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Abstract

High-Performance Computing (HPC) represents the flagship domain in providing high-

end computing capabilities that play a critical role in helping humanity solve its hardest

problems. Ranging from answering profound questions about the universe to finding a cure

for cancer, HPC applications span nearly every aspect of our life. The impressive power

of HPC systems comes mainly from the massive number of processors—in the order of

millions—that they provide. The efficiency of communications among these processors is

the main bottleneck in the overall performance of HPC systems.

This dissertation presents new algorithms for improving the communication performance

in HPC systems by exploiting the topology information. We propose a parallel topology-

and routing-aware mapping heuristic and a refinement algorithm that improves the com-

munication performance by achieving a lower congestion across the network links. Our

experimental results with 4,096 processors show that the proposed approach can provide

more than 60% improvement in various mapping metrics compared to an initial in-order

mapping of processes. Communication time is also improved by up to 50%. We also propose

four topology-aware mapping heuristics designed specifically for collective communications

in the Message Passing Interface (MPI). The heuristics provide a better match between the

collective communication algorithm and the physical topology of the system, and decrease

the communication latency by up to 78%.

Furthermore, we expand topology-aware communications into the scope of accelerated

computing. Using accelerators—especially Graphics Processing Units (GPUs)—to speed up
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certain types of computations plays an increasingly important role in HPC. We present a

unified framework for topology-aware process mapping and GPU assignment in multi-GPU

systems. Our experimental results on two clusters with 64 GPUs show that the proposed

approach improves communication performance by up to 91%.

Finally, we present a novel distributed algorithm that uses the process topology in-

formation to design optimized communication schedules for MPI neighborhood collectives.

The proposed algorithm finds the common neighborhoods in a distributed graph topology

and exploits them as an opportunity to improve the communication performance through

message combining. The optimized schedules reduce the communication latency of MPI

neighborhood collectives by more than 50%.
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Chapter 1

Introduction

Mathematical models and numerical simulations play a pivotal role in today’s science and

engineering by enabling the study of complex phenomena that would be too expensive or

dangerous to study by direct experimentation. However, these techniques require such an

enormous computational capability that significantly exceeds what is provided by ordinary

computers. In this regard, High-Performance Computing (HPC) or supercomputing is the

broad domain in which novel computing architectures and techniques are investigated to

provide high-end computing power. Thanks to HPC, simulation is now being used as an

integral part of manufacturing, design, and decision-making processes, and as a fundamental

tool for scientific research. Weather prediction, energy research, design of vehicles and

aircraft, finding oil, computational chemistry, computational medicine, understanding the

evolution of the universe, and online fraud detection are just a few representative examples

of domains for the application of HPC.

It is well established that parallel processing is the key approach to satisfy the ever in-

creasing demands for more computational power in HPC. For this purpose, an application

is decomposed into a number of tasks that can be executed simultaneously. Each task is

assigned to a process/thread which is in turn executed by one of many processing elements.

Accordingly, HPC systems are designed and engineered to provide substantial computa-

tional power by supplying an ever-increasing number of processors that enables the parallel
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execution of an application’s tasks. Such increases in computational power have successfully

brought HPC to the Petascale Era with systems capable of performing operations at the

scale of 1015 FLoating-point Operations Per Second (FLOPS). Presently, the top publicly

known supercomputers in the world such as Sunway TaihuLight, Tianhe-2, and Sequoia

[117] provide users with millions of processors. However, the size and complexity of the

problems in HPC demand such a high computational capability that not only saturates the

impressive power of the top supercomputers in the world, but also goes beyond it. Thus,

the HPC community is striving to expand the computational boundaries even further by

moving toward the Exascale Era (1018 FLOPS).

The efficient utilization of the abundant hardware resources in HPC systems hinges

upon having software layers that can provide an easy-to-use abstract model of the parallel

system. This issue becomes particularly important when we consider the complexity and

the large scale at which HPC systems are deployed. In this regard, a key challenge is to

deliver as much performance to the upper-layer users as the system has to offer. A well-

known bottleneck to achieving this goal is the performance of communications within a

parallel system. In parallel applications, a significant amount of communication is required

among the processing nodes to coordinate the concurrent execution of the job. Therefore,

the efficiency of inter-process communications is a key factor in the overall performance of

HPC systems. In addition, the rapid increase in the number of processing elements and

the speed gap between communication and computation have made communication the

performance bottleneck. As a result, decreasing communication overheads continues to be

an important paradigm of performance enhancement in HPC systems.

In this dissertation, we discuss how topology information can be utilized to improve the

performance of communications in HPC. Topology information includes the physical topol-

ogy of the target system, as well as the virtual process topology of the parallel application.

Our main focus will be on the Message Passing Interface (MPI) [85] as it represents the

most successful and widespread parallel programming paradigm in HPC.
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1.1 Motivation

As we move toward the Exascale Era, both the number of nodes in a system and the number

of cores within each node are increasing. HPC systems are becoming more and more com-

plex, introducing increasing levels of heterogeneity in communication channels. Inter-node

communications that traverse the dedicated network for interconnection of a large number

of nodes are generally slower than the intra-node communications that use conventional read

and write operations on memory that is shared by a modest number of processors within the

same node. We also see various levels of communication performance within the network it-

self or inside a single node. Messages that pass across a larger number of links and switches

suffer more in terms of latency. Similar issues exist within modern multicore nodes due

to Non-Uniform Memory Access (NUMA) effects and multiple levels of cache hierarchies.

For instance, communications among the cores within the same chip in a single physical

socket (intra-socket communications) are considerably faster than communications among

those that belong to different sockets (inter-socket communications). The former can take

advantage of high-speed shared L2/L3 caches, whereas the latter has to pass through (rela-

tively) slower links such as Intel QuickPath Interconnect (QPI) [4] or AMD HyperTransport

(HT) [49]. This challenges the assumptions made by commonly used HPC programming

paradigms, threatening the performance efficiency of new systems. Most parallel program-

ming paradigms—in particular MPI—have been designed in a topology-agnostic fashion

that assumes a uniform communication performance among the system processors.

The variation in performance across different communication channels within modern

HPC systems makes it necessary to consider topology information at higher levels such as

in MPI. Topology awareness can help to achieve more efficient utilization of the underlying

communication channels, leading to higher-performance communications at the application

level. In particular, topology-aware process mapping has been shown to be a promising and

necessary approach to improve communication performance in modern large-scale systems
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[7, 101, 45, 11]. Mapping processes based on the communication pattern of an application

and the physical topology of the underlying system can prevent communication over slower

channels and message transmission over long paths.

Topology-aware mapping can also reduce the amount of congestion at various levels of

the system hierarchy. Congestion is known to be an important factor that can adversely

affect communication performance. It has been shown that communications can suffer up

to 6.5 times lower in bandwidth, and 5 times higher in latency in existing InfiniBand [51]

installations because of congestion [44]. Current trends suggest that network congestion will

worsen in future systems. The increase in the size and scale of modern systems increases

the amount of traffic that traverses the network. Although network devices are scaled up

to meet the requirements of large scale systems, they still lag behind the rate at which the

number of processing nodes are increased [114]. Therefore, we will see under-provisioned

networks in exascale systems, leading to higher amounts of congestion. In addition, the

advent of many-core processor chips exacerbates the situation by increasing the contention

at each interface to the network as well as within the network [75]. Also, as systems scale

up, network diameter typically increases, which causes messages to traverse more links to

reach their destinations. Consequently, each link will be shared among a higher number of

messages, provoking more congestion [14].

Although various topology-aware mapping techniques have been proposed by different

researchers, the NP-hard nature of the problem on one hand, and the rapid increase in the

size and complexity of modern systems on the other hand have kept the issue as an open

problem which demands further study. In particular, designing heuristics that can provide

high-quality mapping results and yet show good scalability in computational complexity

is of utmost importance for large-scale systems. Topology awareness can also be used to

provide a better match between the communication algorithms used internally by the MPI

libraries and the physical topology of the target systems.

In addition, high-performance computing is evolving towards hybrid accelerator-based
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architectures. Particularly, using Graphics Processing Unit (GPU) to accelerate certain

computations of an application is becoming the mainstream in HPC. This is particularly

true in the context of recent deep learning applications that have brought a new widespread

attention to HPC. Such hybrid systems introduce new challenges and complexities with

respect to topology awareness and communications performance.

The ever-increasing scale of supercomputers also demands new parallel algorithms at the

application level that can scale with increases in the number of cores. In this regard, new

algorithms attempt to reduce or avoid global communications among the parallel processes

of an application. Instead, they attempt to limit the communications to a sparse neigh-

borhood of each process. In order to provide support for such inherently more scalable

algorithms, MPI-3.0 [85] added neighborhood collective communications into the process

topology interface of the standard. Neighborhood collectives provide another opportunity

to optimize communications by exploiting topology information.

1.2 Problem Statement

This dissertation addresses the following list of questions.

1. How can we optimize process placement in large-scale HPC systems with respect to

the congestion that is incurred across the communication channels? How can we do

this without adding excessive overhead? What are the missing components of current

topology-aware mapping frameworks and how can they be resolved?

2. How can topology-aware mapping be used to fine-tune collective communications in

MPI? More specifically, how can we design fast mapping algorithms that are specifi-

cally tailored for certain collective communication patterns?

3. How can topology-aware mapping help to improve communication performance in

hybrid GPU clusters? In particular, how can we design a framework so as to optimize
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process-to-node mapping and GPU-to-process assignment across a system consisting

of multicore multi-GPU nodes?

4. How can we improve the performance of the sparse neighborhood communications

that have recently been added to MPI? How can we extract useful information from a

distributed process topology and exploit it to design nontrivial communication sched-

ules for neighborhood communications in MPI?

1.3 Contributions

In Chapter 3, we propose a parallel mapping heuristic and a parallel refinement algorithm

that exploit topology and routing information to decrease congestion within the network.

For InfiniBand clusters in particular, we take into account the static assignment of routes

across the links. The heuristic attempts to minimize a hybrid metric that is used to evaluate

candidate mappings from multiple aspects. The refinement algorithm attempts to directly

reduce maximum congestion by refining the mapping output from the greedy heuristic. We

take advantage of parallelism in the design and implementation of our proposed algorithms.

We believe parallelism is the key for having a truly scalable topology-aware mapping ap-

proach in current and future HPC systems.

In Chapter 4, we propose four fine-tuned mapping heuristics for various communication

patterns and algorithms commonly used in MPI allgather collective communication. The

heuristics provide a better match between the collective communication pattern and the

topology of the target system, and outperform generic approaches in terms of solution

quality and overhead.

In Chapter 5, we take topology awareness into the domain of heterogeneous GPU clus-

ters and propose a mapping approach for GPU clusters. Our proposed approach provides

a unified methodology for topology-aware process-to-core mapping and GPU-to-process as-

signment in multicore multi-GPU clusters.
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In Chapter 6, we propose a distributed algorithm to design optimized communication

patterns and schedules for MPI neighborhood collectives. More specifically, we show how

to find the common neighborhoods in a generic distributed process topology graph, and

exploit them to optimize communication performance through message combining.

1.4 Organization of Thesis

The remainder of this dissertation is organized as follows. In Chapter 2, we provide a brief

overview of the background material related to this dissertation. In Chapter 3, we discuss

our proposed algorithms for parallel topology- and routing-aware process mapping. Chapter

4 presents our proposed mapping heuristics for various communication patterns used for

allgather collective communication. Chapter 5 is devoted to our proposed framework for

topology-aware process mapping and GPU assignment in GPU clusters. In Chapter 6,

we explain our proposed approach for designing optimized communication schedules for

MPI neighborhood collective communications. Finally, in Chapter 7, we present concluding

remarks and potential directions for future work.
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Chapter 2

Background

2.1 Parallel Computers

There are various architectures based on which parallel computers are built. Among them,

clusters have gained a higher level of acceptance due to multiple benefits they provide. These

include a high performance-cost ratio, flexibility in configuration, wide range of available

software, etc. At the time of writing this document, 86.4% of the top 500 supercomputers in

the world are clusters [117]. An HPC cluster consists of a number of independent commod-

ity compute nodes connected to each other by a high-performance interconnect. Each node

itself can have multiple processors in a Symmetric Multiprocessor (SMP) or NUMA config-

uration. In an SMP configuration, access performance to all parts of the system memory is

the same for all the processors, whereas in a NUMA configuration the access performance is

non-uniform. The reason is that in a NUMA architecture the system memory is partitioned

into multiple portions each of which is closer to a certain group of processors (see Fig.

3.1(b) for an example). Thus, each processor can access its own local memory faster than

the remote memory that is local to other processors. Massively Parallel Processors (MPP)

are another important class of parallel computers. MPP systems consist of a large number

of computing elements connected to each other by a custom-designed interconnect. MPPs

are characterized by their use of proprietary components such as proprietary operating
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Parallel application

Message passing library (MPI)

Low-level user-level messaging layer

Network

Figure 2.1: A schematic diagram showing where MPI stands in a parallel system

systems, special hardware, dedicated network for certain communications, etc. Therefore,

MPPs most often provide a higher level of computational power compared to commodity

clusters, but are at the same time much more costly to acquire.

2.2 Message Passing Interface

The Message Passing Interface (MPI), is the de facto standard for parallel programming

in HPC, and is maintained by the MPI Forum [85]. Like every other programming model,

MPI provides an interface between the high-level application and the lower-level system

architecture. As shown in Fig. 2.1, MPI decouples parallel applications from the underlying

communication layers. Originally, MPI was designed for distributed-memory programming,

with the first version of the standard released in 1994. Since then, MPI has gradually

(and successfully) evolved into a comprehensive parallel programming system that provides

support for various models including Partitioned Global Address Space (PGAS) [96] and

shared memory. The current version 3.1 of the standard was released in June 2015.

MPI provides a message passing library interface specification that can be used by both

developers and users of message passing libraries. It also acts as the lower-level mechanism

for implementing other higher-level parallel programming models [110, 24] such as PGAS

languages [123]. Note that MPI itself is not a message passing library implementation, but
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rather the specification of what such a library should be to provide portability, scalability,

and efficiency. There exist multiple implementations for MPI, including both commercial

and non-commercial versions. MPICH [86], MVAPICH [87] and Open MPI [92] represent

three of the most popular, non-commercial, and open-source MPI libraries. In particular,

MPICH deserves a specific recognition as it forms the basis for many other implementations

of MPI. For instance, MVAPICH2 is an MPICH derivative tailored to exploit the features

provided by well-known high-performance interconnects that are commonly used in HPC

clusters.

At its core, MPI provides a means to achieve high-performance communication among

the parallel processes of an application. Communication is realized through explicit move-

ment of data from the address space of one process to the address space of another1. In the

following sections, we review the key concepts related to communications in MPI.

2.2.1 Groups and Communicators

MPI uses the concept of groups and communicators to define the scope and context of

all communications. A group defines an ordered collection of processes based on which

each process is assigned a rank between zero and N − 1, where N denotes the number of

processes. Process ranks provide a mechanism to uniquely identify each process within a

group. MPI groups are used within communicators to designate the participants in each

communication. In addition to a group instance, each MPI communicator contains a com-

munication context which provides the ability to have separate communication universes. A

message sent in one context cannot be received in another context. Consequently, all MPI

communication operations use a communicator to describe the participants and the context

of communications. The standard defines a predefined communicator MPI COMM WORLD that

includes all the processes of an application. The standard provides various Application

1It is worth noting that the standard does not mandate an MPI process to be an operating system process.
MPI processes are implementation-dependent objects. Thus, as far as the standard is concerned, two MPI
processes can share the same operating system process.
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Programming Interfaces (APIs) that can be used to duplicate a communicator or create

sub-communicators. It is worth noting that a process can be a member of more than one

communicators, and will have a separate rank with respect to each.

2.2.2 Point-to-Point Communications

MPI provides support for different types of communications. Point-to-point or two-sided

communications represent the basic communication mechanism of MPI that allows for send-

ing and receiving messages between two individual processes. These communications use

send/receive semantics which require explicit involvement of both source and destination.

The source process issues a send operation for which a matching receive must be posted by

the destination process.

The standard defines blocking and nonblocking versions of send/receive operations. A

blocking send operation returns only when it is safe to reuse (modify) the send buffer. Safety

here means that any changes to the buffer will not impact the content of the data that was

passed to the send operation. However, it does not necessarily mean that the data has been

received by the receiving side, or even started to be sent to it. The implementation might

simply use an intermediate system buffer to copy the data passed to the send operation

and thus safely return from a blocking send operation. A blocking receive operation returns

only when the data is received at the application receive buffer.

On the other hand, a nonblocking send/receive operation returns immediately and leaves

the responsibility for the safety of buffer modification to the programmer. These type of

operations provide opportunity for communication/computation overlap where the process

issues only a request to send/receive a message and continues its remaining computations.

With appropriate support (e.g., network offloading mechanisms [37]), the communication

request can proceed transparently without interrupting the ongoing computations. The

standard defines a family of operations (test and wait) to test/block for/until the comple-

tion of nonblocking operations.
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2.2.3 Collective Communications

Collective communications provide an abstraction for communications among a group of

processes rather than just two. MPI defines multiple collective communication operations

such as barrier, broadcast, allgather, alltoall, allreduce, etc. The barrier operation provides

support for explicit synchronization across the processes, whereas the other operations en-

able a certain type of collective data exchange among the processes. Collective commu-

nications are widely used in parallel applications [100] because they provide a convenient,

portable, and yet highly optimized way to conduct one-to-many and many-to-many com-

munications. Consequently, MPI collective communications performance has a substantial

impact on the overall performance of parallel applications. Accordingly, an extensive body

of research has been devoted to optimize the performance of collective communications in

MPI [2, 29, 66, 70, 116].

MPI collectives are often implemented as a series of point-to-point communications.

Such implementations are also known as unicast-based algorithms which distinguishes them

from hardware-based implementations that exploit special hardware supports such as hard-

ware multicast. A common feature among unicast-based collective algorithms is that the

communication is scheduled over a sequence of stages the union of which provides the

desired collective data movement. In each stage, communication happens among a partic-

ular permutation of source-destination processes. The permutations used in each stage by

the collective algorithm make up the internal communication pattern of the correspond-

ing collective operation. Different collective communication algorithms might very well use

different permutations, resulting in different internal communication patterns for a single

collective.

Various algorithms have been proposed in the literature to decompose collectives into

a corresponding set of point-to-point communications. In practice, MPI libraries make use

of a combination of such algorithms and choose one of them based on different parameters
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such as message and communicator size. A comprehensive set of such algorithms for various

MPI collective operations (such as broadcast, allgather, alltoall, etc.) can be found in the

work done by Thakur et al. [116]. We refer to these algorithms as generic algorithms.

These generic algorithms provide the basis for many other tuned collective communication

algorithms proposed in the literature [59, 70, 78]. In the remainder of this section, we briefly

describe the commonly used algorithms in an MPI Allgather operation as it is necessary

for Chapter 4 of this dissertation.

Commonly used algorithms in MPI Allgather

MPI allgather is a many-to-many collective communication where each process gathers

data from every other process in the communicator. An allgather communication can be

equivalently considered as an all-broadcast communication where each process has a message

that has to be transmitted to every other process. The allgather operation is a data-intensive

collective communication that can contribute significantly to the communication time of an

application. It can also used as a building block for other collective operations such as

broadcast and allreduce.

Non-hierarchical algorithms Previously, collective algorithms have been designed in a

non-hierarchical approach for flat systems and executed across all processes in the system.

For allgather in particular, recursive doubling and ring [116] are two of the most commonly

used algorithms. Recursive doubling consists of log2N stages, where N denotes the total

number of processes in the communicator. At each stage s, where s = 0, 1, . . . , log2N − 1,

rank i exchanges data with rank i ⊕ 2s, where ⊕ represents the binary XOR operator.

Consequently, each rank such as i exchanges messages with ranks i⊕1, i⊕2, i⊕4, . . . , i⊕ n
2

throughout the stages of the recursive doubling algorithm.

Fig. 2.2 shows an example for the recursive doubling pattern with 8 processes. There

exist three communication stages distinguished from each other by three different colors.
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Figure 2.2: The recursive doubling communication pattern with 8 processes. There exist 3
communication stages: stage 0 (red), stage 1 (blue), and stage 2 (green).

The numbers on each edge denote the specific stage number. For instance, rank 0 and rank

1 exchange their input buffers in stage 0. In stage 1, rank 0 and rank 2 exchange their input

buffers as well as the data they received in the previous stage, and so on. Note that the

volume of the exchanged messages is doubled at each stage of the algorithm. It is also worth

mentioning that recursive doubling is mainly used for a power-of-two number of processes.

In the ring algorithm, all processes are organized into a logical ring in order of their

ranks. At each stage, rank i receives a message from rank i−1 and sends a message to rank

i+1. In the first stage, rank i sends its own data to rank i+1. In the following stages, rank

i forwards to rank i+ 1 the data it received from rank i− 1 in the previous stage. With N

processes, the algorithm runs forN−1 stages. Figure 2.3 shows an example with 4 processes.

It shows the state of the output buffer of each process at each communication stage. The

data corresponding to each process has been represented by its rank, and the blue arrows

designate the source-destination buffer offsets that are used at each communication stage.

The main benefit of the recursive doubling algorithm comes from its logarithmic log2N

number of stages. This makes recursive doubling a great choice when communication perfor-

mance is dominated by the startup latencies that are associated with preparing the message

and injecting it into the network. Thus, MPI libraries use the recursive doubling algorithm
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Figure 2.3: The ring communication pattern with 4 processes. There exist 3 communication
stages with the same source-destination processes at each stage (the green ring).

for allgather communications that involve smaller messages. For larger messages on the

other hand, MPI libraries mainly use the ring algorithm. The reason is that the ring algo-

rithm tends to cause a lower congestion due to its more localized communication pattern.

Thus, despite its larger number of stages (N − 1), it can deliver a better performance than

recursive doubling for larger messages because larger messages are more sensitive to band-

width and congestion rather than startup latencies. However, as we will discuss in Chapter

4, it is important to take into account the system topology and the process placements in

order to achieve the desired performance from a collective communication algorithm.

Hierarchical algorithms Hierarchical algorithms are executed across the nodes/sockets

rather than the processes to take advantage of hierarchical communication costs. Typically,

for each node, a communicator is created to contain all the processes residing on that node.

One process on each node is selected as the leader of that node. The allgather algorithm

will then proceed in three phases:

1. gathering intra-node messages into node leaders

2. exchanging the gathered data between all the node leaders, using a recursive doubling/ring-

based allgather algorithm



2.2. MESSAGE PASSING INTERFACE 16

K = 0 K = 1 K = 2 K = 3

K = 0 K = 0

K = 
1

         

K = 0

K = 1K = 2

Figure 2.4: Binomial trees of order k = 0, 1, 2, 3. The dashed boxes show how lower order
trees are recursively used to build the higher order ones.

3. broadcasting the data from each leader process to its local intra-node ranks

The gather and broadcast in phase 1 and 3 might use a direct linear pattern or an indirect

non-linear algorithmic design. In the linear design, all ranks use shared memory to directly

send (receive) data to (from) the root process, whereas in the non-linear design, message

transmissions follow the particular communication pattern used by the gather (broadcast)

algorithm. In this regard, binomial tree is one of the well-known communication patterns

used for the gather and broadcast operations [116].

A binomial tree is defined with respect to an order k. The height of the tree is equal to

the order k, and the total number of nodes in the tree is equal to 2k. A binomial tree of

order k can be defined recursively as follows:

• The binomial tree of order 0 consists of a single node.

• The binomial tree of order k > 0 consists of a root node with k children that are

binomial subtrees of orders k − 1, k − 2, . . . , 1, 0, respectively.

Figure 2.4 shows the binomial trees of order 0, 1, 2, and 3. The trees have been colored to

show how lower order trees are used as the child nodes to build the trees of higher orders.
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Figure 2.5: Binomial broadcast with 8 processes. Different edge colors have been used to
distinguish among different communication stages. The label on each edge designates the
specific stage of each communication.

Using a binomial tree for broadcast maximizes the number of processes that con-

tribute/help in sending the message to all destinations. This results in a lower number

of communication stages which will in turn decrease the total latency of broadcast. With

N processes, the total number of communication stages will be log2N . Figure 2.5 shows

an example of a binomial broadcast with 8 processes and rank 0 as the root. The edge

labels represent the corresponding stage of each communication. Once a process receives

the broadcast message, it acts as the root of a broadcast in its own subtree and keeps on

sending the message to all its children until the last stage of communications. This is in

contrast to a binary (k-ary) tree in which each root process will send only two (k) messages

and then remain idle, regardless of the total number of processes. Binomial tree is also used

for a gather operation. The pattern will be same as the binomial broadcast used in reverse

(bottom-up). Each process gathers the messages from all of its child processes and sends

the resulting message to its parent process.
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2.2.4 One-Sided Communications

In one-sided communication, a process (called origin) can send/receive a message to/from

another process (called target) without involving it in the communication process. The

origin process provides all required communication parameters for both the sending and

receiving sides. This type of communication is also referred to as Remote Memory Access

(RMA) since it allows one process to remotely access the memory of another process. We

do not use one-sided communications in this dissertation, hence we refrain from discussing

any more details about MPI RMA.

2.2.5 MPI Topology Interface

MPI provides a mechanism to define a logical topology for the set processes of an application.

The process topology is attached as an additional and optional attribute to a corresponding

communicator. In MPI terminology, process topology is also referred to as the virtual

topology to avoid confusion with the system physical topology. Virtual topology provides

a convenient naming mechanism for the set of processes in a communicator, but more

importantly, it can be used to express a certain communication pattern among the processes.

Information about the communication pattern of an application can later be exploited

to improve the overall performance in different ways. For instance, the runtime system

might make use of the virtual topology information to conduct topology-aware mapping

optimization.

The topology interface of MPI provides two main interfaces for describing process topolo-

gies: (1) the graph interface, and (2) the Cartesian interface. The graph interface provides

the most generic way of defining process topologies in MPI. Each vertex of the graph

represents a process and the edges describe the communication relationships among the

processes. The MPI-1.0 standard (released in 1994) defines a general graph constructor

(MPI Graph create()) that can be used to build a directed and unweighted topology graph.
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Unfortunately, this interface has a number of substantial shortcomings that make it almost

useless [6, 9, 118]. Accordingly, the MPI-2.2 standard (released in 2009) defines the dis-

tributed graph topology functions which provide a more scalable and informative topology

interface. In the new interface, the graph topology is defined in a fully distributed fashion,

where each process describes only a fraction of the whole communication graph. It is also

possible to assign relative weights to the communication edges. Moreover, an additional

info argument can be passed to the interface which provides the user with more control

over further optimizations related to process topologies. For instance, the info argument

can be used to designate various optimization criteria for process mapping, as well as to

influence the interpretation of edge weights.

In particular, MPI-2.2 defines two distributed graph constructors: MPI Dist graph cre-

ate adjacent() and MPI Dist graph create(). In the former, each process only specifies

its own outgoing and incoming neighbors, whereas in the latter each process can specify

an arbitrary set of edges that may or may not include its own neighbors. The adjacent

specification has the advantage that the neighborhood information is already available lo-

cally at each process, whereas in the non-adjacent specification, extraction of neighborhood

information might need communication among the processes. A minor disadvantage of the

adjacent specification is that each edge is supplied twice; once by each of its endpoints.

Although the graph topology functions can be used to describe any virtual process

topology, it is easier and more efficient to use the Cartesian interface to describe certain

process topologies. These include n-dimensional grid-based mesh/torus topologies that can

be entirely defined by the number of dimensions and the number of processes along each

dimension. Accordingly, MPI provides a number of functions that allow for creation and

manipulation of Cartesian topologies. In particular, the function MPI Cart create() cre-

ates a new communicator with a Cartesian topology of a desired number of dimensions.

The user can also specify whether each dimension is periodic or not, i.e., whether there is a
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wraparound link that connects the edge processes to each other. In a Cartesian communica-

tor, each process can be addressed by its coordinates along each dimension of the Cartesian

topology. Note that a Cartesian topology can only specify communications among immedi-

ate neighbor processes. For instance, it cannot be used to describe communications between

diagonal neighbors. Moreover, it does not support weighted edges.

2.2.6 Neighborhood Collective Communications

The topology interface does not add any communication functions to MPI; it mainly helps

to describe virtual process topologies. However, the MPI-3.0 standard (released in 2012) in-

troduced neighborhood collectives which add communication functions to the process topolo-

gies. Similar to the conventional collective communications, neighborhood collectives pro-

vide an abstraction for communications among a group pf processes. However, there are

fundamental differences between the conventional collective communications and the more-

recently introduced neighborhood collectives.

Despite their importance and extensive use in parallel applications, the conventional

collectives suffer from certain restrictions. They have inherent scalability limitations due

to the global nature of their communications that encompasses all the processes in a given

communicator. This concern is especially important at the exascale level where certain

collective patterns (e.g., all-to-all) tend to become too costly to be practical. In addition,

MPI collectives model only a fixed set of predefined communication patterns such as broad-

cast, allgather, etc. Any other desired patterns must be manually implemented by the

programmer using individual point-to-point communications.

Neighborhood collectives attempt to address these shortcomings. The specific com-

munication pattern of a neighborhood collective is defined by the topology graph of the

processes. More specifically, each process will communicate with any other process that is

defined as one of its outgoing/incoming neighbors. Thus, unlike conventional collectives,

neighborhood collectives allow users to define their own communication patterns through
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the process topology interface of MPI. In this sense, neighborhood collectives vastly extend

the concept of collective communications in MPI and represent one of the most advanced

features of the standard. In addition, neighborhood collectives tend to be more scalable,

by restricting communications to a local neighborhood of each process. They also pro-

vide support for sparse communication patterns [46] found in many applications such as

Nek5000 [88], Qbox [39] and octopus [18]. Although such sparse collective communications

can be implemented using point-to-point operations, the neighborhood knowledge provided

by the virtual topology can be exploited to implement such communication patterns more

efficiently. This approach will also lead to performance portability and higher levels of

readability and maintainability of the application code.

