destination by the time the incoming send arrives,

the target HCA sends a control packet back to the sender signaling the Receiver-Not-Ready

(RNR) condition. The sender can then attempt the data transfer again after a timeout.

The choice of timeout value involves a tradeoff between increased network traffic due to

control packets and increased transfer latency due to the timeout. In general, for optimal

performance the RNR state should be avoided whenever possible.

Consequently, MPI implementations of eager protocols will usually manage a set of

memory buffers that are ready to receive incoming messages. The MPI library will eagerly

post recv WRs for these buffers to the HCA before the actual MPI-level receive operations

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 34

are issued. The eager buffers form the unexpected message queue that the MPI Recv function

has to check for any incoming messages that have arrived prior to the start of the call, and

continue checking until the matching message is received. Once the message arrives, it can

be copied to its final destination.

From the sender’s perspective, all of the receiver’s eager buffers are equivalent as long

as they are large enough to receive the sender’s message. Recall from the introduction of

Section 3.1 that an MPI process sets up channels to other processes in MPI communicators.

In InfiniBand, these channels are implemented using Queue Pairs. As we just discussed,

the receiver has to post a recv WR to the HCA in anticipation of incoming messages.

However, the MPI library generally cannot predict when a given pair of processes will

communicate, or indeed whether they will communicate at all. An MPI rank therefore can

expect a message from any other rank. That said, associating a set of eager buffers with

every connection is wasteful: we may be tying up buffers in channels where they are not

needed. Two extensions to the InfiniBand Queue Pairs address this problem. The first is the

Shared Receive Queue (SRQ). This feature allows multiple QPs to share a pool of buffers

[84, 91]. A further improvement, eXtended Reliable Communication (XRC) [85], extends

this sharing to multiple MPI processes running on the same node for additional memory

savings.

Rendezvous Protocols

Rendezvous protocols avoid the memory copies employed by eager protocols and place

data directly into user application buffers. Although this communication mode is well-

supported by InfiniBand hardware, there are certain issues involved in designing IB-based

MPI rendezvous protocols.

Recall that IB adapters work directly with physical memory. The MPI library does not

have knowledge of physical memory addresses, therefore a mapping must be established

between the virtual address space and the physical addresses visible to the IB adapter.

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 35

This is done by tasking the InfiniBand kernel driver with creating a registered Memory

Region (MR). In addition to creating the memory mapping and communicating it to the IB

device, memory pages making up the MR must remain pinned in physical memory because

it would not be safe for these pages to be swapped out. The call into the kernel, device

communication, and page table manipulation for pinning the pages make MR registration

an expensive operation compared to most other IB operations, which can be carried out

entirely in userspace [62].

The requirement to associate a memory buffer with an IB memory region before it can

be used for communication is not a significant detriment to eager protocols because the

registration overhead for eager buffers would apply only at application startup. However, for

rendezvous protocols the registration requirement presents a problem. Because the address

of the buffer supplied for a point-to-point MPI operation is not known prior to its invocation,

MR registration overhead becomes a part of the message transfer latency. To reduce this

overhead, most MPI implementations using InfiniBand implement a registration cache: they

leave user-supplied memory buffers registered in the hope that they will be used in an MPI

operation more than once, amortizing the cost of registration [23].

As previously discussed, rendezvous protocols eliminate the overhead of copying messages

from the unexpected message queue to their final destinations. However, a tradeoff is involved:

in order to ensure that a buffer is available to receive the message, the sender and receiver

must first synchronize by following a handshake protocol. Several handshake protocols for

rendezvous are well-known in host-progressed InfiniBand-based MPI implementations. We

will discuss each of them in turn in order to provide context for the offloading-compatible

protocol that we will present later in the chapter.

The 3-message handshake (Figure 3.2a) can be used to provide a rendezvous protocol

that does not need hardware support beyond the basic IB send and recv verbs [3]. The solid

boxes in the figure represent process activation. In the first step of the protocol, the sender

sends a Request-to-Send (RTS) message to the receiver over the eager message channel. This

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 36

Sender Receiver

RTS

RTR

Data

(a) 3-message (send or RDMA write)

Sender Receiver

RTS

Read

Data

(b) RDMA read

Figure 3.2: Conventional rendezvous protocols. Solid boxes in the timeline represent process
activation.

message contains the details necessary to match the message with an MPI Recv operation.

The receiver then sets up the user buffer for receiving the message using an IB recv verb on

a separate large message Queue Pair and sends a Ready-To-Receive (RTR) message to the

sender. At this point the sender has ensured the availability of a destination buffer for the

message, therefore it can perform the message transfer using an IB send verb on the large

message QP while avoiding the Receiver-Not-Ready condition.

An optimization to this protocol is possible if the InfiniBand adapter supports one-sided

Remote Direct Memory Access write functionality [3]. In this variant of the protocol, the

final data transfer is carried out using an RDMA write from the sender. The sender must

have information about the receiver’s memory buffer in order to perform the write. The RTR

message from the receiver carries this information in addition to performing its role in the

handshake sequence. This optimization of the 3-message protocol is so common that many

recent papers refer to it as the RDMA write rendezvous protocol and omit the send/receive

based variant of the protocol [87]. The sequence of operations for the RDMA write variant

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 37

is identical to that shown in Figure 3.2a.

If the InfiniBand adapter supports the RDMA read feature, the number of handshake

messages can be reduced [92]. In the RDMA read-based protocol (Figure 3.2b), the sender

supplies enough details to the receiver so that the latter is able to directly read the data

from the sender’s buffer. An acknowledgement message is necessary to notify the sender

that the data transfer is complete. As an optimization, acknowledgements can piggyback on

other messages or be batched.

Another possibility is to have the receiver initiate the rendezvous message transfer by

sending a Ready-to-Receive message to the sender. This protocol is illustrated in Figure 3.3.

Although receiver-initiated rendezvous would allow the number of control messages to be

reduced even when using adapters without RDMA read support, such a rendezvous protocol

cannot support the entirety of the MPI message-passing semantics. Specifically, the receiver

has to know the sender of the message, which is an impossible requirement in the presence of

the MPI ANY SOURCE flag. Nevertheless, receiver-initiated rendezvous protocols have received

some attention [70, 79]. Most implementations of receiver-initiated rendezvous make the

assumption that the application does not make use of MPI ANY SOURCE and fall back to a

different rendezvous protocol should an exception to this rule occur.

3.1.3 Rendezvous Message Progression and Communication/Computa-

tion Overlap

The data transfer of a non-blocking MPI point-to-point operation proceeds asynchronously

in parallel with the execution of the calling program. As we discussed in Chapter 2,

computation/communication overlap can hide communication latency in clusters leading to

improved application performance. In order to realize this potential, it is important to ensure

that progress can be made on the communication without impeding computation. Ideally,

the progression of computation and communication would be completely independent [13].

When no specialized hardware support for overlapping computation and communication

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 38

Sender Receiver

RTR

Write

Figure 3.3: Receiver-initiated rendezvous protocol

is available, non-blocking operations can be implemented by having the host processor

variously attend to the computation and the communication. Point-to-point communication

operations employing a rendezvous protocol must exchange control messages prior to the

transfer of user data. Their performance depends on the timely handling of these messages,

and consequently on the process arrival pattern at the point-to-point MPI call. Relatively

small variations in the process arrival pattern can propagate through the cluster and become

amplified when other operations depend on the point-to-point communication [22, 74].

Let us illustrate the problem with an example of a message transfer using a rendezvous

protocol with RDMA read and host-based progression. As we saw in Section 3.1.2, RDMA

read-based protocols minimize the number of control messages required. However, even

these designs have inefficiencies. In the sequence diagram in Figure 3.2b, the sender executes

an MPI Send call before the receiver executes the matching MPI Irecv, meaning that the

RTS message will wait in the unexpected message queue at the receiver. It will have to be

retrieved by the receiver, who will then execute an RDMA read operation and complete the

data transfer. In this example, the delay is due solely to the receiver’s arrival. Consider,

however, what would happen had the processes arrived at their respective calls in a different

order (Figure 3.4). Specifically, if receiver executed its MPI Irecv call before the RTS

message arrived, it would have to periodically check its unexpected message queue while

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 39

Sender

Post send

Transfer data

Receiver

Post receive

Check

Check

Check

RTS

Read

Data

Figure 3.4: Inefficiency in RDMA read rendezvous protocol: the receiver must repeatedly
probe for the arrival of an RTS message from a late sender

waiting for the RTS message, switching away from any overlapped computation.

We discussed host-based communication progression approaches in Section 2.5.1. Gen-

erally speaking, host-based progression approaches reduce the availability of the processor

for computation and add varying amounts of overhead, whether they employ a progression

thread, interrupts, or kernel-based progression. This is counter to our goal of making com-

munication and computation independent. Alternatively, communication can be offloaded

to special-purpose networking hardware. In this thesis, we improve the overlap between

computation and communication by designing communication operations to take advantage

of communication offloading. We will now discuss the current work in the field, and then

present our design of a rendezvous protocol suitable for hardware offloading. With this

design, we aim to achieve greater processor availability for computation by eliminating

context switching associated with software-based progression.

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 40

3.1.4 Related Work

Eager and rendezvous protocols are in use in most MPI implementations using InfiniBand

and its precursor technology, the Virtual Interface Architecture (VIA) [9, 12, 23]. Both

eager and rendezvous protocols have seen a number of refinements since their inception. For

the eager protocol, the improvements have largely focused on reducing the memory footprint

of the pinned memory buffers. This has been achieved through the use of Shared Receive

Queues (SRQs) [91] that allow a buffer pool to be shared between multiple connections. It

is also possible to optimize eager buffer pool utilization by stratifying messages by priority

and splitting the pool accordingly, as is done in the B-SRQ protocol in OpenMPI [84].

The memory footprint and scalability of MPI applications has recently been reduced even

further through the use of the eXtended Reliable Communication (XRC) transport that

permits buffers to be shared among several MPI processes on the same node [85]. A different

approach to optimizing eager MPI messaging using a polling-based RDMA design has been

shown by Liu, Wu, and Panda [57]. We do not focus on memory footprint reduction in this

chapter, but we will revisit this topic in Chapter 5.

Rashti and Afsahi examined the conditions for switching between eager and rendezvous

protocols in their work and found another source of performance improvement [80]. They

concluded that it is possible to improve application performance by using the rendezvous

protocol for frequently reused message buffers even for short messages that would normally

be processed by the eager protocol.

Handshaking protocols in rendezvous point-to-point MPI messaging have received signif-

icant attention from researchers. RDMA read-based rendezvous is discussed in a paper by

Sur et al. [92]. Pakin investigated receiver-initiated rendezvous protocols and discussed their

advantages and limitations in MPI compatibility [70]. Our approach has similar compatibility

limitations, but offloads the communication to CORE-Direct hardware in order to improve

the overlap between communication and computation. Rashti and Afsahi [78, 79] as well as

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 41

Small and Yuan [87, 86] pursued various rendezvous protocol designs that can be viewed

as hybrid designs where sender- and receiver-initiated rendezvous are used simultaneously.

Although these approaches are interesting, we reserve investigations of offloaded hybrid

rendezvous protocols for future work.

Optimization of host-based progression of rendezvous protocols is the subject of papers

by Kumar et al. [50] and Zounmevo and Afsahi [106]. Unlike these designs, our progression

is based on hardware offloading. Our protocol is most similar to that used by Venkata et

al. for broadcast collective communication [100]. However, MPI collective communication

operations do not need to support source and tag matching, unlike MPI point-to-point

operations. We therefore provide this additional feature in our design. In the message

envelope matching area our work bears some similarity to the TupleQ design by Koop,

Sridhar, and Panda [49] in that a CQ is used for message envelope identification, though we

do not make use of the XRC InfiniBand transfer protocol. The TupleQ design does not use

communication offloading, unlike the design we present in this chapter.

Brightwell and Underwood investigated the performance of non-blocking operations and

have found that for optimal performance, the communication and computation must be

overlapped while making progress independently [13]. Brightwell and Underwood suggested

offloading as a promising approach to meet these goals, though they did not empirically

evaluate communication offloading in their work. In this work we show that offloading can

indeed be used to improve non-blocking communication in practice.

3.2 Design for Offloading Non-blocking Point-to-point Com-

munication

Taking communication out of the critical path of the program execution allows communi-

cation latency to be hidden while additionally conferring to the application the benefit of

tolerance to scheduling jitter. However, an implementation of communication/computation

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 42

overlap might require some overhead for managing the background communication. Ideally,

rendezvous message progression would be done independently without having to interrupt the

computation being performed by the application. We aim to achieve this goal by transferring

the responsibility for message progression to dedicated hardware. In this section, we discuss

our design for offloading both eager and rendezvous protocol progression using CORE-Direct.

3.2.1 Eager Protocol

Let us first discuss the eager protocol in the context of CORE-Direct. Eager non-blocking

MPI transfers can be carried out using offloading in a similar fashion to those employing

host-based progression. In the eager protocol, whether in the offloaded or host-progressed

case, the receiver maintains a number of pre-posted buffers for incoming messages. The

eager protocol uses these pre-posted buffers to receive messages regardless of whether the

receiver has already indicated before the message arrives that it is expecting the message

through an MPI call in the MPI Recv family. Once the receiver has ensured that a buffer

is available to receive the message, non-blocking progression can be achieved simply by

delaying the check of the unexpected message queue until non-blocking receive completion is

explicitly requested by the application through a call to MPI Wait. For its part, the sender

can handle blocking and non-blocking sends identically. It can send the message across the

InfiniBand network when convenient, because it can assume that a buffer is available at the

destination to receive the message.

Only a single send or recv InfiniBand verb invocation is needed for handling an eager

message, therefore progression of eager messages is in effect already fully offloaded to the

HCA even when CORE-Direct extensions are not in use. The purpose of the CORE-

Direct extensions is to deal with chains of dependent communication operations. Because

no control messages are involved in the eager protocol, the inefficiencies of using the

processor to check the unexpected message queue do not apply to eager transfers. Using

CORE-Direct for offloading a single eager transfer therefore does not offer an advantage in

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 43

computation/communication overlap. Because of this, we will not presently discuss offloading

eager communication further. However, we note that offloaded eager transfers find a use as

building blocks of collective communication operations. Because collective communications

are comprised of multiple communication operations, CORE-Direct extensions are beneficial

in this application, as we shall see in Chapter 4.

3.2.2 Rendezvous Protocol

In contrast to the eager protocol, the rendezvous protocol presents a challenge for host-based

progression, as we discussed in Section 3.1.3. The difficulties stem from the requirement to

exchange control messages in order to complete the operation and facilitate interruptions of

the application by the message progression handler. Offloading the rendezvous protocol to

CORE-Direct hardware can result in better overlap between communication and computation,

because the sharing of the host processor between message progression and computation

becomes unnecessary.

Any rendezvous protocol we design must correctly handle message matching. As we saw

earlier in Section 2.3.1, messages in MPI are matched based on their source, communicator,

and tag. When host-based progression is used, this information can be included in the

Request-to-Send (RTS) message from the sender to the receiver. Once this message arrives

over the eager message channel, the receiver can correctly match it to the corresponding

MPI Recv or similar call. The receiver can then progress the rendezvous protocol further.

In contrast, the CORE-Direct specification provides no way of examining the contents of

the message. We are therefore unable to examine the RTS message as part of the message

matching process. The only kind of information about message arrival that is available to an

offloaded protocol using CORE-Direct is in the form of Completion Queue Entries (CQEs)

appearing on Completion Queues (CQs). Consequently, in our design we infer the matching

information for incoming messages from the completion event arriving on a specific CQ.

There is a second issue in designing a rendezvous protocol for CORE-Direct. In order

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 44

not to interrupt the application’s computation, all InfiniBand Work Requests making up

the rendezvous transfer must be posted to the HCA at the beginning of the point-to-point

operation. This means that we can only use information that is known at the start of the

transfer when creating these WRs, and must design our protocol to deal with this limitation.

Unfortunately, the limitation means that our protocol is unable to support the MPI wildcard

matching features. Let us discuss how this implication comes about.

Consider a design in which the data transfer is initiated by the sender. The sender

knows which receiver to contact at the time when it invokes the MPI Isend call. However, it

does not know whether the receiver has arrived at its corresponding receive call. Because

the sender cannot make an assumption about the availability of a buffer to receive its

message, and because we choose to avoid triggering the RNR condition, the sender should

first establish buffer availability by sending an RTS signal to the receiver. However, if the

receiver is using either the MPI ANY SOURCE or the MPI ANY TAG feature when it invokes

MPI Irecv (or similar function), it cannot determine which CQ will receive the RTS message,

and as a result cannot post all the CORE-Direct tasks at the start of the operation.

In Section 3.1.4, we discussed receiver-initiated point-to-point rendezvous transfers. To

handle rendezvous transfers using CORE-Direct, we adopt a similar approach. In our design,

a separate QP is created for each (communicator, source, tag) triple. Each of these QPs

serves as a simplex channel with the MPI process at one end acting as a sender and the

other as a receiver. If a duplex connection is desired between the two MPI ranks, a second

offloaded message channel can be created for the other data transfer direction.

The receiver uses the Send Queue (SQ) of the QP to transfer a Clear-to-Send (CTS)

signal to the sender. The sender’s Receive Queue (QP) always has a number of pre-posted

InfiniBand recv WRs. This ensures that the QP does not enter the Receiver-not-Ready

state and generate retransmissions, making the delivery of CTS messages similar to the

control messages sent over the eager message channel in host-based rendezvous progression.

The contents of the CTS message serve no purpose, therefore the recv verbs for CTS signals

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 45

are invoked with zero length and do not receive any data. On the receiver side, we use the

RDMA write with immediate data verb for the CTS signal. The immediate data feature

ensures that a recv WR will be consumed at the destination and the CTS condition will be

signalled to the sender.

The first CORE-Direct task posted by the sender to its SQ is a wait task, as illustrated

in Figure 3.5. This task waits for a CQE to appear on the RQ’s CQ in response to an

incoming CTS signal. The completion of this task implies that the receiver has invoked the

matching receive call and has a buffer waiting for the sender’s message. The task following

the wait is the actual large message send. This task will begin once the receive buffer

availability is established by the Clear-to-Send (CTS) signal.

This design works both for the case where the receiver arrives at the point-to-point

call before the sender, and vice versa. In the first case (shown in Figure 3.6), the receiver

executes its operation before the sender, and because its buffers are ready to receive data,

it sends a CTS control message. After being received by the sender, this message clears

a recv WQE in its RQ and generates a CQE on the corresponding CQ. The sender then

arrives at the send call and posts a wait WQE to detect the arrival of the CTS message.

Because a CQE is already present, this wait WQE will be immediately completed. Upon the

completion of the CTS wait, the send will perform the actual data transfer to the receiver.

In the second possible scenario, the sender arrives before the receiver and all WQEs are

posted by the sender before the CTS message arrives. In a sequence of events similar to the

early receiver case, the wait WQE is cleared by the incoming CTS message, allowing the

data transfer to proceed.

Lastly, we note that the requirement of a dedicated QP for every (communicator, source, tag)

triple may lead to a significant increase in resource consumption by applications utilizing a

large number of such triples. To handle this possibility, as well as to allow for compatibility

with the MPI ANY SOURCE and MPI ANY TAG features, we implement a fallback mode which

disables offloaded rendezvous progression when necessary.