Currently, the standard defines two main neighborhood collective operations: MPI Neigh-

bor allgather() and MPI Neighbor alltoall(). In a neighbor allgather operation, each

process sends its data to each of its outgoing neighbors designated by the process topology

graph, and receives the data from each of its incoming neighbors. The neighbor alltoall

operation has the same communication pattern. The difference is that in neighbor allgather

the same message is sent to all outgoing neighbors of a process, whereas in neighbor alltoall,

a different message is sent to each outgoing neighbor of a process. Figure 2.6 shows a partial

process topology graph and the input/output buffers corresponding to a neighbor allgather

and neighbor alltoall operation. Note that the figure only shows the communications from

the viewpoint of a single process p1. Similar communications are conducted at every other

process in the topology graph with respect to their own outgoing/incoming neighbors.

2.3 High-Performance Interconnects

InfiniBand (IB) [51] is the most popular switched interconnect in HPC systems. At the time

of writing this document it is being used in 37.4% of the top 500 supercomputers in the world

[117]. The InfiniBand Architecture (IBA) was first standardized in October 2000 [51] by the
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Figure 2.6: A sample process topology with the buffer states corresponding to the neighbor
allgather and neighbor alltoall operations from the viewpoint of a single process p1.

InfiniBand Trade Association (IBTA); a group of 180 or more companies organized in 1999

to develop IBA. The main goal of IBA is to provide an industry-standard high-bandwidth

low-latency communication technology that can replace proprietary or low-performance

communication architectures in HPC domain. There is a fundamental distinction between

InfiniBand and other conventional networks such as Ethernet. In a conventional network,

the TCP/IP protocol stack and the network interface card (NIC) are owned by the operating

system (OS). In order to communicate, applications request the OS to do the message

transfer on their behalf. In contrast, InfiniBand provides a messaging service that can

directly be accessed by an application for either storage or inter-process communications

[38]. This means that applications no longer rely on OS to provide them with communication

services.

An InfiniBand network consists of at least one subnet. A subnet is a group of endnodes

interconnected using switches and point-to-point links. IBA links are bidirectional and may

be either copper or optical fiber. Within a single subnet, routing is done based on Local

Identifiers (LIDs) assigned to endnodes and switches. Channel Adapters (CAs) provide the
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required interface between an endnode and a link. The channel adapter used for a host is

called the Host Channel Adapter (HCA), whereas the channel adapter used for a device

is referred to as the Target Channel Adapter (TCA). InfiniBand defines two semantics for

message transmissions: channel semantic (Send/Receive), and memory semantic (Remote

Direct Memory Access, RDMA). In the channel semantic, the message is sent to the receiver

without the sender having explicit access to the buffers at the receiving side. Thus, it is up

to the receiver to handle the incoming message properly and deliver it to a corresponding

memory buffer. On the contrary, with the RDMA semantic, the sender (receiver) is given

explicit access to the address space of the receiver (sender) on a remote node. RDMA

is an important and desirable feature in HPC that provides support for communication

optimizations at higher levels such as MPI.

With respect to the topology, fat-tree is the most commonly used topology for InfiniBand

interconnects. In a fat-tree topology, the nodes are organized into a multi-level tree structure

with the compute nodes at the leaves and the switches at the upper levels. The bandwidth

of links is increased at each level of the tree as we go up to the root. Fig. 2.7(a) shows

a sample three-level fat-tree consisting of 8 compute nodes and 7 switches. However, such

single-rooted fat-trees are not practical to build because they require links and switches

of different bandwidths [125]. Instead, real installations use multi-rooted fat-trees such as

the one shown in Fig. 2.7(b) where the same switch and link type is used at all levels of

the tree. Such uniformity of switches and links is an important factor for the total cost of

the large-scale systems. The Stampede supercomputer at the Texas Advanced Computing

Center (TACC) with 6,400 compute nodes uses a fat-tree topology. It consists of eight

648-port core switches and over 320 36-port endpoint switches.

Another widely used network topology in HPC systems is n-dimensional mesh/torus.

In an n-dimensional mesh topology, the nodes are organized into an n-dimensional grid

and each node is directly connected to its immediate neighbors along each dimension. A

torus topology is similar to mesh except that the edge nodes are connected to each other
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(a) Single-rooted—The thicker lines represent the increasing link bandwidth to-
wards the root of the tree.

Switch Switch Switch Switch

Switch Switch

(b) Multi-rooted

Figure 2.7: Single- and multi-rooted fat-tree topologies.

through a wraparound link. 2-dimensional (2D), 3-dimensional (3D), and 5-dimensional

(5D) mesh/torus are among the most widely used mesh/torus topologies. Fig. 2.8 shows a

sample 3D mesh and 2D torus topology. The IBM Blue Gene series of supercomputers are

the most notable systems that use the mesh/torus topologies.

Mesh/torus topologies are low-radix large-diameter networks. In a low-radix network,

each node is directly connected to only a few other nodes. In contrast, multi-level di-

rect topologies such as Dragonfly [62] exploit high-radix switches to provide low-diameter

networks. High-radix switches provide more ports, allowing to establish more direct connec-

tions among the nodes. Multi-level direct topologies consist of a hierarchy of fully connected

nodes. At each level, a certain number of nodes are directly connected to each other to form

a clique. Each clique is then recursively used as a super node in the next levels. Fig. 2.9
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(a) 3D mesh (b) 2D torus

Figure 2.8: n-dimensional mesh and torus topologies.

Level 1

Level 2

Figure 2.9: A two-level Dragonfly topology with all-to-all connections. The first level groups
consist of 4 nodes. Each 4-node group becomes a super node at the second level.

shows a sample two-level Dragonfly topology. Dragonfly is the topology used in the latest

series of the Cray supercomputers (XC [26]).

Another common interconnect for HPC is 10G Ethernet, which has a system share of

35.6% among the top 500 supercomputers. However, a major drawback of 10G Ethernet

is its relatively higher latency which stems from the overheads associated with the kernel-

level TCP protocol stack. In this regard, the Internet Wide Area RDMA Protocol (iWARP
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[102]) helps to remove such overheads by offloading the protocol processing to hardware

and allowing the application to bypass the OS and communicate with the NIC directly. In

fact, iWARP implements some of the features of InfiniBand over Ethernet.
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Chapter 3

Topology- and Routing-Aware Process Mapping

In this chapter, we propose a Parallel Topology- and Routing-Aware Mapping (PTRAM)

approach to improve the communication performance by decreasing congestion. Specifically,

we propose a topology- and routing-aware process-to-node mapping heuristic as well as a

refinement algorithm. The proposed algorithms are parallel in nature, and take into account

the routing information so as to derive a better evaluation of congestion across the network

links. For InfiniBand clusters in particular, we take into account the static assignment

of routes across the links. Previous studies [44] show that most communication patterns

cannot achieve full bisection bandwidth in practical fat-tree InfiniBand networks. The

problem is not the number of available physical links; it is the static routing scheme which

might oversubscribe some links while leaving others idle. To the best of our knowledge, this

is the first work that takes into account the static routing scheme of InfiniBand to derive a

better process mapping.

In particular, we propose a greedy mapping heuristic accompanied by a mapping refine-

ment algorithm [82]. The greedy mapping heuristic attempts to minimize a hybrid metric

that is used to evaluate candidate mappings from multiple aspects. The refinement algo-

rithm on the other hand attempts to explicitly reduce maximum congestion by refining the

mapping output from the greedy heuristic. We take advantage of parallelism in the design

and implementation of our proposed algorithms. We believe parallelism is the key for having
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topology-aware mapping approaches with better scalability and lower order of complexity.

To the best of our knowledge, this is the first attempt in proposing parallel algorithms for

topology-aware process mapping.

3.1 Motivational Results

We conduct an experiment to shed more light on the heterogeneity of communications

performance within a parallel computing system. In our experiment, we measure the latency

and bandwidth of a single-pair communication at the intra- and inter-node levels of a small

InfiniBand cluster. To this end, we use an MPI microbenchmark with two processes. The

first process (source) iteratively calls the MPI nonblocking send function 1,000 times to send

messages to the second (destination) process. The second process issues 1,000 nonblocking

receive operations and waits to receive them all. After that, the second process sends an

acknowledgment to the first process to signal the completion of all message receptions. The

first process measures the total time and we report the corresponding averages for latency

and bandwidth. For the congestion experiments, we use two other processes residing on

two other nodes that keep communicating large messages with each other.

Fig. 3.1(a) and 3.1(b) respectively show the system topology at the network and node

levels. The system consists of four nodes connected to each other by three switches with a

tree topology. The network is QDR InfiniBand with 40 Gbps bandwidth per link and each

node uses a Mellanox ConnectX-2 HCA. In addition, each node has two 8-core Intel Xeon

Sandy Bridge sockets operating at 2.0 GHz with a total of 64 GB memory. The two sockets

are connected to each other by two Intel QPI links. Each socket forms a NUMA node with

32 GB of local memory and 20 MB of L3 cache.

Fig. 3.2 to 3.4 show the communication latency and bandwidth results. According to

Fig. 3.2, the intra-socket communications are shown to benefit from a lower latency com-

pared to the inter-socket communications across all message sizes. For small messages (Fig.
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Node 0 Node 1 Node 2 Node 3

(a) Inter-node topologySocket 2Socket 132GB RAM 32GB RAMHCA QPIQPI 32KB L1 256KB L2Core 1 32KB L1 256KB L2Core 2 32KB L1 256KB L2Core 3 32KB L1 256KB L2Core 4 Core 832KB L1256KB L2 Core 632KB L1256KB L2 Core 732KB L1256KB L2 Core 532KB L1256KB L2iMCPCIe 3.0 On-die PCIe20 MB Shared L3 QPI
(b) Intra-node topology

Figure 3.1: System topology at the inter- and intra-node levels.

3.2(a)), this comes from the fact that the cores within a single socket have a lower distance

from each other (L3 shared cache) compared to those belonging to different sockets. How-

ever, the lower latency of the intra-socket communications for medium and large messages

(Fig. 3.2(b) and 3.2(c)) is due to the higher bandwidth of the intra-socket channels com-

pared to the QPI links that connect the two sockets. This is also verified by Fig. 3.4(a)

where the intra-socket channel saturates at a higher bandwidth than the inter-socket one.
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Figure 3.2: Intra-node single-pair communication latencies for various message sizes.

For the inter-node level, we measure the communications performance for the following

three cases:

1. communication across a single switch (“1-switch”),

2. communication across 3 switches (“3-switch”),

3. communication across 3 switches in presence of congestion at the root of the network

topology tree (“3-switch cng”).

According to Fig. 3.3(a), we do not observe much of a difference in latency for small

messages. The reason is that small messages are more sensitive to start-up latency and

network distance rather than the channel bandwidth. In addition, the distance variation
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Figure 3.3: Inter-node single-pair communication latencies for various message sizes.
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Figure 3.4: Communication bandwidth variations at the intra- and inter-node levels
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in the experiments are not large enough to considerably affect the performance for small

messages. Nevertheless, as shown in Fig. 3.3(a), latency is slightly lower for 1-switch

communications. The difference will be more visible in a system with a larger network

diameter. For medium and large messages, 1-switch and 3-switch communications achieve

the same performance, whereas the 3-switch communications with congestion fall behind

them. This is because medium and large messages are mainly affected by the bandwidth

of the communication channel, and as the bandwidth is the same for both 1-switch and

3-switch cases, we do not see any difference in their corresponding performance. However,

the presence of congestion reduces the achievable bandwidth for communication, leading to

an increase in the latency of the 3-switch communication with congestion. This conforms to

the results shown in Fig. 3.4(b), where we see the exact same bandwidth for communication

across one and three switches without congestion, and a lower bandwidth for communication

in the presence of congestion. Finally, by comparing the results in Fig. 3.2 and 3.3, we see

that intra-node communications significantly outperform the inter-node ones.

3.2 Topology-Aware Mapping Overview

Topology-aware mapping attempts to optimize communications by exploiting the topology

information. Topology information includes the application process topology, which gives

the communication pattern of the processes running the application, as well as the physical

topology of the target machine. There are two reasons for why a nontrivial mapping can im-

prove the communication performance of an application based on the topology information.

First, we see a certain communication pattern among the processes of a parallel applica-

tion. Some pairs of processes communicate more often, some pairs send and receive higher

volumes of data, and some pairs might not even communicate at all. The communication

pattern is relatively sparse in many HPC applications. Second, as shown in Section 3.1, the

latency and bandwidth of the communication channels are not the same at different layers
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of the system hierarchy. Communication among particular cores can be significantly faster

than others. As a result, an intelligent mapping of processes can help to better match the

application communication pattern to the underlying communication channels.

In general, topology-aware mapping strategies can be broken down into the following

three phases:

1. extracting the communication pattern of the application (also known as the pro-

cess/virtual topology),

2. extracting the hardware topology information (physical topology),

3. mapping the process topology onto the physical topology by a mapping algorithm.

Naturally, both process and physical topologies are modeled by graphs, making topology-

aware mapping an instance of the graph embedding problem [105] which is known to be

NP-hard. Therefore, heuristics are used to find suboptimal solutions with respect to some

metric that is used to assess the quality of a particular mapping.

3.2.1 Extracting the Application Communication Pattern

The application communication pattern mainly represents the volume and/or number of

messages transfered among the processes. In particular, we use the total volume of messages

transferred between each pair of processes to model the communication pattern in terms of

a directed weighted graph. To this end, the application needs to be profiled first, for which

we have developed a profiler by instrumenting the MPI library. The profiler will capture

the volume and destination of all messages sent by each process. At each process, this

information is saved into a vector with one element per destination process. Each element

will represent the total volume of messages sent to a specific destination process. At the

end, the vectors from all processes are gathered in one place to build a communication

pattern matrix which is saved into a file for future use. We apply the instrumentation at
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the device layer of the MPI library so as to capture the pattern for both the point-to-point

and collective communications of an application.

It should be noted that the profiling is done only once for each application in an initial

profiling stage. Accordingly, It is assumed that the application communication pattern

remains (mostly) unchanged from one run to another. Such an assumption is valid for

many HPC applications and has widely been used in topology-aware mapping research.

3.2.2 Extracting the Hardware Physical Topology

Physical topology consists of two main parts: a) inter-node network topology, and b) intra-

node core topology. The physical topology information needs to be collected once for each

system. The network topology can usually be obtained by exploiting the topology-related

APIs provided by the software stack of the corresponding interconnect. For InfiniBand,

the OpenFabrics Enterprise Distribution (OFED) [91] protocol stack provides some tools

and low-level APIs to query the topology information. Some researchers have also designed

higher-level tools on top of these APIs to make network topology information more accessible

within a cluster [21, 111]. For our design, we use a modified version of the ibtracert tool

[91] to extract the route between each pair of nodes in terms of a sequence of switches and

ports. In addition, we have developed another tool based on the ibnetdisc [91] library to

extract all the network links. Each link is represented by the Local Identifier (LID) and

port number of its corresponding end points.

The intra-node core topology represents the specific NUMA node organization of cores

within each node. In this regard, the hwloc library [16] provides a portable way for acquiring

various information about the processors within a node including the number of sockets,

cache hierarchies, memory distribution across NUMA nodes, etc. It can also provide a

multi-level tree representation of the processing elements (cores/threads) based on such

information. It is worth noting that we do not use the intra-node topology information in

this chapter. However, we use it for our topology-aware collective design in Chapter 4.
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3.2.3 Mapping Metrics

Hop-bytes and dilation

Hop-bytes is the metric based on which the majority of mapping heuristics have been de-

signed [15, 80, 104, 101, 81, 56]. For each individual message, hop-bytes represents the

product of the message size and the number of hops traversed from source to destination.

The summation of such products over all communicated messages represents the hop-bytes

value of a given mapping. Accordingly, mapping algorithms attempt to assign the processes

to the processing elements so as to minimize the resulting hop-bytes value. Eliminating mes-

sage sizes from hop-bytes will result in dilation; another mapping metric that represents

the total number of hops traversed by the messages within the system. Thus, hop-bytes

can be considered as a weighted dilation, with the weights being the volume of messages.

Compared to dilation, hop-bytes has the advantage of taking into account the size of

messages when measuring hop counts. It is worth noting that with hop-bytes as the metric,

topology-aware mapping becomes a Quadratic Assignment Problem (QAP) [71] which is

known to be one of the hardest combinatorial optimization problems. In a QAP, there are

n facilities and n locations. The facilities have a weighted flow graph, whereas the locations

have a weighted distance graph. The goal is to map the facilities to the locations so that the

sum of the location distances multiplied by the flow weight of their corresponding facilities

is minimized.

Shortcomings of the hop-based mapping approaches

Most of the existing mapping heuristics have mainly been designed based on the distance

among the communicating peers [15, 80, 104, 101, 81, 56]. In other words, they attempt to

map the processes so as to decrease the number of hops traversed by messages. Decreasing

hop-count will potentially improve communication performance by a) avoiding additional

switch latencies, and b) reducing contention among messages by decreasing the amount of
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link-sharing among them.

However, distance-based mapping techniques have two main shortcomings. First, distance-

based mapping algorithms (based on dilation or hop-bytes) cannot capture the congestion

imposed on individual links, whereas congestion is known to be a major communication bot-

tleneck. In fact, a recent study [54] shows that the traditional metrics used for topology-

aware mapping do not correlate well enough with the application run-time performance.

Thus, even if the mapping heuristics built on top of such metrics can successfully optimize

the metrics, the resulting mapping can still be far from optimal with respect to the actual

application execution time.

Second, a pure distance-based approach will lose its effectiveness if the hop-count vari-

ations of the target topology is low. For instance, unlike mesh/torus topologies which

impose a large number of hops among certain nodes, fat-trees tend to have a lower network

diameter. In fact, the trend in HPC interconnects is moving toward the design and use of

high-radix low-diameter topologies. For instance, Dragonfly [62] is the topology of choice

for the Aries [3] interconnect used in the latest series of Cray supercomputers (XC [26]).

The maximum hop-count in these systems is 4 with non-minimal routing (2 with minimal

routing).

Congestion

Maximum congestion is another metric used in topology-aware process mapping. In this

context, congestion represents the cumulative traffic load that will pass through the network

links during the execution of an application. Therefore, it provides a static measure of

congestion across the links. More specifically, the congestion value of each individual link is

defined as the total volume of messages passing through that link, divided by the capacity of

that link. Formally speaking, let τ : P → N represent a mapping from the set of processes

P to the set of nodes N . Moreover, let L denote the set of all links in the target system. For

every pair of processes (p, q) ∈ P , we use L(p, q, τ) ⊆ L to denote the set of links used in the



3.2. TOPOLOGY-AWARE MAPPING OVERVIEW 37

path from τ(p) to τ(q). Moreover, we denote by SD(l, τ) the set of all source-destination

processes (p, q) ∈ GM for which the route from τ(p) to τ(q) involves link l. Note that

(p, q) ∈ SD(l, τ) if and only if l ∈ L(p, q, τ). Now, the congestion value of a given link l is

given by

Congestion(l) =

∑

(p,q)∈SD(l,τ)w(p, q)

c(l)
, (3.1)

where w(p, q) denotes the weight of communication between p and q, and c(l) represents

the capacity of link l. The maximum congestion metric of a mapping τ is then defined as:

Congestion(τ) = max
l∈L

Congestion(l). (3.2)

3.2.4 Process Mapping and Rank Reordering in MPI

In general, topology-aware mapping can be considered in the context of any parallel pro-

gramming paradigm. For MPI, the standard defines various topology-related APIs that can

be used to facilitate topology-related optimizations in MPI (see Section 2.2.5). In particu-

lar, MPI topology functions can be used to establish a desired mapping through the rank

reordering mechanism which allows us to change the default ranks that are assigned to each

MPI process. In this regard, the processes are initially mapped onto the set of allocated

nodes/cores by the process manager with a default rank assigned to each of them. After

that, we change (reorder) the process ranks so as to implicitly modify the mapping with

respect to our desired topology-aware outcome. MPI rank reordering can only change the

mapping within an initial allocation of nodes/cores. However, this is not a restriction as, in

real systems, node allocation is actually enforced by a system-wide resource manager. But,

it is technically possible to also enforce the topology-aware mapping results at the resource

manager layer.
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3.3 PTRAM: Parallel Topology- and Routing-Aware Mapping

In this section, we explain our proposed heuristic and refinement algorithms for topology-

aware assignment of processes to processing elements. We distinguish our design from the

existing mapping algorithms with four main aspects.

First, we use a hybrid metric in our heuristic which is more capable of distinguishing

among various candidate mappings in terms of their quality. Individual metrics such as

hop-bytes or maximum congestion could easily fail to differentiate two given mappings

that actually have different qualities. A previous study [54] on the performance of parallel

applications shows that hybrid metrics have a better correlation with application execution

time. However, hybrid metrics have not been used in any mapping algorithms.

Second, we take into account the underlying routing algorithm of the target system

and the actual distribution of routes across the network links. This makes our mapping

algorithms routing-aware, allowing them to capture the impacts of the underlying routing

on the mapping. Exploiting routing information also enables us to have a more realistic

measure of our mapping metric by keeping track of the load imposed over individual links.

Third, in most of the existing mapping heuristics, the quality metric is used for as-

sessment purposes only. In other words, the metric is not directly optimized within the

corresponding heuristic, and is rather used to measure the quality once the mapping is

figured out. In contrast, we attempt to optimize the metric directly at each step of our

proposed algorithms. In other words, our proposed heuristic uses the actual values of the

metric to decide where each given process shall be mapped.

Fourth, we exploit the parallelism capabilities of the target system in our algorithm

designs. To the best of our knowledge, this is the first attempt in proposing parallel al-

gorithms for topology-aware mapping. We believe parallelism is the key for having truly

scalable mapping algorithms for current and future HPC systems.
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Figure 3.5: Mapping framework. High-level abstraction of various steps and components.

Mapping framework

Fig. 3.5 shows a high-level abstraction of the framework that we use to perform the mapping.

It should be noted that a similar framework has been used in other topology-aware mapping

studies as well [45], and we are not claiming it as our contribution. We use this general

framework as the base for our mapping approach. Our contribution is the particular greedy

heuristic and refinement algorithm that we use within this general framework, as well as

the addition of routing information and network links into it.

There exist three main steps in the framework shown in Fig. 3.5: 1) an initial parti-

tioning of the application communication pattern, 2) an intermediate mapping of processes

using a parallel mapping heuristic, and 3) a final mapping refinement. In the following, we

explain the details of each step.

3.3.1 Initial Graph Partitioning

The mapping procedure starts with converting the application communication pattern to

a nodal communication pattern. Using a graph partitioning algorithm, we first partition
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the process topology graph into a number of partitions equal to the number of compute

nodes in the target system. Each node in the resulting graph will encapsulate a number

of processes equal to the number of cores within each compute node. Thus, the resulting

graph will be representative of the communication pattern among a set of super processes,

each of which should be mapped onto a single compute node.

The partitioning can be done by any graph partitioning algorithm. There exist a number

of well known libraries such as Scotch [95] and METIS [60] for graph partitioning. In this

work, we will use the Scotch library to perform the initial partitioning of the application

communication pattern graph. It is worth noting that hereinafter, we use the term process

(or process topology graph) to refer to a super process in the nodal communication pattern

graph.

We use the initial partitioning stage to address multicore nodes within the system as

we are only concerned about the mapping at the network (inter-node) layer due to its

larger scale. Initial partitioning will potentially put heavily communicating processes in

one partition. By collectively mapping all the processes in each partition onto the same

node, we will take advantage of the shared-memory channels for communications among

such processes. Within each node, the individual processes of a partition are mapped to

the cores in order of their corresponding MPI rank. However, our proposed algorithms can

also be used across individual cores without any initial partitioning of the process topology

graph.

3.3.2 Mapping Heuristic

The parallel mapping heuristic lies at the heart of our mapping procedure. Algorithm

3.1 shows the steps involved in our proposed heuristic. The heuristic takes the nodal

communication pattern matrix, the routing information, and the network topology as input,

and provides a mapping from the set of processes to the set of nodes as the output.

Algorithm 3.1 is parallel in nature and is run by one leader process on each node. Let
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Algorithm 3.1: PTRAM: Parallel Topology- and routing-aware mapping: the core
heuristic
Input : Set of all processes P , set of all nodes N , nodal communication pattern

matrix C, routing information, network topology
Output: The mapping τ : P → N

1 PM ← ∅ ; // The set of mapped processes

2 while P c
M 6= ∅ do

// There are more processes to map

3 α = 1
|PM |+1 ;

4 for q ∈ P c
M do

5 δ =
∑

r∈PM

(Cqr + Crq) + α
∑

s∈P c
M

(Cqs + Csq);

6 end

7 pnext ← qmax ; // Choose the process with the maximum value of δ to

map next

8 Temporarily assign p onto self node;
9 Calculate link congestions using routing information;

10 Find the hybrid metric value accordingly;
11 Gather the metric value from all other node leaders;
12 n = node with the lowest value of metric;
13 τ(p) = n ; // Map p onto n
14 Update link congestions accordingly;
15 PM ← p ; // Add p to the set of mapped processes

16 end

PM and P c
M denote the set of mapped and unmapped processes, respectively. The main

loop in line 2 runs until all processes are mapped onto a target node. Within each iteration,

first a new process pnext is chosen as the next process to map. A smart choice of such a

process is very important in terms of the quality of the resulting mapping, especially as

the heuristic is greedy in nature and does not involve any backtracking mechanism; when

a process is mapped onto a node at a given iteration of the heuristic, its mapping will

remain fixed in the following iterations of the heuristic. Accordingly, we choose pnext with

respect to a metric denoted by δ in line 5 of Alg. 3.1. For each process such as q, the first

summation in line 5 gives the total communication volume of q with all its already-mapped

neighbors. The second summation represents the total communication volume with the



3.3. PTRAM: PARALLEL TOPOLOGY- AND ROUTING-AWARE

MAPPING 42

unmapped neighbors. The process with the maximum value of δ is chosen as the next

process for mapping at each iteration.

The parameter 0 < α ≤ 1 is used to assign a relative (lower) weight to communications

with unmapped neighbors in comparison to communications with mapped neighbors. The

value of α is updated at every iteration (line 3) with respect to the number of mapped

processes. Initially, α starts from 1, and decreases at each iteration as more processes are

mapped. We use such an α value because the amount of communication with the set of

unmapped neighbors is relatively more important at the initial steps of the algorithm as

most of the neighbors of a given process have not yet been mapped. However, as more

processes are mapped, we want to give a relatively higher weight to the communications

with the set of mapped neighbors when the next process is chosen for mapping.

The next major step in Algorithm 3.1 is to find a target node for pnext. Target nodes are

chosen based on the value of a hybrid metric which we will discuss in detail in Section 3.3.3.

At each iteration, we seek to map pnext onto the node that will result in the lowest value of

the hybrid metric. Thus, we explicitly measure the value of the metric at each iteration of

the algorithm, and choose the target node accordingly. This is where we take advantage of

parallelism in our heuristic. The leader process on each node1 n is responsible for calculating

the metric value resulting from mapping pnext onto n. This is done in lines 8 to 10 of Alg.

3.1. Next, all the leader processes communicate with each other so as to gather the metric

values corresponding to all nodes. Specifically, we use MPI Allgather to accomplish this

step. Having gathered the metric values from all nodes, the target node for pnext is set to

be the node with the lowest value of the hybrid metric. In case of having multiple such

nodes, we simply choose the one with the lowest leader rank. Finally, before going to the

next iteration, each leader process updates its own local copy of the link congestions with

respect to the newly mapped process.

Choosing the target node as explained above has two advantages. First, it allows us to

1In fact, this is performed by non-occupied nodes only.
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explicitly evaluate each non-occupied node before choosing a target node to map the next

process. Second, by exploiting parallelism, we will pay a cost equal to evaluation of a single

node at each iteration. In fact, each node is made responsible for evaluating itself with

respect to the hybrid metric. This way, we increase the quality of the target node selection,

and at the same time keep the corresponding costs bounded. More importantly, such a

parallel approach will improve the scalability of our heuristic. When the system scales and

the number of nodes increase, the search space for finding appropriate nodes is increased

as well. This makes the whole mapping problem more challenging for any given mapping

algorithm. However, using a leader process on each node allows our heuristic to scale its

searching capability in accordance to increase in the system size. We believe that exploiting

parallelism is the key to achieve better scalability in topology-aware mapping. Thus, we

can exploit the parallelism capabilities of the target system itself to solve the mapping

problem. Of course such an approach will require computation time on the target system,

but we think the potential benefits will justify it. Moreover, in some scenarios (especially

batch systems), the application is run only across a particular subset of all nodes within the

system that are dynamically allocated by an underlying resource manager. The topology

of such allocations are not known a priori. Therefore, in such cases, it is in fact necessary

to solve the mapping problem on the target system itself.

Complexity The main loop of Alg. 3.1 performs one iteration per (super) process until

all of them are mapped. With n denoting the number of nodes (super processes), we will

have n iterations. In each iteration, finding the value of δ takes O(nd), where d denotes

the highest number of neighbors per process (degree of the the communication pattern

graph). Finding qmax can be done in O(n). Calculating link congestions takes O(dl), where

l denotes the number of links that connect two nodes. For fat-tees, l ∝ h, with h denoting

the height of the tree. The next major step is gathering metric value which takes O(n)

(using a ring allgather). Finding the node with lowest value of the metric is done in O(n).
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Finally, updating the link congestions will be again of order O(dl). Thus, the complexity

of Alg. 3.1 can be given by O(n(nd+ n+ dl + n+ n+ dl)) = O(n2d+ ndl).