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 46

recv (cts)wait (1 recv cq)

SQ RQ

(a) Sender

SQ RQ

(b) Receiver

Figure 3.5: Offload endpoint queues at the start of communication

recv (cts)wait (1 recv cq)

SQ RQ

wait cleared by CTS

sender arrives

incoming CTS

recv (cts)send (data)

data to receiver

back to initial state

wait (1 recv cq)

(a) Sender

recv (data)

SQ RQ

sent CTS

CTS to sender

incoming data

back to initial state

send (cts)

recv (data)

(b) Receiver

Figure 3.6: Offloaded rendezvous progression for early receiver case

3.3 Experimental Results and Analysis

In this section, we examine the latency of our non-blocking rendezvous algorithm as well as

its communication/computation overlap potential. In our evaluation, we compare our CORE-

Direct-based implementation of the offloaded rendezvous protocol for point-to-point messages

with that of the MVAPICH2 1.9 [65] Nemesis InfiniBand channel [58]. The threshold for the

switch between eager and rendezvous protocols in MVAPICH2 was set to the default value

of 12KB. Although the use of CORE-Direct hardware for eager messages is valuable when

designing collective operations, as we will do in Chapter 4, it offers no benefit for single

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 47

eager message transfers, as we discussed in Section 3.2.1. Since the focus of this chapter is

on offloading the rendezvous protocol, we used it for all message sizes when testing our the

offloaded implementation.

For consistency, we used the NBCBench benchmark [37] to measure latency and overlap

potential in this as well as subsequent chapters. The benchmark was run for 1000 iterations

for each data size. To trigger host-based progression, the MPI Test function was called

whenever a 2048-byte block was transferred. NBCBench synchronizes the starting points of

operations under test.

3.3.1 System Configuration

The testbed for the rendezvous benchmark was made up of two Dell PowerEdge 2850 servers,

each containing two 2.80GHz dual-core Intel Xeon Paxville processors, 4 GB DDR2 memory,

and a Mellanox ConnectX-2 MT25418 HCA. The nodes use Mellanox OFED 1.5.3-1 and

64-bit CentOS 5.5 with kernel 2.6.18-194.26.1.el5. On both nodes, a single HCA port was

connected to a Mellanox Infiniscale-IV switch.

3.3.2 Latency

Because we are only interested in testing the rendezvous protocol, the smallest message size

used was 16KB, which is above the default rendezvous threshold in MVAPICH2. Figure 3.7

shows the latency of the non-blocking send and receive operations of MVAPICH2 and

of our offloaded design. When both implementations utilize a rendezvous protocol, the

latency scales identically: it is linearly related to the message size. Though the offloaded

implementation has a slight performance penalty in this test, its latency is consistently within

a constant factor of the host-based implementation. However, the offloaded implementation

offers the additional benefit of computation/communication overlap, which we will examine

in the next section.

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 48

1
1
0

1
0
0

1
0
0
0

16k 32k 64k 128k 256k 512k

La
te
n
cy
 (
μ
s)

Message size (B)

Offloaded rendezvous MVAPICH2

Figure 3.7: Offloaded vs. host-progressed rendezvous message latency

3.3.3 Overlap Potential

Overlap potential is a measure of the overhead required to manage the background com-

munication. If we could come up with a design that would not require any attention from

the host processor then the entirety of the communication time could be spent on compu-

tation. A certain amount of processor overhead is unavoidable, even when using offloaded

communication. In this section, we empirically obtain a measure of the percentage of the

communication time that can be overlapped with computation.

Because the transfer time of short messages is insignificant compared to the overhead of

offloading, using offloading to overlap these transfers is not worthwhile. As the message size

increases so does the opportunity for overlap. Therefore we continue investigating message

sizes of 16KB and above.

The NBCBench benchmark measures overlap according to the formula

overlap = 1− tcomp+comm − tcomp

tcomm

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 49

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

16k 32k 64k 128k 256k 512k

O
ve
rl
ap

Message size (B)

Offloaded rendezvous MVAPICH2

Figure 3.8: Offloaded vs. host-progressed rendezvous overlap capability

where tcomp+comm is obtained by starting the nonblocking communication first, then perform-

ing a predefined amount of synthetic computation, and finally waiting for the communication

to complete. tcomm refers to blocking communication time. tcomp is chosen to be close to

tcomm in an effort to minimize measurement error.

The overlap potential results are presented in Figure 3.8. In our comparison testing the

host-progressed rendezvous protocol exhibits consistently lower overlap potential than the

offloaded design. The offloaded rendezvous overlap potential was as high as 98% for 512KB

messages, while MVAPICH2 did not achieve good overlap performance in our testing.

We position our design for offloaded rendezvous point-to-point communication using

larger messages, as is traditional for rendezvous protocols. However, as we mentioned

in Section 3.1.1, short incoming messages may successfully match large receives. This

implies that our design must be able to handle all message sizes. The impact of this

requirement on application performance may vary. As long as most messages can benefit

from computation/communication overlap, we can tolerate using the offloaded rendezvous

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 50

Table 3.1: Percentage of injected noise delay propagated from receiver to sender

Message Size MVAPICH2 Offloaded Rendezvous

1B – 12KB 4% 2%
16KB - 512KB 99% 2%

channel for short messages without incurring a significant penalty. Should the application use

mostly short messages, however, it might be beneficial to fall back to software progression,

at least temporarily. This tradeoff likely merits additional investigation.

3.3.4 Noise Tolerance

We noted in Section 3.1.3 that offloading non-blocking communication can alleviate the

problem of scheduling variability. To test this in practice, we modified the NBCBench

benchmark to insert a 1 second pause between the issuing of the MPI Irecv call and its

corresponding MPI Wait. We then measured the message latency at the sender to obtain

the percentage of the delay that is propagated from the receiver to its communication peer.

The results are summarized in Table 3.1. We performed our testing for all message sizes in

this section, including those smaller than 12KB.

As expected, the eager protocol was essentially immune to the inserted delay because

no control messages are involved. However, once the message size passed 12KB and both

implementations started using the rendezvous protocol, we saw that the host-progressed

solution propagated most of the receiver’s delay to the sender. In contrast, the offloaded

protocol was largely unaffected: the sender’s latency stayed essentially the same.

Even though the large delay at the receiver is an exaggeration, this test showcases the

resilience to OS noise of the offloaded rendezvous protocol. We can see that this protocol

can maintain its latency and overlap characteristics even in the face of a large discrepancy

in scheduling between the communicating processes. Programmers using host-progressed

point-to-point communication in MPI currently take care to match the arrival times of

CHAPTER 3. OFFLOADED POINT-TO-POINT RENDEZVOUS PROGRESSION 51

the sender and the receiver, however, an offloaded point-to-point design imposes no such

restrictions, and promises to free programmers from this burden.

3.4 Summary

In this chapter, we explored the point-to-point messaging features of MPI. We described

the general principles of eager protocols that are most useful for short messages, as well

as rendezvous protocols that optimize for large message transfers by avoiding additional

memory copying. We talked about the issues that MPI designers must address in order

to implement these operations efficiently using the InfiniBand interconnect. We discussed

the inefficiencies in using the host for progression of rendezvous protocols and showed how

offloading can be used to alleviate these inefficiencies.

We evaluated the latency and the potential for overlapping communication with com-

putation that is afforded by offloaded rendezvous point-to-point operations and compared

these characteristics to those of a host-progressed implementation in MVAPICH2. We found

that offloaded operations provide competitive latency and greater potential for computa-

tion/communication overlap, in addition to having better tolerance to scheduling noise than

host-based operations.

Additionally, we touched on the applicability of offloading to eager protocols. Although

offloading individual eager message transfers ultimately offers no benefit, the methods for

handling eager and rendezvous transfers developed in this chapter form a foundation for the

work on collective communication that we will discuss next.

Chapter 4

Flat and Hierarchical Non-blocking

Offloaded Collectives

In the previous chapter we discussed the process of transferring a single message between a

pair of MPI processes. We will now build upon this foundation and investigate higher-order

MPI operations – collectives – which we introduced in Section 2.3.2. As we have seen, a

collective operation involves communication among a group of processes belonging to a

communicator. The MPI specification defines the semantics of collective operations in terms

of their results but does not stipulate specific implementations. This affords MPI designers

plenty of opportunities for optimizing collective operations for execution in specific systems.

It is desirable for a process participating in a collective operation to perform useful work

while waiting for other processes to begin their part of the exchange, for data transfers to

complete, and for message dependencies to be satisfied. We previously examined overlapping

computation with point-to-point communication operations in Chapter 3. Recall that we

concluded that it is not trivial to overlap communication with computation in a manner

that compromises neither the latency of the communication nor the availability of processor

time for computation. Offloading communication progression emerged as the solution to

52

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 53

these issues for point-to-point communication.

In this chapter, we investigate how offloading can help in obtaining efficient overlap

between computation and collective communication. Section 4.1 starts the chapter with

a review of related work. In Sections 4.2, 4.3, and 4.4, we develop non-blocking allgather

collectives that meet the computation/communication overlap demands using CORE-Direct

offloading in flat and hierarchical communicators. We evaluate the performance of our designs

using microbenchmarks and an application kernel in Section 4.5. Section 4.6 concludes the

chapter.

4.1 Related Work

In Chapter 3, we briefly discussed host-based progression of non-blocking point-to-point

operations. This approach can also be used to implement non-blocking collectives. For

example, thread-based progression has been used by Hoefler et al. in their work on the

libNBC library [33]. We use the libNBC library as a baseline against which to compare our

design of offloaded non-blocking collectives. We continue using the large message rendezvous

transfer mechanism described in Chapter 3 in the context of collective communication.

Kandalla et al. [48] implemented the MPI Alltoall collective operation using CORE-

Direct and investigated the speedup of parallel 3D FFT due to overlapping communication

and computation. This chapter focuses on the MPI Allgather collective operation and

evaluates its performance using a Radix Sort application kernel. Other works that discuss

CORE-Direct offloading in the context of various MPI collectives include work on the barrier

collective by Graham et al. [24, 25], its extension to hierarchical collectives by Rabinovitz et

al. [77], and work on the MPI Allreduce collective by Kandalla et al. [46]. The allreduce

work is distinguished by its leverage of the calculation capabilities of the CORE-Direct

hardware.

The material in this chapter is based on the investigation of offloaded non-blocking

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 54

allgather collectives by Inozemtsev and Afsahi [40]. We should point out two relevant works

that have been published since the completion of [40]. The first is the investigation of the

non-blocking all-to-all collective by Venkata et al. [101]. The main contribution of this work

is the optimization of the communication using RDMA and scatter-gather features of the

HCA. Although we do not examine these optimizations in this chapter, we note that they

are applicable to the MPI Allgather operation as well. The authors of [101] noted that the

use of the SGE feature limits the scalability of their algorithm. In a follow-up work focusing

on the MPI Allgather operation, Ladd et al. [52] present a k-nomial tree algorithm suitable

for CORE-Direct offloading that avoids the SGE feature.

A number of authors have explored the use of shared on-node memory for optimizing

collective communication without the use of offloading. The works most pertinent to this

thesis focus on the application of hierarchical communicators to allgather and the related

all-to-all collective operation. These works include the studies of hierarchical allgather

optimizations by Mamidala et al. [60, 59] and Kandalla et al. [47], as well as the adaptive

allgather algorithm proposed by Träff [96]. Ladd et al. published a detailed investigation of

the effects of the cache memory hierarchy in modern clusters on collective operations [51].

Li et al. investigated optimization of shared-memory communication in NUMA systems

that make up many modern clusters [54]. Buntinas et al. compared different techniques

of using shared memory for intranode communication in MPI [15]. We chose an approach

to maintaining a shared memory region that does not rely on special support from the

operating system.

Several groups have sought to improve the blocking MPI Allgather operation by spread-

ing the workload of network message processing among multiple processor cores. The

multileader allgather design by Kandalla et al. [47] and the multigroup algorithms by Qian

et al. [76] have been shown to decrease communication latency. We investigated the applica-

bility of these approaches to offloaded collectives. Additionally, we investigated the use of

multiple network interface ports for offloaded collective communication. This technique has

previously been shown to improve the latency of blocking collective operations [75, 73].

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 55

4.2 Non-blocking Collective Design

In the allgather collective, each participating process contributes a block of data and receives

the concatenation of all the blocks in the collective in process rank order [64]. A naive

algorithm implementing the MPI Allgather collective operation could simply have each

rank send its block of data to every other rank. In practice, better algorithms are employed

for MPI Allgather. We used three well-known algorithms: standard exchange [10], Bruck

[14], and ring [93].

4.2.1 Standard Exchange

The recursive doubling algorithm that we explored in the context of the barrier collective

operation in Chapter 2 is also applicable to the allgather collective [93]. In the discussion

below, we assume that communication can be carried out simultaneously on k ports. The

standard exchange algorithm that we discuss in this section is a generalization of recursive

doubling for k-port modelling [10, 75].

Standard exchange uses logk+1N rounds when the number of processes N is a power of

k + 1. In each round j of the algorithm, process p communicates with processes p+ (k +

1)j , p+ 2(k + 1)j , ..., p+ k(k + 1)j modulo N . (k + 1)j blocks of data are sent and received

in each round and are placed at the required offset in the destination buffer. Figure 4.1

shows an example of the execution of the standard exchange algorithm with 8 ranks and

the number of ports k = 1. Each square block represents the data item contributed by the

corresponding process. We see that in round 0 the data blocks are communicated between

processes 1 step away with the distance and the message size doubling in each round. The

communication completes in log2 8 = 3 rounds with the contributions of all ranks known

to the entire communicator. If the number of ranks is not a power of k + 1, an additional

round of communication is required to propagate data to the excess ranks.

The example in Figure 4.2 shows the effect using two ports for communication. This

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 56

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 0

0

31

0

1

2 4

5

4

5

6

7

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

6

7

4

5

6

7

4

5

6

7

4

5

6

7

4

5

6

7

0

2

1

3

4

5

step 1

start

6

7

ranks

3

2

step 2

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

6

7

0

2

1

3

4

5

Figure 4.1: Execution of the standard exchange allgather algorithm with 8 ranks and
single-port modelling

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 57

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

step 0

8

0

2

3

4

5

6

7

8

1

0

2

1

0

2

1

3

4

5

3

4

5

6

7

8

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

6

7

8

0

2

1

3

4

5

step 1

start

6

7

8

ranks

Figure 4.2: Execution of the standard exchange allgather algorithm with 9 ranks and 2-port
modelling

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 58

time the ranks communicate in groups of k+ 1 = 3 in each round. The distance and message

length triple in each step. The algorithm proceeds in the same fashion as in the k = 1 case

and completes in log3 9 = 2 steps.

The ports described by the model may be implemented either as separate physical

interface ports, or be multiplexed over a smaller number of physical ports. An increase in

the number of ports in the communication model means that more messages are transferred

in each round. Although this property of multiport algorithms may reduce the latency of

the collective, especially if multiple hardware ports are available, it also potentially increases

network contention, which may have an adverse effect.

4.2.2 Bruck

The Bruck algorithm [14] has two phases: network exchange and local shift. In the discussion

below, we again assume that communication can be carried out on k ports. The first phase

consists of dlogk+1Ne steps, where N is the number of processes in the communicator. If we

number the rounds of the network phase starting at 0, in round j process p sends its data to

processes p+ (k + 1)j , p+ 2(k + 1)j , ..., p+ k(k + 1)j modulo N and receives messages from

p − (k + 1)j , p − 2(k + 1)j , ..., p − k(k + 1)j modulo N . The incoming data are appended

to the data that have been previously received. The result is sent out in the next round of

communication.

Figure 4.3 shows an example of execution of the Bruck algorithm with 5 ranks and the

number of ports k = 1. We see data being sent to ranks at a distance 1 away in step 0. The

message sizes and distances increase by a factor of k + 1 = 2 in each round.

Unlike standard exchange, the Bruck algorithm gracefully handles the case where N is

not a power of k + 1. In this case, only the data blocks that were missed by the previous

rounds are communicated in the last round. An example of this can be seen in Figure 4.3 in

Step 2: because N = 5, this extra round is required to communicate the single block that

each process is missing.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 59

0 1 2 3

0 1 2 3

step 0

0 2

4 0

1

1

0

2

1

3

step 1

start

ranks

3

2

local rotation

0

2

1

3

0

2

1

3

0

2

1

3

0

1

0

1

3

2

2

1

0

4

0

4

4

3

3

2

4

4

4

3

4

3

2

1

step 2

0

1

0

1

3

2

2

1

0

4

0

4

4

3

3

2

4

3

2

1

1 32 4 0

0

2

1

3

4 4 4 4 4

Figure 4.3: Execution of the Bruck allgather algorithm with 5 ranks and single-port modelling

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 60

Though the property of efficiently handling any number of processes is a desirable one,

the Bruck algorithm has one additional requirement that may be a drawback. The second

phase of the Bruck algorithm performs a local circular rotation by p blocks on process

p to place the data in the correct order. This additional local memory operation is not

necessary in standard exchange or the ring algorithm that we will discuss next. We should

note, however, that in a hierarchical collective design, all the mentioned algorithms will

require a memory copy operation to complete, though Bruck remains at a slight disadvantage

because its memory copy is non-contiguous. Lastly, standard exchange has been shown

to have a performance advantage over the Bruck algorithm in networks where a pairwise

communication pattern is beneficial [8].

4.2.3 Ring

The algorithms we have seen so far increase the size of the messages used in each round in

order to reduce the number of rounds required to complete the communication. In contrast,

the ring algorithm keeps the message size constant in each round. The ring algorithm

requires N − 1 rounds for N processes [93]. Process p sends a single block of data to p+ 1

and receives a block from p − 1 in every round. In Figure 4.4 the execution of the ring

algorithm is illustrated for a communicator with p = 4 ranks. We can see that each rank

has only two connections in the ring algorithm, and the execution takes p− 1 = 3 steps.

Even though the linear O(N) number of steps appears inefficient in comparison to the

Bruck and standard exchange algorithms, the ring algorithm is often the best choice for

large messages in practice. This is due to its nearest-neighbour communication pattern

which translates into reduced network contention and a small number of connections that

need to be set up.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 61

0 1 2 3

0 1 2 3

step 0

0

23

0

1

1

0

3

2

0

3

1

0

2

1

1

3

2

0

2

1

3

step 1

start

ranks

3

2

step 2

0

2

1

3

0

2

1

3

0

2

1

3

Figure 4.4: Execution of the ring allgather algorithm with 4 ranks

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 62

4.2.4 Algorithm Comparison

We have presented two algorithms where the number of communication rounds scales

logarithmically, and one linearly scaling algorithm to implement the MPI Allgather collective

operation. The choice of algorithm in practice depends on the size of the messages that are

being exchanged. To examine this tradeoff, we employ Hockney’s model [31]

t = α+ βc

where α refers to the communication startup time of the individual messages, β is the

reciprocal of the network bandwidth, and c is the size of the message. Ignoring the effects of

network contention, the lower bound on the cost of the collective operation can be inferred

from the cost of the messages sent by the individual processes. Treating c as the size of

individual data blocks in the allgather operation, and summing the latency terms over all

rounds, we obtain

t ∈ O(logN)α+O(N logN)βc

for the standard exchange and Bruck algorithms, and

t ∈ O(N)α+O(logN)βc

for the ring algorithm.

If the messages are small, startup costs expressed by the α term dominate the data

transfer latency, and the algorithms where the startup term scales logarithmically are

preferable. In the case of large messages, however, the linear ring algorithm is preferable,

because it minimizes the bandwidth-dependent β term.

Comparing the logarithmic algorithms further, we see that in the standard exchange

algorithm no local rotation step is required. The pairwise communication pattern of standard

exchange and the lack of local rotation can provide an advantage over the Bruck algorithm

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 63

[8]. However, when the number of processes is not a power of (k + 1), Bruck usually handles

the excess ranks more efficiently.

Because no algorithm is a clear best choice for all scenarios, we choose the algorithm at

runtime based on the size of the communicator and the size of the messages.

4.3 Flat Collective Design

Once the choice of algorithm has been made, we can set up the required connections

and generate a task template that describes the communication to be performed. The

template contains all the information about the required CORE-Direct tasks except for the

pointers to data buffers. At each rank, the local portion of the communication is expressed

using send and recv tasks, with rounds delimited by wait tasks. These are followed by

send enable tasks that start the next round. The last wait task generates a CQE that

signals the completion of the offloaded operation. The task template is preserved between

MPI Iallgather calls. Upon an invocation, a copy of the template is filled in with the

addresses and sizes of the data blocks involved in each step of the transfer.

Because the processes participating in a collective cannot be expected to invoke the

collective call simultaneously, a collective implementation must efficiently handle situations

where one of the processes starts communication before its peer is ready. Two approaches to

addressing this issue exist in the design space, namely, the eager and rendezvous protocols

we introduced in Chapter 3. We will now see how these protocols can be applied in the

context of collective communication.

4.3.1 Eager Protocol

As discussed in Chapter 3, in the eager protocol messages are transferred between buffers that

are internal to the MPI library. To avoid triggering the Receiver-Not-Ready condition, we

would like to pre-post the recv tasks involving these buffers to their QPs before the collective

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 64

Table 4.1: Eager protocol task list for rank 0 in single-port standard exchange among 8 ranks

Step 0
recv from 1
send to 1

wait (1 recv CQ) from 1

Step 1

recv from 2
recv from 2
send to 2
send to 2

wait (2 recv CQ) from 2

Step 2

recv from 4
recv from 4
recv from 4
recv from 4
send to 4
send to 4
send to 4
send to 4

wait (4 recv CQ) from 4

communication begins. However, this choice poses a problem: because the communication

has not yet begun, there is no way to find out the size of the messages involved, and by

extension – the offset at which the contribution of each process should be placed.

To deal with this issue, we place the data blocks contributed by processes into individual

eager buffers. We use multiple send and recv tasks to emulate sending a longer message.

An example of this can be seen in the list of tasks implementing standard exchange that is

shown in Table 4.1. In each step, the number of tasks and the expected completion entries

doubles.

Once communication completes, the result is copied out from the eager buffers into the

destination user buffer. Because the eager buffers are pre-registered with the HCA, this

scheme avoids the overhead of registering user buffers. However, the overhead of copying the

data to and from these buffers is too high for large messages. In this such cases, we employ

the rendezvous protocol that we will discuss next.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 65

4.3.2 Rendezvous Protocol

We employed the rendezvous protocol design discussed in Chapter 3 for large message

support in our allgather collective. The only difference is in message identification: because

the MPI Iallgather operation does not use tags for its messages, and blocking collective

calls cannot match non-blocking ones, only a single set of queue pairs is required in our

design. We continue to use a registration cache to reduce the cost of user buffer registrations.

Unlike the immediate message transfer of the eager protocol, the handshaking process

of the rendezvous protocol establishes buffer availability prior to the data transfer. Thus,

no recv tasks need to be pre-posted to avoid the RNR state. This means that when the

rendezvous protocol is in use, the send and recv tasks can use the correct message size, and

the use of multiple tasks to emulate longer messages is not required.

Additionally, the overhead of copying messages to and from the eager buffers is avoided.

However, the latency of each transfer is increased due to the round trip of the CTS message.

Therefore, the rendezvous protocol works best when the collective execution time is dominated

by the transfer time of the messages, not communication startup. Theoretical modeling and

empirical results previously obtained with other collective designs suggest that this is the

case when the messages are large. In Section 4.5 we will examine the performance of the

three algorithms described above in combination with eager and rendezvous transfers to

verify that this trend holds for offloaded collectives.

4.4 Hierarchical Collective Design

One issue with the flat offloaded collective design is the number of QPs that need to be set up.

Because IB HCAs perform best when QP information fits in the adapter’s network context

cache [25], QP count should be kept low. For each connection, our non-blocking allgather

collective design requires separate QPs for eager messages, for handling CTS messages in

the rendezvous protocol, and for large message transfers, along with the associated CQs.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 66

These requirements lead to pressure on the context cache and a consequent increase in

communication latency. In order to reduce the total number of queues, as well as the traffic

across the InfiniBand interconnect, we decrease the number of processes that communicate

using CORE-Direct by adopting a hierarchical collective scheme.

In our design, a leader rank is selected on each node. It sets up a shared memory buffer

that is registered with the HCA, and also sets up the QPs to handle data transfers. The

allgather operation then executes in three phases:

1. Intranode gather In the first phase, processes sharing a node copy their data into

the shared memory region, creating a single larger message. Per-process arrival flags

are used to signal the completion of this stage to the leader.

2. Internode allgather In the second phase, each leader engages in collective communi-

cation by posting the CORE-Direct tasks to the HCA and periodically checking for

completion of the internode phase.

3. Intranode broadcast Upon internode phase completion, the leader signals the leaf

ranks through their arrival flags. Each rank then copies the result of the collective

from the shared memory region to the destination.

Because only the leader processes make use of CORE-Direct, this approach reduces

the pressure on the HCA context cache by creating fewer QPs. Additionally, using shared

memory for intranode data transfer decreases latency. However, unlike in a flat collective,

communication/computation overlap can only occur in phase 2 described above, because

the host is busy performing memory copies in phases 1 and 3. Thus we expect to see a

reduction in latency of the collective communication due to faster data transfers through

shared memory and a reduction in the use of HCA resources. On the other hand, due to the

use of the host to copy data to and from the shared buffers, we expect the overlap potential

of a hierarchical non-blocking collective to be lower than that of a flat collective design such

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 67

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.5: Two-group allgather algorithm with 16 ranks (adapted from [76])

as that presented in Section 4.3. In Section 4.5, we present experimental results confirming

this assertion.

4.4.1 Multileader and Multigroup Collectives

In Section 4.1 we mentioned multileader [47] and multigroup [76] collective algorithms; we

will describe them further here. These approaches have been shown to achieve a reduction in

blocking collective latency by spreading the work done by the leader ranks in a hierarchical

collective across multiple processor cores.

Multileader algorithms can be readily derived from single-leader hierarchical algorithms.

If we were to select n leaders per cluster node, we could partition the remaining ranks and

assign each of them to one of the leaders. We could then treat the resulting groupings as

residing on separate cluster nodes: communication between all the leaders would be carried

out in the internode communicator. As a result, we would trade off a potential increase in

latency due to not maximally utilizing shared memory for a quicker response to network

events resulting from an increase in the number of processors handling network traffic.

Multigroup algorithms achieve the same goal as multileader algorithms, albeit through a

different method. In a multileader algorithm, once the leader ranks are chosen, the algorithm

typically places all of them in the internode communicator and treats them identically,

without taking into account the fact that some leader ranks share nodes. In contrast,

the internode phase of a multigroup algorithm partitions the leader ranks into multiple

independent communicators, and collects the results in a final shared memory phase.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 68

Figure 4.5 illustrates the execution of the multigroup algorithm by Qian et al. [76] with

16 ranks and two groups. In this algorithm, ranks are partitioned into groups, with each

group having a leader on every node. In Figure 4.5, ranks 0, 1, 4, 5, 8, 9, 12 and 13 belong

to group 0, and the rest of the ranks belong to group 1. The algorithm executes in three

phases:

1. Per-group intranode gather The leaders collect the data from the leaf ranks on

their respective nodes.

2. Per-group internode allgather An allgather operation is performed among the

group’s leaders. At the end of this phase the leaders will have all the data to complete

the original allgather operation.

3. Per-group intranode broadcast The leaders broadcast the results to the leaves.

Although the algorithm bears a similarity to the multileader approaches, the leaders in this

algorithm do not communicate across groups. This feature of the design reduces network

traffic while keeping the advantages of spreading the handling of network communication

across multiple processor cores.

In contrast to blocking collective operations, their non-blocking versions aim to keep the

processor cores from being occupied by network tasks, so it would seem that the benefits of

multileader and multigroup algorithms would be limited in this application. However, to

investigate whether some of the benefits of multileader and multigroup designs are due to the

changes to the communication pattern rather than load distribution, and are thus applicable

to non-blocking collectives, we designed, implemented, and tested a CORE-Direct-based

version of the multigroup algorithm by Qian et al. [76]. We also evaluated the multileader

approach using our existing hierarchical collective design by varying the number of node

leaders in our testing.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 69

4.5 Experimental Evaluation and Analysis

In this section, we examine the latency of various non-blocking allgather algorithms, as

well as their communication/computation overlap potential under single-port and k-port

modelling. In Section 4.5.3 we evaluate the impact of our non-blocking algorithms on the

radix sort application kernel.

In our evaluation, we compare the latency of our CORE-Direct-based offloaded collective

design with the blocking allgather provided by MVAPICH2 1.7 Nemesis [65] and with the

non-blocking allgather provided by libNBC 1.0.1 [55]. At the time of writing, libNBC was the

only public implementation of the non-blocking allgather collective for InfiniBand clusters.

Our implementation is integrated with the MVAPICH2 1.7 Nemesis InfiniBand module [58].

Note that MVAPICH2, with the default settings on our platform, uses the recursive doubling

algorithm for all message sizes.

libNBC may either use an MPI library [33] or call IB verbs directly [32] to perform data

transfers; we tested both transport modes. libNBC can make progress on non-blocking

communication either in NBC Test calls or with the aid of a progress thread. Unfortunately,

due to compatibility issues we were unable to get the progress thread option to work reliably.

Because the performance of test-based progression is dependent on the frequency of NBC Test

calls, we present the best results, which were obtained when calling NBC Test at intervals of

1024 bytes. We used the NBCBench benchmark [37] previously described in Section 3.3 to

measure latency and overlap potential.

4.5.1 System Configurations

Cluster A is a cluster of 16 Dell PowerEdge M610 blade servers with 24 GB DDR3 memory,

dual 2.93 GHz hexa-core Intel Xeon Westmere X5670 processors, and a Mellanox ConnectX-2

mezzanine HCA. The nodes run 64-bit Red Hat Enterprise Linux 5.5 with kernel version

2.6.18-194.el5 and Mellanox OFED 1.5.2-1. All nodes are connected to a single switch. 128

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 70

MPI ranks were used, resulting in 8 ranks per node.

Cluster B is made up of four Dell PowerEdge 2850 servers, each containing two 2.80GHz

dual-core Intel Xeon Paxville processors, 4 GB of DDR2 memory, and a Mellanox ConnectX-2

MT25418 HCA. The nodes use Mellanox OFED 1.5.3-1 and 64-bit CentOS 5.5 with kernel

2.6.18-194.26.1.el5. Both ports of all HCAs are connected to a single switch. The tests on

this system used 16 MPI ranks with 4 ranks per node.

4.5.2 Microbenchmark Results

Latency of Single-port Flat Allgather

We first evaluated the single-port allgather collective on Cluster A. In order to make a

comparison with the MVAPICH2 recursive doubling algorithm, the number of MPI ranks

was chosen to be a power of 2. We used 128 ranks on our Cluster A test system, resulting in

8 ranks per node. Latency was measured by averaging the latency obtained on every process

over a large number of runs of the NBCBench benchmark.

The results in Figure 4.6 demonstrate that the CORE-Direct-based algorithms outper-

formed the libNBC library by a large margin for small and medium messages. Among the

offloaded algorithms, standard exchange and Bruck have the best latency for small and

medium messages, as expected from the theoretical analysis performed in Section 4.2.4.

However, for messages larger than 16 KB the performance of all offloaded algorithms

becomes similar as our implementation switches to the rendezvous protocol, making the

handshaking round-trip the deciding factor in latency. Messages larger than 16 KB result in

a speedup of up to 20% using standard exchange and Ring algorithms.

For very small messages, offloaded collectives have a latency penalty compared to the

blocking MVAPICH2 MPI Allgather. Besides the overhead of setting up a CORE-Direct

task list, an additional source of overhead for small messages stems from the inability to use

the InfiniBand inline send feature which copies the data for a small message to the HCA

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 71

1
0

1
0
0

1
0
0
0

1
0
0
0
0
1
0
0
0
0
0

1 4 16 64 256 1k 4k 16k 64k 256k

La
te
n
cy
 (
μ
s)

Message size (B)

Std. exchange Ring Bruck
libNBC (MPI) libNBC (IB verbs) MVAPICH2

0
2
0
0
0

4
0
0
0

6
0
0
0

1 4 16 64 256 1k 4k

La
te
n
cy
 (
μ
s)

Message size (B)

0
1
0
0
0
0
0

2
0
0
0
0
0

8k 32k 128k 512k

La
te
n
cy
 (
μ
s)

Message size (B)

Figure 4.6: Single-port flat allgather latency on Cluster A (128 processes)

together with a work request. Using inline sends is impossible because the data involved

have yet to arrive at the time the offloaded send WR is posted.

Latency of Single-port Hierarchical Allgather

Comparing the results presented in Figure 4.7 with the ones in Figure 4.6 we see that in

the hierarchical collective latency is reduced by the use of shared memory, as expected.

Offloaded collectives beat MVAPICH2 by up to 68% for medium, and 46% for large messages.

libNBC did not perform well in our hierarchical test using MVAPICH2 as its transport; we

excluded its results from Figure 4.7 as they could not be displayed at a reasonable scale.

The IB verbs variant of libNBC is also excluded because the library cannot make use of

shared memory in this mode.

Interestingly, the ring algorithm has slightly better performance than standard exchange

and Bruck algorithms. At the smaller internode communicator size, the QP footprint of all

three algorithms is similar and the O(n) steps taken by the ring algorithm do not translate

into a large penalty. On 16 nodes, the ring algorithm needs 16 steps, whereas standard

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 72

1
0

1
0
0

1
0
0
0

1
0
0
0
0
1
0
0
0
0
0

1 4 16 64 256 1k 4k 16k 64k 256k

La
te
n
cy
 (
μ
s)

Message size (B)

Std. exchange Ring Bruck MVAPICH2

0
2
0
0

4
0
0

6
0
0

8
0
0

1 4 16 64 256 1k 4k

La
te
n
cy
 (
μ
s)

Message size (B)

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8k 32k 128k 512k

La
te
n
cy
 (
μ
s)

Message size (B)

Figure 4.7: Single-port hierarchical allgather latency on Cluster A (128 processes)

exchange completes in 4 steps. In the flat communicator, the ring algorithm was slower

for small message sizes, because it required 128 rounds, whereas standard exchange only

required 7 rounds.

Overlap Potential of Single-port Flat Allgather

We measured the overlap capabilities of the non-blocking allgather collective by using the

NBCBench benchmark [37] to estimate the amount of computation that can be overlapped

with communication, as described in Chapter 3. As shown in Figure 4.8, when using single-

port algorithms, almost the entire communication time can be overlapped with computation

if the message sizes in the offloaded collective range between small and medium. The overlap

performance decreased slightly as the message size grew. At 16 KB, our implementation

switches to the rendezvous algorithm, which again allows for near 100% overlap for large

message sizes. It is likely that better performance could be obtained by tuning the rendezvous

threshold for a particular system; however, even with no additional tuning the non-blocking

collectives can achieve good overlap performance.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 73

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1 4 16 64 256 1k 4k 16k 64k 256k

O
ve
rl
ap

Message size (B)

Std. exchange Ring Bruck
libNBC (MPI) libNBC (IB verbs)

Figure 4.8: Single-port flat allgather overlap on Cluster A (128 processes)

We observe that the overlap for the flat Bruck algorithm was lower for large message

sizes because of the memory copy requirement in the local rotation step. This reduced the

availability of the processor for computation.

Overlap Potential of Single-port Hierarchical Allgather

The capability of the hierarchical non-blocking collectives to overlap computation with

communication was measured following the same methodology as in the evaluation of the

flat collectives. Compared to the flat collectives discussed in that section, the hierarchical

collectives introduce data copying into the operation, which reduces the availability of

the processor for computation. The effect can be seen by comparing Figure 4.8 with the

hierarchical collective results in Figure 4.9.

For small messages, we observed a small reduction in overlap (5–10%). However, an

increasing amount of time is spent copying data from the shared memory region into

destination buffers at larger message sizes, reducing the availability of the processor for

computation to approximately 50%.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 74

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1 4 16 64 256 1k 4k 16k 64k 256k

O
ve
rl
ap

Message size (B)

Std. exchange Ring Bruck libNBC (MPI)

Figure 4.9: Single-port hierarchical allgather overlap on Cluster A (128 processes)

libNBC’s overlap performance varied in our testing, ranging between 40 and 80%. Note

that we do not present the overlap results for libNBC using its IB verbs transport in a

hierarchical communicator because this transport mode is unable to take advantage of shared

memory.

Resource Consumption of Flat Single-port Allgather

The Bruck algorithm requires more connections, and thus more QPs per process (2 ·

3 log2 128 = 42) than standard exchange (3 log2 128 = 21), while ring has the lowest QP

footprint (2 · 3 = 6 QPs). Because each connection is associated with a set of preposted

buffers, there is a corresponding effect on the memory footprint of the MPI library. As seen

in Table 4.2, we measured the resident set size of NBCBench to be 105 MB for standard

exchange, 60 MB for ring, and 160 MB for Bruck. Shared memory usage was insignificant.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 75

Table 4.2: Flat communicator per-process memory usage by allgather algorithm (MB)

Algorithm Resident Shared

Standard exchange 105 1
Ring 60 1
Bruck 160 1
libNBC MPI 42 1.5
libNBC ibverbs 591 1.5

Table 4.3: Hierarchical communicator per-process memory usage by allgather algorithm
(MB)

Algorithm Resident Shared

Standard exchange 201 161
Ring 201 161
Bruck 201 161
libNBC MPI 42 2

Resource Consumption of Single-port Hierarchical Allgather

Compared to the resource consumption of the flat offloaded non-blocking collectives, in

a hierarchical communicator all algorithms have reduced QP usage. Standard exchange

required 3 log2 16 = 12 QPs per node in our environment, the Bruck algorithm needed 24,

and the ring algorithm used 6. More importantly, however, the memory footprint in the

hierarchical case was dominated by the shared region. Thus, the differences between the

algorithms are insignificant, as can be seen in Table 4.3.

Multiport Modelling

As described in Section 4.2, the Bruck and standard exchange algorithms support a com-

munication model in which messages can be sent simultaneously on multiple ports. We

have investigated k-port allgather performance on Cluster B, because this platform has dual

physical interface ports. To enable comparison with standard exchange, we used a 3-port

communication model to cover communicators of size 16 and 4. The 3 virtual ports were

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 76

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1 4 16 64 256 1K 4K 16K 64K 256K

La
te
n
cy
 (
μ
s)

Message size (B)

Std. exch. (1 port) Std. exch. (3 ports) Bruck (1 port)

Bruck (3 ports) libNBC (MPI) libNBC (IB verbs)

MVAPICH2
0

2
0
0

4
0
0

6
0
0

1 4 16 64 256 1k 4k

La
te
n
cy
 (
μ
s)

Message size (B)

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8k 32k 128k 512k

La
te
n
cy
 (
μ
s)

Message size (B)

Figure 4.10: k-port flat allgather latency for Bruck and standard exchange algorithms on
Cluster B (16 processes)

allocated over 2 physical HCA ports using a round-robin pattern.

In a flat communicator (Figure 4.10), 3-port standard exchange has a performance

advantage over the single-port variant. For messages larger than 16 KB, the 3-port allgather

achieves a speedup of up to 49% compared to single-port, and up to 54% compared to

MVAPICH2. The Bruck 3-port algorithm has a slight penalty compared to the single-port

latency. The overlap performance of the single-port and 3-port algorithms was similar, as

illustrated by Figure 4.11. As with the tests on Cluster A, the Bruck algorithm has reduced

overlap performance with large messages due to the memory copy in the rotation step.