3.3.3 Hybrid Metric

Rather than using only hop-bytes or maximum congestion, we take advantage of a hybrid

metric in our mapping heuristic. The metric is a combination of four individual metrics,

each of which evaluate a given mapping from a particular aspect. Specifically, the hybrid

metric consists of the following four individual metrics:

1. hop-bytes (HB)

2. maximum congestion (MC)

3. non-zero congestion average (NZCA)

4. non-zero congestion variance (NZCV)

In our design, we consider a linear combination of these metrics to build up our hybrid

metric as

Hybrid Metric = HB +MC +NZCA+NZCV (3.3)

The hop-bytes and maximum congestion components of our hybrid metric are the same

as those defined in Section 3.2.3 and Section 3.2.3. We define non-zero congestion average

as the average of the traffic that passes through each non-idle link in the network. More

specifically, non-zero congestion average for a given mapping is equal to the total sum of

the traffic across all links divided by the number of links that are actually utilized by the

mapping. In other words, it is the average of traffic among the links with a non-zero volume

of traffic passing through them. Similarly, non-zero congestion variance is defined as the

variance of the traffic across the links with a non-zero load passing through them.

We use a hybrid metric because hop-bytes or maximum congestion alone is limited in

terms of distinguishing among multiple candidate mappings. Hop-bytes will always give
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a lower priority to a mapping that causes traffic to go across multiple links. There are

two main shortcomings with such a behavior. First, it does not take into account the fact

that using more links (i.e., more hops) can potentially result in better link utilization and

traffic distribution. Better traffic distribution will in turn help to have a lower maximum

congestion on the links. Second, hop-bytes alone cannot distinguish between two mappings

that have the same hop-bytes value and yet are different in terms of congestion (see Section

3.3.4 for an example of such a case).

On the other hand, mapping processes solely based on the resulting maximum congestion

at each iteration of the mapping algorithm will have its own shortcomings. The main issue

is that several mappings can all result in the same maximum congestion at a given step

of the mapping algorithm, while they provide different potentials for mapping the rest of

the processes. Such cases can specially happen when the mapping of a particular process

on different nodes does not affect the load on the link with the maximum congestion, but

results in different traffic load on other links (or different hop-bytes values). Deciding solely

based on the maximum congestion does not allow us to distinguish among such mappings.

Even with the same maximum congestion, we would still like to choose the mapping that

results in a lower traffic load on the set of all links. This will provide higher chances to

decrease maximum congestion in future steps of the mapping algorithm.

Accordingly, we use non-zero congestion average and variance as a measure for the

balancedness of traffic across the links for a given mapping. There is a reason why we do

not use an ordinary average across all links in the network. An ordinary average will be

equal to the total sum of the traffic divided by the total number of links in the target system.

As the total number of links in the system is a fixed number, an ordinary average would be

only reflective of the sum of the network traffic. Such a measure cannot tell us about the link

utilization and traffic distribution characteristics of a given mapping. Non-zero congestion

average on the other hand provides an implicit measure of both the traffic sum, and the

degree of balancedness of the total traffic across the links. Similarly, non-zero congestion
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variance would provide us with additional information regarding the balancedness of traffic.

It is worth noting that one can use other combinations of the above metrics to build the

hybrid metric. The linear combination used in our design is actually the simplest form in

which all the individual metrics have the same weight. Determining the optimal combination

of metrics is an interesting topic for research. For instance, a better approach would be to

assign a different weight to each individual metric with respect to the corresponding impact

of that metric on performance.

3.3.4 Impact of Routing Awareness

In this section, we try to shed more light on the potential impacts of routing awareness on

process mapping. In a parallel system, the congestion imposed on the set of network links is a

function of both the topology and the underlying routing algorithm. This is particularly true

for InfiniBand where the underlying static routing can highly affect congestion [44]. Even

if the interconnect provides full bisection bandwidth, a routing-ignorant process mapping

could result in unnecessary congestion over the links. The issue becomes more significant in

practical installations of InfiniBand systems that do not provide full bisection bandwidth.

Therefore, in our mapping heuristic, we take into account the routing information when we

want to calculate congestion on each network link. This way, we will have a more realistic

congestion model throughout all steps of our mapping algorithm. In the following, we use a

simple example to clarify how routing awareness can make a difference in process mapping.

Consider a target system with the topology shown in Fig. 3.6(a). The system consists

of 4 nodes n1, n2, n3, n4, each having 2 cores. We would like to map 8 processes with the

topology shown in Fig. 3.6(b) onto this system. The edge weights in Fig. 3.6(b) represent

the communication volumes. For the sake of simplicity, we consider equal weights for all

edges. The underlying routing of the system has been partially shown by the labels (n1

to n4) assigned to the four top links in Fig. 3.6(a). We only represent the routes in one

direction (i.e., bottom-up) as it suffices for the purpose of this example. The link labels
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Figure 3.6: A sample target system topology and the communication pattern graph of the
processes.

represent the destination nodes associated to each link.

We start the mapping by assigning rank 0 to one of the cores (could be any of the

cores). Having mapped four other processes, the mapping will be as shown in Fig. 3.7(a).

The link labels in this figure represent the corresponding congestion values. For the sake of

brevity, we represent the congestion values of all links in one direction only (i.e., bottom-up

direction in the tree). Up to this point, routing awareness does not play any role and hence,

the result will be the same for a routing-ignorant approach as well. However, when it comes

to the next process (i.e., rank 5), we can see the impact of routing awareness.

Rank 5 can be assigned to a core on either n3 or n4. Fig. 3.7(b) and 3.7(c) show the final

mapping and the corresponding link congestions with respect to each of such assignments.

It can be seen that mapping rank 5 to a core on n4 (Fig. 3.7(c)) will lead to a lower max-

imum congestion across the links. By exploiting the routing information, a routing-aware

approach will choose the mapping shown in Fig. 3.7(c), whereas a routing-ignorant ap-

proach cannot distinguish between the two mappings. More specifically, a routing-ignorant

approach cannot distinguish between n3 and n4 while mapping rank 5.

The above scenario is an example for how process mapping can potentially benefit from

routing awareness. This is just a simple example on a very small system. As the system
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Figure 3.7: Different mappings of processes leading to different values of maximum conges-
tion across the links.

scales and the number of nodes and switches increase, the topology becomes more complex,

and the impacts of routing awareness on congestion will increase too. It is worth noting

that we feed the routing information to Alg. 3.1 in terms of a file. The routing file consists

of N2 lines where N denotes the number of end nodes in the system. Each line corresponds

to the route that connects a pair of nodes. Initially, each leader process loads the routing

and links information into its memory. Because each leader process is only responsible for

evaluating its own node n, it only needs to load a portion of the routing file; that is, the

route from n to every other node, and the route from every other node to n. The advantage

is a significant reduction in memory requirement from O(N2) to O(N).
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3.3.5 Refinement Algorithm

A shortcoming of the heuristic explained in Section 3.3.2 is its lack of a backtracking mech-

anism. The heuristic is greedy in nature, and thus, optimizing the hybrid metric at each

stage does not necessarily guarantee optimality at the end. Therefore, we might still be

able to tune the mapping further in a final refinement step. Accordingly, we propose a

refinement algorithm as outlined by Algorithm 3.2. At the refinement stage, our main goal

is to specifically decrease the maximum congestion across the links by swapping particular

processes.

Algorithm 3.2: PTRAM: The refinement algorithm

Input : Set of all nodes N , communication pattern matrix C, routing information,
network topology

Output: The refined mapping τ : P → N
1 n =self node;
2 p = process assigned to n;
3 maxCong = findMaxCong() ; // Find the current value of maximum

congestion

4 l = findMaxLink() ; // Find link with maximum congestion

5 for q where C[p][q] 6= 0 and l ∈ L(p, q, τ) do
6 M = list of k closest nodes to n;
7 for m ∈M do

8 r =process mapped to m;
9 Temporarily swap p with r;

10 Update link congestions accordingly;
11 newMaxCong = findMaxCong() ; // Find the new value of maximum

congestion

12 if newMaxCong < maxCong then

13 maxCong = newMaxCong;
14 Save p and r;

15 end

16 end

17 end

18 Gather maxCong and the associated swappings from all leaders;
19 Find the lowest value of maxCong;
20 Enforce the corresponding swapping;
21 Update link congestions accordingly;
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Alg. 3.2 is run in parallel by one leader process on each node. At the beginning of the

algorithm, all the leader processes have a copy of the mapping output from Alg. 3.1 in the

form of an array. For a given node such as n, let p denote the process assigned to n based on

the mapping array. In Alg. 3.2, the leader process on node n checks to see whether swapping

p with other processes can decrease maximum congestion. To this end, we first find the link

l with the maximum congestion (line 4), and see whether p communicates with any other

process (q) across a route that involves l (line 5). If so, we check whether swapping p with

any of the processes on a node close to n will result in a lower maximum congestion. Among

all the nodes, only the k nearest ones to n are considered. Thus, each individual leader

performs only a local search that is limited to a few number of its neighbor nodes. This

will help to significantly reduce the high costs that are typically associated with refinement

algorithms. At the same time, because every leader process performs such a local search

simultaneously, the algorithm will still explore a large portion of all possible swappings.

Among all local swappings, each leader process saves (temporarily) the swapping that

leads to the highest reduction in maximum congestion. Next, all the leader processes

communicate with each other to collectively find the swapping that results in a globally

lowest maximum congestion (across all leaders). The corresponding swapping is enforced by

all the leaders, and the congestion information is updated accordingly. The rationale behind

our swapping strategy is rooted in the fact that InfiniBand networks often use destination-

based routing based on which the adjacent nodes will end up using different links. Also,

note that Alg. 2 can be repeated multiple times to decrease congestion iteratively. In

our experiments, the algorithm runs until there is no congestion reduction between two

consecutive iterations, or it reaches 10 iterations (whichever happens earlier). This is used

as a mechanism to avoid unbounded number of refinement iterations.

Complexity The loop in lines 5 to 17 of Alg. 3.2 performs d iterations, where d denotes

the degree of the process topology graph. Each iteration takes O(kdl), where k and l denote



3.4. EXPERIMENTAL RESULTS AND ANALYSIS 51

the local search radius and the number of links connecting two nodes, respectively. The

dl term is for updating the link congestions. Consequently, the loop in lines 5 to 17 is of

order O(kd2l). After that, gathering the new maximum congestion values takes O(n). The

lowest result can be found in O(n), and finally, updating the link congestions takes another

O(dl). Thus, the complexity of Alg. 3.2 can be given by O(n+ kd2l).

3.4 Experimental Results and Analysis

We carry out all the experiments on the General Purpose Cluster (GPC) at the SciNet

HPC Consortium [72]. GPC consists of 3780 nodes with a total of 30240 cores. Each node

has two quad-core Intel Xeon Nehalem sockets operating at 2.53 GHz, with a total of 16

GB memory. The two sockets are connected to each other by Intel QPI links. Each socket

forms a NUMA node with 8 GB of local memory and 8 MB of L3 cache. Approximately

one quarter of the cluster is connected with non-blocking DDR InfiniBand, whereas the rest

of the nodes are connected with a 5:1 blocked QDR InfiniBand. For our experiments, we

only use the nodes with QDR InfiniBand. These nodes are interconnected via Mellanox

ConnectX 40Gb/s InfiniBand adapters.

The network topology (the QDR partition) is a fat-tree consisting of two 324-port core

switches and 103 36-port leaf switches. Fig. 3.8 shows the corresponding details. The

numbers on the links represent the number of links that connect each pair of switches. In

particular, each leaf switch is connected to 30 compute nodes and has 3 uplinks to each of

the two core switches. Each core switch itself is in fact a 2-layer fat-tree consisting of 18 line

and 9 spine switches (with 36 ports in each switch). Each line switch is connected to 6 leaf

switches2, and also has 2 uplinks to each of the 9 spine switches. Finally, it is worth noting

that each node in the system runs Centos 6.4 along with Mellanox OFED-1.5.3-3.0.0, and

we use MVAPICH2-2.0 and Scotch-6.0.0.

Due to limited access to the cluster, the experiments are executed for a limited number

2except for the last line switch which is connected to one leaf switch only.
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of iterations and repetitions. Ideally, the experiments should be repeated many times so

as to gather enough results to conduct various statistical analyses. However, this is not

feasible for experiments that are conducted on production supercomputers such as GPC

because it will require excessive resource allocation on the supercomputer. Such allocations

are not granted due to the high demand that exists for accessing the compute resources on

such systems.

In addition, the experiments are conducted on a semi-dedicated allocation on the cluster.

Each compute node in the allocation is used exclusively by our experiments. The top-

level network links and switches, however, are shared among all the jobs submitted to the

cluster. Our design does not address congestion and interference from other jobs that might

be running on a non-dedicated system. Decreasing congestion and interference related to

other jobs falls into the scope of system-wide resource manager entities.

We use three microbenchmarks as well as four real applications to evaluate the per-

formance of our proposed mapping approach. In addition, we also compare our proposed

heuristics against those in the LibTopoMap library [45]. LibTopoMap provides 4 mapping

algorithms: 1) a general greedy heuristic (Greedy), 2) an algorithm based on recursive graph

bi-partitioning that uses the METIS library (Rec), 3) an algorithm based on matrix band-

width reduction that uses the Reverse Cuthill McKee algorithm (RCM), and 4) the graph

mapping functionality provided by the Scotch library (Scotch). In all cases, LibTopoMap

first uses the ParMetis [61] graph partitioning library to handle multicore nodes.

We have integrated all the heuristics into the MPI distributed graph topology function to

enforce particular mappings through rank reordering. The results report the improvements

achieved over a block in-order mapping of processes. In a block mapping, adjacent ranks

are mapped onto the same node as far as possible before moving to any other node.
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Figure 3.8: The network topology of the GPC cluster at SciNet—QDR partition.

3.4.1 Microbenchmark Results

For our evaluations in this section, we use three microbenchmarks that mimic the commu-

nication patterns seen in many parallel applications. The first microbenchmark models a

2D 5-point halo exchange, also known as 2D 5-point stencil. In this microbenchmark, the

MPI processes are organized into a virtual 2-dimensional grid, and each process communi-

cates with its two immediate neighbors along each dimension. The second microbenchmark

models a 3D 15-point halo exchange in which MPI processes are arranged into a virtual

3-dimensional grid. Each process communicates with its two immediate neighbors along

each dimension (6 neighbors), as well as 8 corner processes. Fig. 3.9 provides a schematic

diagram of the 2D 5-point and 3D 15-point communication patterns.

We consider two versions of each of the 2D 5-point and 3D 15-point microbenchmarks:
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C

(a) 2D 5-point

C

(b) 3D 15-point

Figure 3.9: A schematic diagram of the 2D 5-point and 3D 15-point communication patterns.
The neighbors are shown in green for the ‘C’ node only.

weighted and non-weighted. In the weighted version, we assign a higher weight to the

communications carried over one of the dimensions of the logical process grid. This is done

by sending messages of a relatively larger size over the weighted dimension. In particular,

we use a weight factor of 3. In the non-weighted version, the same message size is used for

communications along all dimensions.

The third microbenchmark models an all-to-all communication over sub-communicators.

We consider two versions of this microbenchmark. In the first one, the processes are ar-

ranged into a logical 2-dimensional grid with each column representing a separate sub-

communicator. In the second one, the processes are arranged into a 3-dimensional grid,

and each plane along the first and last dimensions represents a separate sub-communicator.

In both versions, an MPI Alltoall is performed over each sub-communicator. Note that

in the first version we will have linear sub-communicators (1D all-to-all), whereas in the

second one we will have 2-dimensional sub-communicators (2D all-to-all).
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Metric values

Fig. 3.10 to Fig. 3.12 show the resulting metric values for each microbenchmark with 1024

and 4096 processes. The numbers show the normalized values over the default mapping. As

we can see, for all three microbenchmarks, PTRAM can successfully decrease the value of

all four metrics. Moreover, it outperforms the heuristics provided by LibTopoMap. For the

2D 5-point microbenchmark in particular, we can see more than 60% reduction in the value

of all four metrics in Fig. 3.10(d). The highest reduction is seen for congestion average

which is about 73%. Maximum congestion has also been decreased by 68%. At the same

time, we see that LibTopoMap has actually led to an increase in the metric values. PTRAM

outperforms LibTopoMap for multiple reasons. In PTRAM, we explicitly evaluate all the

potential nodes for mapping a process at each step. In addition, PTRAM takes into account

the routing information, as well as the precise topology of the network which allows the

algorithm to have a more realistic evaluation of various metrics. Moreover, using a hybrid

metric provides a stronger means to distinguish different mappings from each other.

For the 3D 15-point microbenchmark we can see about 50% reduction in maximum

congestion for PTRAM (Fig. 3.11). We can also see that LibTopoMap performs relatively

better for the 3D 15-point microbenchmark than the 2D 5-point; there is a lower increase

in the metric values, and maximum congestion has actually been decreased by about 7%.

This is despite the fact that the value of the hop-bytes metric has increased at the same

time. In addition, in both Fig. 3.10 and Fig. 3.11, we can see higher improvements

achieved for the weighted versions of the 2D 5-point and 3D 15-point microbenchmarks.

This has two reasons. First, the non-weighted versions of these microbenchmarks induce a

communication pattern that is quite symmetric in the sense that optimizing the mapping

for one part of the communication graph will adversely affect other parts. Second, the

default in-order mapping happens to be a good match for the non-weighted version of these

microbenchmarks. However, by using a different message size along one of the dimensions
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(a) Non-weighted, 1024 processes

00.20.40.60.811.21.4 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch
(b) Weighted, 1024 processes00.20.40.60.811.21.41.61.8 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch

(c) Non-weighted 4096 processes

00.20.40.60.811.21.41.61.8 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch
(d) Weighted 4096 processes

Figure 3.10: The normalized resulting metric values over the default mapping for the 2D
5-point microbenchmark and different mapping algorithms (lower is better)—1024 and 4096
processes.

of the grid, the weighted versions of these microbenchmarks add some irregularity into the

corresponding communication pattern and decrease its symmetry. This will provide higher

opportunities for optimization through topology-aware mapping algorithms.

For the all-to-all microbenchmark results shown in Fig. 3.12, we see higher improvements

for the version with the linear (1D) sub-communicators. Moreover, we see better results for

LibTopoMap compared to the 2D 5-point and 3D 15-point microbenchmarks; the value of

the metrics have either remained unchanged (Fig. 3.12(a)) or been improved (Fig. 3.12(b)).

For instance, we can see about 20% improvement in the congestion average metric achieved

by LibTopoMap heuristics in Fig. 3.12(b). However, it can be seen that PTRAM will still

achieve higher improvements than LibTopoMap.

We are also interested in evaluating the performance of each heuristic with respect to
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(c) Non-weighted 4096 processes

00.20.40.60.811.21.4 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch
(d) Weighted 4096 processes

Figure 3.11: The normalized resulting metric values over the default mapping for the 3D
15-point microbenchmark and different mapping algorithms (lower is better)—1024 and
4096 processes.00.20.40.60.811.2 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch
(a) 2D sub-communicator all-to-all, 1024 processes

00.20.40.60.81 Hop-Bytes MaxCong CongAvg CongVarNormalized Values MetricPTRAM Greedy Rec RCM Scotch
(b) 1D sub-communicator all-to-all, 4096 processes

Figure 3.12: The normalized resulting metric values over the default mapping for the
sub-communicator all-to-all microbenchmark and different mapping algorithms (lower is
better)—1024 and 4096 processes.
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(a) Non-weighted

00.20.40.60.811.21.4 PTRAM Greedy Rec RCM ScotchNormalized Max. Congestion Mapping AlgorithmInitial Partitioning Mapping
(b) Weighted

Figure 3.13: Normalized maximum congestion improvement details over the default map-
ping for the 2D 5-point microbenchmark with respect to the initial graph partitioning stage
(lower is better)—4096 processes.

the initial partitioning stage that is used for multicore nodes. Recall that in both PTRAM

and LibTopoMap, there are two major stages. First, a graph partitioner library is used

to cluster multiple individual processes into a single group (we use Scotch for PTRAM,

and LibTopoMap uses ParMetis). Second, the heuristics are used to collectively map each

group of processes onto a particular node in the system. Thus, in Fig. 3.13 to Fig. 3.15,

we show how the metric value improvements reported in previous figures are broken down

across these two stages. Note that ‘Initial Partitioning’ shows the results corresponding to

a simple in-order node mapping of process groups returned by the initial graph partitioning

stage. The ‘heuristic’ represents the results for each particular heuristic. We only show

these results for the maximum congestion metric and with 4096 processes. The trend is

almost the same for other metrics and 1024 processes.

First, we can see that PTRAM has successfully decreased maximum congestion on top

of the initial partitioning for all three microbenchmarks. Second, according to Fig. 3.13

and Fig. 3.14, the mapping results from LibTopoMap heuristics cause an increase in the

final maximum congestion for the 2D 5-point and 3D 15-point microbenchmarks. In other

words, an in-order node-mapping of process partitions returned by ParMetis in LibTopoMap

results in a lower maximum congestion than those returned by the heuristics. This shows
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Figure 3.14: Normalized maximum congestion improvement details over the default map-
ping for the 3D 15-point microbenchmark with respect to the initial graph partitioning
stage (lower is better)—4096 processes.00.20.40.60.811.21.41.6 PTRAM Greedy Rec RCM ScotchNormalized Max. Congestion Mapping AlgorithmInitial Partitioning Mapping
(a) 2D sub-communicator all-to-all, 1024 processes

00.20.40.60.811.2 PTRAM Greedy Rec RCM ScotchNormalized Max. Congestion Mapping AlgorithmInitial Partitioning Mapping
(b) 1D sub-communicator all-to-all, 4096 processes

Figure 3.15: Normalized maximum congestion improvement details over the default map-
ping for the sub-communicator all-to-all microbenchmark with respect to the initial graph
partitioning stage (lower is better).

the importance of having efficient topology-aware node-mapping algorithms. We can also

see that the initial partitioning mostly provides a similar performance in both PTRAM and

LibTopoMap. For the 3D 15-point microbenchmark however, LibTopoMap achieves a lower

maximum congestion in the initial partitioning phase compared to PTRAM. This implies

that ParMetis has done a better job than Scotch for the initial partitioning. Despite this,

PTRAM still outperforms the other 4 heuristics by providing about 20% improvement on

top of the initial partitioning stage.

A different trend is seen for the all-to-all microbenchmark results in Fig. 3.15. For
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PTRAM, all the improvement comes directly from the node-mapping algorithms. The initial

partitioning stage has either worsened the maximum congestion (Fig. 3.15(a)) or has had

no impact on it (Fig. 3.15(b)). Still, in both cases, PTRAM node-mapping algorithms have

been able to decrease maximum congestion by about 50%. This is an important observation

as it shows that an appropriate node-mapping of processes can still significantly decrease

maximum congestion on top of an initial multicore partitioning. A similar trend is seen

for the LibTopoMap heuristics as well. Also, unlike the case for the 2D 5-point and 3D

15-point microbenchmarks, LibTopoMap does not increase the maximum congestion after

the initial partitioning stage of the all-to-all microbenchmark.

Finally, in Fig. 3.16, we show how maximum congestion improvements are further

broken down across all three stages of PTRAM. In particular, the figure compares the

greedy heuristic (Alg. 3.1) and the refinement algorithm (Alg. 3.2) of PTRAM in terms

of their impact on maximum congestion reductions. As we can see, in most cases, both

algorithms help to improve maximum congestion. However, the relative effect between the

two algorithms depends on the specific pattern of the microbenchmark and/or the number

of processes.

Communication time

Fig. 3.17 to Fig. 3.19 present the communication time results for each microbenchmark.

The results represent the average of 500 communication iterations for various message sizes.

We report the improvement percentage with respect to the communication time correspond-

ing to the default mapping. For message sizes above 32KB, PTRAM can provide a consistent

improvement of about 25% and 20% for the weighted versions of the 2D 5-point and 3D

15-point microbenchmarks, respectively. However, we see that LibTopoMap mappings have

led to an increase in communication time. This is expected with respect to the results shown

previously for the metric values. As the mapping result from LibTopoMap increases the

mapping metric values, the communication time is expected to increase. On the other hand,
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Figure 3.16: Normalized maximum congestion improvement over the default mapping break-
down across different steps of PTRAM for various microbenchmarks (lower is better).

we see that PTRAM’s success in decreasing the metric values has actually been reflected

in terms of lower communication times. For the non-weighted versions of the 2D 5-point

and 3D 15-point microbenchmarks, we generally see lower improvements for similar reasons

discussed in the previous section.

With the all-to-all microbenchmark and 2D sub-communicators (Fig. 3.19(a)), PTRAM

is shown to provide up to 30% improvement in communication time for messages larger

than 1KB. Moreover, with linear sub-communicators (Fig. 3.19(b)), both PTRAM and

LibTopoMap have successfully reduced communication time across all message sizes. For

messages below 4KB, the improvements are lower and almost the same for all heuristics.

However, PTRAM starts to outperform LibTopoMap for larger messages, and provides up

to 50% improvement versus about 30% provided by LibTopoMap. These results are again

in accordance with the metric results shown in Fig. 3.12, where we see improvement in all
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(c) Non-weighted 4096 processes
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(d) Weighted 4096 processes

Figure 3.17: Communication time improvements over the default mapping for the 2D 5-
point microbenchmark and different mapping algorithms—1024 and 4096 processes.

metric values for all heuristics. However, higher improvements achieved by PTRAM result

in higher improvements in communication time for messages above 4KB. In general, we see

a good correlation between the results for communication time improvements in Fig. 3.17

to Fig. 3.19 and those shown for the metrics in Fig. 3.10 to Fig. 3.12.

3.4.2 Overhead Analysis

In this section, we report the overheads of our mapping approach, and compare it against

LibTopoMap. Table 3.1 shows the total mapping time for each of the microbenchmarks

with 4096 processes. The mapping time is almost the same for all 4 four heuristics pro-

vided by LibTopoMap. Therefore, we only report the time corresponding to one of them

(i.e., the greedy heuristic). As shown by the table, PTRAM imposes a significantly lower

overhead compared to LibTopoMap for all three microbenchmarks. This is mainly due to
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Figure 3.18: Communication time improvements over the default mapping for the 3D 15-
point microbenchmark and different mapping algorithms—1024 and 4096 processes.-30-20-10010203040 1 16 256 1K 4K 32K 256K 1MImprovement (%) Message Size (Byte)PTRAM Greedy Rec RCM Scotch
(a) 2D sub-communicator all-to-all, 1024 processes
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Figure 3.19: Communication time improvements over the default mapping for the sub-
communicator all-to-all microbenchmark and different mapping algorithms—1024 and 4096
processes.
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Table 3.1: Total time spent by PTRAM and LibTopoMap to find the mapping for each
microbenchmark—4096 processes

PTRAM LibTopoMap

2D 5-Point 2.38 s 40.67 s
3D 15-Point 5.00 s 88.55 s
all-to-all 22.33 s 367.95 s

the underlying parallel design of our heuristics that allows for fast (and yet high-quality)

mappings. In particular, PTRAM spends 2.38 and 5 seconds to derive the mapping for the

2D 5-point and 3D 15-point microbenchmarks, respectively. This increases to 22.33 seconds

for the sub-communicator all-to-all microbenchmark. The reason is that in the all-to-all

microbenchmark, each process communicates with a relatively higher number of other pro-

cesses. Therefore, the corresponding communication pattern matrix will be denser, which

in turn adds to the volume of computations performed by each node-leader. The same

behavior is seen for LibTopoMap as well.

Table 3.2 shows the overhead break down of PTRAM across various stages. As expected,

the majority of the overhead comes from the heuristic, and the refinement stage imposes

only a slight overhead. The “Miscellaneous” column represents the total time spent in other

parts of our implementation not captured in the other three stages. This mainly includes

loading various data structures such as the communication pattern matrix, etc.

In practice, mapping costs are considered to be incurred only once for each application.

The corresponding output mappings can be saved and reused later on for subsequent runs

of an application. Also, many HPC applications are run over a long course of time (e.g.,

several days) which amortizes mapping overheads. However, it is still important for the

mapping algorithms to impose lower amounts of overhead. This is particularly true in batch

production systems where the user is given a dynamic allocation for which the previously

calculated mapping results cannot be reused.

Finally, in Fig. 3.20 we show the mapping overheads for three different numbers of
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Table 3.2: The overhead breakdown across various stages of PTRAM for each
microbenchmark—4096 processes

Initial Partitioning Heuristic Refinement Miscellaneous

2D 5-Point 0.04 s 1.64 s 0.04 s 0.64 s
3D 15-Point 0.12 s 2.33 s 0.71 s 1.82 s
all-to-all 0.38 s 13.00 s 0.63 s 8.30 s

processes. According to Fig. 3.20(a) and Fig. 3.20(b), PTRAM shows a better scala-

bility with the 2D 5-point and 3D 15-point microbenchmarks compared to the all-to-all

microbenchmark. This is again rooted in the difference between these microbenchmarks in

terms of the sparsity of their corresponding communication patterns. With the all-to-all

pattern, the increase in the number of processes also increases the number of neighbors of

each process, adding more computation load to node-leaders. With the 2D 5-point and

3D 15-point patterns however, the number of neighbors of each process does not increase

with the number of processes and remains fixed (4 for 2D 5-point and 14 for 3D 15-point).

Compared to LibTopoMap results shown in Fig. 3.20(c) and Fig. 3.20(d), we can see a

better scalability for PTRAM and the 2D 5-point/3D 15-point microbenchmarks, whereas

LibTopoMap performs better for the all-to-all microbenchmark. The increase in the number

of neighbors has a higher impact on PTRAM overheads because in PTRAM we consider

all the neighbors of each process in various stages of our algorithms.

3.4.3 Application Results

In this section, we evaluate our proposed mapping approach in the context of real parallel

applications. To this end, we use four applications: MiniGhost [8], Nbody [107], Radix

[107], and Gadget [109]. MiniGhost is a finite difference mini application which implements

a difference stencil across a homogeneous three-dimensional domain. Nbody simulates the

interaction of a system of bodies in three dimensions over a number of time steps. Radix

is a parallel implementation of the radix sort algorithm for integers that is mainly used

as a sorting component in other applications. Gadget [109] is an application for various
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Figure 3.20: PTRAM and LibTopoMap overheads with different number of processes and
various microbenchmarks.

cosmological simulations, ranging from colliding and merging galaxies, to the formation of

large-scale structure in the Universe.

We first report the results for the first three applications with 1024 processes. Fig. 3.21

shows the normalized execution time of MiniGhost, Nbody, and Radix with 1024 processes

and different mapping approaches. The values have been normalized with respect to the

execution time of each application with the default mapping. The absolute values of the

execution times are reported in Table 3.3. As we can see, for MiniGhost, the execution time

remains unchanged, whereas for Nbody and Radix, both PTRAM and LibTopoMap suc-

cessfully decrease the execution time. In particular, PTRAM is shown to decrease Nbody’s

execution time by about 70%, and outperforms LibTopoMap which provides about 20% im-

provement. For Radix however, we see a similar performance for PTRAM and LibTopoMap

heuristics, and they all provide 30% reduction in execution time.
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Table 3.3: Absolute values of the execution times of applications with different mappings—
1024 processes.

Default PTRAM Greedy Rec RCM Scotch

MiniGhost 20.85 s 20.76 s 20.42 s 20.47 s 20.15 s 20.39 s
Nbody 114.59 s 38.21 s 89.54 s 90.61 s 94.00 s 80.95 s
Radix 17.86 s 12.81 s 12.96 s 13.29 s 12.59 s 13.66 s00.20.40.60.811.2 MiniGhost Nbody RadixNormalized Execution Time ApplicationPTRAM Greedy Rec RCM Scotch

Figure 3.21: Normalized execution time improvements over the default mapping for three
applications with PTRAM and LibTopoMap (lower is better)—1024 processes.

For further analysis, we show how the metric value results for these applications in

Fig. 3.22. The first observation is that for all applications, PTRAM has successfully

improved the metric values. For MiniGhost (Fig. 3.22(a)) however, these improvements

do not lead to execution time reductions. This is because the ultimate execution time of

an application depends on many different factors, and that an application may not even

be communication-bound. The second observation is the increase in Nbody’s maximum

congestion with LibTopoMap heuristics (Fig. 3.22(b)). Despite the increase in maximum

congestion, LibTopoMap could still decrease Nbody’s execution time in Fig. 3.21. This is

because we see improvement in other metrics, especially hop-bytes. However, since PTRAM

also improves the value of other metrics (such as maximum congestion), it results in a

lower execution time for Nbody. These results show that the mapping problem cannot be
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Figure 3.22: Normalized mapping metrics improvements over the default mapping for three
applications with PTRAM and LibTopoMap (lower is better)—1024 processes.

easily simplified into a single metric; it is required to evaluate mappings with respect to

various criteria (multiple metrics) that can help to capture different characteristics of a

given mapping. In this regard, an important positive point for PTRAM is the consistent

improvement seen for all metrics across different microbenchmarks and applications.

For larger-scale application results, we use the Gadget application. In particular, we

use the version 3 of the application [35] provided by PRACE [98], and run it with 4096

processes. Fig. 3.23(a) shows the normalized metric values. PTRAM is seen to decrease

the metric values to about 0.3 of the default mapping. LibTopoMap heuristics mostly leave

the metric values intact, though we can see an increase in maximum congestion with three

of the heuristics. Similar to the MiniGhost application, no execution time improvements

were obtained for Gadget. However, Fig. 3.23(b) shows the communication time of the

application for different mappings. We can see that PTRAM provides 10 seconds reduction
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Figure 3.23: Communication time and normalized mapping metrics improvements over the
default mapping for the Gadget-3 application (lower is better)—4096 processes.

in communication time of the application compared to the default mapping, and again

outperforms the other heuristics.

3.5 Related Work

Several experiments carried out on large-scale systems such as the IBM Blue Gene and

Cray supercomputers verify the adverse effects of high contention and hop-counts on mes-

sage latencies [14]. Balaji et al. [7] have shown that different mappings of an application

on large-scale IBM Blue Gene/P systems can significantly affect the overall performance.

Accordingly, they propose a framework for finding the mapping with the least amount of

contention among different mapping options supported by the system. Bhatelé et al. [12]

show the impacts of task mapping on application performance in the IBM Blue Gene/Q

systems with a 5D torus network topology. Jain et al. [53, 13] conduct similar studies for

the Dragonfly topology with different routing and job placement strategies. Bhatelé and

Kalé [15] propose several heuristics based on the hop-bytes metric for mapping irregular

communication graphs onto mesh topologies. The heuristics generally attempt to place

highly communicating processes closer together.

Mercier and Clet-Ortega [80] use the Scotch library [95] for topology-aware mapping.

The communication pattern of the application is first modeled as a complete weighted graph
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where the volume of messages represent the edge weights. The physical topology is modeled

by another complete weighted graph with the edge weights determined based on the memory

hierarchies among the cores. Rodrigues et al. [104] propose a similar approach that uses

Scotch as the underlying mapping algorithm. However, they use the communication speed

(measured by a ping-pong benchmark) between each pair of cores as the metric for assigning

edge weights in the physical topology graph. Rashti et al. [101] use the hwloc library [16] and

InfiniBand tools to extract the intra-node and network topologies respectively. The results

are merged to build an undirected graph with edge weights representing the communication

performance among the cores based on the distances among them. The mapping is then

performed by the Scotch library. Ito et al. [52] propose a similar mapping approach except

that they use the actual bandwidth among nodes measured at the execution time to assign

the edge weights in the physical topology graph. The mapping itself is again done by the

Scotch library. Jeannot and Mercier [55, 81, 56] also use hwloc to extract the physical

topology of a single node, and represent it as a tree. For the mapping algorithm, they

propose TreeMatch which partitions the processes into a multi-level tree, and matches its

nodes with their corresponding peers in the physical topology tree.

Hoefler and Snir [45] consider the mapping problem in its general form for arbitrary pro-

cess topologies and interconnects. They model the process topology by a directed weighted

graph G and use the volume of communication to designate the edge weights. The target

network is also modeled by a directed weighted graph H with edge weights representing the

bandwidth of the channel connecting two nodes. Three heuristics are proposed to map G

onto H. In the greedy one, the vertices with higher individual outgoing edge weights are

placed as close as possible to each other. The second heuristic uses a graph partitioning

library (METIS) to perform the mapping by recursive bi-partitioning of G and H into two

equal-sized halves with minimum edge-cut weights. The third heuristic is based on graph

similarity, and models the mapping problem in terms of a bandwidth reduction problem for
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sparse matrices. Considering adjacency matrices of the graphs representing G and H, ma-

trix bandwidth reduction techniques are used to first bring the two matrices into a similar

shape and then find the final mapping. Average dilation and maximum congestion are the

two metrics used for assessing the quality of mappings.

Chung et al. [20] propose a hierarchical mapping algorithm which uses the normalized

cut algorithm from spectral graph theory to partition the process and physical topology

graphs into a number of supernodes. Then, an initial mapping assigns the supernodes of the

process topology graph to their corresponding peers in the physical topology graph. A final

pairwise exchange is also used to fine-tune the mapping further. Sudheer and Srinivasan

[115] propose three mapping heuristics based on the hop-bytes as the metric. The first

heuristic finds the local optima among several random initial solutions, and chooses the one

with the lowest hop-bytes value. The second heuristic is a modified version of the greedy

heuristic proposed by Hoefler and Snir [45]. The third heuristic is a combination of the first

heuristic and a graph partitioning technique.

Li et al. [69] model the physical topology into separate network and node trees. The

mapping is done in two phases. First the process topology graph is partitioned (using

Scotch) to build a tree of process partitions isomorphic to the network tree. Next, the

leaves of the resulting process tree are identically mapped onto the leaves of the network

tree. A similar approach is used to perform the mapping within each node. Deveci et al.

[23] use the Multi-Jagged geometric partitioning algorithm for task mapping with a focus

on the mesh/torus systems that allow non-contiguous allocation of nodes. The algorithm

partitions tasks and cores into the same number of parts. Tasks and cores with the same

part numbers are then mapped onto each other. Tuncer et al. [121] propose PaCMap; an

algorithm to perform allocation and mapping simultaneously. Pacmap first uses METIS to

partition the communication graph for multicore nodes. Then, the nodes are chosen by an

expansion algorithm which assigns a score value to each node with respect to the number

of free nodes close to it. Tasks are mapped by iteratively finding the one with the highest
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communication volume, and mapping it onto the node that leads to the least hop-bytes

value.

Abdel-Gawad et al. [1] propose RAHTM which uses a three-phased approach for map-

ping. The first phase clusters tasks for multicore nodes. The second phase uses mixed

integer linear programming to hierarchically map the clusters onto a series of 2-ary n-cubes.

A greedy merge heuristic is used in the third phase to combine subproblem mappings.

RAHTM uses maximum congestion as the metric, and also takes into account the underly-

ing routing in the second and third phases. We exploit routing information in our proposed

algorithms too. However, RAHTM is more suited for mesh/torus topologies, whereas we

mainly target indirect fat-trees. Zimmer [126] et al. utilize machine learning techniques

to derive job placement features that correlate with applications performance. Using the

corresponding result, they propose the Dual-Ended scheduling mechanism for the Titan

supercomputer that can decrease hop-count and improve performance.

Deveci et al. [22] propose a greedy mapping heuristic plus two other refinement algo-

rithms. The greedy algorithm as well as one of the refinement algorithms are designed to

minimize hop-bytes, whereas the second refinement algorithm is designed to decrease con-

gestion. The greedy heuristic iteratively chooses the process with the highest connectivity

to the set of mapped processes, and assigns it to the node that results in the lowest value

of hop-bytes. The corresponding node is found by performing a BFS search on the physical

topology graph. The refinement algorithms attempt to decrease hop-bytes or congestion

by task swapping. Unlike the work done by Deveci et al., we do not use any graph search

algorithm in our greedy heuristic; we find the desired target node by explicit evaluation

of each node. In addition, we use a hybrid metric rather than hop- bytes. Moreover, we

exploit parallelism in the design and implementation of our algorithms.
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3.6 Summary

Modern multicore parallel computing systems provide different types of communication

channels at different layers of the system hierarchy. We demonstrated through experimen-

tation that the performance of these channels can be considerably different from each other.

Therefore, the specific placement of the processes of an application on the physical cores of

the target system can have a significant impact on the overall communication latency. In

this regard, topology-aware mapping techniques attempt to find a nontrivial placement of

processes based on the application communication pattern and the physical topology of the

system. However, the NP-hard nature of the mapping problem problem on one hand, and

the ever-increasing size and complexity of HPC systems on the other hand, make it quite

challenging to find a high-quality and yet scalable solution to the problem.

In this chapter, we proposed a parallel topology- and routing-aware mapping approach.

To achieve a better mapping quality, we added routing awareness to our design by taking

into account the routing information gathered from the interconnection network. Using the

routing information, we could precisely measure the static congestion imposed on each link

by any candidate mapping. This helped to have a more realistic measure of our mapping

metrics which in turn led to find a better mapping. We also used a hybrid metric in our

design and discussed how it helps to better distinguish different candidate mappings from

each other and choose those that would potentially lead to a better distribution of traffic

across all links. To increase scalability and decrease overheads, we used parallelism in our

design by making each node responsible for evaluating itself with respect to the metrics. Our

experimental results showed that using our proposed mapping approach, we can improve

communication performance for various communication patterns compared to both a trivial

mapping as well as some other nontrivial approaches. The results also showed that we can

achieve lower overheads with our proposed algorithms.
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Chapter 4

Topology-Aware Mapping Heuristics for Collective

Communications

In Chapter 3, we discussed how topology awareness can help improve communication per-

formance through a nontrivial placement of processes onto the set of compute nodes within

a large-scale system. The proposed mapping approach considered all the application com-

munications as a whole, including both point-to-point and collective communications. How-

ever, mapping and topology awareness can also be specifically geared towards the collective

communications so as to fine-tune their performance further.

Collective communications constitute a major portion of the communications that occur

in parallel applications, and their performance plays a critical role in the total performance

of the application [100]. Accordingly, various algorithms have been proposed for efficient

implementation of collective communications. However, the core merit of such algorithms

is only achieved with an appropriate mapping of processes because the performance of a

given collective can significantly change under different mappings of processes [78]. The

appropriate mapping depends on the physical topology of the target system which can

change from one system to another.

In this chapter, we focus on topology-aware collective communication design. In par-

ticular, we propose four fine-tuned mapping heuristics for various communication patterns
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and algorithms commonly used in MPI Allgather [83]. The allgather operation is a data-

intensive collective communication that can be a major contributor to the communication

time of an application. This operation can also be used as a building block for other col-

lective operations such as broadcast and allreduce. Two of our proposed heuristics can also

be used for MPI Bcast and MPI Gather operations. For our work in this chapter, we take

into account the intra-node physical topology as well so as to widen the scope of topology

awareness in our design.

4.1 Collective Pattern, Topology, and Mapping

The well-known generic collective communication algorithms have mainly been designed

with respect to Hockney’s α + mβ performance model [40]. In this model, α represents

the startup latency cost for each message, and mβ is representative of the bandwidth

requirements. Specifically, m denotes the message size and β represents the bandwidth

cost per byte. The α term of a collective algorithm is simply the number of its stages,

whereas the β term is found by summing the maximum message size communicated in

each stage over all communication stages. Depending on the amount of data involved in a

collective communication, the strategy for reducing the cost of the operation differs. When

the amount of data is small, it is the cost of initiating messages (α) that dominates and

hence, the algorithms should strive to reduce this cost.For large data, it is the cost per item

sent (β) that becomes the dominating factor and hence, the algorithms should focus on the

bandwidth requirements.

In general, the generic algorithms often deliver good performance for collective com-

munications. Despite the fact that they have been designed in 1990s (and earlier), they

still represent the state-of-the-art from an algorithmic point of view. However, a major

shortcoming of such algorithms is that they use predefined communication patterns built

solely based on MPI logical ranks. The underlying hardware architecture and the specific
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mapping of processes is totally ignored by these algorithms. But, both of these factors can

considerably affect the performance of collective communications.

When used for collective communication design, Hockney’s model implies the following

as its underlying assumptions:

1. Communication performance is the same between all pairs of cores. In other words,

the whole system is assumed to have a flat architecture.

2. There is full concurrency of communications within each individual stage of a collec-

tive. In other words, it is assumed that message exchanges that fall within a single

stage can all happen simultaneously without any contention.

In practice, none of the above actually holds. The first assumption is wrong due to the het-

erogeneity of communication channels in modern multicore clusters. The second assumption

does not necessarily hold due to potential congestion among communications within each

single stage. Rico-Galego and Dı́az-Mart́ın [103] show that even inside an individual node,

congestion prohibits full concurrency of communications due to memory bandwidth sharing

among cores. As a result, the actual performance of generic algorithms developed on top of

Hockney’s model could be lower than those modeled in theory. The characteristics of the

underlying architecture could prohibit the core merits of such algorithms to be achieved.

More specifically, the performance of a collective communication is the result of inter-

action among the following three main components:

1. the physical topology of the target system,

2. the mapping of processes onto nodes/cores, and

3. the specific communication pattern used by the collective.

The first component is fixed and cannot be changed dynamically to optimize collectives.

However, one can attempt to manipulate the second and third components as a way to
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optimize collective communication performance with respect to the underlying topology of

the target system. Therefore, we can consider the following two approaches for topology-

aware collective communication designs:

1. Changing the mapping of processes with respect to the collective communication pat-

tern (i.e., the algorithm) and the physical topology of the target system

2. Changing the collective communication pattern with respect to the mapping of pro-

cesses and the physical topology of the target system.

Our work in this chapter falls within the scope of the first approach mentioned above.

Almost all previous efforts on collective communication optimizations devise the corre-

sponding algorithms based on MPI’s logical process ranks. A key factor missing in such

algorithms is the actual mapping of the logical ranks onto the physical cores of the target

system. Hence, collective communications have been devised in a mapping-ignorant fashion.

In fact, current mapping-ignorant algorithms implicitly assume a regular in-order mapping

of process ranks onto the processing elements where adjacent ranks end up residing on the

neighboring cores. This assumption plays an important role in performance modeling of

various collective algorithms proposed in the literature. It also acts as an implicit factor

to favor one algorithm over another in current implementations of MPI libraries. However,

such an assumption does not necessary hold in practice.

For instance, topology-aware mapping of processes to processor cores which is commonly

performed based on bulk communications of an application can result in a different ordering

of processes. Moreover, in modern large-scale systems, a job can potentially be mapped and

allocated resources in quite a large number of different ways. Resource management tools

commonly used for starting parallel jobs provide various options that affect how different

processes are mapped onto the target system. For instance, both SLURM [124] and Hydra

[48] provide various options for choosing the number and order of nodes, sockets, and

cores assigned to each job. In addition, collective communications over sub-communicators
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happen within a subset of processes that can reside over a random set of nodes. On the other

hand, recent studies show that both topology-aware mapping and collective communications

over sub-communicators tend to be inevitable at the exascale level [10].

4.2 Topology-Aware Rank Reordering for Collective Communications

4.2.1 The Framework

Variations of communication performance at different levels of system hierarchies along with

the variety of mapping options used in large-scale systems necessitate topology and map-

ping awareness for collective communications. A general topology-aware mapping technique

such as the one discussed in Chapter 3 can implicitly consider collective communications

as they are implemented in terms of a series of point-to-point communications. However,

various reasons limit the efficiency of such approaches for optimizing collective communi-

cations. First, different collectives have different communication patterns which makes it

very difficult to optimize all of them with the same mapping of processes. Second, a general

optimization of point-to-point communications can even leave some collective communica-

tions out in favor of higher-weight point-to-point communications. Third, unlike the native

point-to-point communications, it is difficult to precisely capture the communication pat-

tern of collectives because it depends on different factors such as message and communicator

size.

Alternatively, we can change the mapping of processes for each collective communication

pattern individually at runtime. In particular, we keep the collective algorithms intact, and

reorder the ranks with respect to a mapping from the collective communication pattern to

the physical topology of the system. The broad objective of the mapping is to decrease the

physical distances among the communicating processes, specially those that communicate

more often and/or use larger messages. For the physical topology, we use the hwloc library

[16] and the InfiniBand [51] tools to extract the distances among all the cores. For each
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system, the physical distances need to be extracted only once and will be reused for different

collective communication patterns.

To perform the mapping, various approaches can be used. For instance, one can use

an external graph mapping library such as Scotch [95] which employs graph partitioning

techniques to recursively partition and map a given guest graph (communication pattern)

onto a host graph (physical topology). Alternatively, fine-tuned heuristics can be devised

for each collective communication pattern to achieve better mapping results and avoid some

overheads (such as creating process topology graphs). In the following, we propose four such

heuristics for various communication patterns commonly used in MPI Allgather.

Having found the mapping, a new communicator is created with process ranks reordered

based on the mapping results. The entire process can be repeated to create reordered

communicators for each desired collective communication pattern. Later, any subsequent

calls to the corresponding collective in an application will be conducted over the reordered

copy of the given communicator. Note that the entire rank reordering process happens only

once at runtime. In addition, we can also use an MPI info key to allow the programmer

to enable/disable the whole approach for each communicator separately.

4.2.2 Mapping Heuristics for MPI Allgather

In the general forms of topology-aware mapping, the communication pattern changes from

one application to another. Therefore, the design of the corresponding mapping heuristics

should be generic enough so as to handle various arbitrary communication patterns. To

this end, the communication pattern is provided to the mapping algorithm in terms of

a weighted graph which is later traversed (usually by a greedy approach) to figure out

the desired mapping. For the allgather collective communication, we improve this general

framework in two aspects1.

First, for a particular collective such as allgather, the communication patterns are fixed

1In fact, with an appropriate set of mapping heuristics, the improvements apply to other collectives too.
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and hence, there is no need to employ a generic mapping algorithm for all of them. Instead,

we can utilize fine-tuned heuristics for each pattern so as to achieve better mapping results.

Second, with fine-tuned heuristics, it is not required to build a process topology graph to

describe the communication pattern to the mapping heuristic. The communication patterns

can be systematically derived from the corresponding algorithms used by the MPI library.

Therefore, with our proposed heuristics, we can skip the step for building the collective

topology graph and proceed directly to the mapping step. However, with a generic mapping

library such as Scotch, we still need to build the collective topology graph first.

For our heuristics, we pursue the following three main goals:

1. they should be capable of modifying the initial layout of processes so as to closely

match it to each collective communication pattern even if the initial mapping is quite

far from ideal,

2. they should not cause performance degradation if the initial layout of processes is

already a good match for the target collective communication pattern, and

3. they should not impose any significant overheads.

General scheme of the heuristics

Alg. 4.1 illustrates the general scheme of our proposed mapping heuristics used in rank

reordering for MPI Allgather. The algorithm takes as input the physical distances in the

form of a square matrix D, and outputs a mapping array M that represents the new rank

of each process. In the first step and without loss of generality, the process with rank 0

is fixed on the core that already hosts it. Next, in Steps 3 to 8, we iteratively choose a

new process and find a target core for hosting it. The target core is always chosen with

respect to what we call a reference core. The reference core is a core that has already been

assigned to one of the processes in some previous iteration of the algorithm. The target

core is always chosen to be a free core that has the minimum distance from the reference
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core. If more than one core satisfies this condition, one of them is chosen randomly. Having

mapped the new process, the reference core might be updated in Step 7. Initially, the core

hosting rank 0 is set as the reference core in Step 2.

Alg. 4.1 maps each process as close as possible to some other process that has already

been mapped onto the system. The important question is how we should choose the next

process and the reference core in each iteration. In other words, the key steps in Alg.

4.1 are Steps 4 and 7. Step 4 determines the order in which we select the processes for

mapping, whereas the choice of the reference core in Step 7 implicitly designates the group

of processes that will be placed closer to the selected process. The strategies used in these

two steps depend on the underlying communication pattern among the processes and hence,

vary with each particular allgather algorithm. That is why in Step 7 of Alg. 4.1 we say the

reference core is updated if necessary. In the following, we will propose a specific version

of Alg. 4.1 for different communication patterns commonly used by an allgather operation.

In particular, we cover recursive doubling, ring, binomial-tree broadcast, and binomial-tree

gather. It is important to note that hereinafter, we interchangeably use process ranks to

refer to a particular process or the core hosting it.

Algorithm 4.1: General scheme of our topology-aware mapping heuristics for collec-
tive communications
Input : Number of processes p, Physical topology distance matrix D
Output: Mapping array M representing the new rank for each process

1 Fix rank 0 on its current core;
2 Choose 0 as the reference core;
3 while there exist more processes to map do

4 Select a new process to map;
5 Find a target core among the free cores. The target core is a core that has not

already been assigned to any other process and has a minimum distance from
the reference core;

6 Map the new process onto the target core;
7 Update the reference core with the target core if necessary ;

8 end
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Recursive doubling

At each stage of the recursive doubling algorithm, the processes communicate in pairs, and

the communications happening at further stages of the algorithm represent larger messages.

Therefore, in our heuristic for recursive doubling we will try to choose the new process based

on the communications of further stages as much as possible. Accordingly, we start with the

pairs of communications that fall in the last stage. The first process selected for mapping

(after rank 0) will be the one that exchanges messages with rank 0 in the last stage. We

already know that this will be rank 0 ⊕ p
2 , where p denotes the total number of processes.

Obviously, rank 0 will be our reference core because it is the only process that has already

been mapped. Thus, in the first iteration, rank 0⊕ p
2 is mapped as close as possible to rank

0. Now, for the next process, we will have two options: 1) choosing with respect to rank 0,

or 2) choosing with respect to the recently mapped process, i.e., rank 0 ⊕ p
2 . Maintaining

rank 0 as our reference core, we choose the new process based on the communications of

rank 0 in the second-to-last stage of the recursive doubling algorithm. We already know

that rank 0 exchanges a message with rank 0 ⊕ p
4 in that stage. Thus, rank 0 ⊕ p

4 will be

the new process and is mapped as close as possible to rank 0. For the next new process,

we will again have two options: 1) choosing with respect to rank 0, or 2) choosing with

respect to the recently mapped processes, i.e., rank 0 ⊕ p
4 or rank 0 ⊕ p

2 . This time, we

choose the new process with respect to rank 0⊕ p
4 and update our reference core with rank

0⊕ p
4 accordingly. There are two reasons for this choice, as described below.

1. If we want to choose the next process with respect to rank 0 or rank 0 ⊕ p
2 , then we

have to choose based on the pairs of communications that fall in the third-to-last or

second-to-last stages respectively. However, with rank 0 ⊕ p
4 we can choose the new

process from the communication pairs that belong to the last stage and hence, will

include larger messages.

2. The process that exchanges data with rank 0⊕ p
4 in the last stage, also communicates
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with rank 0⊕ p
2 (already mapped) in the second-to-last stage. Thus, it communicates

with a larger number of processes that have already been mapped.

With rank 0⊕ p
4 as the new reference core, we repeat the above procedure in the next two

iterations so as to map two more new processes before updating the reference core again.

Algorithm 4.2 depicts our proposed mapping heuristic (RDMH) designed based on the

above discussion. Lines 5-8 correspond to Step 4 of Alg. 4.1. Starting with i = p/2 in line

3, RDMH gives a higher priority to those ranks that communicate with the reference core

in further stages of recursive doubling. With the loop in lines 5-7, new ranks are chosen

from an earlier stage only if the ones corresponding to further stages have already been

mapped. Lines 11-14 correspond to Step 7 in Algorithm 4.1. At the end of each iteration,

the reference core is updated with the new process only if two processes have already been

mapped with respect to the current reference core.

Algorithm 4.2: RDMH—Mapping heuristic for the recursive doubling communica-
tion pattern

Input : Number of processes p, Physical topology distance matrix D
Output: Mapping array M representing the new rank for each process

1 M[0] = 0 ; // Fix rank 0 on its current core

2 ref rank = 0 ; // Choose 0 as the reference core

3 i = p / 2 ; // Starting from the last stage

4 while there exist more processes to map do

5 while ref rank ⊕ i is already mapped do

6 i = i / 2;
7 end

8 new rank = ref rank ⊕ i;
9 target core = find closest to(ref rank, D) ; // Find the free core closest to

the reference core

10 M[new rank] = target core ; // Map the new process onto the target core

11 if already mapped two processes with respect to ref rank then

12 ref rank = new rank ; // Update reference core

13 i = p / 2 ; // Restarting from the last stage

14 end

15 end

It is worth mentioning that MVAPICH2 also exploits some sort of rank reordering for
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recursive doubling. However, it is limited to a specific layout of processes only. There is no

actual mapping heuristic or topology awareness in the sense that we discuss in here. The

rank reordering in MVAPICH2 just changes a block initial layout of processes to a cyclic

one. With our heuristic, we calculate an appropriate mapping by taking into account the

initial mapping of processes as well as the physical topology of the system.

Ring

Our heuristic for ring (RMH) is quite straightforward. The main reason is because in the

ring algorithm, each process communicates with one and only one other process that is fixed

across all the stages of the algorithm. For ring, Alg. 4.3 chooses the processes for mapping

in a simple increasing order of their ranks. Moreover, the reference core is updated with the

new process at every iteration of the mapping algorithm. Having fixed rank 0, RMH maps

rank 1 as close as possible to 0. Then rank 1 will be the reference core and the next process

to be mapped will be rank 2. Rank 2 is mapped as close as possible to rank 1 and is set to

be the new reference core. This procedure is repeated until there are no more processes to

map.

Algorithm 4.3: RMH—Mapping heuristic for the ring communication pattern

Input : Number of processes p, Physical topology distance matrix D
Output: Mapping array M representing the new rank for each process

1 M[0] = 0 ; // Fix rank 0 on its current core

2 ref rank = 0 ; // Choose 0 as the reference core

3 while there exist more processes to map do

4 new rank = (ref rank + 1) % p;
5 target core = find closest to(ref rank, D) ; // Find the free core closest to

the reference core

6 M[new rank] = target core ; // Map the new process onto the target core

7 ref rank = new rank ; // Update the reference core

8 end
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Binomial broadcast

We cover the binomial tree communication pattern because it can be used for the broadcast

in the third phase of a hierarchical allgather. An advantageous characteristic of the binomial

broadcast (gather) is that every rank receives (sends) data from (to) only one other rank.

In addition, binomial broadcast has the advantage of having a fixed message size across all

the stages of algorithm. Therefore, we seek to perform the mapping only in such a way that

communicating ranks are placed as close to each other as possible. In other words, we are

not concerned about the size of the communicated messages. Hence, it is enough to traverse

the tree in some way, and map the nodes that we come across as close to each other as

possible. For example, we could use a pure Depth-First Traversal (DFT) or Breadth-First

Traversal (BFT) algorithm. However, we are interested to know if there are any particular

traversing fashions that could heuristically represent better candidates.