Unlike in our tests on Cluster A, libNBC’s allgather algorithm provided competitive

latency in the smaller Cluster B. However, the overlap performance of libNBC was significantly

lower than that of the offloaded collectives.

We also tested multiport versions of the hierarchical collectives. As shown in Figure 4.12,

the 3-port standard exchange and Bruck algorithms have reduced latency in a hierarchical

communicator compared to the single-port versions, because the internode exchange can

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 77

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1 4 16 64 256 1k 4k 16k 64k 256k

O
ve
rl
ap

Message size (B)

Std. exch. (1 port) Std. exch. (3 ports) Bruck (1 port)
Bruck (3 ports) libNBC (MPI) libNBC (ibverbs)

Figure 4.11: k-port flat allgather overlap for Bruck and standard exchange algorithms on
Cluster B (16 processes)

be completed in a single step. The largest improvement of 16% was observed for small

messages. As the message size increases, the latency becomes dominated by the memory

copy, eliminating the speedup. The overlap performance remains largely similar in the

single-port and 3-port collectives, even though there is a slight reduction, as illustrated by

Figure 4.13.

Referring back to the results for the flat collective, we recall that in a flat communicator

multiport standard exchange also had a performance advantage, whereas the multiport

Bruck algorithm had a slight penalty compared to the single-port latency. Overall, the effects

of switching to a multiport collective are similar in the flat and hierarchical environments:

in both cases latency is reduced, while overlap capability remains similar. However, as the

message size increases, the latency of the hierarchical collectives becomes dominated by the

shared memory operations, negating the performance gains due to the use of multiple ports.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 78

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1 4 16 64 256 1k 4k 16k 64k 256k

La
te
n
cy
 (
μ
s)

Message size (B)

Std. exch. (1 port) Std. exch. (3 ports) Bruck (1 port)

Bruck (3 ports) libNBC (MPI) MVAPICH2

0
2
0
0

4
0
0

1 4 16 64 256 1k 4k

La
te
n
cy
 (
μ
s)

Message size (B)

0
2
0
0
0
0

4
0
0
0
0

8k 32k 128k 512k

La
te
n
cy
 (
μ
s)

Message size (B)

Figure 4.12: k-port hierarchical allgather latency for Bruck and Standard Exchange algo-
rithms on Cluster B (16 processes)

Multileader and Multigroup Allgather Algorithms

In addition to the multiport algorithm variants, we looked at the effectiveness of multileader

and multigroup modifications to the hierarchical collectives. These algorithms have been

previously shown to reduce latency of blocking allgather collectives by spreading the work of

collective progression to multiple processor cores [47, 76]. We investigated whether similar

benefits can be obtained for non-blocking offloaded collectives. We described the multileader

and multigroup collective algorithms in Section 4.4.1.

In our testing, a two-group MPI Iallgather took more time to complete than the single-

leader hierarchical version, with the four-group version being slower still. The overlap

potential was largely unaffected. The same outcome was seen with multiple leaders. The

change in communication pattern does not appear to help. Because all communication is

being handled by the HCA instead of being distributed among multiple cores, the multigroup

and multileader approaches are not beneficial when using CORE-Direct. In order to obtain

speedup comparable to that seen in host-progressed multileader and multigroup collectives,

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 79

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1 4 16 64 256 1k 4k 16k 64k 256k

O
ve
rl
ap

Message size (B)

Std. exch. (1 port) Std. exch. (3 ports) Bruck (1 port)

Bruck (3 ports) libNBC (MPI)

Figure 4.13: k-port hierarchical allgather overlap for Bruck and standard exchange algorithms
on Cluster B (16 processes)

multiple HCAs would be required.

In summary, our tests on Cluster A confirmed that keeping the number of QPs low

is essential to achieving low latency, and that the improvements due to multileader and

multigroup algorithms that were seen in previous works have been due to spreading the

workload over multiple processor cores rather than a change in communication pattern.

4.5.3 Application Results: Radix Sort Kernel

Overview of Radix Sort

To evaluate the performance of our non-blocking allgather collective on code that is more

realistic than a microbenchmark, we created a redesigned variant of the radix sort routine.

Our radix sort kernel is based on the commonly used algorithm by Zagha and Blelloch [105]

that has been modified to take advantage of computation/communication overlap.

Radix sort is a non-comparative sorting algorithm that is amenable to parallelization.

It is an efficient and practical method for sorting numeric keys, and finds applications in

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 80

computer graphics, database systems, and sparse matrix multiplication, among other areas.

Parallel radix sort using radix r begins by splitting keys into digits with a value in the

range [0..(r − 1)]. The keys are then sorted on each of these digits in individual rounds, one

round per digit. We assume that at the beginning of the algorithm’s execution keys are

distributed among multiple processes. Sorting proceeds from least to most significant digit.

Each round consists of six steps:

1. Bucket count Each process computes a count of keys that would go in each bucket

based on the current digit being sorted.

2. Local prefix sum The prefix sum of the bucket histogram obtained in step 1 is

computed. The result is a set of offsets at which keys belonging to each bucket must

be placed locally.

3. Local redistribution Keys at each process are placed at offsets computed in step 2.

4. Histogram allgather The bucket counts from step 1 are communicated among all

processes to create a global histogram.

5. Global prefix sum The global offsets of the buckets are calculated using the histogram

obtained in step 4.

6. Global redistribution Keys are moved between processes, being placed at the correct

global offset.

Adding Overlap Capability to Radix Sort

Our version of parallel radix sort works similarly to the algorithm described at the beginning

of this section, except that it takes advantage of the non-blocking allgather operation. In

our radix sort, histogram communication in step 4 is overlapped with local prefix sum

computation and key movement in steps 2 and 3.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 81

Table 4.4: Radix kernel run time percentage improvement over MVAPICH2 using flat
single-port standard exchange on Cluster A (128 processes)

Radix 212 keys 216 keys

2 -49.76 -42.25
4 -41.16 -33.42
8 0.92 0.053
10 -2.37 -0.07
12 5.33 -2.64
14 6.43 4.06
16 -0.95 7.02

In the first step of the algorithm, every process calculates the number of keys that

need to be placed into each of the r buckets. The bucket counts need to be exchanged

between the processes in order to rearrange the keys globally. However, while the allgather

communication is in progress, it is possible to prepare for the key data transfer step by

rearranging keys locally. To obtain the offset for the keys in each bucket, we calculate the

prefix sum of the bucket counts. The keys are then moved to the correct offset at each

rank. Once the network communication completes, we compute the global offsets using a

prefix sum of the global histogram, and move the keys using one-sided MPI operations. We

present the observed improvement due to overlapping local prefix sum computation and key

movement with allgather collective execution in flat and hierarchical communicators.

Flat Collective Results

We first evaluate the improvement in radix sort run time due to communication/computation

overlap using single-port modelling. The results were obtained on Cluster A and are presented

in Table 4.4. The baseline for the comparison is the radix sort kernel without overlap, using

the blocking recursive doubling MPI Allgather provided by MVAPICH2 1.7 Nemesis.

Because the size of the messages involved was small to medium, we used the standard

exchange algorithm for offloaded allgather. The performance of radix sort is dependent on its

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 82

Table 4.5: Radix kernel run time percentage improvement of 1-port and 3-port flat standard
exchange over MVAPICH2 on Cluster B (16 processes)

(a) 212 keys

Radix 1-port 3-port

2 -9.50 0.30
4 -26.04 0.03
6 -14.96 2.93
8 -3.83 8.18
10 -5.44 4.29

(b) 216 keys

Radix 1-port 3-port

2 6.93 -7.03
4 -13.23 -0.74
6 -5.35 5.18
8 -0.95 4.18
10 1.95 3.97

chosen parameters. In our testing the performance of the non-blocking allgather was poor for

small radices (and thus more rounds of communication). The communication/computation

overlap could not make up for the increase in latency over the blocking collective that we

saw in Section 4.5.2.

We also measured the improvement due to multiport modelling, again using the perfor-

mance with blocking MVAPICH2 allgather as a baseline. The results presented in Table 4.5

were obtained on Cluster B. The blocking allgather performed similarly to the non-blocking

3-port collective, whereas the single-port non-blocking collective could not match the perfor-

mance of the blocking allgather due to the reduced amount of communication in the smaller

Cluster B. 3-port allgather reduced run time by up to 20% compared to the single-port

collective.

As we can see, a non-blocking allgather design that does not take advantage of the

memory hierarchy in a cluster exhibits poor latency characteristics with small messages.

Therefore, we see no improvement in the radix sort kernel, because the amount of overlapped

computation is not enough to make up for the increase in latency.

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 83

Table 4.6: Radix kernel run time percentage improvement over MVAPICH2 using single-port
hierarchical standard exchange algorithm on Cluster A (128 processes)

Radix 212 keys 216 keys

2 40.19 11.09
4 19.83 13.47
8 20.09 9.51
10 -1.05 -0.12
12 5.07 1.74
14 3.18 4.72
16 6.42 7.07

Table 4.7: Radix kernel run time percentage improvement of 1-port and 3-port hierarchical
standard exchange over MVAPICH2 on Cluster B (16 processes)

(a) 212 keys

Radix 1-port 3-port

2 13.20 12.50
4 7.15 8.33
6 4.39 4.03
8 3.32 3.42
10 3.10 3.99

(b) 216 keys

Radix 1-port 3-port

2 11.90 12.02
4 7.26 6.48
6 4.50 3.70
8 3.66 4.07
10 4.49 3.76

Hierarchical Collective Results

We repeated the radix sort kernel benchmark with a hierarchical collective. On Cluster A

(Table 4.6) good speedup (up to 40%) was obtained when the radix was small, and thus

many rounds of communication were needed. Increasing the number of keys makes the

global redistribution phase dominate the run time, diminishing the speedup.

To test the effects of multiport modelling, the radix sort benchmark was also performed

on Cluster B (Table 4.7). Because in a hierarchical communicator the latency of non-

blocking collectives for small and medium size messages is closer to that of MVAPICH2

(see Figure 4.12), we observed a speedup of up to 13% in the hierarchical communicator

compared to the blocking collective, with the 1-port and 3-port versions having similar

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 84

performance. We expect the 3-port allgather to have a performance advantage in a larger

cluster, as the difference in the number of steps required to complete the communication

will increase.

Overall, the performance of radix sort is sensitive to the latency of the collective using

small messages. Thus, we see a speedup due to computation/communication overlap in

the hierarchical collective case, which does not have the latency penalty that the flat

communicator does.

4.6 Summary

Building upon the foundation of offloaded point-to-point transfers introduced in Chapter 3,

in this chapter we developed a family of offloaded non-blocking algorithms for the allgather

collective. We talked about the design issues involved, and evaluated the performance of

these collectives with latency and overlap microbenchmarks, as well as in the radix sort

application kernel. We saw that although the performance of the flat non-blocking allgather

collectives was good, there was room for improvement. We therefore also developed and

tested a design that takes advantage of the shared on-node memory in a typical modern

HPC cluster. We found that while the use of shared memory significantly reduces latency,

the communication/computation overlap potential of large messages suffers, because the

processor time has to be shared between performing computation and memory copies.

With the radix sort benchmark in a hierarchical collective, we showed that non-blocking

offloaded collectives can achieve good performance. Additionally, as we have demonstrated

in the previous chapter, radix sort is very sensitive to small message latency; we were unable

to achieve a speedup in a flat communicator. Therefore, the benefit from non-blocking

collectives will depend on the computation and communication characteristics of a particular

application.

In the next chapter, we will continue optimizing offloaded non-blocking collectives. We

CHAPTER 4. FLAT AND HIERARCHICAL NON-BLOCKING COLLECTIVES 85

will specifically focus on minimizing the effects of the issues of OS noise and process skew

that were first presented in Chapter 2.

Chapter 5

Process Arrival Pattern Tolerant

Pipelined Hierarchical Offloaded

Collectives

In Chapter 3, we introduced offloaded operations to transfer a single message across an

InfiniBand network. In Chapter 4, we built on this work by developing offloaded collective

operations. In our investigations in these chapters, we saw that non-blocking operations

typically have latency competitive with their blocking counterparts and allow the programmer

to overlap communication with computation. We also saw that offloaded operations provide

better overlap capabilities and better latency than host-based non-blocking operations.

However, these offloaded operations still have a weakness. When the latency of a

collective operation is measured alone, the experimenter usually takes care to synchronize

the invocations of the collective calls across the participating processes. In a real MPI

application, however, the collective starting points may be significantly out of sync due to

imbalances in the computational load. As we will see in Section 5.2, previous work has

explored ways to make blocking collectives better handle variance in process arrival patterns.

86

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 87

Because they allow communication to be overlapped with computation, non-blocking

collectives are likely to be a better fit than blocking collectives for situations where the

computational load is difficult to carefully balance across the processes [44]. In such a

situation, there is likely to be increased variability in the process arrival pattern. Additionally,

the variability would be amplified when multiple non-blocking collective operations are used

in parallel. Therefore, tolerance to process arrival pattern variations is arguably even more

important in the context of non-blocking collectives.

In this chapter, we propose an approach to designing offloaded non-blocking collectives

that uses pipelining to make the collective tolerant of arrival pattern variation. Section 5.1

presents an example that motivates the need for such a design. Section 5.2 presents related

work and explains the novelty of this chapter. Section 5.3 explains the pipelined approach in

detail, and discusses the Cayley allgather algorithm, as well as the Receive-Store-Replicate

primitive designed to aid in implementing this and other offloaded collectives. Section 5.4

describes our implementation of the approach. Section 5.5 describes our evaluation of the

implementation using microbenchmarks, and an evaluation of concurrent collective calls. We

found that our design is better at handling variations in the process arrival pattern and has

improved resource consumption scalability for parallel operations. Section 5.6 summarizes

the chapter.

5.1 Motivating Example

We will begin the discussion of process arrival pattern tolerant offloaded collective design

with a motivating example. In Chapter 4, we saw that offloading communication to

dedicated hardware allows the host processor to perform computation without affecting the

communication or having to manage its progress. However, this holds true only after the

offloaded communication operation has started. During the time window when the ranks of

the communicator are commencing collective communication, there still exists a source of

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 88

0 1 2 3 4 5 6 7

Figure 5.1: Recursive doubling allgather communication pattern

scheduling noise, and this noise can propagate through the cluster.

To illustrate the issue with an example, let us consider an allgather collective with

eight participating processes that employs a standard exchange communication pattern with

single-port modelling, also known as recursive doubling. Although we use a single-port

communication pattern for clarity, every feature of the design described in this chapter applies

to the general multi-port algorithm as well. As we saw in Section 4.2.1, the communication

proceeds with the processes first communicating with their immediate neighbour and then

doubling the distance to their peer in each subsequent round of the exchange. This pattern

is shown in Figure 5.1.

Suppose rank 1 arrives at the start of the allgather collective much later than the other

ranks. In this situation, even if rank 0 sends its data on time, its message cannot make

further progress through the collective because it must be forwarded by rank 1 in rounds 2

and 3, and rank 1 has not yet arrived. In addition, this effect propagates through the later

rounds of communication, because, for instance, rank 3 will not be able to communicate

with rank 7 until it has received rank 1’s message, and rank 0 will not begin rounds 2 and 3

until it receives rank 1’s data.

One could argue that, by definition, a collective operation cannot complete without

transferring all of the data, and thus handling delays due to process arrival is not necessary.

However, if the other ranks could have carried out communication that would have otherwise

depended on rank 1’s arrival, the total time taken by the collective operation would be reduced.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 89

0 1 2 3 4 5 6 7

Figure 5.2: Propagation of the contribution of rank 0 in recursive doubling allgather,
considered in isolation. Dashed lines represent the data transfers blocked by the late arrival
of rank 1

When the dependencies are present, any delays propagate through the communicator and

increase the execution time of the collective.

To understand this problem in more detail, consider Figure 5.2, which shows the path

that the data block contributed by rank 0 takes through the communicator. Note that the

figure considers only rank 0’s data block and ignores all other data blocks. We can see that

rank 0’s data are propagated in a tree pattern, and that most of the work in the propagation

tree is delayed by the late arrival of rank 1. Specifically, every communication indicated

by a dashed line will be performed late as a result of rank 1’s late arrival. Even a small

initial delay in the arrival of rank 1 thus becomes amplified while propagating through the

collective.

In the next section, we will see how previous work has addressed this problem by making

blocking collectives aware of variation in the process arrival pattern. Following that, in

Section 5.3, we will describe our method of solving this issue for a non-blocking collective.

5.2 Related Work

The problem described in our motivating example stems from variability in the arrival of

processes at the site of the collective call. The importance of this problem has been noted by

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 90

many researchers. Faraj et al. performed a study of process arrival patterns and found that

they can have a significant effect on the performance of collective operations [22]. Patarasuk

and Yuan studied the issue of process arrival variability and the performance of various

algorithms for the MPI Bcast operation in imbalanced conditions, finding that adverse effects

were significant. They also presented two host-progressed algorithms that took the process

arrival pattern into account [71].

Qian and Afsahi presented a host-progressed arrival pattern aware allgather algorithm [74].

They found that variations in process arrival are common in MPI applications, as exemplified

by the NAS Parallel Benchmark suite [5]. Qian and Afsahi’s investigation dealt with the

process arrival pattern in both the intranode and internode phases of a hierarchical blocking

collective. Although we use similar techniques in the initial intranode gather phase of the

collective, our focus is primarily on offloading of internode communication.

There are several differences between our design and the ones described above. First,

we consider non-blocking rather than blocking collectives. Blocking collectives can have

exclusive use of the host processor during their runtime; thus, the designs above focus on

making the collective aware of the arrival pattern so that the processor can be used to

actively manage the communication. In contrast, an offloaded collective should keep the

host processor available for computation. We therefore take an alternate approach and try

to make the communication independent of the arrival pattern variations. We call this an

arrival pattern tolerant collective design to distinguish it from existing arrival pattern aware

approaches.

Message fragmentation and pipelining of the transfers of the resulting fragments has been

previously investigated by Bao et al. [7]. Their work focused on point-to-point communication

over Ethernet interconnect, whereas we apply pipelining techniques to offloaded non-blocking

collective communication over InfiniBand.

Träff et al. presented a pipelined algorithm for the blocking allgather collective that is

based on the ring algorithm [97]. The algorithm’s use of pipelining improved the performance

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 91

of the irregular allgather collective in situations where the contributions of the participating

processes were highly imbalanced; that is, some ranks contributed significantly more data

than others. We investigate the regular allgather collective in this chapter and aim to use

pipelining to work around irregular arrival patterns.

Generalized primitives for building collective operations have been proposed by Hemmert

et al. for the Portals framework [29]. Subramoni et al. also proposed a set of generalized

primitives for CORE-Direct [89]. We will design a different primitive in Section 5.4.1 that

will allow us to construct the collectives we would like to investigate.

The primitive that we develop in this chapter will allow us to simplify the allgather

collective by effectively decomposing it into a set of broadcast operations. Optimizations of

the broadcast collective have been extensively studied, and a number of algorithmic and

implementation improvements have been proposed. Designs for the broadcast operation

over InfiniBand have been developed by Sur et al. using RDMA operations [90] and Liu et

al. using native InfiniBand multicast [56]. We do not make use of these hardware features

in our design, but would like to investigate them in future work. Kandalla et al. designed

and implemented a CORE-Direct offloaded MPI broadcast [45]. Their design incorporated

an option to use the HCA for all steps in the collective, including the intranode broadcast.

Although this had a detrimental effect on latency, the overlap potential of the collective was

improved. We use the processor for the shared memory phase of our collective instead to

realize the latency advantage. Venkata et al. have also investigated the broadcast operation

in the context of CORE-Direct offloading [100]. Their design employed a rendezvous protocol

similar to the one we used in Chapters 3 and 4. Our allgather collective in this chapter uses

a protocol that is more similar to an eager protocol instead.

The work by Hemmert et al. [29] was recently expanded by Schneider et al. [82]. This

work contains an in-depth discussion of the issues of offloaded collective design, such as tag

matching and adapting eager and rendezvous protocols for offloading. The most recent work

by Schneider et al. is close in spirit to the design proposed in this chapter. However, our

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 92

RSR communication primitive described in Section 5.4.1 allows fully offloaded asynchronous

progression without explicit message pre-matching. Instead, matching is done in a post-

processing step as part of the shared memory phase of the collective operation.

5.3 Design of the Pipelined Collective

A collective design must meet two criteria to be tolerant to process arrival patterns. First,

there should be few or no dependencies between messages originating at different ranks.

Second, the collective’s communicator must retain connectivity among the arrived ranks

even in the case of a late arrival of one or more other ranks. In other words, communication

between ranks that have arrived must not be prevented by the late arrival of another rank.

We will address each of these criteria in turn.

In our motivating example, the delay in the arrival of rank 1 delayed a large fraction

of the collective communication. As can be seen in Figure 5.1, rank 0 is blocked in the

first round of communication. Ranks 2 and 3 can complete a single round, and ranks 4-7

can complete two rounds of the recursive doubling algorithm before they encounter a data

dependency that will cause a stall. Data dependencies cannot be completely avoided: by

definition, the allgather operation cannot complete without rank 1’s contribution. However,

we can prevent stalls by modifying the collective algorithm such that ranks do not block

when another rank is late.

In the standard exchange and Bruck algorithms, data dependencies arise because messages

are concatenated before they are sent. Recall from Section 4.2.4 that concatenation is done to

reduce message startup overhead, and that this optimization is effective for small and medium

message sizes. Consequently, although removing concatenation prevents data dependencies,

the overhead will increase. In Section 5.3.2, we investigate this modified version of the

algorithm and evaluate the tradeoff.

For our second requirement, we point out that even if the messages in our running

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 93

example had been completely independent, our collective would still be affected by rank 1’s

delay. Until rank 1 is able to participate in the collective operation, parts of the collective

are not able to communicate. For example, there is no way for rank 0 to send its data to

rank 3 without rank 1’s participation. Investigating solutions to this problem is a major

theme of this chapter.

As we can see, a successful collective design must meet both requirements outlined above

in order to deal with arrival pattern variations. Next, we will discuss how existing work and

our set of solutions address these problems.

5.3.1 Direct Algorithm

Though their paper does not specify the same requirements that we proposed above, the

allgather design by Qian and Afsahi [74] does meet them. The authors use the direct

algorithm for the allgather collective where every rank is connected to every other rank. The

first requirement is met because every rank is responsible for delivering its own data to the

rest of the collective; no data dependencies arise. The second requirement is met because

the communicator is fully connected; therefore, an edge is always present between any two

arrived ranks in the communicator graph.

Though the direct algorithm is a complete solution to the problem of arrival pattern

variability, and has been shown to be effective in small clusters, we would like to avoid the

communication pattern where every rank must communicate with every other rank, and the

O(n2) connection requirement associated with this communication pattern. We would prefer

instead that ranks communicate with a limited set of neighbours in the communicator. In

the sections that follow we will develop a design that requires only O(1) connections and

has a corresponding nearest-neighbour communication pattern.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 94

5.3.2 Pipelined Standard Exchange and Bruck Algorithms

If we can avoid concatenating messages and thus creating data dependencies, it would be

possible to avoid the magnification of the latency in the arrival of a given process. We

begin our exploration of the design space for arrival pattern tolerant collectives with a

simple modification to the standard exchange and Bruck algorithms: we remove message

concatenation and instead send each individual data block as it becomes available.

Communication in such a collective executes in a pipelined fashion, with some portions

of messages being propagated further in the collective while waiting for other portions to

arrive. Thus, although the same amount of data is sent in total, the overall latency can likely

be reduced if we could eliminate the time spent waiting for process arrival. The amount of

work potentially amenable to this optimization is significant. In Figure 5.2, all the work

represented by dashed lines could theoretically have been performed if the collective operation

could proceed without waiting for the arrival of rank 1. In fact, Figure 5.2 underestimates

the amount of blocked work, because it treats the propagation of the contribution of rank 0

in isolation. Messages from other ranks that are concatenated with rank 1’s data are also

affected by the late arrival of rank 1.

Additionally, if an application executes multiple concurrent non-blocking collective

operations, a rank that is late to one of them will likely be late to the following ones as

well. Thus, this optimization is even more beneficial in the presence of concurrent collectives.

We can further increase the amount of work amenable to pipelining by splitting messages

into smaller fragments. With this change, we can pipeline the processing of messages

from processes whose arrival is not delayed. These optimizations are discussed further in

Section 5.4.1.

However, avoiding data dependencies meets only one of the prerequisites for reducing the

influence of the process arrival pattern. The process arrival pattern aware designs in both

[74] and [71] assume that a rank may only participate in the collective once it has arrived.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 95

The converse seems counterintuitive: a rank would be able to participate in the collective

operation before starting it. This approach, however, is made possible by a specialized

eager message protocol. The data transfer protocol we use for the collective is similar to

the one described in Chapter 3, but it includes enough information for the message to both

be matched to a collective operation and to be forwarded downstream prior to the rank’s

arrival. We will describe the protocol in detail in Section 5.4.1. The implementation of this

forwarding capability can be provided by a host-based progress engine or by the HCA, as

we will discuss in Section 5.4.

With the introduction of augmented eager messages, ranks that have yet to arrive at the

collective call are able to cache unexpected messages for use once the collective is started.

Additionally, they act as relays that ensure that the communicator connectivity is unbroken

regardless of the arrival pattern.

Both the Bruck and standard exchange algorithms may be implemented using this

approach. The resulting design maintains the O(logk p) scalability in the number of Infini-

Band connections of the standard exchange and Bruck algorithms, where p is the number

of participating processes and k is the number of ports. However, due to the removal of

message concatenation, the number of messages increases to O(p). The total amount of user

data transferred is unchanged, because in the allgather collective each rank needs to receive

every data block only once.

With the two requirements met, our design can reduce the adverse effects of variations in

the process arrival pattern. If we remove message concatenation from the standard exchange

algorithm in our motivating example, and rank 1 is again delayed in starting this new

collective operation, the rest of the ranks can proceed without it, while rank 1 acts as a relay

for any unexpected messages it receives. For example, rank 0 is free to start the second

round of communication earlier by sending out its own data block without waiting to receive

rank 1’s message in the first round. As a result, the late arrival of rank 1 does not affect the

propagation of the remaining data through the communicator, and the progression of the

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 96

0 1 2 3 4 5 6 7

Figure 5.3: Propagation of the contribution of rank 0 considered in isolation. The algorithm
used is pipelined single-port standard exchange allgather. Late arrival of rank 1 has no
effect.

collective operation is improved. The dissemination tree shown in Figure 5.3 for rank 0’s

data block (considered in isolation) remains unchanged from that in Figure 5.2 illustrating

recursive doubling with message concatenation, with the exception of the removal of data

dependencies. This holds true for all blocks of data in the collective.

We will describe the implementation of the design in Section 5.4 after we present another

arrival pattern tolerant algorithm with O(1) resource consumption in the next section.

5.3.3 Resource-conserving Cayley Algorithm

Our removal of message concatenation from the Bruck and standard exchange algorithms in

Section 5.3.2 increased the number of messages that need to be exchanged to O(n). Although

the change reduces the effect of the arrival pattern, it may adversely affect the latency of

the algorithm for small messages due to the increased overhead. We made this tradeoff

consciously, and will evaluate its effect in Section 5.5.

First, however, we will present one other solution for the arrival pattern aware non-

blocking allgather problem. Recall that in Chapter 4 we discussed the ring algorithm for

allgather. It meets our first requirement without modification because it does not concatenate

messages. The ring algorithm instead immediately forwards incoming messages downstream.

The use of the ring algorithm alone does not meet our second requirement, and thus

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 97

does not fully address the arrival pattern problem. A rank arriving late introduces a break

in the connectivity of the ring. Clearly, simply eliminating data dependencies is insufficient

for an arrival pattern tolerant collective. However, we can apply the same solution of having

ranks relay unexpected messages.

The ring algorithm is O(1) in the number of required connections. However, there

remains one disadvantage compared to standard exchange and Bruck: the ring algorithm

cannot use multi-port communication. We solve this issue by introducing an algorithm for

allgather based on the structure of the Cayley tree.

A Cayley tree is an undirected graph G = (V,E) where V is the set of vertices and E is

the set of edges, and all vertices v ∈ V have degree 1 or c, where c is called the coordination

number of the Cayley tree [102]. In cases where this constraint cannot be satisfied due to

the number of ranks participating in the collective operation, we use an incomplete Cayley

tree with one of the vertices having degree between 1 and c. To construct a Cayley tree for

an allgather collective, we start with a vertex representing rank 0. We then build the tree

incrementally by selecting a leaf vertex w with the lowest rank and adding neighbours to this

vertex in rank order until the degree of w reaches c or no unconnected ranks remain in the

communicator. Once degree c is reached, a new leaf node is selected. Figure 5.4 illustrates

the structure of a Cayley communicator with 9 ranks and a coordination number c = 4.

Because the resulting graph is a tree, it is by definition connected and cycle free. As we

will see in Section 5.4.3, the lack of cycles will allow us to efficiently implement offloaded

broadcast operations in the Cayley tree. By extension, this will lead to a design supporting

the allgather operation.

We use the Cayley interconnection graph to construct broadcast trees for each rank’s

data item. From the point of view of a given rank p, the broadcast tree is a directed graph

Gp rooted at p that has the same general structure as the originally constructed Cayley tree.

The broadcast trees can be used to express the allgather collective among n processes as

the joint execution of the n broadcasts. Each node in a broadcast tree is responsible for

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 98

0 1

2

3

4 5

6

7

8

Figure 5.4: Incomplete 4-Cayley tree for a communicator of size 9

receiving a message from its parent and propagating the message to its k children. Each

process belongs to all the broadcast trees representing the allgather operation.

Even though the depths of the vertices representing the process in the trees differ, the set

of its neighbouring vertices remains the same, because we do not change the interconnection

structure of the communicator. From the point of view of an individual rank, the neighbour

acting as the parent will be different in every tree, with one tree having the rank itself at the

root. The constant set of neighbours is the reason for choosing the Cayley tree, because it

leads to constant resource usage in the resulting algorithm. Unlike the algorithms presented

in Section 5.3.2, where the number of connections required for each rank grew with the

number of processes participating in the collective, the number of connections needed by a

rank in the Cayley algorithm is always at most the coordination number c of the Cayley

tree. The Cayley allgather algorithm can be viewed as a generalization of the ring algorithm

for multiport modeling where the coordination number c = k + 1, and k is the number of

outbound ports on non-leaf ranks.

To see that the time complexity of this algorithm is O(logc n), consider that the height –

the length of the path from the root to the furthest leaf – of a Cayley tree with coordination

number c is O(logc n). The furthest that a data item has to travel is from one leaf node

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 99

Table 5.1: Properties of allgather algorithms

Std. Exch. / Bruck Ring Pipelined Std. Exch. / Bruck Cayley

Rounds O(logk+1 n) O(n) O(logk+1 n) O(logk+1 n)
Messages O(logk+1 n) O(n) O(n) O(n)

Connections O(logk+1 n) O(1) O(logk+1 n) O(1)

in the interconnection graph to another. Therefore, the data contributed to the allgather

collective by any rank will take at most 2dlogk+1 ne steps to propagate to all other ranks.

5.3.4 Algorithm Comparison

The characteristics of the algorithms we have discussed so far are summarized in Table 5.1. As

we have discussed, in our pipelined variants of the standard exchange and Bruck collectives,

we opted for an increased number of messages in comparison to the logarithmically scaling

original versions. We believe that improved arrival pattern resistance will offset any associated

loss in performance. The number of communication rounds and connections remains the

same.

Because the ring algorithm inherently has no data dependencies among messages, its

characteristics are the same in the original and the pipelined versions. The Cayley algorithm

offers a compelling combination of the constant resource usage of the ring algorithm with the

reduced number of communication rounds of the standard exchange and Bruck algorithms.

Since it has constant resource usage and is resistant to process arrival pattern variation, it

should be an improvement over pipelined standard exchange and Bruck. We present the

results of our experimental evaluation in Section 5.5.

5.4 Implementing the Pipelined Collectives

Although all the variants of the pipelined collective design that we have discussed in this

chapter are possible to implement either in a system that supports only host-based progression

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 100

or using hardware offloading, we designed the collectives with the view of using the CORE-

Direct technology for the implementation. We will therefore focus on the offloaded design in

this section, and will discuss the host-based option briefly in Section 5.4.4.

Collective operation designs for HPC clusters using CORE-Direct offloading, while varied,

also have much in common. In particular, we noticed that in many designs communication

is done in rounds during which a rank receives data from a set of peer ranks, and sends data

to another set. Additionally, a hierarchical structure is commonly present in which a leader

rank handles internode communication and separately communicates with ranks sharing

its node through shared memory. To ease our own implementation burden, and potentially

save future researchers from this repetitive work, we designed a building block that provides

these features for algorithms using CORE-Direct offloading: the Receive-Store-Replicate

(RSR) primitive. The design of the primitive has deliberately been kept generic in order to

broaden its applicability.

Due to the nature of our collective design, messages may arrive out of order and require

reassembly before the collective is complete. Since the benefits of hierarchical collectives are

well established, we chose to perform the reassembly during the final intranode phase of a

hierarchical collective. We do not evaluate our design in flat communicators, and do not

expect it to perform well in this scenario.

In the next section, we will discuss the RSR primitive that we used to implement the

collective algorithms presented in this chapter. In Sections 5.4.2 and 5.4.3, we will discuss

how the primitive can be used to provide the features and implement the algorithms we

proposed previously.

5.4.1 Receive-Store-Replicate Primitive for Non-blocking Collectives

We define a Receive-Store-Replicate primitive as an operation that receives a message on

one port from its set of inbound ports, stores the message for future use, and sends it out on

all of its outbound ports. The primitive was designed to match the capabilities provided

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 101

by the CORE-Direct hardware, specifically, its inability to use the contents of the message

to control the execution of the offloaded operation. In Chapter 3, we mentioned that the

only way to distinguish between different kinds of messages in this system is by the CQ on

which the completion entry for that message was received. Recall from our discussion of

the design for message matching from Section 3.2.2 that we employ a unique Completion

Queue for each message envelope, and infer the message identity from the arrival of a

corresponding CQE. Unlike the rendezvous protocol in Chapter 3, the RSR model does

not need to identify individual messages. Rather, we wish to distinguish messages that are

forwarded to a different set of downstream ports. Therefore, there is a one-to-one mapping

between identifying Completion Queues and RSR instances.

In our implementation, we employ the Mellanox eXtended Reliable Communication

extension of the InfiniBand specification in a somewhat non-traditional manner. Instead of

using an XRC SRQ to share buffers between processes on the same node, we use it for its

completion semantics. Unlike a conventional Shared Receive Queue, an XRC SRQ has an

associated Receive Queue. This RQ is used to report message receipt instead of the per-QP

RQs. XRC allows our design to use a single RQ per RSR instance.

Figure 5.5 illustrates the handling of a message by an RSR instance. An incoming

message received by an RSR is placed in a buffer posted to the XRC SRQ and allocated in

a shared memory region that is pre-registered with the HCA. The use of shared memory

allows the message to be used for intranode communication as well as outbound forwarding

over the network. A set of buffers is pre-posted to each RSR instance during its creation,

making it similar to an unexpected message queue. As in the eager protocol, intermediate

memory buffers of fixed size are used; messages are split into fragments to fit in these buffers.

The Maximum Transmission Unit (MTU) of the IB adapter provides an appropriate upper

limit for this chunk size. Because fragmentation already occurs at this message size at

the InfiniBand layer, we can avoid additional fragmentation by choosing our chunk size to

match the MTU. However, to negotiate buffer availability, the RSR implementation uses a

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 102

incoming message

set refcount

incoming message

available for intranode

poll CQEs

copy to destination

incoming message

decrement refcount

poll
SHM buffers

repost buffer to RSR

refcount = 0?
no

leader?
no

consume buffer from XSRQ

generate CQE

trigger send ops
with same buffer

Figure 5.5: Receive-Store-Replicate control flow

handshaking protocol similar to that presented in Section 3.2.2. Therefore, the RSR design

has characteristics of both the offloaded eager and rendezvous protocols.

Three asynchronous processes are at work in the RSR primitive. The data propagation

pathway shown in the left section of Figure 5.5 is executed by the offloading engine and is

independent of the host processor availability. It will forward any incoming message to a

predefined set of destinations.

Completion events generated by incoming messages may be processed at the application’s

convenience. Because the downstream forwarding of the message is handled by the CORE-

Direct offloading engine, the only work that must be performed on message receipt by the

host progress engine is marking the shared buffer available for the intranode portion of the

collective communication. This process is shown in the middle part of Figure 5.5. In the

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 103

case where the unexpected message belongs to a collective that a leader has not yet started,

the message is placed on an in-memory unexpected queue to be re-examined later. Note

that the forwarding of the message by the offloaded progress engine proceeds independently

of this operation.

Intranode completion (shown on the right in Figure 5.5) is controlled by buffer reference

counting. This portion of the algorithm is executed by both the node leaders and the leaf

ranks in the hierarchical collective. When a message buffer is taken from the shared memory

pool and pre-posted to an RSR, its reference count is initialized to reflect the number of

intranode ranks participating in the collective served by that RSR. Once the CQE handler

for the RSR signals that the message is available in shared memory, the ranks sharing the

node can copy the data to their destination buffers at their convenience, as their timing does

not affect the timing of the internode or intranode communication. Once the buffer is no

longer in use, it is resubmitted to an RSR instance to be used again. Any outbound IB send

operations hold additional references on the buffer to make sure it is not reused too early.

The preposted set of RSR buffers is refilled periodically by the progress engine. In

addition, we make use of the asynchronous event feature of the SRQ to provide a backup

mechanism for refilling the RSR from a helper thread. This is only necessary to keep the

pipeline from stalling during times when the user application does not invoke the MPI

progress engine. However, unlike the case of host-based non-blocking collective progression,

the timing of the invocation of our refill mechanisms does not affect the latency of the

collective, as long as the RSR does not run out of pre-posted buffers.

Figure 5.6 illustrates the structure of an RSR instance in terms of its constituent

components. It shows a set of QPs implementing the inbound ports. Messages received on

their RQs target an XRC SRQ and each consume a shared memory buffer. The outgoing

sends are served from this buffer and are triggered by the completion of the receive. The

shared memory broadcast runs asynchronously and propagates the data to the intranode

ranks.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 104

Upstream QP

...
Upstream QP

XRC SRQ

SHM buffer

...

SHM buffer

Downstream QP

...
Downstream QP

SHM broadcast

Figure 5.6: Receive-Store-Replicate primitive structure

Defining the RSR operation allows us to raise the level of abstraction in our discussion

of the implementation. We no longer have to consider the delivery of individual messages,

and can focus on the collective algorithm design. Now that we have presented the building

block of our collectives, let us show how the primitive can be used to implement them.