A potential approach is to traverse the tree so as to visit the nodes with larger subtrees

sooner than others. Each node is then mapped as close as possible to its corresponding

parent node in the binomial tree. This way, a higher priority (in terms of being placed

closer to a communicating peer) is given to those ranks on which a higher number of other

ranks depend for receiving the message. This approach is essentially same as the one

used by Subramoni et al. [113] for designing their network-aware broadcast algorithm. A

second approach that we propose here is a variation of DFT which unlike the previous

approach, visits the nodes with smaller subtrees first. With such a DFT, we will be giving

higher priority to communications that happen at further stages of binomial broadcast.

The rationale for this approach is that as we move toward the final stages of a binomial

broadcast, the number of pair-wise communications increase. With p ranks, there is only one

communication in the first stage, whereas in the last stage we will have p
2 communications.

Therefore, communications happening at further stages are more likely to create contention.

Hence, we want to map their corresponding ranks closer to each other.
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Alg. 4.4 (BBMH) depicts the details of our mapping heuristic for binomial broadcast.

Note that without loss of generality we assume rank 0 is the root of broadcast. The mapping

is done in a recursive fashion by initially calling the recursive procedure RecBinomialMap

with rank 0 as its argument. At the heart of the procedure lies the loop in lines 4-10. It

determines how we choose a new rank for mapping with respect to each reference core r. So,

it corresponds to Step 4 in Alg. 4.1. The conditions of the loop come from the underlying

structure of the binomial tree and make sure that the new process represents a valid child

of the reference core. The reference core is updated with the new rank by recursively calling

RecBinomialMap in line 8. Thus, it represents Step 7 in Alg. 4.1.

Algorithm 4.4: BBMH—Mapping heuristic for the binomial broadcast communica-
tion pattern

Input : Number of processes p, Physical topology distance matrix D
Output: Mapping array M representing the new rank for each process

1 M[0] = 0 ; // Fix rank 0 on its current core

2 Rec binomial map(0) ; // Calling the recursive mapping function with rank

0

1 Procedure RecBinomialMap(rank r)
2 ref rank = r ; // Choose r as the reference core

3 i = 1;
4 while (ref rank & i = 0) and (i ≤ p / 2) do

5 new rank = ref rank + i;
6 target core = find closest to(ref rank, D);
7 M[new rank] = target core;
8 Rec binomial map(new rank) ; // Calling the algorithm recursively

for the new rank

9 i = i * 2 ; // Move on to the next child

10 end

It is worth noting that for medium and large messages, broadcast is commonly im-

plemented by a scatter-allgather algorithm [116]. However, we do not propose a separate

mapping heuristic for it because RDMH and RMH already cover the allgather phase, and

the scatter phase can be covered by the proposed heuristic for gather in the next section.
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Binomial gather

Gather constitutes the first phase of the hierarchical allgather, and the binomial tree is again

a major pattern used for it. Although the communication pattern is binomial, the size of

messages are not fixed in a binomial gather. As we get closer to the root of the tree, the size

of exchanged messages is increased. This time, we want to pick the heaviest edge of the tree

each time, and map its unmapped endpoint as close to the mapped one as possible. There

are two reasons for this. First, this way we will be choosing a rank which does communicate

with some of those that have already been mapped. Second, it represents a communication

that uses larger messages. This is similar to the rationale used by Hoefler and Snir [45] in

their greedy mapping heuristic for the generic case of topology-aware mapping. However,

our proposed heuristic is different in the sense that we extract the communication pattern

in a closed-form fashion without building any process topology graph. In other words, we

will systematically find the heaviest edges and their corresponding reference cores at each

step.

Alg. 4.5 illustrates the details of our mapping heuristic (BGMH) for the binomial gather

communication pattern. Note that without loss of generality, we assume rank 0 is the root

of gather. Line 12 along with the loop in line 5 determine the way that the new process is

chosen with respect to each reference core. Therefore, they correspond to Step 4 in Alg. 4.1.

The reference core is updated in each iteration of the loop in line 6 and is representative of

Step 7 in Alg. 4.1. For each value of i, BGMH iterates over all the potential reference cores

in V and maps a new process as close as possible to each. In addition, every newly mapped

rank is added to the set of potential reference cores in line 10.

Complexity All the proposed algorithms have the same complexity. They perform one

iteration per process and in each iteration, the main cost is for finding the closest core to

the reference core. This can be done in O(p) with a linear search, where p denotes the total

number of processes. Thus, the total complexity will be O(p2).



4.2. TOPOLOGY-AWARE RANK REORDERING FOR COLLECTIVE

COMMUNICATIONS 88

Algorithm 4.5: BGMH—Mapping heuristic for the binomial gather communication
pattern

Input : Number of processes p, Physical topology distance matrix D
Output: Mapping array M representing the new rank for each process

1 M[0] = 0 ; // Fix rank 0 on its current core

2 Initialize V ; // The set of potential reference cores

3 V ← 0 ; // Start with rank 0

4 i = p / 2;
5 while i > 0 do

6 for ref rank ∈ V and ref rank + i < p do

7 new rank = ref rank + i;
8 target core = find closest to(ref rank, D);
9 M[new rank] = target core;

10 V ← new rank ; // Add the new rank to the list of potential

reference cores

11 end

12 i = i / 2;

13 end

4.2.3 Preserving the Correct Order of the Output Buffer

At the end of MPI Allgather, each process will have an output vector that holds the

individual messages corresponding to every other process. The elements of this vector

should appear in a correct order, i.e., in the order of the process ranks to which they

initially belonged. Each underlying allgather algorithm is designed so as to preserve such a

correct order of the output buffer. However, rank reordering can disrupt the desired order

because as soon as we change the rank of a given process from i to j, it will act as the

process with rank j while actually having the input vector corresponding to rank i. In the

following, we explain two different approaches for addressing this issue. Sack and Gropp

[106] also use similar techniques in their distance-halving recursive doubling algorithm.

Extra initial communications

In the first approach, we use extra send/receive communications to move the data between

the processes with respect to the reordered ranks. This is done before the allgather algorithm
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issues any communications. For instance, if the process with rank 0 is going to be reordered

to rank 1, we will have rank 1 send its input vector to rank 0. In addition, rank 0 will send

its input vector to the process that is going to be reordered to 0. This way, the input vector

of all the processes will be in correspondence to their new ranks and hence, the output

vector will be in correct order.

Memory shuffling at the end

In the second approach, we do not exchange the input buffers and let the allgather operation

proceed as usual. However, we shuffle the output buffer elements at the end based on how

the process ranks have been reordered. For instance, if rank 0 has been changed to rank 1,

then we know that the element at index 1 in the output buffer actually belongs to rank 0.

Thus, it should be moved to the head of the output buffer.

It should be noted that in practice we use the above mechanisms with recursive doubling

and binomial gather only. The output vector order does not apply to a binomial broadcast

as the output buffer is not a vector any more. For the ring algorithm, we resolve the issue

from within the algorithm itself by storing each incoming message at the correct offset of

the output vector. This can easily be done with no additional overheads for the ring because

every process receives only one individual message at each stage of the algorithm. We can

easily figure out the correct offset in the output vector based on the mapping array. On the

contrary, recursive doubling and binomial gather communicate aggregate messages that will

require costly packing/unpacking from/to non-contiguous memory regions. For recursive

doubling, for example, the processes receive aggregate messages that encapsulate multiple

individual messages, each of which belong to a particular rank. For instance, in the second

stage, rank 0 receives an aggregate message from rank 2 that contains the contributions from

both rank 2 and rank 3. Upon reception, rank 0 simply concatenates such an aggregate

message to the elements it already has. Thus, it is required that the individual elements

in each aggregate message belong to a particular consecutive set of ranks. Reordering the
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ranks will disrupt this requirement because the elements in each aggregate message can

correspond to an arbitrary set of ranks.

4.3 Experimental Results and Analysis

For our experiments that are discussed in this chapter, we use the same InfiniBand cluster

(GPC) explained in Section 3.4 of Chapter 3. Moreover, we use MVAPICH2-2.0, Scotch-

6.0.0, and hwloc-1.8.1.

4.3.1 Microbenchmark Results

We use the OSU Microbenchmarks [93] to measure the latency of MPI Allgather with and

without rank reordering. The results report the percentage of performance improvement

over the default algorithms used in MVAPICH2. We also compare the performance of our

proposed mapping heuristics against Scotch [95] as an alternative mapping algorithm to

our proposed heuristics. With 4096 processes, we only report the results for a maximum

message size of 256KB due to memory restrictions on each node. In all figures, ‘initComm’

and ‘endShfl’ respectively refer to extra initial communications and memory shuffling at the

end for preserving the correct order of the output buffer. Moreover, ‘Hrstc’ represents the

results for our proposed heuristics.

We perform the experiments for four different initial mappings of processes: block-bunch,

block-scatter, cyclic-bunch, and cyclic-scatter. We choose these four so as to characterize

the impacts of our heuristics under four different (and well known) initial mappings. Note

that the gain in performance by our heuristics (as well as any other rank-reordering scheme)

depends on how far the initial mapping is from the ideal mapping for each collective com-

munication pattern. In the block mapping, adjacent ranks are mapped onto the same node

as much as possible before moving to any other node. Similarly, a bunch mapping binds

the adjacent ranks to the cores of the same socket inside each node. On the contrary, cyclic
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Figure 4.1: Microbenchmark performance improvements for the non-hierarchical topology-
aware allgather with four different initial mappings—4096 processes.

mapping distributes adjacent ranks across the nodes in a round-robin fashion. The scatter

mapping uses a similar round-robin scheme to scatter ranks across all the sockets within

each node.

Non-hierarchical allgather

Fig 4.1 shows the results for the non-hierarchical allgather approach. As shown in Fig.

4.1(a), we can achieve up to about 67% improvement for messages smaller than 1KB with

our proposed mapping heuristics. The improvements correspond to RDMH as MVAPICH2

uses recursive doubling in this range of message sizes. We also see that Scotch performs quite

poorly in this interval. Moreover, for RDMH and up to 1KB message size, the improvement

is increasing with message size. This is because larger messages are affected more by the
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adverse effects of congestion. Another observation is the better performance achieved by

extra initial communications compared to memory shuffling.

Fig. 4.1(a) also shows that for messages larger than 1KB we cannot achieve any per-

formance improvement. This is because MVAPICH2 uses the ring algorithm in this range

of message sizes and the initial block-bunch mapping is already the best match. However,

unlike Scotch, our heuristic (RMH) does not cause any performance degradation. Also,

Fig. 4.1(b) shows that with a block-scatter initial mapping, RHM can provide about 50%

improvement for message sizes above 1KB. This is because the intra-node scatter mapping

is not a good match for the ring algorithm. Again, we see that Scotch performs poorly.

We can also see that for messages above 1KB, initComm and endShfl result in the same

performance as we do not actually use/need any of these mechanisms for the ring algorithm

(see Section 4.2.3).

Fig. 4.1(c) and 4.1(d) show that with an initial cyclic-bunch or cyclic-scatter mapping,

our heuristic can provide up to 50% improvement for message sizes below 1KB. In addition,

we can achieve 78% improvement for messages larger than 1KB. We also see that memory

shuffling overheads can become quite costly for 512B and 1KB message sizes. Another

observation is the higher improvement for messages above 1KB compared to Fig. 4.1(a) and

4.1(b). This is mainly because an initial cyclic/scatter mapping along with the underlying

ring algorithm result in a higher congestion across the network/QPI links. At the same time,

we see a relatively lower improvement for message sizes below 1KB in Fig. 4.1(d) compared

to Fig. 4.1(a) and 4.1(b). This is because an initial cyclic (scatter) mapping is better

than block (bunch) for the recursive doubling algorithm. Thus, we see that a poor initial

mapping for one algorithm can be relatively better for another. This is an encouraging

observation for employing runtime rank reordering for collective communications.



4.3. EXPERIMENTAL RESULTS AND ANALYSIS 93-100-80-60-40-200204060 1 4 16 64 256 1K 4K 16K 64K 256KImprovement (%) Message size (Byte)Hrstc-NL+initComm Hrstc-NL+endShflScotch-NL+endShfl
(a) block-bunch, non-linear

-100-80-60-40-200204060 1 4 16 64 256 1K 4K 16K 64K 256KImprovement (%) Message size (Byte)Hrstc-NL+initComm Hrstc-NL+endShflScotch-NL+endShfl
(b) block-scatter, non-linear

Figure 4.2: Microbenchmark performance improvements for the hierarchical topology-aware
allgather with a non-linear intra-node broadcast/gather and two different initial mappings—
4096 processes.

Hierarchical allgather

With a hierarchical allgather, we only consider the two block-bunch and block-scatter initial

mappings. There are two reasons for this approach. First, hierarchical allgather is not

supported with a cyclic mapping in MVAPICH. Second, the cyclic mapping results in a

similar layout of the processes to the block mapping at both of the intra- and inter-node

communicators. In our result charts, we use the ‘L’ and ‘NL’ suffixes to respectively refer to

the linear (direct) and non-linear (indirect algorithmic) intra-node broadcast/gather phases

of the hierarchical allgather algorithm.

Fig. 4.2 and Fig. 4.3 show that the improvements are generally lower for the hierarchical

algorithms. This is because a hierarchical approach provides a level of topology awareness

by restricting the inter-node communications to node-leaders only. Moreover, with a hier-

archical approach, rank reordering is used at a smaller scale as it is applied to node-leaders

and local processes separately. We can also see that Scotch performs relatively better with

the hierarchical approach compared to the non-hierarchical one.

Fig. 4.2 show the results for the hierarchical allgather with a non-linear intra-node

broadcast/gather. In particular, Fig. 4.2(b) shows that for messages above 1KB, we can

attain up to 30% improvement over a block-scatter mapping. This improvement comes
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Figure 4.3: Microbenchmark performance improvements for the hierarchical topology-aware
allgather with a linear intra-node broadcast/gather and two different initial mappings—4096
processes.

from the gather phase within each node. The BGMH algorithm reorders the ranks so that

large-message communications of the intra-node binomial gather fall within a single socket,

and thus benefit from a higher bandwidth. However, we see a decreasing improvement with

increase in the message size which is due to the overheads induced by the extra communi-

cations or memory shuffling. We believe the intra-node impacts of our algorithms can be

better studied in a system with a higher number of cores per node.

Fig. 4.3 show the results for the hierarchical allgather with a linear intra-node broad-

cast/gather. Note that in this case, we cannot have any rank reordering at the intra-node

level as there is no particular pattern for which to optimize the mapping; all the processes

directly communicate with the root process. Thus, there is less room for improvements.

However, as shown by Fig. 4.3(a), we can still improve the performance by more than 30%
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for message sizes below 1KB (RDMH). As expected, we cannot achieve any improvement for

the messages larger than 1KB because the initial block mapping is already a good match for

the underlying ring algorithm. Fig. 4.3(c) and 4.3(d) show that for messages below 1KB,

the performance is quite poor for the endShfl version of both Scotch and our heuristics.

The main reason is because in this case, the overheads of memory shuffling are too high

that nullify the potential benefits of a better mapping. Note that memory shuffling in this

case is done over combined (larger) messages that are gathered from all the ranks within a

node. Another observation is the improvement for the messages larger than 1KB. We do

not know where exactly this improvement comes from and need to investigate it further.

4.3.2 Application Results

In this section, we evaluate the efficiency of our topology-aware rank reordering for Nbody

[107] as a real application. We measure the execution time of Nbody with and without our

rank-reordered versions of MPI Allgather. Our profiling results with 1024 processes show

that Nbody makes more than 1,000 calls to MPI Allgather which makes it a potentially

good candidate for our experimental analysis with a real application. We report the results

for 1,024 processes as we could not scale the application to a larger number of ranks due

to memory restrictions. Moreover, we only use extra initial communications for preserving

the correct order of the output buffer as it was shown to outperform memory shuffling in

the microbenchmark section.

Fig. 4.4 shows the execution time of Nbody with different mapping approaches and the

non-hierarchical MPI Allgather used in MVAPICH2. As shown by the figure, for the block-

bunch mapping, our heuristics result in the same execution time as the default mapping.

Again, this is because the initial mapping is already a good match for the underlying

communication patterns in this case. Scotch, on the other hand causes an almost 2-fold

increase in the execution time. In fact, it can be seen that in all cases shown in Fig. 4.4,

Scotch exacerbates the execution time of the application. With a block-scatter mapping, we
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Figure 4.5: Execution time of the Nbody application with the hierarchical allgather and
different mapping approaches—1024 processes.

can achieve about 10% reduction in the execution time with our proposed heuristics. The

highest improvement is seen with the cyclic-bunch and cyclic-scatter initial mappings where

we can achieve about 30% reduction in execution time with our proposed rank reordering

algorithms.

Fig. 4.5 shows the results with respect to the hierarchical allgather approach. In par-

ticular, Fig. 4.5(a) shows that with a non-linear intra-node pattern, we cannot see any

improvement over the block-bunch mapping. For block-scatter however, we could achieve
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about 10% improvement with our heuristics. In addition, Fig. 4.5(b) shows that rank re-

ordering could not improve execution time of the application when a linear pattern is used

for the intra-node broadcast/gather. This is an expected behavior as the combination of a

block mapping at the inter-node layer and the linear intra-node patterns highly restrict the

opportunity to benefit from rank reordering. We even see a slight increase in the execution

time which is not expected and requires further investigations to find out the root cause of

it.

4.3.3 Overhead Analysis

In this section, we evaluate the total overhead of topology-aware rank reordering with our

mapping heuristics, and compare it to Scotch. The two main components of the total

overhead are the time required for finding the physical distances, and the time spent by

the mapping algorithm. Finding the physical distances is a one-time overhead, whereas we

will have the mapping overhead once for each communication pattern. Our measurements

show that our heuristics have almost the same amount of overhead. Therefore, we avoid

reporting the overhead results for each one of them separately.

Fig. 4.6 shows the overhead of finding the physical distances for three different number of

processes. The trend is mainly dominated by the overhead of gathering distance information

from all ranks at rank 0. We can see a linear scaling as the number of processes increase.

With 4096 ranks, it takes about 3.3 seconds to extract all distances. This overhead is

similarly applied to both Scotch and our proposed heuristics. However, it is a one-time

overhead which is not repeated every time that we perform rank reordering for a new

pattern.

Fig. 4.7 shows the time spent by the mapping algorithms after the distances have been

extracted. As shown by Fig. 4.7(a), our proposed heuristics impose a significantly lower

overhead compared to Scotch which is shown in Fig. 4.7(b). We can also see a better scaling

trend for our heuristics compared to Scotch. The lower overhead of our heuristics is rooted
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Figure 4.7: The overhead of the mapping algorithms with different number of processes.

in the simpler design and the fact that unlike Scotch, we do not need to build a process

topology graph for any of our mapping heuristics. With 4096 processes, the overhead of

our heuristics is only about 25 ms, whereas the same number for Scotch is more than 160

seconds. In addition, with 1024 ranks, the total overhead including the physical distance

extraction is less than 1.6 seconds which represents less than 4% of the total execution time

of Nbody with the same number of processes.
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4.4 Related Work

Various attempts have been made to bring topology awareness to collective communica-

tion design. Almási et al. [2] propose machine-optimized versions of MPICH2 collective

communications for IBM Blue Gene/L systems. They observe that the MPICH2 collective

algorithms tend to map poorly onto the 3D torus network used in IBM Blue Gene/L sys-

tems, ending up to an inefficient usage of the limited bisection bandwidth of the network.

Chan et al. [19] propose algorithms for multiport broadcast and allgather in order to take

advantage of simultaneous communications by exploiting multiple links connected to each

node in multidimensional grids. Faraj et al. [27] presented optimized collective algorithms

for the IBM Blue Gene/P systems that heavily exploit the hardware features such as the

high performance DMA engine which frees the processing cores from packet management

and is capable of keeping all six links connected to each node busy. Kumar et al. [66]

optimize MPI collective communications for the IBM Blue Gene/Q systems by exploiting

various specific features that are provided by such systems.

Bhatelé et al. [10] study the impacts of mapping for collective communications over

sub-communicators. Accordingly, they propose Rubik which provides a simple tool for sys-

tematic generation of a wide variety of mappings. Zahavi et al. [125] study the interactions

among collective communication patterns, routing algorithm, and congestion in fat-tree

networks. They inspect the communication pattern of common collective communications

and present an algorithm for generating routing tables that can avoid congestion for global

collective communications in fat-trees with full bisection bandwidth. Prisacari et al. [99]

show that unlike the common belief that the alltoall collective communication pattern re-

quires a full bisection bandwidth, alltoall exchanges can be done free of congestion with only

half bisection bandwidth. They propose an algorithm for extracting an optimized exchange

pattern ensuring that in each stage of the algorithm, the number of messages traversing

each node does not exceed the aggregate bandwidth available at that node.
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Sack and Gropp [106] present non-minimal versions of the recursive-doubling and bucket

algorithms to decrease the amount of congestion, and exploit multiport communications

within fat-tree and 3D torus networks. They propose a recursive-doubling, distance-halving

algorithm which is essentially a modification of the original recursive-doubling algorithm

used for the MPI Allgather operation. The processes first start communicating with their

farthest peers, and the distance between the communicating pairs is halved in every stage

of the algorithm. Unlike our work, Sack and Gropp [106] still ignore how the processes

have been mapped onto the system. Moreover, they only consider the network topology

and assume there is only one process on each node.

Kandalla et al. [59] design topology-aware collective communication algorithms for

InfiniBand clusters by using leader processes that correspond to different hierarchies within

the system topology. Subramoni et al. [113] use rank reordering to design a network-aware

broadcast algorithm. However, they only consider the network topology for improving the

inter-node component of a hierarchical broadcast algorithm, and hence do not take into

account the intra-node topology of the target system. In our design, we consider both the

hierarchical and non-hierarchical allgather approaches, and in each case take into account

the system topology at both the intra- and inter-node layers. In addition, we propose fine-

tuned mapping heuristics for four of the major communication patterns that are commonly

used in MPI Allgather, whereas Subramoni et al. [113] use the classic DFT/BFT algorithms

for the binomial tree communication pattern only. In another work, Subramoni et al. [112]

propose network topology-aware communication schedules to reduce congestion for alltoall

FFT operations in InfiniBand clusters.

Li et al. [70] propose three shared-memory NUMA-aware algorithms for the intra-node

component of MPI Allreduce. The algorithms are targeted for a thread-based implemen-

tation of MPI ranks [33] where all MPI ranks that reside on a node run within the same

address space and hence require only one memory copy to communicate with each other.

The proposed algorithms attempt to minimize the inter-socket data transfers within each
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node. In a similar study, Ma et al. [78] focus on optimization of the intra-node component

of collective communications based on different levels of hierarchies within each nodes. they

propose a framework for measuring the distance between each and every pair of processes

based on the memory and physical hierarchies of the target system. Two algorithms are

proposed for building broadcast trees and allgather logical rings based on the physical dis-

tances among processes. The algorithms have also been used in another work [77] for the

optimization of hierarchical collectives. However, the main focus in that work is to increase

the overlap between the intra- and inter-node phases of hierarchical collectives by taking

advantage of single-copy mechanisms in the OS kernel.

Faraj et al. [28] propose an algorithm for building contention-free allgather rings among

the nodes in switched clusters. The ring is built by a depth-first traversal of a spanning

tree within the network topology. However, the intra-node topology is considered to be

flat. Kumar et al. [67] design tree-based collective communication algorithms with a focus

on fat-tree topologies. The proposed algorithms use multiple k-ary trees to transmit data

across multiple network links so as to achieve higher throughput.

4.5 Summary

Collective communications constitute a major portion of the total communications that are

used in many parallel applications. Various algorithms have been designed to implement

collective communications by means of a set of point-to-point communications with a certain

pattern. These algorithms have been traditionally designed based on the MPI ranks of

the processes only. We discussed how the specific mapping of the processes along with the

physical topology of the system affects the potential performance and benefits of a collective

communication algorithm. Accordingly, we proposed four fine-tuned mapping heuristics

for various communication patterns used in an MPI allgather operation. The heuristics

provide a fast mechanism for finding a better match between the specific communication
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pattern of the collective algorithm and the physical topology of the target system. Our

experimental results showed that using our heuristics we can improve the overall latency of

MPI allgather. It was also shown that the proposed heuristics deliver a higher performance

and a significantly lower overhead compared to a general mapping library such as Scotch.
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Chapter 5

Topology-Aware Communications in Heterogeneous

GPU Clusters

Over the past decade, the HPC landscape has changed significantly, particularly due to

the emergence of accelerators. In particular, Graphics Processing Unit (GPU) accelerators

have established themselves in modern heterogeneous HPC clusters by offering high per-

formance and energy efficiency. At the time of writing this document, 12% of the top-500

supercomputers in the world are equipped with GPUs [117]. Heterogeneous GPU clus-

ters have become the platform of choice for various HPC applications [68, 34]. To further

increase the computational power and address larger problems, such systems provide var-

ious processing elements (PEs) including multicore general-purpose processors as well as

multiple GPU devices. Hereinafter, we use the term Central Processing Unit (CPU) to

refer to the general-purpose processors in contrast to GPUs. However, we note that such

general-purpose processors are no longer central as there exist many of them in a parallel

system.

In the previous chapters, we discussed how topology awareness can lead to a more

efficient utilization of communication channels in traditional CPU-only systems. In this

chapter, we show that similar issues exist for GPU-to-GPU communications as well, and

discuss how topology awareness can be deployed in heterogeneous GPU clusters. In par-

ticular, we study the joint problem of process-to-core(node) mapping and GPU-to-process
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assignment in GPU clusters that consist of multiple multi-GPU nodes [84, 31, 32]. To the

best of our knowledge, our work in this chapter is the first work that considers topology

awareness for GPU clusters.

5.1 GPU-Aware MPI

In a GPU cluster, processes offload certain parts of their computations to the GPUs so as

to accelerate their progress. Therefore, they will require support from the MPI library to

communicate data which might reside in the GPU memory. To perform such communica-

tions efficiently, MPI must be tuned and become GPU-aware. In MPI applications, both

the intra- and inter-node GPU communications are considered to be a major performance

bottleneck. In fact, the overhead of GPU communications in applications with high data

interdependency may even nullify the potential benefits of GPU offloading. In this regard,

various attempts have been made to improve the performance of GPU communications by

introducing GPU awareness into MPI point-to-point and collective operations [30, 57, 97].

Accordingly, support for GPU communications has been added to well known MPI

implementations such as MVAPICH2 and Open MPI. Such support may follow a general

approach which involves staging GPU data into the host buffer and leveraging the traditional

CPU-based MPI routines. Such support may also involve further tuning by pipelining

transfers and using specialized algorithms. In addition, some hardware-related features such

as CUDA IPC and GPUDirect RDMA can provide direct GPU-to-GPU communications.

5.2 Motivation

Each compute node in a GPU cluster may consist of multiple GPU devices. Such nodes

are commonly known as multi-GPU nodes. MPI processes running on a multi-GPU node

can potentially select any of the GPU devices available on that node. However, depending

on the selected GPU, the inter-process GPU-to-GPU communications may have to traverse
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Figure 5.1: The topology of a multi-GPU node with 16 GPUs connected to each other by
a multi-level PCIe interconnect.

different paths. The paths may consist of different communication channels with different

performance characteristics.

Fig. 5.1 shows the PCIe topology of a multi-GPU node consisting of 16 GPUs and 2 CPU

sockets. We can see multiple levels and types of communication channels among different

GPUs. For instance, communication between GPU0 and GPU1 only passes though one

PCIe switch, whereas communication between GPU0 and GPU8 should traverse multiple

PCIe switches, as well as the QPI link. Fig. 5.2 shows the actual bandwidth of these

channels at different levels of the topology. As shown by the figure, for message sizes larger

than 8KB, the topology level has a considerable impact on the communication bandwidth

among the GPUs. We can see better performance (higher bandwidth) for the lower levels

of the topology. It is also shown that as the message size increases, the performance gap

between different topology levels becomes wider. These results motivate us to consider

the physical topology of GPUs when it comes to improving communication performance

through topology awareness in GPU clusters.
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Figure 5.2: GPU communication bandwidth at different levels of the fabric topology that
interconnects GPUs within a multi-GPU node.

5.3 MAGC: Unified Mapping Approach for GPU Clusters

GPU topology information can be used to find a more efficient assignment of GPUs to the

processes of an application. In particular, Faraji et al. [31, 32] model the GPU assignment

problem as a topology-aware mapping problem to design a topology-aware GPU selection

scheme for multi-GPU nodes. They show the effectiveness of topology-aware GPU selection

for improving GPU-to-GPU communication performance in a multi-GPU node. On the

other hand, in Chapter 3, we studied the importance of topology-aware process mapping

for CPU-to-CPU communications. Thus, in this section, we consider these two problems

in a combined manner for GPU clusters, where we will delve into the joint problem of

process-to-core(node) mapping and GPU-to-process assignment.

More specifically, we seek to answer the following question: Given an application that

uses both CPU and GPU processing elements, how should such PEs be assigned to appli-

cation processes so that the ultimate communication performance is optimized? In essence,

the question is which core/node should host each process, and which GPU should be as-

signed to it. This is a challenging problem because optimizing for one communication
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pattern (e.g., CPU-to-CPU) might conflict with optimization for another (i.e., GPU-to-

GPU). Moreover, the CPUs and GPUs can have different communication patterns, as well

as different intra-node physical topologies.

We first elaborate on how process-to-CPU mapping and GPU-to-process assignment be-

come related to each other (and impact each other) in GPU clusters, and then discuss how

a unified approach can be used to address both problems. In particular, we propose MAGC,

a Mapping Approach for GPU Clusters. MAGC attempts to improve the total communi-

cation performance by considering both CPU-to-CPU and GPU-to-GPU communications

of an application1, as well as the CPU and GPU physical topologies of the system.

5.3.1 The Joint Problem of Process Mapping and GPU Assignment

In heterogeneous GPU clusters, topology-aware mapping is a joint problem of process-

to-core(node) mapping and GPU-to-process assignment. Fig. 5.3 illustrates a schematic

diagram of this problem where we have the CPU and GPU communication patterns, as well

as the CPU and GPU topologies as input, and would like to find an efficient process-to-core

mapping and GPU-to-process assignment.

One way to address the joint problem (shown in Fig. 5.3) is to independently figure

out process-to-core mappings and GPU-to-process assignments in two separate steps. For

instance, one could first bind processes to CPU cores based on the CPU communication

pattern and CPU physical topology of the system, and then assign GPUs to processes with

respect to the GPU communication pattern and the physical topology of the GPUs. At each

step, a mapping algorithm/tool (e.g., Scotch) can be used to find an optimized assignment.

As discussed in Section 6.5, the first step of such an approach (i.e., process-to-core mapping)

has extensively been studied before. Moreover, in other work [31, 32], we studied topology-

aware GPU assignment within a single node. However, in the following, we will discuss the

1We interchangeably use the terms CPU-to-CPU and CPU communications to refer to the communica-
tions among the CPU cores of a cluster. Same thing applies to GPU-to-GPU and GPU communications for
GPU devices.
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Figure 5.3: Schematic diagram of the joint process-to-core mapping and GPU-to-process
assignment problem.

shortcomings of such a two-step approach for addressing the problem shown in Fig. 5.3,

and will motivate the need for a unified topology-aware mapping framework.

Deriving process-to-core mapping and GPU assignment independently could easily lead

to a poor result because a particular process-to-core mapping could limit the choices for

efficient assignment of GPUs. In fact, the two steps could lead to conflicting process place-

ment strategies. This is specially true when we consider GPU assignment across multiple

nodes. For instance, consider two processes with zero (or low) CPU communications be-

tween them. Topology-aware mapping strategies would typically map such two processes

on nodes that are far from each other. However, the same two processes could have a high

amount of GPU communications with each other which requires their assignment to two

GPUs that are physically close to each other. This could potentially lead to a situation

where a process is mapped onto a CPU on one node, and assigned a GPU residing on an-

other remote (potentially distant) node. This is undesirable for multiple reasons. First, the

only visible GPU devices to a process are those that fall within the same node onto which

the process has been mapped. Thus, accessing a remote GPU would require a middleware
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software framework (such as rCUDA [25]) to allow remote GPU virtualization. Second, all

data movements between the process and its remote GPU would have to pass across the

network. Third, some GPU-aware MPI designs [108] leverage CPU-assisted mechanisms,

in which the GPU-to-GPU communication is pipelined by staging the data portions in

the CPU memory. Such communications would be adversely affected with remote GPU

assignments.

A potential workaround for remote GPU assignment problem is to move (remap) the

processes accordingly. That is, process mappings will be revised with respect to GPU

assignments so that no process is assigned a remote GPU; each process will be moved

to the same node as its assigned GPU. However, if we simply move the processes with

respect to GPU assignments, it might increase CPU communication costs by placing highly

communicating processes far from each other. Thus, it is required to consider CPU-to-CPU

and GPU-to-GPU communications jointly to derive process mappings and GPU assignments

in a unified framework.

5.3.2 Unified Framework

We propose the unified framework shown in Fig. 5.4 to tackle the topology-aware process

mapping and GPU assignment problem shown in Fig. 5.3. The framework consists of three

main phases that address the problem at different physical topology layers. The first phase

mainly focuses on the inter-node network layer, whereas the second and third phases deal

with the problem at the intra-node layer.

First phase

In order to avoid the problem of remote GPU assignment mentioned in Section 5.3.1, we

limit GPU assignments to the boundaries of the node hosting each process. Thus, we first

figure out the node on which each process should be mapped. However, we do this with

respect to a combined communication pattern as the input to the mapping algorithm in the
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Figure 5.4: Schematic diagram of MAGC; a three-phase approach for process mapping and
GPU assignment in heterogeneous GPU clusters.

first phase. The combined pattern is built by adding the CPU and GPU communication

patterns together. For the physical topology, we only need to consider the network topology

at this phase because it will be the representative of the physical topology for both GPUs

and CPUs at the inter-node layer of the system. In fact, this is the feature that enables us

to use the combined CPU and GPU communication pattern in the first phase to conduct

the mapping with a joint CPU-GPU awareness.

The output of the first phase will be a process-to-node mapping. This mapping will

also imply an implicit GPU assignment as it confines each process with the set of GPUs

that reside on its hosting node. With an appropriate mapping algorithm, the mapping
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resulting from the first phase will have the following desired characteristics. The set of

processes mapped on the same node will have a relatively higher combined CPU and GPU

communications. This will potentially improve performance as such communications will

benefit from stronger intra-node (versus inter-node network) communication channels. It

will also decrease the potential need to have any remote GPU assignments in future steps.

Furthermore, by using a network-aware mapping algorithm, we will gain similar benefits

across the network as well; higher-communicating processes will fall into the nodes that are

relatively closer to each other within the network.

Second phase

The second phase determines process-to-core bindings within each individual node. As

shown by Fig. 5.4, at this phase, we only use the CPU communication pattern along with

the intra-node CPU topology to calculate the desired mappings. The mapping result from

the first phase is also fed to the algorithm to build the corresponding intra-node CPU

communication pattern for each node. This is done by considering only the portion of the

global CPU communication pattern matrix that corresponds to the set of processes mapped

onto each node in Phase 1.

Note that there is no need to consider GPU-to-GPU communications at this stage as

a process can be assigned any of the GPUs residing on its hosting node regardless of the

core to which it is bound. In other words, we do not have the problem of remote GPUs

within the boundaries of each single node. Moreover, at the intra-node level, CPU cores

and GPUs do not necessarily have the same physical topology. Therefore, we leave GPU

communications to the third phase where we attempt to optimize GPU assignments within

each node based on the GPU communications and GPU physical topologies.
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Third phase

In the third phase, we perform explicit assignment of GPUs to the processes within each

node. At this stage, all processes have already been bound to a particular CPU core.

As shown in Phase 3 of Fig. 5.4, GPU assignment is done with respect to the GPU

communications of an application and the intra-node GPU topology. Again, the mapping

result from the first phase is used to build the intra-node GPU communication pattern for

each node. The explicit assignment at this phase is complementary to the implicit GPU

assignment that is enforced by the process mapping mentioned in the first phase. Here, the

GPUs are assigned so as to further improve intra-node GPU communications within each

node.

5.3.3 Mapping Algorithms

As shown in Fig. 5.4, MAGC uses a mapping algorithm to derive the output at each

phase. In general, any mapping algorithm can be used for this purpose. The algorithms

used at different phases can be the same or different from each other. By modeling the

communication patterns and physical topologies in terms of graphs, one can use a generic

graph mapping tool such as Scotch to perform the mapping. Alternatively, one can use

other fine-tuned mapping algorithms with respect to the particular physical topology of the

system.

We will use the mapping approach discussed in Chapter 3 for the first phase of MAGC.

For the specific systems used in our experiments in this chapter, such an approach will be

simplified to its initial partitioning step because all nodes are connected to a single switch.

For the second and third phases, we consider two design alternatives. In one case, we use

Scotch as the mapping algorithm, whereas in another case, we use a greedy heuristic that

attempts to directly optimize maximum congestion. We use the heuristic mainly to see if

explicit modeling and optimization of congestion at the intra-node level can provide better
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results compared to Scotch. As the heuristic is used in both the second and third phase of

MAGC, we will use the general identifier of PE rather than CPU core or GPU device in

the following.

Congestion-based mapping heuristic

As a general graph mapping tool, Scotch models the physical topology by a weighted graph.

This makes it possible to apply the library for various systems with different architectures.

However, such a generic graph model flattens the hardware architecture and does not rep-

resent the hierarchy in communication channels. Therefore, it cannot take congestion char-

acteristics into account. Moreover, the specific edge weight values used for the graphs can

highly affect the quality of Scotch results [56]. Finding an appropriate set of values can be

nontrivial, specially as they can only be integers.

In our proposed heuristic, we use a tree to model the physical topology of the PEs. The

tree will provide the actual hierarchy and structure of connections among the PEs. We use

the hwloc and NVML [90] libraries to extract the topology of CPU cores and GPU devices

within each node. Using the topology tree, we keep track of the congestion imposed on

each individual link of the physical topology, and use it as the main metric to figure out

the desired mapping. To this end, we take into account the actual bandwidth of each link,

and define congestion as the total traffic load that is passed through each link divided by

its bandwidth.

Alg. 5.1 shows the heuristic details. It takes the set of processes P, the set of PEs,

the communication pattern matrix, and the topology tree as input, and returns a mapping

from the set of processes to the set of PEs. The algorithm iteratively chooses a new process

and maps it to a desired PE in a greedy fashion. More specifically, at each iteration of the

main loop in line 7, the new process for mapping is chosen based on the metric δ. The for

loop in lines 8 to 10 calculates the value of δ for each unmapped process. The process with

the highest value of δ is selected as the new process for mapping in line 11. As shown in
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line 9, δ captures the difference between two terms. For each unmapped process, these two

terms respectively calculate the average of communication volume with the set of mapped

and unmapped neighbors. Accordingly, matrix N in line 6 captures the neighborhood

relationships among the processes. Such a metric δ allows us to choose a process whose

communications are more associated with the set of mapped processes than the unmapped

ones.

The new processing element for hosting the chosen process is selected by lines 12 to 18

of Alg. 5.1. In particular, the for loop in lines 12 to 17 evaluates each unoccupied PE for

hosting the new process, and assigns a cost to it in line 16. The cost corresponding to each

unoccupied PE is equal to the maximum congestion that will result from mapping the new

process onto that PE. Accordingly, as the processes are mapped to a PE, we update link

congestions across the corresponding physical topology tree. This is done with respect to

the communications of the newly mapped process with the set of already-mapped processes.

More specifically, for each mapped neighbor n of pnew, we first find the links along the route

from the PE that will potentially host pnew to the PE that hosts n. We then update the

congestion of all such links with respect to the communication volume between pnew and

n, which is given by the communication pattern matrix. Among all possible target PEs for

pnew, we greedily choose the one that will lead to the lowest maximum congestion across

all links within the physical topology tree (line 18). The new process is then mapped onto

the new PE in line 19, and the topology tree is updated with the corresponding congestion

values in line 20.

Complexity The main loop of Alg. 5.1 performs one iteration per process. In each

iteration, In each iteration, finding the value of δ takes O(pd), where p and d denote the

number of processes (on a single node) and the degree of the the communication pattern

graph, respectively. The loop in lines 12 to 17 runs for a maximum of p iterations with

a cost of O(dl) per iteration, where l denotes the number of links that connect two nodes
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Algorithm 5.1: Congestion-based greedy heuristic for the intra-node mappings in
Phase 2 and Phase 3 of MAGC
Input : Set of processes P, set of processing elements PE , communication pattern

matrix C = [cij ], topology tree T
Output: The mapping τ : P → PE

1 PM = ∅; // Set of all mapped processes

2 Pc
M = P; // Set of all unmapped processes

3 PEM = ∅; // Set of occupied PEs

4 PEcM = PE ; // Set of unoccupied PEs

5 initZero(T ); // Initialize link congestions to 0

6 N = [nij ]|P |×|P |, nij =







1 cij > 0

0 otherwise
;

7 while Pc
M 6= ∅ do

8 for q ∈ P c
M do

9 δ =

∑
r∈PM

(cqr+crq)

∑
r∈PM

nqr
−

∑
s∈Pc

M

(cqs+csq)

∑
s∈Pc

M

nqs
;

10 end

11 pnew = qmax; // Choose the process with the highest value of δ as the

new process to map

12 for pe ∈ PEcM do

13 Temporarily assign pnew onto pe ;
14 calcCongestion(T );
15 maxCong = findMaxCongestion(T ) ;
16 costpe = maxCong ;

17 end

18 penew = pemin ; // Choose PE with lowest cost

19 τ(pnew) = penew ; // Map new process to new PE

20 updateCongestion(T ) ; // Update the topology tree

21 PM = PM ∪ {pnew}, Pc
M = Pc

M \ {pnew};
22 PEM = PEM ∪ {penew}, PEcM = PEcM \ {penew};
23 end
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(l ∝ log p for tree topologies). Finally, updating congestions in line 20 of the algorithm takes

another O(dl). Thus, the total complexity of Alg. 5.1 will be O(p(pd+pdl+dl)) = O(p2dl).

It is worth noting that Scotch has a complexity of O(pd log p+ p3) = O(p3)[45].

5.4 Experimental Results and Analysis

5.4.1 Experimental Setup

We conduct our experiments on two GPU clusters: Cluster A and Cluster B. These clusters

are part of the K80 and K20 Helios supercomputers provided by Compute Canada and

installed at the University of Laval. Both clusters are equipped with multi-GPU nodes.

Cluster A is composed of 4 nodes each having 16 K80 GPUs, two 12-core Intel Xeon Ivy

Bridge processors operating at 2.7 GHz (total of 24 cores per node), and 256 GB of memory.

Cluster B consists of 8 nodes each having 8 K20 GPUs, two 10-core Intel Xeon Ivy Bridge

processors operating at 2.5 GHz (total of 20 cores per node), and 128 GB of memory. Both

clusters run CentOS 6.7 and use Mellanox QDR InfiniBand as the interconnect. We use a

total of 64 MPI processes in all our experiments with each MPI rank assigned to a single

CPU core and GPU device. Also, we use Open MPI 1.10.2, CUDA 7.5, and Scotch 6.0.

5.4.2 Microbenchmark Results

For our microbenchmark analysis, we have developed a microbenchmark suite that models

various communication patterns among the CPU cores and among the GPU devices of a

cluster. The current version consists of three main microbenchmarks: 1) 2D 5-point Stencil

(2D), 2) 3D 7-point Stencil (3D), and 3) Sub-communicator collective (COL)2. For the

2D 5-point and 3D 7-point microbenchmarks we consider two cases: a) non-weighted and

b) weighted. In the former, we use the same message size for the communications along

all dimensions, whereas in the latter, larger messages are used along the first dimension

2See Section 3.4.1 of Chapter 3 for more details.
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(3 times larger). In the sub-communicator collective microbenchmark, the processes are

organized into a 3-dimensional grid with a sub-communicator created for each group of

processes falling along the first dimension. An MPI collective (MPI Alltoall in our tests)

is called over each sub-communicator.

Each of the above-mentioned microbenchmarks can be independently used as the com-

munication pattern among CPU cores and among GPU devices. We consider all possible

combinations of such microbenchmarks (9 in total) to model a wide variety of communica-

tion patterns. We represent each combination as an X-Y pair, where X and Y respectively

denote the microbenchmark of choice for CPU-to-CPU and GPU-to-GPU communications.

For instance, ‘2D-COL’ represents the case where we use the 2D pattern for CPU commu-

nications, and the sub-communicator collective pattern for GPU communications. For the

weighted versions of the 2D/3D microbenchmarks, we use an additional ‘w’.

Fig. 5.5 and Fig. 5.6 show the corresponding results. The figures show the commu-

nication time improvements achieved by using MAGC over the default process mappings

and GPU assignments. In particular, Fig. 5.5 shows the improvement trend across 5 dif-

ferent message sizes. For the sake of clarity, the results are only shown for a subset of all

combinations of our microbenchmarks, and Scotch is used as the mapping algorithm at the

intra-node layer (Phase 2 and Phase 3). The trend is similar for the cases not shown. In

Fig. 5.6, however, we show the results for all cases and a message size equal to 1MB.

From Fig. 5.5, it can be seen that for both clusters, improvements increase with message

size. This is an expected behavior as MAGC is targeted for message volume and bandwidth

optimizations, whereas smaller massages are more sensitive to message counts and startup

latencies. In fact, we can see that for message sizes below 64KB, in some cases MAGC could

result in performance degradation. However, for 64KB message size and above, MAGC can

consistently improve performance for all microbenchmarks. For the COL-COL case in

particular, we see more than 80% improvement. Also, we can see better results with the

weighted versions of the 2D/3D microbenchmarks shown in Fig. 5.5(b) and Fig. 5.5(d).
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Figure 5.5: Microbenchmark runtime improvements for different message sizes using
MAGC-Scotch on Cluster A and Cluster B—64 processes.

Fig. 5.6(a) and Fig. 5.6(b) show the improvements with 1MB message size for all mi-

crobenchmarks. The figures show the results with both Scotch and the congestion-based

heuristic as the mapping algorithms used in the second and third phases of MAGC. ‘MAGC-

Scotch-W’ and ‘MAGC-Heuristic-W’ refer to the weighted versions of the 2D and 3D mi-

crobenchmarks. As shown, on both clusters, MAGC can successfully improve performance

for all microbenchmark combinations. The highest improvements are achieved in cases that

involve the sub-communicator all-to-all benchmark. For the COL-COL microbenchmark,

we can achieve 91.4% and 79.4% improvement on Cluster A and Cluster B respectively.

Also, improvements are generally higher for the weighted versions of microbenchmarks.

This is because the larger messages communicated along one of the grid dimensions in the

weighted microbenchmarks provide more room for optimizations. Whereas the default map-

ping and GPU assignment is oblivious to the communication volume and bandwidth among
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Figure 5.6: Microbenchmark runtime improvements for 1MB message size using MAGC on
Cluster A and Cluster B—64 processes.

different processes, our design takes advantage of such information, and improves perfor-

mance by mapping intense communications on higher-bandwidth channels. The weighted

microbenchmarks also have a relatively less symmetric communication pattern, which again

increases the chance for optimizations.

Another observation is that MAGC results in a similar performance with either Scotch

or the heuristic. To understand the reason, we have evaluated both algorithms in terms of

their impact on maximum congestion. Fig. 5.7 shows maximum congestion improvements

achieved by MAGC with Scotch and the heuristic for all microbenchmarks on Cluster A.
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Figure 5.7: Maximum congestion improvements achieved by MAGC with Scotch and the
heuristic on Cluster A—64 processes.

The results show the combined improvements with respect to both CPU and GPU commu-

nications. The trend is similar for Cluster B and hence, we refrain from repeating it here.

The first observation is that in almost all cases, MAGC can successfully improve (decrease)

maximum congestion; the only exception is the non-weighted 3D-2D for which we do not

see any improvements. The second observation is that in all cases, Scotch and the heuristic

have led to the same amount of improvement in maximum congestion.

There are two reasons for such similar performance. First, MAGC uses the same fixed

mapping algorithm in the first phase, regardless of the choice (Scotch or heuristic) for the

second and third phases. Thus, the impact scope of the mapping algorithms used at the

second and third phases is rather limited and bound to the intra-node layer. Second, the

problem size at the intra-node layer is relatively small (16 for Cluster A, 8 for Cluster B)

for which both Scotch and the heuristic result in the same performance. The differences

between the two can be better studied on systems with higher numbers of CPU cores and

GPU devices per node. Finally, it is worth noting that a good correlation is seen between the

results in Fig. 5.7 for maximum congestion and those in Fig. 5.5 for runtime improvements.
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Figure 5.8: MAGC’s overheads with Scotch (MS) and heuristic (MH) on Cluster A and
Cluster B—64 processes.

Overheads

We also evaluate MAGC in terms of the overheads. Fig. 5.8 shows the total time spent by

MAGC with Scotch (MS) and the heuristic (MH). It also shows the time breakdown across

each of the three phases. For Phase 2 and Phase 3, the results represent the aggregate

time across all nodes. For the sake of clarity, we only present the results for three of the

microbenchmarks. The trend is similar for other microbenchmarks as well. We can see

from the figure that MAGC imposes a low overhead which is less than 8 ms in all cases.

We can also see that the overheads are lower with the heuristic compared to Scotch. This

is specially true for Cluster B where we see considerably lower overheads with the heuristic

in Phase 2 and Phase 3. This is mainly due to the fact that there are fewer CPU cores

and GPU devices on Cluster B compared to Cluster A. Consequently, the heuristic will be

dealing with a smaller topology tree for which the overheads of various steps in Alg. 5.1

(such as updating congestion values across the tree) will be lower. For Scotch, however, the

overheads are almost the same on both clusters and we see a slightly higher overhead for

Phase 2 on Cluster B.
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5.4.3 Application Results

In this section, we evaluate MAGC with a real application. To this end, we use HOOMD-

blue [5, 36] which is a general-purpose particle simulation toolkit shown to scale from a

single CPU core to thousands of GPUs. We run the application with 64 processes on

Cluster A and Cluster B, with and without MAGC. Moreover, we consider two versions

of the application: single-precision and double-precision. For the input, we use the classic

Lennard-Jones (LJ) liquid benchmark with two different number of particles: 512,000 and

2,000,000.

Fig. 5.9 shows the corresponding results in terms of the TPS (number of application

time steps per second) improvements achieved from using MAGC in comparison with a

default run of the application. We can see up to 6.5% and 8% improvements for Cluster

A and Cluster B respectively. Moreover, for both clusters, the highest improvements are

achieved with 512K number of particles. For Cluster A, the improvements are higher for

the single-precision case, whereas on Cluster B, we see the highest improvement for the

double-precision case. We also see degradations in improvement with increase in particle

size on both clusters. We expected to see an opposite trend as larger number of particles

would increase the total volume of messages exchanged among processes. However, a larger

number of particles will also increase the total computation load of the application which

can mask the impacts of communication improvements.

Our profiling results for HOOMD-blue show that the majority of communicated mes-

sages fall below 32KB on our platforms and with the workloads in use. Therefore, the mes-

sages are not large enough to consistently make the application bandwidth-bounded. Also,

the communication pattern resembles a non-weighted 3-dimensional stencil with wraparounds,

which makes the pattern quite symmetric. These are the main reasons for which we do not

see greater performance enhancements for HOOMD-blue as they limit the room for potential

optimizations through topology-aware mappings. We expect to see higher improvements
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Figure 5.9: HOOMD-blue TPS (number of application time steps per second) improvements
with MAGC—64 processes.

for applications that use larger messages and/or employ irregular communication patterns.

5.4.4 Comparison with Straightforward Strategies

In another set of experiments, we compare MAGC against two other strategies to further

evaluate the importance of considering GPU communications and using a unified framework.

Strategy 1 In the first strategy, we use the same three phases as MAGC, but ignore GPU

communications in the first phase. Thus, the processes are 1) mapped to the nodes based on

the network topology and the CPU communication pattern only, 2) locally bound to specific

cores within each node based on the intra-node CPU topology and CPU communication

pattern, and 3) locally assigned specific GPU devices within each node based on the intra-

node GPU topology and GPU communication pattern.

Strategy 2 The second strategy ignores the GPUs completely, and performs a traditional

CPU-only process mapping. Thus, it will consist of two phases only where the processes are

1) mapped to the nodes based on the network topology and the CPU communication pattern

only, and 2) locally bound to specific cores within each node based on the intra-node CPU

topology and CPU communication pattern. For the GPU assignment, the default approach
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is used where each process is simply assigned the GPU that has the same ID as the process

rank.

Fig. 5.10 shows the microbenchmark results for the two strategies. We only present the

results for Cluster A; the trend is similar for Cluster B. By comparing the results shown

in Fig. 5.10 to those shown before in Fig. 5.6(a), we can see that MAGC achieves higher

performance improvements than Strategy 1 and Strategy 2 for most of the microbenchmarks.

In some cases (3D-2D non-weighted and COL-2D weighted), Strategy 1 and Strategy 2 even

cause up to 20% degradation in performance, whereas MAGC can provide more than 80%

improvement.

We also see similar results for the two strategies in Fig. 5.10(a) and Fig. 5.10(b),

implying that the third phase of Strategy 1 (i.e., local GPU assignment within each node)

does not have major impacts on the performance. This, along with the better performance

achieved by MAGC, shows the importance of considering GPU communications from the

first phase of the mapping methodology for GPU clusters.

Another observation is the lower consistency in performance improvements provided

by Strategy 1 and Strategy 2 compared to MAGC. We see more stable improvements for

MAGC across different microbenchmarks that are not affected by the type of the processing

element (CPU or GPU) that runs each microbenchmark. This is demonstrated by the results

for the 2D-COL versus COL-2D microbenchmarks. Whereas MAGC provides a consistent

improvement (about 80%) in both cases, the two other strategies lead to different results.

MAGC achieves such consistency due to its joint consideration of both CPU and GPU

communications.

A closer examination of the results in Fig. 5.10 reveals that Strategy 1 and Strategy 2

can achieve a similar improvement to MAGC in cases where the same microbenchmark is

used on both the CPUs and the GPUs (e.g., 2D-2D). This is expected because in such cases,

optimizing for the CPU communications will also implicitly optimize the GPU communica-

tions as the two use the exact same pattern. Note that in our microbenchmark experiments,
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Figure 5.10: Microbenchmark runtime improvements achieved by Strategy 1 and Strategy
2 on Cluster A—64 processes.

we use the same message size for both the CPU and the GPU communications. Therefore,

with the same microbenchmarks, the communication pattern will be exactly the same on the

CPUs and GPUs. However, if different message sizes were used, then we would potentially

see higher improvements for MAGC even in the cases where the same microbenchmark is

used on both the CPUs and GPUs.

In addition, when different microbenchmarks are used for the CPU and GPU com-

munication patterns, Strategy 1 and Strategy 2 can perform comparably to MAGC only

when we have a weighted microbenchmark on the CPUs accompanied by a non-weighted
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microbenchmark on the GPUs. For instance consider the 2D-COL case. We see more

than 80% improvement achieved by MAGC and the other two strategies. This is because

in such cases, we will have larger messages communicated among the CPUs compared to

GPUs, which makes CPU communications the dominant factor in performance. However,

when this is not the case (e.g., 3D-2D, COL-2D, COL-3D), we can clearly see MAGC’s

superior performance compared to the other two strategies. For instance, in the weighted

3D-2D case, Strategy 1 and Strategy 2 only provide 20% improvement, whereas MAGC

provides more than 60%. For non-weighted 3D-2D and weighted COL-2D, we even see

performance degradation with Strategy 1 and Strategy 2, whereas MAGC achieves more

than 80% improvement for the weighted COL-2D case.

Finally, Fig. 5.11 shows the application improvements achieved by Strategy 1 and

Strategy 2 on Cluster A and Cluster B. We can see that the improvements are lower than

those achieved by MAGC in Fig. 5.9. This is specially true for Strategy 2 where we can even

see performance degradation in some cases. We see relatively better results for Strategy 1

which could be due to local topology-aware GPU assignments done in its third phase. It is

worth noting that unfortunately, we could not get the results for Strategy 1 with Scotch on

Cluster B (missing bars in Fig. 5.11(a)) due to a failure in the corresponding experiment.

5.5 Related Work

In GPU clusters, researchers have studied various GPU-aware point-to-point and collective

operations to improve the GPU communication performance [30, 57, 97]. Faraji and Afsahi

[30] propose an intranode GPU-aware MPI Allreduce in which CUDA IPC is used to gather

the pertinent data into the shared GPU buffer, followed by an in-GPU reduction. The

CUDA IPC copy type has also been utilized by other researchers [57, 97] to improve one-

sided and point-to-point communications.

Martinasso et al. [79] provide a detailed analysis of the congestion behavior associated
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Figure 5.11: HOOMD-blue TPS improvements achieved by Strategy 1 and Strategy 2—64
processes.

with the PCIe fabric that is used to connect the GPUs in a multi-GPU node. Accord-

ingly, a congestion-aware performance model is proposed that can be used to predict the

communication times in presence of congestion on a given PCIe topology. The proposed

model can help to design more efficient algorithms for intra-node GPU communications.

Lutz et al. [76] propose an auto-tuning framework for distribution of stencil computations

across multiple GPUs. They show that various PCIe layouts can have adverse effects on

the performance, thereby utilizing all GPUs might not be necessarily a better choice in all

cases.
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5.6 Summary

In this chapter, we focused on topology awareness in the context of heterogeneous GPU

clusters. We discussed the physical topology of GPU communication channels and how it

can impact the performance of GPU communications. Next, we discussed the joint problem

of process-to-core mapping and GPU-to-process assignment in GPU clusters. Accordingly,

we proposed a unified mapping approach called MAGC that takes into account both the

CPU and GPU communication patterns of an application, as well as the CPU and GPU

physical topologies of the system. MAGC exploits a three-phase approach that first assigns

processes to the nodes across the network, and then performs CPU core bindings and GPU

assignments within each node.

We studied MAGC’s benefits with two different algorithms used for finding the desired

core bindings and GPU assignments within each node. The first algorithm used the Scotch

library, whereas for the second one we designed a congestion-based heuristic. The heuristic

uses the maximum congestion imposed on the intra-node communication channels as the

metric to find the desired mappings. Our experimental results showed that using MAGC, we

can achieve considerable performance improvements by a more efficient utilization of both

the CPU and GPU communication channels within a GPU cluster. The results showed sim-

ilar improvements with Scotch and the congestion-based heuristic. However, the overheads

were shown to be lower for the latter. We also compared MAGC’s performance with two

straightforward strategies and showed that it can outperform them considerably, which pro-

vides further indication of the importance of using a unified framework for topology-aware

process mapping and GPU assignment in GPU clusters.
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Chapter 6

Neighborhood Collective Communications Optimization

As discussed in Chapter 2, neighborhood collectives are the relatively new communication

type added to MPI to address certain demands and shortcomings. By abstracting appli-

cation communications into neighborhood collectives, MPI provides users with yet another

opportunity to optimize performance. The topology information associated with a neighbor-

hood collective can be exploited by the MPI library to derive an optimized communication

pattern. Currently, well-known MPI libraries such as MPICH [86], MVAPICH [87], and

OpenMPI [92] use a näıve approach for performing neighborhood collectives. Every process

simply issues a send (receive) operation to (from) each of its outgoing (incoming) neighbors.