5.4.2 Implementing Logarithmic Pipelined Algorithms

For the purposes of our work, the standard exchange and Bruck algorithms are almost

identical. Because all messages are split into uniformly sized fragments and processed

without concatenation, the standard exchange algorithm loses its advantage of omitting

the local rotation step of the Bruck algorithm. The only difference that remains is in the

communication pattern, specifically, the numbering of the ranks that communicate in each

round of the collective. We will talk about implementing the Bruck algorithm using the RSR

primitive in this section. Nonetheless, the techniques that we demonstrate apply equally to

standard exchange.

Figure 5.7 shows the propagation of the contribution of rank 0 through the internode

communicator using the Bruck algorithm with two ports. Recall from Chapter 4 that in

round i of the Bruck algorithm using k ports, rank r sends data to ranks r + (k + 1)i, r +

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 105

0 1 2 3 4 5 6 7 8

Figure 5.7: Propagation of the contribution of rank 0 in 2-port pipelined Bruck allgather

2(k + 1)i, ..., r + k(k + 1)i. In the first step, rank 0 sends its data item to ranks 1 and 2. In

the second step, the ranks that have knowledge of the data originating at rank 0 will send

them to ranks at offsets 3 and 6.

Consider the role that rank 2 plays in propagating the data item contributed by rank 0

in the internode communicator in Figure 5.7. If we examine in isolation the work that rank

2 does in the second step of internode communication, we can see that in addition to its

own data it will send downstream the data that it received in the first step (specifically, the

contribution of rank 0). Let us treat this communication step as a unit of work consisting

of a receive step in which data from rank 0 arrive at rank 2, a store step in which rank 2

makes this data available to the intranode communicator, and a replicate step in which rank

2 propagates the data to ranks 5 and 8.

We implement rank 0’s portion of the collective by instantiating one RSR primitive per

communication round. The RSR instances differ in their inbound and outbound connections

to RSRs on other ranks. The set of either inbound or outbound ports of an RSR may be

empty, as signified by the symbol ∅. This corresponds to the beginning and end of the

collective communication pattern. The RSRs instantiated on rank 0 are shown in Table 5.2.

The notation Ab represents an RSR on rank A handling round b.

Once the RSR instances are connected, communication can be handled in asynchronous

fashion. Recall that an RSR never stops receiving and forwarding incoming messages,

regardless of whether a collective call is currently executing from the point of view of an

individual rank. A late rank will still fulfil its message forwarding obligations, as well as store

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 106

Table 5.2: Receive-Store-Replicate units at rank 0 of the pipelined Bruck allgather

RSR ID Data Items Sources Destinations

0 0 ∅ {11, 21, 32, 62}
1 7, 8 {70, 80} {32, 62}
2 1, 2, 3, 4, 5, 6 {31, 61} ∅

any unexpected messages for its own future use. Once the late rank arrives, it will process

the unexpected messages in the intranode broadcast stage, contribute its data, and the

collective operation can then complete. Thus, the RSR primitive satisfies the connectivity

requirement that we specified in Section 5.3. Our collective design can therefore implement

a process arrival pattern tolerant allgather while using fewer connections than the direct

algorithm.

However, the number of connections per rank in this example is not O(logk+1 n), as

Table 5.1 would suggest, but rather O(log2k+1 n). This difference arises from the need

to maintain independent progress of the RSR primitives representing the rounds of the

collective. Because we wish for messages to be propagated without data dependencies,

each RSR primitive requires its own set of QPs. The connection pattern in Table 5.2 can

be derived by writing out the communication pattern of non-pipelined Bruck or standard

exchange, and computing partial set sums in each round, working from higher to lower

numbered rounds. Because each step adds 2k destinations, the total number of connections is

the sum of an arithmetic series,
∑dlogk+1 ne

i=0 2ik ∈ 2kdO(logk+1 n)eO(logk+1 n) ∈ O(log2k+1 n).

Sharing connections among RSR instances would require examining the message prior to

posting IB tasks to the HCA, which is not a feature provided by the CORE-Direct offloading

engine. However, as we discussed in Section 5.3.3, we can reduce resource consumption via

algorithmic improvements. Let us further our discussion on this topic.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 107

5.4.3 Implementing the Cayley Allgather Algorithm

Although the offloaded collective presented in Section 5.4.2 meets our prerequisites for

process arrival pattern tolerance, we would like to decrease the resource consumption of the

collective further by implementing the Cayley allgather algorithm using RSR primitives.

In Section 5.3.3, we described the Cayley algorithm as being comprised of multiple

broadcast operations, each using a directed broadcast tree based on a re-rooted undirected

Cayley interconnection graph. Because the set of communicating peers for a given rank

remains the same in all these broadcasts, in our implementation they all share a single

set of QPs. In our implementation, every rank broadcasts any incoming data block on all

ports other than the port of origin. The rank’s own data items are broadcast to all of its

connections. Because the interconnection graph is acyclic, messages can never propagate

back in the direction of their arrival. Therefore, the collective is guaranteed to terminate.

The simplicity of the Cayley allgather algorithm makes it a good match for hardware

offloading using the RSR primitive. The Cayley allgather communication pattern can be

supplied by k + 1 RSR primitives instantiated on each node. Each of the first k instances

will have a single upstream port, which is chosen in a way to ensure that one RSR instance

is responsible for each of the rank’s peers. The downstream ports of every RSR instance

include all the peers except for the one that is acting as the upstream in that instance. An

additional RSR instance without upstream connections is responsible for sending the rank’s

own message. It is connected to every peer. The total number of connections per rank is

therefore k(k + 1) ∈ O(1), because k is a constant.

As in the case of the logarithmic algorithms in Section 5.3.2, we can share the communi-

cation structures among multiple executing instances of the collective operation. This allows

the Cayley allgather collective design to support any number of concurrent executions with

constant resource usage while maintaining independent progress. Although serialization of

individual message fragments still occurs in this model, message fragments belonging to

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 108

different collectives can be interleaved. This feature, along with the lack of data dependencies,

allows the collectives to retain the ability to make independent progress.

5.4.4 Host-progressed Pipelined Non-blocking Collectives

Though we designed our collectives and the RSR primitive used to implement them with

offloading in mind, the design does not depend on the presence of specialized hardware, and

can be implemented using host-based progression alone. Because this line of research is

outside of the scope of our work on offloading, we did not implement and test this design,

leaving it as a possible future extension.

If we augmented the conventional MPI unexpected message queue with functionality that

would allow unexpected messages to be forwarded over the network, we could implement all

the collective algorithms described in this chapter. As long as the MPI application invokes

the progress engine often enough, or a helper thread is provided, a rank that has yet to arrive

at the collective can provide connectivity for the already-arrived ranks without being aware

of the collective’s details. Because the algorithms we use do not introduce data dependencies,

the two requirements that we specified for process arrival pattern tolerance in Section 5.3

are satisfied.

5.5 Performance Evaluation

For our performance evaluation, we once again make use of the NBCBench benchmark [37]

previously described in Section 3.3 to measure the latency and overlap potential of the

allgather collectives. We implemented and tested the pipelined non-blocking Bruck allgather

collective operation with 1-port and 3-port modeling, as well as the Cayley algorithm using 1

and 3 ports. We used the non-blocking MPI Iallgather host-progressed collective provided

by MVAPICH2 1.9 and the hierarchical Bruck collective design from Chapter 4 as baselines

against which to evaluate the pipelined collectives.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 109

For reasons discussed in Section 5.4, we only compared the allgather collectives in

a hierarchical communicator. We feel that this decision is justified, because the use of

hierarchical communicators is necessary to reap the benefits of low intranode communication

latency on modern clusters with multicore processors.

We tested our collectives on the same Cluster B as described in Chapter 3. The testbed

for the benchmark was made up of four Dell PowerEdge 2850 servers with two 2.80 GHz

dual-core Intel Xeon Paxville processors, 4 GB DDR2 memory, and a Mellanox ConnectX-2

MT25418 HCA. The software used was Mellanox OFED 1.5.3-1 and 64-bit CentOS 5.5 with

Linux kernel 2.6.18-194.26.1.el5. Two ports of each HCA were connected to the switch. Four

MPI ranks were running on each node, and the system was set up to make use of shared

memory for intranode data transfers.

At the time of writing, we have experienced a number of difficulties in combining the

use of XRC with CORE-Direct. Therefore, our testing was limited to the range where the

InfiniBand software stack was stable in this configuration. Specifically, we tested messages

of up to 64KB in size. The MTU supported by our InfiniBand adapters is 1024 B in this

configuration.

5.5.1 Latency and Overlap Potential

In terms of latency trends, the pipelined variant of the Bruck allgather collective performs

similarly to the offloaded version without pipelining, as illustrated by Figure 5.8. This is

not surprising, because the algorithms with and without pipelining have similar overhead in

communicating with the CORE-Direct hardware and copying data from a shared memory

region to the final destination. However, the pipelined Bruck allgather had a slight advantage

in latency across all message sizes. The pipelined Cayley collective improved the latency of

the collective operation for all message sizes compared to the pipelined Bruck design. We

attribute this improvement to the reduced HCA resource usage by the Cayley collective,

because IB HCA performance is sensitive to the number of queues that the HCA has to

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 110

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

1 4 16 64 256 1k 4k 16k 64k

La
te
n
cy
 (
μ
s)

Message size (B)

Bruck (1 port) Bruck (3 ports) Pipelined Bruck (1 port)

Pipelined Bruck (3 port) Pipelined Cayley (1 port) Pipelined Cayley (3 port)

MVAPICH2

Figure 5.8: Non-blocking pipelined allgather collective message latency

manage, as we discussed in Section 4.4. Offloaded collectives are at a slight disadvantage

compared to MVAPICH2 in messages smaller than 64 B and take the lead for larger messages.

For message sizes under 16 KB, the overlap potential of both pipelined collective designs

is higher than that of the host-progressed collective, as demonstrated by Figure 5.9. The

Cayley algorithm had a modest advantage in overlap over the pipelined Bruck design for

small messages.

As the message size increases past 16 KB, the pipelined collectives lose their overlap

advantage. We believe there are two reasons for this behaviour. First, as the message

transfer time comes to dominate the overall collective latency, the influence of the process

arrival pattern diminishes, because a greater portion of the work is done by the InfiniBand

adapter even when host progression is used. Second, because our pipelined collective uses a

fixed chunk size of 1024 B, as described in Section 5.4.1, message fragmentation begins to

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 111

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1 4 16 64 256 1K 4K 16K 64K

O
ve
rl
ap

Message size (B)

Pipelined Bruck (1 port) Pipelined Bruck (3 port)
Pipelined Cayley (1 port) Pipelined Cayley (3 port)
MVAPICH2

Figure 5.9: Non-blocking pipelined allgather collective overlap potential

outweigh the benefits of pipelining at large message sizes.

Interestingly, for small messages the overlap performance of the pipelined collectives

was slightly below that of the variants introduced in Chapter 4. We believe that this is

due to the implementation of the shared memory broadcast phase. In the non-pipelined

collective, the data will be placed in the buffer contiguously and can be copied as a unit,

reaping the benefits of prefetching. In contrast, the pipelined version must assemble the

result of the communication from memory locations that are spaced further apart, defeating

the prefetching features of the processor. At large message sizes, the non-blocking collectives

act similar to one another. We also note that the use of multiple ports does not seem to

provide a benefit on this testbed. Recall that multi-port offloaded allgather collectives had

mixed performance results on this testbed in our investigation in Chapter 4. Flat collectives

saw a small increase in latency, whereas hierarchical collectives enjoyed a performance

improvement.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 112

‐1
0
%

2
0
%

5
0
%

8
0
%

1 4 16 64 256 1024 4096 16384 65536

Sp
e
e
d
u
p

Message size (B)

Cayley (2 parallel) Cayley (4 parallel)

MVAPICH2 (2 parallel) MVAPICH2 (4 parallel)

Figure 5.10: Improvement of latency in parallel instances of the allgather collective

5.5.2 Parallel Collective Operations

The Cayley allgather algorithm does not require additional resources for executing multiple

instances of the collective concurrently. This property should translate into a scalability

advantage in real-world applications, once non-blocking collectives become more popular

with application developers. We used a modified version of the NBCBench benchmark to

repeat the latency and overlap tests with multiple concurrent collective instances.

In our test, we started a batch of collective operations, performed synthetic computation,

and then waited for all the collective instances to complete. The rest of the experimental

setup remained unchanged. We measured the speedup that the parallel operations obtain in

comparison to the sequential execution of the same operations. To simplify presentation, we

only show the results for the 3-port Cayley collective. As in the previous section, the results

for 1-port Cayley were similar.

As shown in Figure 5.10, the communication latency of the pipelined Cayley collective

remains relatively unchanged, whether executing the collective calls in parallel or sequentially.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 113

This behaviour can be explained by the good overlap capability of the non-blocking collective

which enables the shared memory phase of a collective instance to be overlapped with the

network communication of another. However, because the same amount of data must be

copied within the node memory and transferred over the network as in the sequential case,

the speedup is modest. Because the parallel operations share hardware resources, we do

not expect a significant latency improvement. Our aim was to test the ability of the Cayley

design to return consistent overlap performance in the presence of parallel operations.

In contrast, the host-progressed nonblocking collective supplied by MVAPICH2 sees a

larger latency improvement. We believe that this effect is due to the ability of the progress

engine to process multiple messages per invocation in the case of collective instances executing

in parallel. However, this improvement comes at the cost of a significant deterioration in

overlap capability, as illustrated by Figure 5.11. Because the progress engine must track

a greater number of concurrent messages while performing network communication, its

competition for processor time with the application’s computation is increased, and a smaller

fraction of processor time can be used for computation.

In contrast, the offloaded collective’s overlap capability is essentially unaffected by the

presence of parallel allgather calls. Because the message progression is performed by the HCA,

and the amount of shared-memory data transfer that needs to be performed is unchanged,

no additional burden is placed on the host processor.

5.5.3 Noise Tolerance

We sought to validate our hypothesis that pipelined collectives are better at dealing with OS

noise. We performed preliminary testing of this hypothesis using articially generated noise.

Noise was injected into the system by executing a noisemaker process on each processor core

in the cluster. This process runs with real-time priority, preempting the other user processes.

However, it spends most of its execution time sleeping. Each noisemaker process will wake

up at random intervals and execute a busy wait pulse of 100 ms. The averaged duty cycle of

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 114

‐1
0
0
%
‐8
0
%

‐6
0
%

‐4
0
%

‐2
0
%

0
%

1 4 16 64 256 1024 4096 16384 65536

C
h
an
ge
 in

 o
ve
rl
ap

 p
o
te
n
ti
al

Message size (B)

Cayley (2 parallel) Cayley (4 parallel)

MVAPICH2 (2 parallel) MVAPICH2 (4 parallel)

Figure 5.11: Degradation of overlap potential due to parallel instances of the allgather
collective

the busy wait pulses is 20%.

The real-time priority causes the noisemaker processes to preempt the MPI processes,

simulating interruptions from operating system services. Although the performance numbers

varied with message size in this test, on average the pipelined collectives exhibited latency

that was 16% lower than the collective without pipelining, and up to 40% lower than the

MVAPICH2 CPU-progressed non-blocking allgather.

This test was used to expose the differences between the collective designs rather than

act as a benchmark. While the amount of injected scheduling noise is high, it was necessary

to simulate the effects of noise propagation in a large cluster using a much smaller system.

In the future we would like to perform a study involving a larger cluster and realistic

applications in the presence of scheduling noise.

CHAPTER 5. PROCESS ARRIVAL PATTERN TOLERANT COLLECTIVES 115

5.6 Summary

In this chapter, we presented two designs for the allgather collective operation that are

tolerant to variations in the process arrival pattern. One of the designs also offers potential

for improved scalability, since it operates using a constant amount of resources regardless

of the number of concurrent collective calls. As non-blocking collectives become more

popular, we believe that the number of concurrent instances of non-blocking collectives will

correspondingly increase. To meet this challenge, our collective design enables independent

progress with constant resource requirements while maintaining latency and overlap charac-

teristics. We conducted a microbenchmark-based investigation to validate these claims. In

the future, we wish to test our design on a larger system with more applications.

The pipelined Bruck and Cayley designs are supported by the Receive-Store-Replicate

primitive that we intend to serve as a generic building block for offloaded collective operations.

The primitive maps well to the features provided by CORE-Direct HCAs. The RSR primitive

has widely applicable semantics of receiving messages from a set of upstream ports and

storing them before forwarding the messages downstream. We believe that it provides a

useful abstraction of CORE-Direct hardware, and should be useful in designing collectives

other than allgather.

In this chapter, we showed that in addition to being a valuable tool for reducing

communication latency, pipelining can be used to break dependencies in the communication

pattern of a collective operation. This approach has potential to improve the noise tolerance

of the collective communication and improve the performance of the applications that use the

collectives. Additionally, our design enables execution of multiple concurrent non-blocking

collective operations in a scalable fashion. Although preliminary results have been mixed,

we believe that the approach warrants further investigation.

Chapter 6

Conclusions and Future Work

6.1 Summary of Findings

The systems interconnected in HPC clusters continue to increase in number, leading to

increased demands on the scalability of the cluster software infrastructure. In this work we

investigated one approach to meeting these demands by employing specialized hardware

to assist the software infrastructure in overlapping communication with computation. We

examined the issues that MPI point-to-point and collective communication operations face in

modern clusters, identified progression of message transfers as a specific area for improvement

and proposed progression offloading as the solution.

In Chapter 3, we applied offloading to the progression of large single-message data

transfers using the rendezvous protocol. We found that offloading the progression of the

rendezvous protocol to Mellanox CORE-Direct hardware greatly improved the noise tolerance

of the system and allowed for overlap between communication and computation without

undue impact on latency.

In Chapter 4, we developed designs for flat and hierarchical offloaded non-blocking

collective operations, focusing on the allgather collective. We found that while both flat

and hierarchical variants of the offloaded collective outperformed collectives using software

116

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 117

progression in terms of overlap, communication latency was increased for small messages.

The hierarchical design brought a reduction in latency. However, the improved latency of

the hierarchical collective came at the expense of decreased overlap capability.

In Chapter 5, we improved the immunity of collective operations to the process arrival

pattern and scheduling noise by reducing the amount of synchronization between the processes

participating in the collective. We achieved this goal with a pipelined collective design that

eschews message concatenation in order to reduce the dependencies between the ranks in

the collective. Additionally, the ranks in this collective that are late to arrive can assist the

other ranks with the collective communication. Next, we introduced a new algorithm for the

allgather collective aimed at improving resource usage. The new algorithm, based on the

structure of the Cayley tree, ensures that resource usage stays constant even with multiple

active instances of the collective operation in progress.

In summary, in this work we developed designs for offloading the processing of non-

blocking point-to-point and collective operations from the host processor. We showed

that these designs have advantages over their host-progressed counterparts in their ability

to overlap computation with communication, which is the raison d’être of non-blocking

operations. We also showed that offloading can reduce implicit synchronization between

processes, leading to better noise immunity and scalability of the non-blocking operations.

6.2 Future Work

We would like to continue the work in Chapter 3 by investigating the applicability of

approaches that combine eager and rendezvous protocols to offloading. We would also like

to try tuning the protocols for various message sizes.

The work in Chapter 4 could be extended by investigating how to maintain the overlap

performance of the offloaded hierarchical collectives while preserving their latency advantage

over flat collectives. A possible means of achieving this goal would be to free up the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 118

CORE-Direct HCA by offloading message copying to hardware such as the Intel I/OAT [99]

engine.

To continue the work in Chapter 5 we would like to investigate the performance of the

pipelined allgather collective on a larger system to confirm the preliminary results discussed

in the thesis. In addition, we would like to leverage the Receive-Store-Replicate primitive

introduced in the chapter as a building block for other collectives. It would also be useful to

investigate a purely host-based design for the primitive in order to improve compatibility

with systems that do not offer specialized hardware for communication offloading.

The collective communication designs introduced in Chapter 5 demonstrate that it is

possible to provide collectives that have scalable resource requirements and process arrival

pattern immunity. This could ease MPI programming in the future by freeing the programmer

from concern about process arrival patterns. We would like to extend the work in this

chapter by investigating applications that would benefit from this treatment.

In addition, there are other ways that MPI applcation writing could be simplified.

To improve the usability of non-blocking collectives, an interface to the collective could

provide support for signaling partial completion. The MPI specification supplies the function

MPI Get count that reports the amount of data transferred so far by a non-blocking point-to-

point operation. In future work, we would like to provide a similar interface for non-blocking

collectives.

Two final areas for future work are implementing offloaded collective operations with

native InfiniBand hardware broadcast capabilities and integrating communication progression

offloading with GPU acceleration technology, which is rapidly making inroads into HPC

systems.

Bibliography

[1] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy, M. Hall,

R. Harrison, W. Harrod, K. Hill, J. Hiller, S. Karp, C. Koelbel, D. Koester, P. Kogge,

J. Levesque, D. Reed, V. Sarkar, R. Schreiber, M. Richards, A. Scarpelli, J. Shalf,

A. Snavely, and T. Sterling. ExaScale Software Study: Software Challenges in Extreme

Scale Systems. Tech. rep. DARPA IPTO, Air Force Research Laboratory, Sept. 14,

2009.

[2] G. M. Amdahl. “Validity of the single processor approach to achieving large scale

computing capabilities”. In: Proc. Spring Joint Computer Conference. Atlantic City,

New Jersey, 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[3] G. Amerson and A. Apon. “Implementation and design analysis of a network messag-

ing module using Virtual Interface Architecture”. In: Proc. IEEE Intl. Conf. Cluster

Computing. Sept. 2004, pp. 255–265. doi: 10.1109/CLUSTR.2004.1392623.

[4] T. E. Anderson, D. E. Culler, and D. A. Patterson. “A Case for NOW (Networks

of Workstations)”. In: IEEE Micro 15.1 (Feb. 1995), pp. 54–64. doi: 10.1109/40.

342018.

[5] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-

nan, and S. Weeratunga. The NAS Parallel Benchmarks. Tech. rep. RNR-94-007.

Department of Mathematics and Computer Science, Emory University, Mar. 1994.

119

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/CLUSTR.2004.1392623
http://dx.doi.org/10.1109/40.342018
http://dx.doi.org/10.1109/40.342018

BIBLIOGRAPHY 120

[6] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R.

Thakur, and J. L. Träff. “MPI on Millions of Cores”. In: Parallel Processing Letters

21.01 (2011), pp. 45–60. doi: 10.1142/S0129626411000060.

[7] B. Bao, C. Ding, Y. Gao, and R. Archambault. “Delta Send-Recv for Dynamic

Pipelining in MPI Programs”. In: Proc. IEEE Intl. Symp. Cluster Computing and

the Grid. Ottawa, ON, Canada, 2012, pp. 384–392. doi: 10.1109/CCGrid.2012.113.

[8] G. Benson, C. Chu, Q. Huang, and S. Caglar. “A Comparison of MPICH Allgather

Algorithms on Switched Networks”. In: Recent Advances in Parallel Virtual Machine

and Message Passing Interface. Ed. by J. Dongarra, D. Laforenza, and S. Orlando.

Vol. 2840. Lecture Notes in Computer Science. Springer, 2003, pp. 335–343. doi:

10.1007/978-3-540-39924-7_47.

[9] M. Bertozzi, F. Boselli, G. Conte, and M. Reggiani. “An MPI Implementation on the

Top of the Virtual Interface Architecture”. In: Recent Advances in Parallel Virtual

Machine and Message Passing Interface. Ed. by J. Dongarra, E. Luque, and T.

Margalef. Vol. 1697. Lecture Notes in Computer Science. Springer, 1999, pp. 199–206.

doi: 10.1007/3-540-48158-3_25.

[10] S. H. Bokhari. “Multiphase Complete Exchange on Paragon, SP2, and CS-2”. In:

Parallel and Distributed Technology: Systems and Applications 4.3 (Sept. 1996),

pp. 45–59. doi: 10.1109/88.532139.

[11] G. Bosilca, T. Herault, A. Rezmerita, and J. Dongarra. “On Scalability for MPI

Runtime Systems”. In: Proc. IEEE Intl. Conf. Cluster Computing. Austin, TX, Sept.

2011, pp. 187–195. doi: 10.1109/CLUSTER.2011.29.

[12] P. Bozeman and B. Saphir. A Modular High Performance Implementation of the

Virtual Interface Architecture. Tech. rep. LBNL-46455. National Energy Research

Scientific Computing Center, Lawrence Berkeley National Laboratory, July 7, 2000.

http://dx.doi.org/10.1142/S0129626411000060
http://dx.doi.org/10.1109/CCGrid.2012.113
http://dx.doi.org/10.1007/978-3-540-39924-7_47
http://dx.doi.org/10.1007/3-540-48158-3_25
http://dx.doi.org/10.1109/88.532139
http://dx.doi.org/10.1109/CLUSTER.2011.29

BIBLIOGRAPHY 121

[13] R. Brightwell and K. D. Underwood. “An Analysis of the Impact of MPI Overlap

and Independent Progress”. In: Proc. International Conference on Supercomputing.

Malo, France, pp. 298–305. doi: 10.1145/1006209.1006251.

[14] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. “Efficient Algorithms

for All-to-All Communications in Multiport Message-passing Systems”. In: IEEE

Transactions on Parallel and Distributed Systems 8 (Nov. 1997), pp. 1143–1156. doi:

10.1109/71.642949.

[15] D. Buntinas, G. Mercier, and W. Gropp. “Data Transfers between Processes in an

SMP System: Performance Study and Application to MPI”. In: Proc. Intl. Conf.

Parallel Processing. 2006, pp. 487–496. doi: 10.1109/ICPP.2006.31.

[16] D. Buntinas, D. K. Panda, and R. Brightwell. “Application-Bypass Broadcast in

MPICH over GM”. In: Proc. IEEE Intl. Symp. Cluster Computing and the Grid.

Tokyo, Japan, 2003, pp. 404–411. doi: 10.1109/CCGRID.2003.1199346.

[17] B. L. Chamberlain, D. Callahan, and H. P. Zima. “Parallel Programmability and the

Chapel Language”. In: Intl. J. High Performance Computing Applications 21.3 (Aug.

2007), pp. 291–312. doi: 10.1177/1094342007078442.

[18] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. “X10: an object-oriented approach to non-uniform cluster

computing”. In: Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,

Languages, and Applications. San Diego, CA, 2005, pp. 519–538. doi: 10.1145/

1094811.1094852.

[19] G. Cong and D. Bader. “Lock-Free Parallel Algorithms: An Experimental Study”. In:

High Performance Computing – HiPC 2004. Ed. by L. Bougé and V. K. Prasanna.

Vol. 3296. Lecture Notes in Computer Science. Springer, 2005, pp. 516–527. doi:

10.1007/978-3-540-30474-6_54.

http://dx.doi.org/10.1145/1006209.1006251
http://dx.doi.org/10.1109/71.642949
http://dx.doi.org/10.1109/ICPP.2006.31
http://dx.doi.org/10.1109/CCGRID.2003.1199346
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1007/978-3-540-30474-6_54

BIBLIOGRAPHY 122

[20] A. Danalis, K. Kim, L. Pollock, and M. Swany. “Transformations to Parallel Codes

for Communication-Computation Overlap”. In: Proc. ACM/IEEE Supercomputing

Conference. Seattle, WA, 2005, pp. 58–70.

[21] J. J. Dongarra. Performance of Various Computers Using Standard Linear Equations

Software. Tech. rep. CS-89-85. University of Tennessee, 2013.

[22] A. Faraj, P. Patarasuk, and X. Yuan. “A Study of Process Arrival Patterns for MPI

Collective Operations”. In: Intl. J. Parallel Programming 36.6 (2008), pp. 543–570.

doi: 10.1007/10766-008-0070-9.

[23] A. Gavrilovska. Attaining High Performance Communications: A Vertical Approach.

CRC Press, 2009. isbn: 978-1-4200-9308-7.

[24] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman, M. Kagan, A.

Shahar, I. Rabinovitz, and G. Shainer. “ConnectX-2 InfiniBand Management Queues:

First Investigation of the New Support for Network Offloaded Collective Operations”.

In: Proc. IEEE Intl. Symp. Cluster Computing and the Grid. 2010, pp. 53–62. doi:

10.1109/CCGRID.2010.9.

[25] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman, M. Ka-

gan, A. Shahar, I. Rabinovitz, and G. Shainer. “Overlapping Computation and

Communication: Barrier Algorithms and ConnectX-2 CORE-Direct Capabilities”.

In: Proc. IEEE Intl. Parallel & Distributed Processing Symp. 2010, pp. 1–8. doi:

10.1109/IPDPSW.2010.5470854.

[26] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel Computing.

2nd ed. Addison Wesley, Jan. 2003. isbn: 0201648652.

[27] W. Gropp, E. L. Lusk, and A. Skjellum. Using MPI – 2nd Edition: Portable Parallel

Programming with the Message Passing Interface. 2nd ed. MIT Press, Nov. 1999.

isbn: 0262571323.

http://dx.doi.org/10.1007/10766-008-0070-9
http://dx.doi.org/10.1109/CCGRID.2010.9
http://dx.doi.org/10.1109/IPDPSW.2010.5470854

BIBLIOGRAPHY 123

[28] J. L. Gustafson. “Reevaluating Amdahl’s Law”. In: Communications of the ACM 31

(1988), pp. 532–533.

[29] K. Hemmert, B. Barrett, and K. Underwood. “Using Triggered Operations to Offload

Collective Communication Operations”. In: Recent Advances in the Message Passing

Interface. Ed. by R. Keller, E. Gabriel, M. Resch, and J. Dongarra. Vol. 6305. Lecture

Notes in Computer Science. Springer, 2010, pp. 249–256. doi: 10.1007/978-3-642-

15646-5_26.

[30] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, and

M. V. Zelkowitz. “Parallel Programmer Productivity: A Case Study of Novice Parallel

Programmers”. In: Proc. ACM/IEEE Supercomputing Conference. 2005, pp. 35–44.

doi: 10.1109/SC.2005.53.

[31] R. Hockney. “Performance Parameters and Benchmarking of Supercomputers”. In:

J. Parallel Computing 17.10–11 (Dec. 1991), pp. 1111–1130. doi: 10.1016/S0167-

8191(05)80029-8.

[32] T. Hoefler and A. Lumsdaine. “Optimizing non-blocking collective operations for

InfiniBand”. In: Proc. IEEE Intl. Parallel & Distributed Processing Symp. Apr. 2008,

pp. 1–8. doi: 10.1109/ipdps.2008.4536138.

[33] T. Hoefler, A. Lumsdaine, and W. Rehm. “Implementation and Performance Analysis

of Non-Blocking Collective Operations for MPI”. In: Proc. ACM/IEEE Supercomput-

ing Conference. Reno, NV, Nov. 2007, 52:1–52:10. doi: 10.1145/1362622.1362692.

[34] T. Hoefler, P. Gottschling, W. Rehm, and A. Lumsdaine. “Optimizing a Conjugate

Gradient Solver with Non-Blocking Collective Operations”. In: Recent Advances

in Parallel Virtual Machine and Message Passing Interface. Ed. by B. Mohr, J. L.

Träff, J. Worringen, and J. Dongarra. Vol. 4192. Lecture Notes in Computer Science.

Springer, 2006, pp. 374–382. doi: 10.1007/11846802_52.

http://dx.doi.org/10.1007/978-3-642-15646-5_26
http://dx.doi.org/10.1007/978-3-642-15646-5_26
http://dx.doi.org/10.1109/SC.2005.53
http://dx.doi.org/10.1016/S0167-8191(05)80029-8
http://dx.doi.org/10.1016/S0167-8191(05)80029-8
http://dx.doi.org/10.1109/ipdps.2008.4536138
http://dx.doi.org/10.1145/1362622.1362692
http://dx.doi.org/10.1007/11846802_52

BIBLIOGRAPHY 124

[35] T. Hoefler, P. Kambadur, R. Graham, G. Shipman, and A. Lumsdaine. “A Case

for Standard Non-Blocking Collective Operations”. In: Recent Advances in Parallel

Virtual Machine and Message Passing Interface. Ed. by F. Cappello, T. Herault,

and J. Dongarra. Vol. 4757. Lecture Notes in Computer Science. Springer, 2007,

pp. 125–134. doi: 10.1007/978-3-540-75416-9_22.

[36] T. Hoefler and A. Lumsdaine. “Message Progression in Parallel Computing – to

Thread or not to Thread?” In: Proc. IEEE Intl. Conf. Cluster Computing. Tsukuba,

Japan, 2008, pp. 213–222. doi: 10.1109/CLUSTR.2008.4663774.

[37] T. Hoefler, T. Schneider, and A. Lumsdaine. “Accurately Measuring Collective

Operations at Massive Scale”. In: Proc. IEEE Intl. Parallel & Distributed Processing

Symp. Miami, FL, Apr. 2008, pp. 1–8. doi: 10.1109/IPDPS.2008.4536494.

[38] T. Hoefler, T. Schneider, and A. Lumsdaine. “Characterizing the Influence of System

Noise on Large-Scale Applications by Simulation”. In: Proc. ACM/IEEE Supercom-

puting Conference. New Orleans, LA, 2010, pp. 1–11. doi: 10.1109/SC.2010.12.

[39] InfiniBand Trade Association. url: http://www.infinibandta.org/ (visited on

09/01/2013).

[40] G. Inozemtsev and A. Afsahi. “Designing an Offloaded Nonblocking MPI Allgather

Collective Using CORE-Direct”. In: Proc. IEEE Intl. Conf. Cluster Computing.

Beijing, China, Sept. 2012, pp. 477–485. doi: 10.1109/CLUSTER.2012.75.

[41] Intel R© 64 and IA-32 Architectures Optimization Reference Manual. 248966-026. Intel

Corporation. Apr. 2012.

[42] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Blackmore, P. Caffrey,

B. Maskell, P. Tomlinson, and M. Roberts. “Improving the Scalability of Parallel

Jobs by adding Parallel Awareness to the Operating System”. In: Proc. ACM/IEEE

http://dx.doi.org/10.1007/978-3-540-75416-9_22
http://dx.doi.org/10.1109/CLUSTR.2008.4663774
http://dx.doi.org/10.1109/IPDPS.2008.4536494
http://dx.doi.org/10.1109/SC.2010.12
http://www.infinibandta.org/
http://dx.doi.org/10.1109/CLUSTER.2012.75

BIBLIOGRAPHY 125

Supercomputing Conference. Phoenix, AZ, 2003, pp. 1–20. doi: 10.1145/1048935.

1050161.

[43] L. Kale, S. Kumar, and K. Varadarajan. “A Framework for Collective Personalized

Communication”. In: Proc. IEEE Intl. Parallel & Distributed Processing Symp. 2003,

pp. 69.1–69.8. doi: 10.1109/IPDPS.2003.1213166.

[44] K. Kandalla, A. Buluc, H. Subramoni, K. Tomko, J. Vienne, L. Oliker, and D. Panda.

“Can Network-Offload Based Non-blocking Neighborhood MPI Collectives Improve

Communication Overheads of Irregular Graph Algorithms?” In: Proc. IEEE Intl.

Conf. Cluster Computing. Sept. 2012, pp. 222–230. doi: 10.1109/ClusterW.2012.40.

[45] K. Kandalla, H. Subramoni, J. Vienne, S. P. Raikar, K. Tomko, S. Sur, and D. K.

Panda. “Designing Non-blocking Broadcast with Collective Offload on InfiniBand

Clusters: A Case Study with HPL”. In: Proc. IEEE Symp. High Performance Inter-

connects. Aug. 2011, pp. 27–34. doi: 10.1109/HOTI.2011.14.

[46] K. Kandalla, U. Yang, J. Keasler, T. Kolev, A. Moody, H. Subramoni, K. Tomko, J.

Vienne, B. R. de Supinski, and D. K. Panda. “Designing Non-blocking Allreduce with

Collective Offload on InfiniBand Clusters: A Case Study with Conjugate Gradient

Solvers”. In: Proc. IEEE Intl. Parallel & Distributed Processing Symp. May 2012,

pp. 1156–1167. doi: 10.1109/IPDPS.2012.106.

[47] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop, and D. K. Panda. “De-

signing Multi-leader-based Allgather Algorithms for Multi-core Clusters”. In: Proc.

IEEE Intl. Parallel & Distributed Processing Symp. May 2009, pp. 1–8. doi: 10.1109/

IPDPS.2009.5160896.

[48] K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky, S. Sur, and D. K. Panda.

“High-performance and Scalable Non-blocking All-to-All with Collective Offload on

InfiniBand Clusters: a Study with Parallel 3D FFT”. In: Computer Science - Research

and Development 26.3 (June 2011), pp. 237–246. doi: 10.1007/s00450-011-0170-4.

http://dx.doi.org/10.1145/1048935.1050161
http://dx.doi.org/10.1145/1048935.1050161
http://dx.doi.org/10.1109/IPDPS.2003.1213166
http://dx.doi.org/10.1109/ClusterW.2012.40
http://dx.doi.org/10.1109/HOTI.2011.14
http://dx.doi.org/10.1109/IPDPS.2012.106
http://dx.doi.org/10.1109/IPDPS.2009.5160896
http://dx.doi.org/10.1109/IPDPS.2009.5160896
http://dx.doi.org/10.1007/s00450-011-0170-4

BIBLIOGRAPHY 126

[49] M. J. Koop, J. K. Sridhar, and D. K. Panda. “TupleQ: Fully-asynchronous and Zero-

copy MPI over InfiniBand”. In: Proc. IEEE Intl. Parallel & Distributed Processing

Symp. Rome, Italy, May 2009, pp. 1–8. doi: 10.1109/IPDPS.2009.5161056.

[50] R. Kumar, A. R. Mamidala, M. J. Koop, G. Santhanaraman, and D. K. Panda. “Lock-

Free Asynchronous Rendezvous Design for MPI Point-to-Point Communication”. In:

Recent Advances in Parallel Virtual Machine and Message Passing Interface. Ed. by

A. Lastovetsky, T. Kechadi, and J. Dongarra. Vol. 5205. Lecture Notes in Computer

Science. Springer, 2008, pp. 185–193. doi: 10.1007/978-3-540-87475-1_27.

[51] J. Ladd, M. G. Venkata, R. Graham, and P. Shamis. “Analyzing the Effects of

Multicore Architectures and On-Host Communication Characteristics on Collective

Communications”. In: Proc. Intl. Conf. Parallel Processing Workshops. 2011, pp. 406–

415. doi: 10.1109/ICPPW.2011.15.

[52] J. S. Ladd, M. G. Venkata, R. Graham, and P. Shamis. “Assessing the Performance

and Scalability of a Novel Multilevel K-Nomial Allgather on CORE-Direct Systems”.

In: Proc. Euro-Par 2012 Parallel Processing. Ed. by C. Kaklamanis, T. Papatheodorou,

and P. G. Spirakis. Vol. 7484. Lecture Notes in Computer Science. Springer, 2012,

pp. 538–549. doi: 10.1007/978-3-642-32820-6_53.

[53] C. Li, C. Ding, and K. Shen. “Quantifying the cost of context switch”. In: Proc.

Workshop on Experimental Computer Science. San Diego, CA, 2007, pp. 2.1–2.4. doi:

10.1145/1281700.1281702.