These send/receive operations are usually issued all at once in a nonblocking fashion and

are treated just as a set of individual point-to-point communications. Thus, no specific

pattern is used to govern the communications in order to deliver better performance.

In this chapter, we discuss how to improve the performance of neighborhood collectives

in MPI through designing nontrivial communication schedules. We use no prior knowledge

about the neighborhood topology, and hence target the distributed graph topologies in MPI.

Distributed graph topologies provide the most flexible and generic way for modeling process

topologies in MPI, but they make it more challenging to optimize neighborhood collectives

on top of them. We show, however, that useful information still can be extracted from

distributed graph topologies for communication optimizations. In particular, we show how
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to discover and exploit common neighborhoods in such topologies in order to optimize the

performance of neighborhood collectives through message combining.

More specifically, we propose a distributed algorithm that can be used to extract

message-combining communication patterns and schedules for neighborhood collectives. We

show that part of the problem falls within the scope of maximum matching in weighted

graphs, where we seek to find a mutual pairing of the processes that have neighbors in

common. To the best of our knowledge, this is the first work that shows how common

neighborhoods and message combining can be used to optimize the performance of neigh-

borhood collectives over the generic distributed graph topology interface of MPI.

6.1 Designing Nontrivial Algorithms for Neighborhood Collectives

Collective communications optimization can generally be divided into two branches: opti-

mization for small messages and optimization for large messages. The optimization objective

is different for small messages as compared to the objective for large messages. For small

messages the algorithms mainly seek to reduce the number of communication stages (start-

up latencies), whereas for large messages it is the total volume of transferred messages, as

well as the congestion induced by the underlying algorithm, that matters.

6.1.1 Design Principles

In this chapter, we focus mainly on small-message communications. Therefore, we wish to

determine how to potentially decrease the number of communication stages in a neighbor-

hood collective. Accordingly, we identify the following two principles that can be used to

decrease the number of communication stages in a certain collective communication:

1. increasing the number of senders in each stage,

2. increasing the number of messages transferred to a destination in each send operation

(in each stage).
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These two principles can also be found at the core of well-known algorithms used for

conventional collectives [116]. Two good examples are the binomial tree and the recur-

sive doubling algorithms used for MPI Bcast and MPI Allgather, respectively. Binomial

broadcast tries to increase the number of simultaneous senders by having every process con-

tribute as a source for message transmission as soon as it receives the broadcast message.

For MPI Allgather however, every process is already contributing as a source from the be-

ginning of the collective call. Therefore, the recursive doubling algorithm for MPI Allgather

tries to decrease the number of communication stages by increasing the number of messages

that are transferred in each individual send operation through message combining. However,

optimizing neighborhood collectives is more challenging. The reason is that conventional

collectives describe a global communication among all the processes. This provides global

knowledge of the desired collective communication, locally at each process. With neigh-

borhood collectives, however, the communication pattern is described by a graph that is

distributed among the processes. Thus, each process has only a local view of the entire

collective pattern.

For a neighborhood collective, the first principle mentioned above can help improve

performance when the processes have an unbalanced number of neighbors in the underlying

topology graph. More specifically, we can increase the number of senders in each stage

by delegating a portion of communications from the processes that have a high number

of outgoing neighbors to those having lower outdegrees. This strategy helps balance the

number of messages that should be sent out by each process, which in turn helps avoid

situations where one process is overloaded with many messages to send while some other

processes are idle. The tree transformation algorithm discussed by Hoefler and Schneider

[43] is an instance of such an optimization.

In this chapter, we discuss how the second principle mentioned above can be used to

improve the performance of neighborhood collectives. More specifically, we are interested in

designing a nontrivial communication algorithm that exploits message combining in order
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to decrease the number of communication stages of a neighborhood collective. Although

such an optimization can be used in conjunction with the neighbor-balancing approach, it

becomes particularly useful in cases where neighbor balancing fails to provide any benefits—

for instance, where process topologies are already balanced and the number of outgoing

neighbors of all processes is approximately the same. Such cases, combined with the fact

that most applications expose a balanced topology graph, add to the importance of our

proposed design.

6.1.2 Common Neighborhoods

We apply message combining to neighborhood collectives by exploiting the potential com-

mon neighborhoods that might exist in the underlying process topology graph. We define

the common neighborhood of p1 and p2 as the set of all processes that are an outgoing neigh-

bor of both p1 and p2. The existence of common neighborhoods among the processes in a

topology graph provides an opportunity for decreasing the number of individual messages

that should be sent out by each process.

To clarify this point, we consider the sample topology graph shown in Fig. 6.1, where p1

and p2 share the processes n1, n2, . . . , nk as a part of their outgoing neighbors. In a trivial

design, p1 and p2 each send one message to each of n1, n2, . . . , nk neighbor processes, which

adds up to k communication stages.1 However, we can use message combining to evenly

divide the common neighbors between p1 and p2 so that they each require communicating

with only half of their neighbors that fall within the common neighborhood. More specifi-

cally, p1 and p2 can first communicate with each other to exchange their messages and build

a combined message consisting of both p1 and p2 messages. Next, using the combined mes-

sage, p1 and p2 respectively communicate with n1, n2, . . . , n k
2

and n k
2
+1, n k

2
+2, . . . , nk. This

step transfers the message of both p1 and p2 to the processes in their common neighborhood

in k
2 + 1 communication stages.

1Of course more stages are required to cover other non-common neighbors.
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Figure 6.1: Sample process topology graph showing a common neighborhood for p1 and p2
consisting of k processes n1, n2, . . . , nk.

Accordingly, we propose an approach that finds the common neighborhoods among the

processes in an MPI distributed graph topology and exploits them to design more efficient

communication schedules for neighborhood collectives. We distinguish the following two

phases in our design:

1. Phase 1 for building a communication pattern based on the given topology graph,

2. Phase 2 for building a communication schedule based on the derived pattern and a

specific neighborhood collective

In the following sections, we discuss each of these phases in more detail.

6.2 Communication Pattern Design

The first phase is the main part of our design, in which we build a nontrivial communication

pattern among the processes based on pairwise message combining between the processes

that share a common neighborhood. The resulting communication pattern consists of a

series of message-combining steps for each process. We note that this phase depends only

on the given topology. Thus, it needs to be done only once for each given process topology
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graph. Moreover, the result from this phase can be used for different types of neighbor-

hood collectives. For instance, it can be used to build a communication schedule for both

neighborhood allgather and neighborhood alltoall collectives.

6.2.1 Distributed Design

A major challenge is that we commit ourself to a fully distributed algorithm that runs

on each process and builds a communication pattern that locally describes the specific

communications of each process. A distributed design potentially has lower overheads and

better scalability. Moreover, we want to maintain the distributed representation of the

underlying topology provided by the MPI distributed graph topology functions. This is

important: the MPI distributed topology functions were added to the standard because the

old non-distributed versions of such functions were well known to be one of the most non-

scalable structures in MPI [6]. Thus, we intend to avoid any central solution that requires

building the complete topology graph at one or more processes.

Our proposed approach works with both the adjacent and non-adjacent distributed

graph topology interfaces of MPI. The adjacent API has the advantage that the information

about the outgoing/incoming neighbors of each process is available at no additional cost,

whereas extracting such information from the non-adjacent API might require additional

communications. However, this will be a one-time cost only and the standard already

includes APIs to query the outgoing/incoming neighbors of each process. In addition, the

adjacent API provides a more natural way for programmers to describe the topology graph

and has been shown to have a slightly better performance for neighborhood collectives [119].

6.2.2 Message-Combining Algorithm

In order to describe our proposed message-combining algorithm, we first establish the fol-

lowing definition.

Friend processes: Two processes are defined as a friend of each other if they have
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a certain number of outgoing neighbors in common. The two processes are said to be in

a friendship relationship. This relationship is defined with respect to a given threshold Θ

specifying the minimum number of common neighbors that two processes should have in

order to be considered friends. Note that two friend processes may or may not be neighbors

themselves.

Algorithm 6.1 shows a high-level abstraction of the main steps in our proposed algorithm.

Each process p in the topology graph runs Alg. 6.1 to build its local portion of the desired

communication pattern. First, we extract information about the common neighborhoods

of p and save it into a matrix M (line 2). We explain this step in more detail in a separate

section. Next, from M , we find all friends of p with respect to an input friendship threshold

Θ (line 6). We also initialize Oa and Ia (line 4), which denote the list of active outgoing

and incoming neighbors of p, respectively. Active neighbors represent a subset of neighbors

that have not yet been addressed. After that, in the main loop (lines 5 to 25) we iteratively

perform three main tasks: (1) pair p with one of its friends for the purpose of message

combining, (2) divide the corresponding common neighbors between p and its paired friend,

and (3) update topology information and the output pattern.

More specifically, p first attempts to find a target friend such as f to pair with (line 6).

This is a major step and we discuss it in a separate section. Having found f , we extract the

set of outgoing neighbors that p and f have in common (line 8) and divide it evenly between

p and f (lines 10 to 17). More specifically, let CN represent the set of common neighbors

between p and f . Then, we divide CN into two balanced subsets CNon and CNoff , which

respectively denote the neighbors assigned (onloaded) to p and the neighbors offloaded to

f .

A key point here is that we have to make sure the division is consistent at p and f . In

other words, CNon and CNoff should conform to the following conditions:

1. CNon ∩ CNoff = ∅



6.2. COMMUNICATION PATTERN DESIGN 136

Algorithm 6.1: Distributed message combining for neighborhood collectives

Input : Set of outgoing neighbors O, set of incoming neighbors I, friendship
threshold Θ

Output: The communication pattern T
1 p = this process;
2 M = Build common neighborhood matrix(O, I) ;
3 F = Find friends(M , Θ) ;
4 Oa = O, Ia = I;
5 while |F | > 0 do

6 f = Find friend to pair(M , F );
7 if found f then

8 CN = Find common neighbors(M , f);
9 sort(CN );

10 if p < f then

11 Keep (onload) the first half of CN ;
12 Offload the second half of CN to f ;

13 end

14 else

15 Keep (onload) the second half of CN ;
16 Offload the first half of CN to f ;

17 end

18 Add f and CNon to T ;

19 end

20 Notify each neighbor in Oa whether it was onloaded/offloaded ;
21 Update Ia and T based on notifications from neighbors in Ia ;
22 Oa = Oa − CN ;
23 Update common neighborhood matrix(M , Oa, Ia);
24 F = Find friends(M , Θ) ;

25 end

26 Notify each neighbor in Oa that p is done;
27 Add Oa to T ;
28 while Ia 6= ∅ do
29 Update Ia and T based on notifications from neighbors in Ia;

30 end
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2. CNon ∪ CNoff = CN

3. CNon at p = CNoff at f

4. CNoff at p = CNon at f

To ensure these conditions are met, we first sort the list of common neighbors with

respect to the MPI rank of the corresponding processes (line 9). The list is then divided

in half, and we decide which half to assign to p based on the MPI rank of p and f . If the

rank of p is less than f , all the neighbors in the first half of the sorted CN are assigned to

p, and vice versa.

At this point, we have built one major stage of our target communication pattern for

p (and also f), which implies p exchanging messages with f , building a combined message,

and sending it to all the processes in CNon , namely the common outgoing neighbors assigned

(onloaded) to p. Thus, we save f and CNon into the output pattern T (line 18).

At the end of each iteration, we notify each active outgoing neighbor of p about the

outcome of the current iteration. This notification (line 20) is used for three purposes:

1. informing offloaded neighbors of p that they will not receive any message from p in

the final communication pattern,

2. informing onloaded neighbors of p that they will receive a combined message in the

final communication pattern, which includes the data from p and f ,

3. updating the list of active incoming neighbors of each process (line 21), which is

necessary for updating neighborhood information for the next iteration.

We also update the list of active outgoing neighbors to remove those covered in the

current iteration (line 22). Then we update the common neighborhood matrix based on the

remaining active outgoing/incoming neighbors of each process (line 23), and we recompile

the list of remaining friends accordingly (line 24). The details of how we update the common
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neighborhood matrix are discussed in a separate section. As shown by the condition in line

5, the main loop of the algorithm finishes when there are no more remaining friends for the

process to consider for pairing. The process p then notifies its remaining active outgoing

neighbors that it is done (line 26) and adds them to T (line 27). Next, it remains active to

receive the notifications sent to it from the set of its active incoming neighbors (line 29).

The notifications are used to update both the pattern (T ) and the set of active incoming

neighbors (Ia) itself.

Finding common neighborhoods

The first step to building our desired pattern is finding the common neighborhoods in the

topology graph (line 2 of Alg. 6.1). More specifically, each process has to find the set of all

other processes with which it has some of its outgoing neighbors in common. Fortunately,

this can be accomplished in an MPI distributed graph topology by a set of neighborhood

communications. To this end, each process queries each of its outgoing neighbors about their

incoming neighbors. For each outgoing neighbor nout of a given process p, the incoming

neighbors of nout represent the set of all processes with which p has nout as a common

neighbor. By querying all its outgoing neighbors, p builds a common neighborhood matrix

M . Each row of M corresponds to one of the outgoing neighbors of p such as ni, and it lists

the set of all incoming neighbors of ni. Therefore, each element in row ni represents the rank

of a process with which p has ni in common as an outgoing neighbor. By exploring all the

elements in matrix M , we can find all the processes with which p has at least one neighbor in

common. Also, the number of times a process rank appears withinM designates the number

of neighbors that p and the given process have in common (the common neighborhood size).

Hence, we can find all friends of p with respect to a given friendship threshold Θ (line 3 of

Alg. 6.1).

Each process already has the list of all its outgoing and incoming neighbors, which makes

the extraction of M easier. Every process in the topology needs only to send its own list of
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(already known) incoming neighbors to each of its incoming neighbors and receive one such

list from each of its outgoing neighbors. We note that M requires O(d2) memory space,

where d denotes the average outdegree of the processes in the topology graph.

Pairing friend processes

In each iteration of the loop in Alg. 6.1, each process p attempts to pair with one (and

only one) of its friend processes (line 6). Among all possible friends, we want p to choose

a friend with which it has the highest number of common neighbors because that provides

more opportunity for performance optimization. However, the friend selection must be

mutual between the two processes involved. If p chooses f as its target friend to pair with,

then we must ensure that f has also chosen p mutually as its target friend.

The friend-pairing problem can be modeled as a distributed maximum matching problem

in weighted graphs. The corresponding graph is the friendship graph of processes G(V,E).

For each process p, we have a vertex vp ∈ V , and two vertices vp, vq are adjacent ((vp, vq) ∈

E) if and only if p and q are friends. The edge weight represents the number of common

neighbors between p and q.

Finding a maximum matching in the friendship graph G pairs each process with at

most one other friend and does this pairing so that the total number of common neighbors

covered in the main topology graph is maximized. However, note that G is inherently

distributed among the processes, because each process extracts information only about its

own neighborhood and friends (lines 2 and 3 of Alg. 6.1). Thus, we have a distributed

maximum weighted matching (MWM) problem.

Various algorithms with different complexities and approximation ratios have been pro-

posed for the distributed MWM problem [122, 47, 73, 74, 63]. In this chapter, we use an

algorithm similar to that proposed by Hoepman [47]. A recent study [50] shows that Hoep-

man’s algorithm outperforms other major alternatives for distributed MWM. Algorithm

6.2 shows the details of our algorithm for distributed matching of friend processes. The
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main differences between Alg. 6.2 and that designed by Hoepman are in the information

that is communicated among the processes and the way we choose the candidates in each

iteration. In Hoepmans algorithm, a node u sends a request signal to its chosen candidate

only, whereas in our algorithm, u informs all its neighbors (in the friendship graph) about

its chosen candidate. Moreover, whereas Hoepman always chooses the locally heaviest edge,

we use the procedure outlined in lines 4 to 23 of Alg. 6.2. The rationale for our approach

is described below.

Algorithm 6.2 is an iterative algorithm where each process first chooses a potential

friend for pairing and then checks to see whether its choice is mutual. If it is, then we have

a successful pairing, and this step is completed. Otherwise, the process goes to the next

iteration to try another (or the same) friend again. A given process p runs the main loop

in lines 3 to 30 until it reaches either a paired or terminal state. The former represents the

case where p can successfully find a mutual friend, whereas the latter represents the case

where p fails to find a mutual friend and gives up the search. Friend selections occur in

lines 4 to 23. The remaining steps are used for communicating the choices to check their

mutuality.

In the first iteration of the loop, each process p greedily chooses the friend with which

it has the maximum number of common neighbors. In all other iterations, we consider two

main cases: (1) p maintains its previously chosen friend fold (lines 8 to 10), or (2) p tries

one of its other still-active friends (lines 11 to 22). As shown by the condition in line 8, p

maintains its previously chosen friend fold only if it finds that fold has also failed to pair

with its previously chosen friend. The rationale is that in such a case, fold will still be

looking for a friend to pair with and it might choose p this time. Thus, it makes sense for p

to maintain fold. However, p does so only if two other conditions are also met: (1) fold has

not become terminal and hence is still looking for a friend, and (2) the rank of p is lower

than the rank of fold. This second condition is needed to avoid deadlock situations where

the set of friends chosen by a group of processes creates a circular dependency. Without the
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Algorithm 6.2: Distributed and mutual friend pairing/matching.

Input : Common neighborhood matrix M , Set of friends F
Output: A friend process f to pair with for message combining

1 p = this process;
2 paired = terminal = False;
3 while !(paired OR terminal) do

4 if first iteration then

5 f = friend with maximum number of common neighbors;

6 end

7 else

8 if fold is not terminal AND is not paired AND p < fold then

9 f = fold; // Retry the previous choice

10 end

11 else

12 f = g ∈ F : g < p and g chose p;
13 if not found g then

14 F = F − fold ;
15 if F is empty then

16 terminal = True ; // failed to pair with anyone

17 end

18 else

19 f = friend with maximum number of common neighbors;
20 end

21 end

22 end

23 end

24 Notify all friends in F about f ;
25 if p is not terminal AND f chose p then

26 paired = True ; // Successfully paired with f

27 end

28 Notify all friends in F about paired state;
29 Remove from F all the paired and terminal friends;

30 end
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second condition, such processes will all maintain their previously chosen friend, causing

them all to fail indefinitely.

In choosing a new friend, we first search for a friend g such that rank of g is lower than

the rank of p, and g has chosen p as its potential friend (line 12). The reason is that we

know from the first case above that g will choose p again as its potential friend and, hence,

p and g could successfully pair. If g does not exist, we attempt to choose a new friend with

which p has the highest number of common neighbors (line 19). However, we first discard

the previously chosen friend from the list of friends in line 14, and we put the process in

the terminal state if there are no more friends left to try. Doing so guarantees a bounded

number of iterations when a process fails to mutually pair with a friend.

At the end of each iteration, we have two communication steps. In the first one (line

24), p sends (receives) the value of f to (from) all its remaining friends. Next (line 25),

we check to see whether the friend selections are mutual between p and f , and we set the

paired state accordingly. The selection is mutual if p is not terminal (i.e., has actually

chosen a friend) and the target friend selected by its chosen friend (f) is equal to p. In

the second communication step (line 28), p informs its friends about its success/failure in

mutual pairing based on the information received in the first communication step. Next,

we update the list of friends to remove all the paired and terminal ones. Such friends will

not be active in the next iteration of the algorithm.

Updating neighborhood information

At the end of each iteration of Alg. 6.1, we update the neighborhood information before

moving to the next iteration (line 23 of Alg. 6.1). This step is necessary because the neighbor

offloading/onloading changes the effective neighborhoods of a process. More specifically,

when a process such as p offloads some of its outgoing neighbors to a friend process f , it

no longer is communicating (directly) with those neighbors, thus effectively canceling those

processes as outgoing neighbors of p. Also, in our current design, each outgoing neighbor
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of a process is considered for at most one message-combining stage; that is, the onloaded

neighbors of a process are not considered for message combining with other friends in further

iterations of the algorithm. Thus, before choosing another friend for message combining,

we first need to update the common neighborhood matrix with respect to such changes in

effective outgoing neighbors.

We can do this update in a way similar to that used for building the common neighbor-

hood matrix in the first place. Each process queries each of its outgoing neighbors about

their remaining active incoming neighbors. To this end, each process sends its own list of

active incoming neighbors (Ia) to each of its active incoming neighbors and receives one

such list from each of its active outgoing neighbors. Next, we compare each received list

with its corresponding row in the common neighborhood matrix. This is the row of the

matrix that corresponds to the outgoing neighbor from which the list has been received.

Then, we mask from the matrix those elements that are no longer in the list.

Complexities

The complexity of Alg. 6.2 can be given by O(rf), where r denotes the number of iterations

of the algorithm and f denotes the number of friends per process (node degrees in the

friendship graph). This leads to a worst-case complexity of O(p2) for Alg. 6.2, where p

denotes the number of processes. The reason is that in worst case, r = p− 1 due to lines 8

to 10 of Alg. 6.2, and f = p− 1 for a complete friendship graph.

The complexity of Alg. 6.1 can be given by O(t(rf + n2)), where t denotes the number

of iterations of the algorithm and n denotes the average number of neighbors per process

(node degrees in the topology graph). The n2 term is for traversing the neighborhood

matrix to find the friends of a process. Assuming2 an upper bound of f for t, the worst-case

complexity of Alg. 6.1 will be O(p(p2 + p2)) = O(p3) with a complete topology graph.

We note that these are the worst-case complexities. In Section 6.4.3, we show that in

2We do not have a formal proof for it.
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practical use cases, Alg. 6.1 overhead increases with
√
f(f + n2). Moreover, n is expected

to be considerably lower than p for the topology graphs used with neighborhood collectives.

Thus, a complete process topology graph is not a realistic use case as it would actually

represent a conventional global allgather/alltoall communication.

6.3 Communication Schedule Design

So far, we have explained how to design an optimized communication pattern based on

the underlying process topology graph. In this section, we explain how to build a com-

munication schedule from the derived pattern for a given neighborhood collective function.

The communication schedule precisely specifies the send, receive, and memory copying op-

erations that a process should perform in order to implement the derived communication

pattern. This means it has the buffer addresses associated with it. Moreover, it specifies

the exact order of such operations, providing a fine-grained description of the temporal

characteristics of the desired communication pattern. Therefore, unlike the pattern that is

built once for each topology graph, the schedule should be built once for each specific call

to a neighborhood collective.

6.3.1 Generic Scheme

Algorithm 6.3 shows the steps involved in building the communication schedule. Again,

each process p runs the algorithm to build the desired schedule. As the input, it takes

the message-combining pattern T and all the parameters corresponding to a specific neigh-

borhood collective call, including send/receive buffer addresses and message sizes (counts).

The output is a communication schedule S that is used to conduct the given neighborhood

collective. The + = symbol is used to represent the ordered addition of operations to

the schedule. From a generic perspective, Alg. 6.3 builds a communication schedule that

consists of several blocking communication steps. Each step mainly captures a series of
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nonblocking point-to-point send/receive operations that are issued by each process.

Algorithm 6.3: Communication schedule extraction from the message-combining pat-
tern.
Input : Communication pattern T , send/receive buffers, send/receive sizes,

send/receive datatypes, MPI communicator
Output: Communication schedule S

1 for each step t in T do

2 if have a combining friend f then

3 S += send operation to f ;
4 S += receive operation from f ;
5 S += wait on issued operations;
6 S += build the combined message;
7 for each onloaded neighbor no do

8 S += send operation to no (combined message);

9 end

10 end

11 for each incoming neighbor ni tagged with t do
12 S += receive operation from ni to get a message (possibly combined);

13 end

14 S += wait on issued operations;
15 for each incoming neighbor ni tagged with t do
16 S += copy operation to move the message contents to the final buffers;

17 end

18 S += wait on issued operations;

19 end

20 for each remaining outgoing neighbor no do

21 S += send operation to no;

22 end

23 Repeat lines 11 to 17 for the remaining incoming neighbors;

Accordingly, the loop in lines 1 to 19 processes the pattern T one step at a time. Each

step of T contains the results of the corresponding iterations of Alg. 6.1, which can include

two items: (1) a friend process f to combine messages with and a corresponding set of

onloaded outgoing neighbors and (2) a set of incoming neighbors to receive messages from.

If T contains a message-combining friend f at step t, we add to the schedule a send (receive)

operation to (from) f for exchanging messages between p and f (lines 3 and 4). Next, we

add a directive to the schedule (line 5) to note that the succeeding operations should not be
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started until all the previous ones are completed. Then, we add an operation to build the

desired combined message, which in our current implementation translates into a memory

copy operation. After that, we add a send operation (lines 7 to 9) to transfer the combined

message from p to each of its onloaded outgoing neighbors.

Lines 11 to 17 of Alg. 6.3 process the list of incoming neighbors from which p should

receive a message at step t. For each of such incoming neighbors, we add a receive operation

to S to receive a message into an intermediate buffer (line 12). In line 16 we add a memory

copy operation to S to move data into the final application buffers. First, however, we

add a directive to S (line 14) to ensure that such data movements are not started before

the messages arrive in the intermediate buffers. Before processing the next step t, we

add another directive to S (line 18) to block any further operations until the current step

completes. At the end, we add a send (receive) operation to S for each remaining outgoing

(incoming) neighbor that has not been covered in any of the previous steps of T (lines 20

to 23). These operations constitute a final logical step of communications in the schedule

and correspond to lines 27 to 30 of Alg. 6.1. We note that Alg. 6.3 has a complexity of

O(n), where n denotes the number of neighbors per process in the topology graph.

6.3.2 Specific Designs

We have currently devised two specific versions of Alg. 6.3 to support the schedule design for

two of the MPI neighborhood collectives, namely, neighbor allgather and neighbor alltoallv3.

We have chosen these two functions because they have important differences in terms of

their corresponding schedule design.

The design for alltoallv is more involved than that of allgather because of two main

reasons. First, alltoallv/alltoall involves more complicated data exchange and combined-

message build-up stages (lines 3, 4 and 6 of Alg. 6.3). The reason is that in alltoallv/alltoall

we will have a different message for each (onloaded) neighbor, whereas in allgather, the same

3The design for neighbor alltoall easily follows from alltoallv.
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exchanged/combined message is used for all onloaded neighbors at each stage.

Second, for allgather, all the required arguments for the send/receive operations that

are added to the schedule are locally available at each process. This is mainly because with

allgather, we know that the incoming neighbors of a process p will all send the same amount

of data to p. However, in alltoallv, each process could send (receive) different amount of

data to (from) each of its outgoing (incoming) neighbors. The sendcounts (recvcounts)

argument of the function determines the specific amount of data for each neighbor. As a

result, two paired friend processes could have different sendcounts values for the common

neighbors that are onloaded/offloaded between them. Thus, for alltoallv, Alg. 6.3 will

involve communication between the paired friends so as to exchange certain parts of the

sendcounts argument. We note that unlike the send/receive operations listed in Alg. 6.3,

these communications are not part of the final schedule.

6.4 Experimental Results and Analysis

In this section, we evaluate the performance of our design for various neighborhood topolo-

gies. We use a microbenchmark to measure the latency of neighborhood collectives with

and without our message-combining approach. In our microbenchmark, we first build a

desired process topology graph and then call the neighborhood collective function on top

of it. The function is called 1,000 times and the average latency per call is reported as the

output4. All the experiments are conducted on the GPC cluster at SciNet (see Section 3.4

for details) and we use MVAPICH2-2.2.

We evaluate the performance for two flavors of our design and the default näıve ap-

proach: persistent and nonpersistent. The persistent approach is useful in cases where the

neighborhood collective function parameters (such as buffer addresses, counts, etc.) are

known to remain unchanged. Thus, in the persistent approach, the neighborhood collective

schedule is built once in the first call to the collective (or in an “init” API) and is reused

4The first 100 calls are ignored for the sake of warm-up.
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for all succeeding calls. In the nonpersistent approach, the schedule is built every time that

the neighborhood collective is called. Note that the communication pattern is built only

once in both cases; only the schedule is built for every call to the collective function in the

nonpersistent case. In the following charts, we report the results for four cases:

1. Def-Nonpersist: The default näıve approach in MVAPICH

2. Opt-Nonpersist: Our proposed message-combining design

3. Def-Persist: The persistent version of the default näıve approach in MVAPICH

4. Opt-Persist: The persistent version of our proposed message-combining design

It is also worth noting that we use a friendship threshold of θ = 4 in all the experi-

ments as it represents the minimum number of common neighbors that could potentially

lead to performance improvement through message combining. If two processes have fewer

than 4 neighbors in common, then we cannot decrease the number of communication stages

through message combining due to the additional communication needed to exchange mes-

sages between the friend processes.

6.4.1 Random Sparse Graph

In our first set of experiments, we build the neighborhood topology based on a random

sparse digraph G(V,E). The set of vertices V represents the set of MPI processes, and

an edge (i, j) ∈ E represents an outgoing neighbor from process i to process j. The edges

of the graph are created randomly with respect to a density factor 0 < p ≤ 1, which is

provided as an input. Higher values of p result in a denser graph with a higher number of

outgoing/incoming neighbors per process, whereas lower values of p produce a sparser graph

with fewer number of neighbors per process. We note that random sparse graphs have also

been used by Hoefler and Schneider [43] to evaluate neighborhood collective optimizations.
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We conduct our experiments for different values of the density factor p that allow us to

evaluate our proposed design with neighborhood topologies of random shapes and different

sizes. For each specific value of p, we run our microbenchmark 5 times to account for the

randomness of the topology graph and report the average.