[54] S. Li, T. Hoefler, and M. Snir. “NUMA-aware Shared-memory Collective Communica-

tion for MPI”. In: Proc. Intl. Symp. High-performance Parallel and Distributed Com-

puting. New York, New York, USA, 2013, pp. 85–96. doi: 10.1145/2462902.2462903.

[55] libNBC – Nonblocking MPI Collective Operations. url: http://www.unixer.de/

research/nbcoll/libnbc/ (visited on 10/05/2013).

http://dx.doi.org/10.1109/IPDPS.2009.5161056
http://dx.doi.org/10.1007/978-3-540-87475-1_27
http://dx.doi.org/10.1109/ICPPW.2011.15
http://dx.doi.org/10.1007/978-3-642-32820-6_53
http://dx.doi.org/10.1145/1281700.1281702
http://dx.doi.org/10.1145/2462902.2462903
http://www.unixer.de/research/nbcoll/libnbc/
http://www.unixer.de/research/nbcoll/libnbc/

BIBLIOGRAPHY 127

[56] J. Liu, A. Mamidala, and D. Panda. “Fast and Scalable MPI-level Broadcast Using

InfiniBand’s Hardware Multicast Support”. In: Proc. IEEE Intl. Parallel & Distributed

Processing Symp. 2004, pp. 1–10. doi: 10.1109/IPDPS.2004.1302912.

[57] J. Liu, J. Wu, and D. K. Panda. “High Performance RDMA-based MPI Implementa-

tion over InfiniBand”. In: Int. J. Parallel Programming 32.3 (June 2004), pp. 167–198.

doi: 10.1023/B:IJPP.0000029272.69895.c1.

[58] M. Luo, P. Lai, S. Potluri, E. P. Mancini, H. Subramoni, K. Kandalla, and D. K. Panda.

“A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation”. In:

Proc. 10th Workshop on Communication Architecture for Clusters, in conjunction

with ICPP 2010. San Diego, CA, 2010, pp. 1–10.

[59] A. R. Mamidala, R. Kumar, D. De, and D. K. Panda. “MPI Collectives on Modern

Multicore Clusters: Performance Optimizations and Communication Characteristics”.

In: Proc. IEEE Intl. Symp. Cluster Computing and the Grid. May 2008, pp. 130–137.

doi: 10.1109/CCGRID.2008.87.

[60] A. R. Mamidala, A. Vishnu, and D. K. Panda. “Efficient Shared Memory and RDMA

Based Design for MPI Allgather over InfiniBand”. In: Recent Advances in Parallel

Virtual Machine and Message Passing Interface. Ed. by B. Mohr, J. L. Träff, J.

Worringen, and J. Dongarra. Vol. 4192. Lecture Notes in Computer Science. Springer,

2006, pp. 66–75. doi: 10.1007/11846802_17.

[61] Mellanox Technologies. url: http://www.mellanox.com/ (visited on 02/01/2014).

[62] F. Mietke, R. Rex, R. Baumgartl, T. Mehlan, T. Hoefler, and W. Rehm. “Analysis of

the Memory Registration Process in the Mellanox InfiniBand Software Stack”. In:

Proc. Euro-Par 2006 Parallel Processing. Ed. by W. E. Nagel, W. V. Walter, and

W. Lehner. Vol. 4128. Lecture Notes in Computer Science. Springer, 2006, pp. 124–33.

doi: 10.1007/11823285_13.

http://dx.doi.org/10.1109/IPDPS.2004.1302912
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1109/CCGRID.2008.87
http://dx.doi.org/10.1007/11846802_17
http://www.mellanox.com/
http://dx.doi.org/10.1007/11823285_13

BIBLIOGRAPHY 128

[63] MPI: A Message-Passing Interface Standard, Version 2.2. Tech. rep. Message Passing

Interface Forum, Sept. 2009.

[64] MPI: A Message-Passing Interface Standard, Version 3.0. Tech. rep. Message Passing

Interface Forum, Sept. 2012.

[65] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. url: http://mvapich.

cse.ohio-state.edu/ (visited on 09/01/2013).

[66] J. Nieplocha and R. Harrison. “Shared Memory Programming in Metacomputing

Environments: The Global Array Approach”. In: J. Supercomputing 11 (2 1997),

pp. 119–136. doi: 10.1023/A:1007955822788.

[67] A. Nomura and Y. Ishikawa. “Design of Kernel-Level Asynchronous Collective Com-

munication”. In: Recent Advances in the Message Passing Interface. Ed. by R. Keller,

E. Gabriel, M. Resch, and J. Dongarra. Lecture Notes in Computer Science. Springer,

2010, pp. 92–101. doi: 10.1007/978-3-642-15646-5_10.

[68] OpenMP Application Program Interface Version 3.1. OpenMP Architecture Review

Board. July 2011.

[69] D. Padua. Encyclopedia of Parallel Computing. Springer, 2011. isbn: 978-0-3870-9765-

7.

[70] S. Pakin. “Receiver-initiated Message Passing over RDMA Networks”. In: Proc. IEEE

Intl. Parallel & Distributed Processing Symp. 2008, pp. 1–12. doi: 10.1109/IPDPS.

2008.4536262.

[71] P. Patarasuk and X. Yuan. “Efficient MPI Bcast across different process arrival

patterns”. In: Proc. IEEE Intl. Parallel & Distributed Processing Symp. Apr. 2008,

pp. 1–11. doi: 10.1109/IPDPS.2008.4536308.

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://dx.doi.org/10.1023/A:1007955822788
http://dx.doi.org/10.1007/978-3-642-15646-5_10
http://dx.doi.org/10.1109/IPDPS.2008.4536262
http://dx.doi.org/10.1109/IPDPS.2008.4536262
http://dx.doi.org/10.1109/IPDPS.2008.4536308

BIBLIOGRAPHY 129

[72] F. Petrini, D. J. Kerbyson, and S. Pakin. “The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q”.

In: Proc. ACM/IEEE Supercomputing Conference. 2003, pp. 55–72. doi: 10.1109/

SC.2003.10010.

[73] Y. Qian and A. Afsahi. “Efficient Shared Memory and RDMA Based Collectives

on Multi-rail QsNetII SMP Clusters”. In: Cluster Computing 11.4 (Oct. 16, 2008),

pp. 341–354. doi: 10.1007/s10586-008-0065-8.

[74] Y. Qian and A. Afsahi. “Process Arrival Pattern Aware Alltoall and Allgather on

InfiniBand Clusters”. In: Intl. J. Parallel Programming 39.4 (2011), pp. 473–493. doi:

10.1007/s10766-010-0152-3.

[75] Y. Qian and A. Afsahi. “RDMA-based and SMP-aware Multi-port All-Gather on

Multi-rail QsNetII SMP Clusters”. In: Proc. Intl. Conf. Parallel Processing. 2007,

pp. 48–57. doi: 10.1109/ICPP.2007.69.

[76] Y. Qian, M. J. Rashti, and A. Afsahi. “Multi-Connection and Multi-Core Aware

All-Gather on InfiniBand Clusters”. In: Proc. Intl. Conf. Parallel and Distributed

Computing and Systems. Orlando, FL, 2008, pp. 1–7. isbn: 978-0-88986-773-4.

[77] I. Rabinovitz, P. Shamis, R. Graham, N. Bloch, and G. Shainer. “Network Offloaded

Hierarchical Collectives Using ConnectX-2’s CORE-Direct Capabilities”. In: Recent

Advances in the Message Passing Interface. Ed. by R. Keller, E. Gabriel, M. Resch,

and J. Dongarra. Lecture Notes in Computer Science. Springer, 2010, pp. 102–112.

doi: 10.1007/978-3-642-15646-5_11.

[78] M. J. Rashti and A. Afsahi. “Improving Communication Progress and Overlap

in MPI Rendezvous Protocol over RDMA-enabled Interconnects”. In: Intl. Symp.

High Performance Computing Systems and Applications. 2008, pp. 95–101. doi:

10.1109/HPCS.2008.10.

http://dx.doi.org/10.1109/SC.2003.10010
http://dx.doi.org/10.1109/SC.2003.10010
http://dx.doi.org/10.1007/s10586-008-0065-8
http://dx.doi.org/10.1007/s10766-010-0152-3
http://dx.doi.org/10.1109/ICPP.2007.69
http://dx.doi.org/10.1007/978-3-642-15646-5_11
http://dx.doi.org/10.1109/HPCS.2008.10

BIBLIOGRAPHY 130

[79] M. J. Rashti and A. Afsahi. “A speculative and adaptive MPI rendezvous protocol

over RDMA-enabled interconnects”. In: Intl. J. Parallel Programming 37.2 (Apr.

2009), pp. 223–246. doi: 10.1007/s10766-009-0094-9.

[80] M. Rashti and A. Afsahi. “Exploiting Application Buffer Reuse to Improve MPI Small

Message Transfer Protocols over RDMA-enabled Networks”. In: Cluster Computing

(June 3, 2011), pp. 1–12. doi: 10.1007/s10586-011-0165-8.

[81] J. Sancho, K. Barker, D. Kerbyson, and K. Davis. “Quantifying the Potential Benefit of

Overlapping Communication and Computation in Large-Scale Scientific Applications”.

In: Proc. ACM/IEEE Supercomputing Conference. Nov. 2006, pp. 17–33. doi: 10.

1109/SC.2006.51.

[82] T. Schneider, T. Hoefler, R. Grant, B. Barrett, and R. Brightwell. “Protocols for

Fully Offloaded Collective Operations on Accelerated Network Adapters”. In: Proc.

Intl. Conf. Parallel Processing. Lyon, France, Oct. 2013, pp. 593–602. doi: 10.1109/

ICPP.2013.73.

[83] T. Schneider, S. Eckelmann, T. Hoefler, and W. Rehm. “Kernel-Based Offload of

Collective Operations – Implementation, Evaluation and Lessons Learned”. In: Proc.

Intl. Conf. Parallel Processing. 2011, pp. 264–275. doi: 10.1007/978-3-642-23397-

5_26.

[84] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and P. G. Bridges.

“InfiniBand Scalability in Open MPI”. In: Proc. IEEE Intl. Parallel & Distributed

Processing Symp. 2006, pp. 1–10. doi: 10.1109/IPDPS.2006.1639335.

[85] G. M. Shipman, S. Poole, P. Shamis, and I. Rabinovitz. “X-SRQ - Improving Scal-

ability and Performance of Multi-core InfiniBand Clusters”. In: Recent Advances

in Parallel Virtual Machine and Message Passing Interface. Ed. by A. Lastovetsky,

T. Kechadi, and J. Dongarra. Vol. 5205. Lecture Notes in Computer Science. Springer,

2008, pp. 33–42. doi: 10.1007/978-3-540-87475-1_11.

http://dx.doi.org/10.1007/s10766-009-0094-9
http://dx.doi.org/10.1007/s10586-011-0165-8
http://dx.doi.org/10.1109/SC.2006.51
http://dx.doi.org/10.1109/SC.2006.51
http://dx.doi.org/10.1109/ICPP.2013.73
http://dx.doi.org/10.1109/ICPP.2013.73
http://dx.doi.org/10.1007/978-3-642-23397-5_26
http://dx.doi.org/10.1007/978-3-642-23397-5_26
http://dx.doi.org/10.1109/IPDPS.2006.1639335
http://dx.doi.org/10.1007/978-3-540-87475-1_11

BIBLIOGRAPHY 131

[86] M. Small, Z. Gu, and X. Yuan. “Near-Optimal Rendezvous Protocols for RDMA-

Enabled Clusters”. In: San Diego, CA, Sept. 2010, pp. 644–652. doi: 10.1109/ICPP.

2010.72.

[87] M. Small and X. Yuan. “Maximizing MPI point-to-point communication performance

on RDMA-enabled clusters with customized protocols”. In: Proc. Intl. Conf. Supercom-

puting. Yorktown Heights, NY, 2009, pp. 306–315. doi: 10.1145/1542275.1542320.

[88] T. Sterling, D. J. Becker, and D. F. Savarese. How to Build a Beowulf: A Guide to

the Implementation and Application of PC Clusters. MIT Press, May 1999. isbn:

026269218X.

[89] H. Subramoni, K. Kandalla, S. Sur, and D. K. Panda. “Design and Evaluation of

Generalized Collective Communication Primitives with Overlap Using ConnectX-

2 Offload Engine”. In: Proc. IEEE Symp. High Performance Interconnects. 2010,

pp. 40–49. doi: 10.1109/HOTI.2010.22.

[90] S. Sur, U. K. R. Bondhugula, A. Mamidala, H. Jin, and D. K. Panda. “High Per-

formance RDMA Based All-to-All Broadcast for InfiniBand Clusters”. In: High

Performance Computing – HiPC 2005. Ed. by D. A. Bader, M. Parashar, V. Sridhar,

and V. K. Prasanna. Vol. 3769. Lecture Notes in Computer Science. Springer, 2005,

pp. 148–157. doi: 10.1007/11602569_19.

[91] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. “Shared Receive Queue Based Scalable

MPI Design for InfiniBand Clusters”. In: Proc. IEEE Intl. Parallel & Distributed

Processing Symp. 2006, pp. 101–110. doi: 10.1109/IPDPS.2006.1639336.

[92] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. “RDMA Read Based Rendezvous

Protocol for MPI over InfiniBand: Design Alternatives and Benefits”. In: Proc. ACM

SIGPLAN Symp. Principles and Practice of Parallel Programming. New York, NY,

2006, pp. 32–39. doi: 10.1145/1122971.1122978.

http://dx.doi.org/10.1109/ICPP.2010.72
http://dx.doi.org/10.1109/ICPP.2010.72
http://dx.doi.org/10.1145/1542275.1542320
http://dx.doi.org/10.1109/HOTI.2010.22
http://dx.doi.org/10.1007/11602569_19
http://dx.doi.org/10.1109/IPDPS.2006.1639336
http://dx.doi.org/10.1145/1122971.1122978

BIBLIOGRAPHY 132

[93] R. Thakur, R. Rabenseifner, and W. Gropp. “Optimization of Collective Communica-

tion Operations in MPICH”. In: Intl. J. High Performance Computing Applications

19.1 (Feb. 1, 2005), pp. 49–66. doi: 10.1177/1094342005051521.

[94] The Open Group Base Specifications, Issue 6, IEEE Std 1003.1. IEEE and The Open

Group. 2004.

[95] TOP500 Supercomputing Sites. url: http://www.top500.org (visited on 12/02/2013).

[96] J. L. Träff. “Efficient Allgather for Regular SMP-Clusters”. In: Recent Advances

in Parallel Virtual Machine and Message Passing Interface. Ed. by B. Mohr, J. L.

Träff, J. Worringen, and J. Dongarra. Vol. 4192. Lecture Notes in Computer Science.

Springer, 2006, pp. 58–65. doi: 10.1007/11846802_16.

[97] J. L. Träff, A. Ripke, C. Siebert, P. Balaji, R. Thakur, and W. Gropp. “A Simple,

Pipelined Algorithm for Large, Irregular All-gather Problems”. In: Recent Advances

in Parallel Virtual Machine and Message Passing Interface. Ed. by A. Lastovetsky,

T. Kechadi, and J. Dongarra. Vol. 5205. Lecture Notes in Computer Science. Springer,

2008, pp. 84–93. doi: 10.1007/978-3-540-87475-1_16.

[98] UPC Consortium. UPC Language Specifications, v1.2. Tech. rep. LBNL-59208.

Lawrence Berkeley National Lab, 2005.

[99] K. Vaidyanathan, L. Chai, W. Huang, and D. K. Panda. “Efficient asynchronous

memory copy operations on multi-core systems and I/OAT”. In: Proc. IEEE Intl. Conf.

Cluster Computing. Sept. 2007, pp. 159–168. doi: 10.1109/CLUSTR.2007.4629228.

[100] M. G. Venkata, R. L. Graham, J. S. Ladd, P. Shamis, I. Rabinovitz, V. Filipov, and

G. Shainer. “ConnectX-2 CORE-Direct Enabled Asynchronous Broadcast Collective

Communications”. In: Proc. IEEE Intl. Parallel & Distributed Processing Symp.

Anchorage, AK: IEEE, May 2011, pp. 781–787. isbn: 978-1-61284-425-1. doi: 10.

1109/IPDPS.2011.221.

http://dx.doi.org/10.1177/1094342005051521
http://www.top500.org
http://dx.doi.org/10.1007/11846802_16
http://dx.doi.org/10.1007/978-3-540-87475-1_16
http://dx.doi.org/10.1109/CLUSTR.2007.4629228
http://dx.doi.org/10.1109/IPDPS.2011.221
http://dx.doi.org/10.1109/IPDPS.2011.221

BIBLIOGRAPHY 133

[101] M. G. Venkata, R. L. Graham, J. Ladd, and P. Shamis. “Exploring the All-to-All

Collective Optimization Space with ConnectX CORE-Direct”. In: Proc. Intl. Conf.

Parallel Processing. Sept. 2012, pp. 289–298. doi: 10.1109/ICPP.2012.28.

[102] E. W. Weisstein. Cayley Tree. From MathWorld–A Wolfram Web Resource. url:

http://mathworld.wolfram.com/CayleyTree.html (visited on 11/13/2013).

[103] W. Yu, S. Sur, D. K. Panda, R. T. Aulwes, and R. L. Graham. “High Performance

Broadcast Support in LA-MPI Over Quadrics”. In: Intl. J. High Performance Comput-

ing Applications 19.4 (Nov. 1, 2005), pp. 453–463. doi: 10.1177/1094342005056145.

[104] W. Yu, J. Wu, and D. K. Panda. “Fast and Scalable Startup of MPI Programs in

InfiniBand Clusters”. In: High Performance Computing – HiPC 2004. Ed. by L. Bougé

and V. K. Prasanna. Vol. 3296. Lecture Notes in Computer Science. Springer, 2005,

pp. 440–449. doi: 10.1007/978-3-540-30474-6_47.

[105] M. Zagha and G. E. Blelloch. “Radix sort for vector multiprocessors”. In: Proc.

ACM/IEEE Supercomputing Conference. 1991, pp. 712–721. doi: 10.1145/125826.

126164.

[106] J. Zounmevo and A. Afsahi. “Investigating Scenario-Conscious Asynchronous Ren-

dezvous over RDMA”. In: Proc. IEEE Intl. Conf. Cluster Computing. 2011, pp. 542–

546. doi: 10.1109/CLUSTER.2011.65.

http://dx.doi.org/10.1109/ICPP.2012.28
http://mathworld.wolfram.com/CayleyTree.html
http://dx.doi.org/10.1177/1094342005056145
http://dx.doi.org/10.1007/978-3-540-30474-6_47
http://dx.doi.org/10.1145/125826.126164
http://dx.doi.org/10.1145/125826.126164
http://dx.doi.org/10.1109/CLUSTER.2011.65

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Motivation
	Research Objectives
	Contributions
	Outline

	Background
	Cluster Hardware
	Programming Models
	Message Passing Interface
	Effects of Process Arrival Pattern and Operating System Noise
	Non-blocking Communication Progression
	InfiniBand
	Summary

	Offloaded Point-to-point Rendezvous Progression
	Background and Related Work
	Design for Offloading Non-blocking Point-to-point Communication
	Experimental Results and Analysis
	Summary

	Flat and Hierarchical Non-blocking Offloaded Collectives
	Related Work
	Non-blocking Collective Design
	Flat Collective Design
	Hierarchical Collective Design
	Experimental Evaluation and Analysis
	Summary

	Process Arrival Pattern Tolerant Pipelined Hierarchical Offloaded Collectives
	Motivating Example
	Related Work
	Design of the Pipelined Collective
	Implementing the Pipelined Collectives
	Performance Evaluation
	Summary

	Conclusions and Future Work
	Summary of Findings
	Future Work

	Bibliography