Figure 6.2 shows the results for neighborhood allgather and neighborhood alltoallv with

a 4-byte message size. It shows the absolute latency values (left axis) as well as the im-

provement percentages (right axis). We can see that our proposed design results in lower

latencies compared with those with the näıve approach used in MVAPICH. In general, we

see greater improvements for denser graphs as expected, because denser graphs provide a

larger number of neighbors per process, which in turn provide more room for improvements

through our proposed approach. Fig. 6.2 shows that even at a low edge density of 0.05, we

can still achieve about 50% and 30% improvement for neighborhood allgather and neigh-

borhood alltoallv, respectively. According to the figure, the improvements can be as high

as 70%. Another observation is that although the persistent feature does not impact the

default approach noticeably, it can improve the performance of our design. This is because

building a schedule out of the näıve pattern is much easier (with almost no overhead) than

building it from the message-combining pattern. Thus, the persistent feature has higher

impacts for the latter. However, as we discuss in more detail in Section 6.4.3, the schedule

overhead is still low for our design, and hence both the persistent and nonpersistent versions

of our design outperform the default approach.

In Fig. 6.3 and Fig. 6.4 we show the results across various message sizes and three edge

densities for neighborhood allgather and neighborhood alltoallv, respectively. We can see

lower latencies achieved by our proposed design across all message sizes up to 1 KB for both

neighborhood allgather and neighborhood alltoallv. The improvements vary from 36% to

71% based on the specific message size and edge density, but in most cases we can achieve

about 50% reduction in latency. The improvement gap starts to shrink after 1 KB message

size because of bandwidth effects. For clarity, we do not show the results for message sizes
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Figure 6.2: Average latencies for the random sparse graph topology—4-byte message size
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Figure 6.3: Neighborhood allgather average latencies for the random sparse graph
topology—4,096 MPI processes, various message sizes and three topology graph edge den-
sities p = 0.05, 0.2, 0.8.
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Figure 6.4: Neighborhood alltoallv average latencies for the random sparse graph topology—
1,024 MPI processes, various message sizes and three topology graph edge densities p =
0.05, 0.2, 0.8.

above 1 KB here. Those results show that all four approaches converge more or less to the

same latency for message sizes of approximately 4 KB. The exact convergence point varies

somewhat for different edge densities and occurs at larger message sizes (near 16 KB) for

denser graphs. After that, the näıve approach leads to lower latencies. This result is ex-

pected because message combining does not improve the bandwidth terms of the underlying

communication pattern. Thus, it does not have much benefit for large messages, which are

sensitive mainly to bandwidth/congestion characteristics of communication patterns (recall

that our goal from the beginning was to improve the performance for small messages). An-

other observation is that for our design, the persistent approach provides lower latencies

than the nonpersistent approach across all message sizes. Even the nonpersistent version,

however, still outperforms the näıve approach. We can also see that the gap between the
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Figure 6.5: A sample Moore neighborhood with d = 2 and r = 1, 2. The neighbors are
shown in green for the ‘C’ node.

persistent and nonpersistent approaches becomes wider as we move from sparse graphs (Fig.

6.3(a)) to denser ones (Fig. 6.3(c)). This is due to the higher number of neighbors and

friend processes in denser graphs, which increases the number of operations performed by

Alg. 6.3.

6.4.2 Moore Neighborhoods

For our second set of experiments, we use a Moore neighborhood to model the process

topology graph. A Moore neighborhood is defined with two parameters: dimension (d)

and radius (r). The former represents the number of grid dimensions that the nodes (MPI

processes) are organized into, and the latter represents the absolute value of the maximum

distance at which other nodes are considered a neighbor of a given node. Thus, for each

pair of d and r values, the number of neighbors of each node will be equal to (2r+ 1)d − 1.

Note that Moore neighborhoods are symmetric, in the sense that each neighbor will be both

an outgoing and an incoming neighbor of a given MPI process. Fig. 6.5 shows a Moore

neighborhood with d = 2 and r = 1, 2.

Moore neighborhoods allow us to study the benefits of our design with more regular
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types of topologies. In some sense, they can be considered as a generalization of the stencil

patterns such as 2D 5-point or 3D 7-point. However, Moore neighborhoods provide a

relatively higher number of neighbors per process. They also allow modeling of a wider

variety of neighborhood shapes and sizes through different values of d and r. In addition,

simpler patterns such as 2D 5-point and 3D 7-point are more suited to the Cartesian process

topology interface of MPI, not the general distributed graph interface that is the focus of

our work in this paper. We note that Moore neighborhoods have also been used by Träff

et al. [119] as examples of isomorphic neighborhoods in MPI.

We conduct our experiments for different values of d, r. Figure 6.6 and Fig. 6.7 re-

spectively show the results for neighborhood allgather and neighborhood alltoallv with a

4-byte message size. In almost all cases, our approach successfully decreases the latency

for different values of d and r. The only exception is the case with d = 2, r = 1, where we

can see a slight increase in the latency. The are two reasons for this increase. First, in this

case, each process has a small number of neighbors (8 to be precise), for which the näıve

approach will be good enough. Second, the number of common neighbors between any two

processes is at most 4. Considering the additional communication required to exchange

messages between any two friend processes, we cannot achieve any considerable decrease in

the number of communications with only four common neighbors.

Another observation is that we obtain greater improvements with the increase in either

d or r. The reason is that higher values of d and/or r result in a higher number of neighbors

per process, providing more opportunity for optimizations through message combining.

Moreover, we mostly see similar results for both the persistent and nonpersistent versions

of our design for neighborhood allgather, implying a low overhead in Phase 2 of our design.

This is confirmed by the results shown in Section 6.4.3. Note that we do not have any

results for d = 4, r = 4 in Fig. 6.6(c). The reason is that with 8,192 processes and d = 4, we

will have 8 processes along some of the dimensions, which is not large enough to support a

neighborhood radius of 4 without duplicate neighbors. For similar reasons, we do not have
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(b) d = 3, 32× 16× 16 MPI processes
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(c) d = 4, 16× 8× 8× 8 MPI processes

Figure 6.6: Neighborhood allgather average latencies for the Moore neighborhood graph
topology—8,192 MPI processes, 4-byte message size, d = 2, 3, 4, and r = 1, 2, 3, 4.

the results for all combinations of d, r values with the neighborhood alltoallv in Fig. 6.7.

Figure 6.8 and Fig. 6.9 show the results across different message sizes and for three pairs

of d, r values. We can see a consistent lower latency achieved by our proposed approach

across all message sizes up to 1 KB. The improvements are mostly around 40% for d =

2, r = 2 and increase to more than 65% for higher values of d. Similar to the case with

the random sparse graph, our results (not presented here) show that all approaches have

almost the same performance at 4-KB message size (the exact point depends on d, r), after

which the näıve approach outperforms message combining. Also, as shown in Fig. 6.6,

for neighborhood allgather we do not see a considerable difference between the persistent

and nonpersistent approaches with lower values of d, r. The impacts become more visible

starting from d = 4, r = 2 as shown by Fig. 6.8(c). For neighborhood alltoallv, we see a
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Figure 6.7: Neighborhood alltoallv average latencies for the Moore neighborhood graph
topology—1,024 MPI processes, 4-byte message size, d = 2, 3, 4, and r = 1, 2, 3, 4.

considerably lower latency in Fig. 6.9(a) for the persistent approach due to the additional

overheads associated with the alltoallv schedule design.

6.4.3 Overhead Analysis

In this section we analyze the overheads associated with our message-combining approach.

The overheads can be divided into two main parts: (1) Phase 1 overhead, representing the

time spent by Alg. 6.1 to extract the communication pattern and (2) Phase 2 overhead,

representing the time spent by Alg. 6.3 to build the communication schedule from the

pattern. We note that Phase 1 overheads are encountered only once per given topology,

whereas Phase 2 overheads are encountered each time a neighborhood collective function is

called. With a persistent approach, however, Phase 2 overheads will be imposed only once

for each specific instance of a neighborhood collective.
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Figure 6.8: Neighborhood allgather average latencies for the Moore neighborhood graph
topology—8,192 MPI processes, various message size, selective d, r values.

Table 6.1 and Table 6.2 respectively show the time spent at each phase of our design for

the sparse random graph and the Moore neighborhood. As we can see, the main overhead

belongs to Phase 1, where we build the message-combining pattern (Alg. 6.1). Phase 2

overheads (Alg. 6.3) are four orders of magnitude lower and remain well below 1 second in

all cases. Thus, we do not see significant differences between the persistent and nonpersistent

flavors of our design in the results shown in Section 6.4.1 and 6.4.2. This is particularly true

with the Moore neighborhood for which we observe low Phase 2 overheads in Table 6.2.
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Figure 6.9: Neighborhood alltoallv average latencies for the Moore neighborhood graph
topology—1,024 MPI processes, various message size, selective d, r values.

Table 6.1: Random sparse graph. Time spent in Phase 1 and Phase 2—4K processes

Edge Density p = 0.05 p = 0.1 p = 0.2 p = 0.4 p = 0.8

Phase 1 13.54 s 17.36 s 21.58 s 24.71 s 30.56 s
Phase 2 0.0005 s 0.001 s 0.005 s 0.019 s 0.07 s

Table 6.2: Moore neighborhood. Time spent in Phase 1 and Phase 2—8K processes

(d, r) (2, 2) (2, 3) (2, 4)

Phase 1 0.31 s 0.62 s 0.96 s
Phase 2 0.000008 s 0.000017 s 0.000047 s
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Figure 6.10: Phase 1 overheads for the sparse random graph topology across different
number of processes and edge densities.

Next, we evaluate how the overheads are affected by the total number of processes as

well as the number of neighbors per process5. Figures 6.10 shows the overhead of Phase 1 for

the sparse random graph topology across various numbers of processes and edge densities.

The overhead increases with the total number of processes as well as edge densities (i.e.,

number of neighbors). An important observation is that the increase in the total number

of processes has a much higher impact on overhead than does the increase in the number of

neighbors. For instance, from Fig. 6.10(b) we can see that the overhead with 2K processes

and 0.8 edge density (≈ 1, 600 neighbors) is lower than the overhead with 4K processes and

0.05 edge density (≈ 200 neighbors). In fact, 6.10(a) shows a superlinear increase in the

overhead with the total number of processes, whereas we see a sublinear trend with the

edge densities in Fig. 6.10(b).

This behavior has its root in the fact that the overhead of Phase 1 is dominated by the

point-to-point communications used in Alg. 6.2 to notify the friend processes (lines 24 and

28 of Alg. 6.2). On the other hand, our experimental results show that for the random

sparse graph topology, the number of iterations of Alg. 6.1 increases with the square root

of f (t ∝ √f), which leads to an overhead complexity of O(√ff) = O(f1.5) for Phase 1.

Moreover, Fig. 6.11 shows how the number of friends per process increases in the sparse

5We discuss the trends for Phase 1 only as Phase 2 overheads are negligible compared to it.
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Figure 6.11: Increase in the number of friends per process in the random sparse graph
topology (Θ = 4).

random graph topology. We can see that it increases linearly with the number of processes

but remains unchanged with an increase in the edge densities. The reason is that in the

random sparse graph topology (and Θ = 4), each process tends to be a friend with almost

every other process, even at low edge densities. In fact, starting from 0.1 edge density, each

process becomes a friend with all other processes. Thus, Phase 1 overhead increases with

O(p1.5) for the random sparse graph topology.

Figure 6.12 shows the overhead trends of Phase 1 for the Moore neighborhood topology.

An important observation is that we no longer see a superlinear increase in the overhead. In

fact, the overhead remains mostly unchanged as we increase the number of processes (Fig.

6.12(a)), and it increases linearly only with the number of neighbors (Fig. 6.12(b)). The

reason is that Moore neighborhoods model a more structured and localized neighborhood

topology compared with that of random sparse graphs. Therefore, as shown by Fig. 6.13,

the number of friends per process is not affected by the increase in the total number of

processes. It increases linearly only with the number of neighbors per process. In addition,

our experimental results show that for the Moore neighborhood, the number of iterations

of Alg. 6.1 is independent of f . Moreover, the number of neighbors per process (n) is

independent of the total number of processes, resulting in an overhead complexity of O(n).
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Figure 6.12: Phase 1 overheads for the Moore neighborhood topology across different num-
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Figure 6.13: Increase in the number of friends per process in the Moore neighborhood
topology (Θ = 4).

This is quite encouraging as many real applications tend to use such structured and localized

neighborhood topologies.

6.5 Related Work

Hoefler et al. [42] discuss enhancements to the process topology interface of MPI, and in

particular the distributed graph topology interface that significantly improves the scalability,

informativeness, and user friendliness of the older topology interface. Ovcharenko et al. [94]

highlight the existence of sparse neighbor communications in many parallel applications and
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propose a communication package on top of MPI to support them. Hoefler and Träff [46]

discuss the importance of having sparse collective operations in MPI and propose three

such operations. The proposed operations form the basis for what was ultimately added

to MPI as the neighborhood collectives. In another work, Hoefler et al. [41] show the

benefits of using sparse collective operations for quantum mechanical simulations. Kandalla

et al. [58] use nonblocking neighborhood collectives to redesign the BFS algorithm in

the Combinatorial BLAS [17] library. They use neighborhood collectives as a building

block to compose conventional (global) collectives in order to achieve better communication-

computation overlap.

Kumar et al. [65] show how the multisend interface of the IBM Deep Computing Message

Framework (DCMF) [64] can be used to optimize applications that exhibit a neighborhood

collective communication pattern. The multisend interface allows multiple send operations

to be encapsulated into a single call by providing a list of destinations to the direct memory

access engine. Unlike our design, this approach does not attempt to derive an optimized

communication pattern; each node still sends a message to each of its neighbors directly.

Our optimization is orthogonal to the multisend interface and can exploit its corresponding

benefits to further optimize the performance of the derived pattern.

Hoefler and Schneider [43] discuss a number of optimization principles for neighborhood

collectives. They show how graph coloring can be used to design a communication schedule

that avoids creation of hotspots at the end nodes. They also propose an algorithm for

balancing the communications from high-outdegree processes with those having lower out-

degrees. These optimizations are orthogonal to our proposed design. Moreover, balancing

the communication tree is beneficial for unbalanced neighborhood topologies only, whereas

our proposed optimization applies to both balanced and unbalanced neighborhoods. This

is important because many real applications use balanced neighborhood topologies.

Träff et al. [120] discuss isomorphic neighborhoods in which all the processes have the

same neighborhood structure. They propose new interfaces for defining such neighborhoods
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in MPI that impose lower overheads compared with those of the generic graph interface.

In another work [119], Träff et al. propose message-combining algorithms for isomorphic

neighborhoods and show the benefits for improving the performance of neighborhood col-

lectives. However, the proposed algorithms are limited to isomorphic neighborhoods that

are defined over Cartesian topologies. Furthermore, they depend on new interfaces that

are not yet available in MPI. We design our proposed approach over the distributed graph

topology interface of MPI, which provides the most generic and flexible way for defining

neighborhood topologies.

6.6 Summary

Neighborhood collectives were added to MPI to provide better support for the sparse neigh-

bor communication patterns used in many parallel applications. They also address some

of the main shortcomings of the more traditional collective communication in MPI. In

particular, neighborhood collectives enable programmers to define their own collective com-

munication patterns through the process topology interface of MPI. They also promote

better scalability by avoiding global communication patterns.

Accordingly, in this chapter we focused on the performance optimization of neighborhood

collectives. We discussed how the process topology information associated with a neigh-

borhood collective can be used to design nontrivial communication schedules for various

neighborhood collective operations. More specifically, we explained how common neighbor-

hoods among the processes can be exploited to improve the performance of neighborhood

collectives. We proposed a fully distributed algorithm to find the common neighborhoods in

an MPI distributed graph topology and exploit them to build a message-combining commu-

nication pattern and schedule for neighborhood collectives. The core idea was to decrease

the number of individual communications that are required to send/receive data to/from

neighbors. We achieved this by evenly dividing the common neighbors of two processes into
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two disjoint sets, and assigning each set to only one of the two processes. Our experimental

results showed that using our optimized schedules, we can achieve considerable reduction

in the latency of neighbor allgather and neighbor alltoallv for neighborhood topologies of

various shapes and sizes.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Communication continues to be the performance bottleneck in HPC systems and hence,

communication optimization represents one of the most important paradigms for increasing

the overall performance of HPC systems. This is particularly important when we consider

the fast pace at which the number of processors within large-scale systems continues to

grow. In this dissertation we studied the benefits of topology awareness for improving com-

munication performance in HPC systems. We presented new algorithms and approaches

for topology-aware assignment of the processes of a parallel application onto the processing

elements of a target system. The proposed algorithms improve the communication per-

formance by providing a better match between the communication characteristics of the

application and the heterogeneous set of communication channels of the target system. In

the remainder of this section, we point out the highlights of the research described in this

dissertation.

In Chapter 3, we proposed a new greedy heuristic for topology-aware mapping of pro-

cesses. We put our main focus on decreasing the amount of congestion that is imposed

on each link within the network. To this end, we incorporated two main features in our

heuristic design: (1) routing information, and (2) a hybrid metric. For each candidate
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mapping, the routing information allowed us to have a precise evaluation of the traffic load

that would pass across each link of the network. The hybrid metric enabled us to evalu-

ate each candidate mapping from different aspects and hence, make better decisions as we

gradually build the desired mapping through each iteration of the greedy heuristic. Our

experimental results on an InfiniBand cluster showed that we can achieve considerable im-

provements in congestion by using our proposed heuristic. Another highlight is the parallel

design of our proposed algorithms. The parallel design allowed us to explore a wider scope

of candidate mappings from the entire search space and at the same time achieve a lower

overhead. In this regard, we consider our design as a first attempt towards building parallel

topology-aware mapping algorithms for large-scale HPC systems.

In Chapter 4, we showed how topology-aware mapping can be used to achieve the po-

tential benefits of various collective communication algorithms under different mappings of

processes. We proposed topology-aware mapping heuristics that were specifically designed

to improve the performance of certain collective communication patterns. The main high-

light of the chapter is that we can exploit the knowledge of the collective communication

algorithms at the level of the MPI library to design low-overhead mapping heuristics that

are fine-tuned for each specific collective communication pattern.

In Chapter 5, we showed that topology awareness is also important in the GPU com-

munications domain. Using GPUs to accelerate certain computations of an application is

becoming an intrinsic part of parallel computing. Consequently, the performance of GPU

communications will play a key role in the overall performance delivered to users. We

showed that the physical topology of the GPU communication channels is a determining

factor in GPU communications performance. Accordingly, we discussed how topology-aware

mapping can be used in a heterogeneous GPU cluster to jointly improve the performance of

both CPU and GPU communications. We proposed a unified framework for topology-aware

process-to-core mapping and GPU-to-process assignment, and showed its benefits through

experimental evaluations on two multicore multi-GPU clusters.
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In Chapter 6, we focused on performance optimization of neighborhood collective com-

munications in MPI. Neighborhood collectives represent a relatively new type of commu-

nication in MPI that greatly increase the importance and employment of MPI process

topologies. We showed that useful information can be extracted from a given process topol-

ogy to optimize the performance of neighborhood collectives. In particular, we explained

how the existence of common neighborhoods in the process topology graph can be used as

an opportunity to improve the performance of neighborhood communications. We showed

how we can design an efficient distributed algorithm to find the common neighborhoods

in a generic MPI distributed graph topology and use it to build message-combining com-

munication schedules for neighborhood collectives. Through experimental evaluations we

showed that such optimized schedules can successfully decrease the latency of neighborhood

communications.

7.2 Future Work

Parallel Topology- and Routing-Aware Process Mapping

We intend to study more sophisticated combinations of the individual metrics for building

the hybrid metric. In our current design, we used a simple linear combination with equal

weights for each individual metric. Further analytical and experimental studies could help

to determine an optimized combination of the metrics. This can be done with respect to

the performance characteristics of each application and system. For instance, one could

assign a higher weight to the distance-based metrics (hop-bytes) for applications whose

communications are dominated by small messages. On the other hand, for applications

that communicate many large messages, a higher weight can be assigned to the congestion-

based metrics. Discovery of other metrics and adding them to the hybrid metric is another

direction of future work.

In addition, we intend to improve the scalability of communications among node-leaders
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by making such communications hierarchical. Node-leaders could be clustered into multiple

disjoint groups. All members within a group communicate with each other, whereas inter-

group communications are limited to group-leaders only. Next, we would like to improve the

performance of our heuristics further by parallelizing the computations performed by each

node-leader across all the cores within each node. We also seek to extend our approach to

also cover the mapping at the intra-node layer and eliminate the initial graph partitioning

stage.

Future work can also extend our proposed approach to systems with other types of

high-performance interconnects. In general, our proposed heuristics can be used with any

system that provides some APIs for querying information about the underlying routing

algorithm and the precise layout of the network links. In particular, we are interested

in extending our approach to systems that use multilevel direct network topologies such

as Dragonfly. Extending our approach towards systems with adaptive routing is another

direction for future research. One way to use PTRAM in the presence of adaptive routing is

to use an approximation of the routing algorithm to represent the routing information. For

instance, we can use the default shortest paths that are commonly used in adaptive routing

algorithms. In this case, our approach will attempt to map the processes in such a way

that congestion on the default shortest paths used by the underlying adaptive algorithm is

minimized. This can potentially decrease the need for using alternative paths (that might

not be optimal) by the adaptive routing.

Another direction for future work is to add the temporal characteristics of communi-

cation patterns to the mapping heuristics. Current representations of process topologies

provide only a bulk representation of message exchanges among each pair of communi-

cating processes. They do not provide any knowledge about how such communications

are distributed throughout the lifetime of an application. Knowledge about the temporal

properties of communications will allow us to have a more realistic measure of runtime
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congestion. To this end, we must develop an efficient mechanism for extraction and repre-

sentation of the temporal characteristics of communication patterns. One possible solution

is to partition the runtime of an application into several time slots ti each with a length

equal to δi. The time slots can then be used as a set of temporal tags to label the edges in

the process topology graph. This can be done at the same profiling stage used to gather the

communication pattern of an application. Having labeled the edges, the mapping heuristic

will increase the congestion value of the network links only if the overlapping flows belong

to the same time slot, i.e., have the same temporal tag in the process topology graph. This

way, we will have a more realistic congestion value for each link at every iteration of the

mapping heuristic.

Topology-Aware Mapping Heuristics for Collective Communications

With respect to topology-aware collective communications, we first plan to extend the set

of our heuristics to other allgather algorithms such as the Bruck algorithm [116], as well

as the algorithms used for other collective communications such as alltoall and allreduce.

We also seek to evaluate the performance of our heuristics on systems that have a more

complicated intra-node topology with a larger number of cores per node. Another interesting

direction for future work is to devise an adaptive version of our proposed approach where

a runtime component is used to decide whether to use the reordered communicator for a

given collective or not. This can be done based on the potential performance improvements

that each heuristic can provide for various message sizes and/or collective communication

algorithms.

Another direction for future work is to use the physical topology and the mapping of

processes to modify the collective communication algorithm so as to minimize the congestion

that is imposed across the different channels. We can build a tree representation of the given

MPI communicator by recursively splitting the set of processes into two disjoint partitions.

Using the knowledge of the physical topology and the specific placement of the processes,
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the partitioning is done such that communication between two processes in one partition

will not interfere with communication between two processes in another partition. Then,

for a broadcast operation as an example, we can build the desired communication pattern

by traversing the tree in a top-down manner and schedule a message transmission between

the sibling partitions in the tree.

Topology-Aware Communications in Heterogeneous GPU Clusters

We intend to evaluate MAGC with other HPC applications designed to exploit hybrid CPU-

GPU systems. We are specifically interested in evaluating the effects of MAGC on appli-

cations that exhibit irregular communication patterns with heavy communications among

the CPU cores as well as among the GPU devices. We speculate that these types of ap-

plications will benefit the most from MAGC. We also intend to conduct our experiments

at larger scales with systems consisting of a larger number of multi-GPU nodes. Another

direction of interest is to extend MAGC to newer GPU interconnects such as NVLink [89].

Future work can also consider the computation load of the GPUs as an additional metric for

finding optimized GPU assignments. This will help to balance the kernels that are meant

to be offloaded for GPU acceleration across all the available GPUs.

Providing support for small-message communications is another important direction for

future research. As shown by the experimental results in Chapter 5, our current design

is mainly beneficial for larger messages. The reason is that we put our focus on the com-

munication volume and bandwidth. For small message sizes, we need to design mapping

algorithms that are tuned based on the zero-byte latency characteristics of the underly-

ing physical topology. In addition, the heuristics should be based more on the frequency

of communications rather than the volume. Thus, we believe an ideal mapping heuristic

should have flexibility to use different criteria with respect to the size of the communicated

messages. For instance, if an application is bound by the performance of small messages,

the mapping should be optimized based on the distance and frequency of communications;
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otherwise, congestion and communication volume should be used to find an optimized map-

ping.

Neighborhood Collective Communications Optimization

We first plan to evaluate the benefits of our design for real applications. A major challenge

is that we must port current applications so as to change their point-to-point neighbor

communications with appropriate calls to neighborhood collectives. This is because neigh-

borhood collectives are a relatively new feature added to MPI and hence they are not yet

used in HPC applications. Moreover, we intend to extend our message-combining algorithm

design with cumulative combining. In our current design, each process considers any of its

outgoing neighbors in at most one message-combining round. The reason is that at the end

of each iteration of Alg. 6.1, we ignore both the offloaded and onloaded neighbors of the

processes that successfully paired with a friend process. In cumulative combining, however,

we will only ignore the offloaded neighbors of each process. Thus, each process reconsiders

the set of its onloaded neighbors for further message combining opportunities with other

friend processes. Such a nested combining will enable us to further decrease the number of

individual communications that are performed by each process.

Another direction for future work is to consider a group of processes for message com-

bining in each iteration of our proposed algorithm. Currently, we only exploit the common

neighborhoods between two friend processes at each message-combining round. We can

extend this by attempting to find the largest common neighborhood among k friend pro-

cesses. A larger value of k will allow us to divide the set of common neighbors among a

larger number of friend processes, which in turn leaves each of them with fewer neighbors

to communicate with. However, larger values of k will also increase the number of message

exchanges required among the friend processes. Therefore, an interesting research direction

is to find the optimal value of k based on the common neighborhood size and the number

of friend processes involved. We also note that while the pairwise combining relates to a



7.2. FUTURE WORK 171

maximum weighted matching problem in the friendship graph, the k-ary extension will fall

into the scope of finding maximum cliques in a distributed graph.

Finding the best value for the friendship threshold Θ is another direction for future

work. Higher values of Θ lead to a lower number of friends per process which will decrease

the communication overheads of Alg. 6.2. However, it will also lower the opportunities for

message combining. Thus, it provides a trade-off between the quality and overhead of the

algorithm. A metric that can be used to guide the appropriate selection of the Θ value is

the density and structure of the topology graph. For instance, it might be better to use a

higher value of Θ for denser topology graphs. The reason is that a dense topology graph will

result in a dense friendship graph where each node will have a high chance of being matched

along a heavy-weight edge. Therefore, we can safely ignore the friends that correspond to

smaller-size common neighborhoods.

Future work can also improve the overheads of our design. In particular, we can update

Alg. 6.2 to exploit the remote memory access (RMA) operations of MPI. This feature could

help avoid a large fraction of the point-to-point communications that are performed between

a process and its friends. We are also interested in evaluating performance and overhead

of our design when it is used with other distributed maximum matching algorithms. MPI

datatypes and/or interconnect features can also be exploited to decrease overheads through

design and implementation of zero-copy schedules.
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[10] A. Bhatelé, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger, B. Hamann, K. E.
Isaacs, A. G. Landge, J. A. Levine, V. Pascucci, M. Schulz, and C. H. Still. Mapping



BIBLIOGRAPHY 173

applications with collectives over sub-communicators on torus networks. In Proc.
International Conference on High Performance Computing, Networking, Storage and
Analysis (SC), pages 97:1–97:11, 2012.
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The scalable process topology interface of MPI 2.2. Concurrency and Computation:
Practice and Experience, 23(4):293–310, 2011.

[43] T. Hoefler and T. Schneider. Optimization principles for collective neighborhood
communications. In Proc. International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pages 98:1–98:10, 2012.



BIBLIOGRAPHY 176

[44] T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage switches are not crossbars:
Effects of static routing in high-performance networks. In Proc. International Con-
ference on Cluster Computing, pages 116–125, 2008.

[45] T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale parallel
architectures. In Proc. International Conference on Supercomputing (ICS), pages 75–
84, 2011.

[46] T. Hoefler and J. L. Traff. Sparse collective operations for MPI. In Proc. International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–8, 2009.

[47] J.-H. Hoepman. Simple distributed weighted matchings. arXiv preprint cs/0410047.
2004.

[48] The Hydra process management framework, http://wiki.mpich.org/mpich/index.php,
last accessed 2017/05/30.

[49] HyperTransport Technology Consortium, http://www.hypertransport.org/, last ac-
cessed 2017/05/30.

[50] C. U. Ileri and O. Dagdeviren. Performance evaluation of distributed maximum
weighted matching algorithms. In Proc. International Conference on Digital Informa-
tion and Communication Technology and its Applications (DICTAP), pages 103–108,
2016.

[51] InfiniBand Trade Association. InfiniBand Architecture Specification,
http://www.infinibandta.org/, last accessed 2017/05/30.

[52] S. Ito, K. Goto, and K. Ono. Automatically optimized core mapping to subdomains
of domain decomposition method on multicore parallel environments. Computers &
Fluids, 80(0):88–93, 2013.
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