IMPROVING COMMUNICATION PERFORMANCE IN
GPU-AcceELERATED HPC CLUSTERS

IMAN FARAJI

A thesis submitted to the
Department of Electrical and Computer Engineering
in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

January 2018

Copyright (© Iman Faraji, 2018

Abstract

In recent years, GPUs have been adopted in many High-Performance Computing
(HPC) clusters due to their massive computational power and energy efficiency. The
Message Passing Interface (MPI) is the de-facto standard for parallel programming.
Many HPC applications, written in MPI, use parallel processes and multiple GPUs
to achieve higher performance and GPU memory capacity. In such applications,
efficiently performing GPU inter-process communication is the key in the application
performance.

In this dissertation, we present proposals to improve the GPU inter-process com-
munication in HPC clusters using novel GPU-aware designs, efficient and scalable
algorithms, topology-aware designs, and hardware features. Specifically, we propose
various approaches to improve the efficiency of MPI communication routines in GPU
clusters. We also propose designs that evaluate the total application inter-process
communication and provide solutions to improve its efficiency.

First, we propose efficient GPU-aware algorithms to improve MPI collective per-
formance. We show the importance of minimizing CPU intervention on GPU collec-
tive performance. We also utilize GPU features to enhance both collective communi-
cation and computation.

As inter-process communications scale to across multi-GPU nodes and clusters,

efficient inter-process communication routines must consider the physical structure
of the underlying system. Given the hierarchical nature of the GPU clusters with
multi-GPU nodes, we propose hierarchy-aware designs for GPU collectives and show
that different algorithms are favored at different hierarchy levels.

With the presence of multiple data copy mechanisms in modern GPU clusters, it
is crucial to make an informed decision on how to use them for efficient inter-process
communications. In this regard, we propose designs that intelligently decide which
data copy mechanisms to use in GPU collectives. Using these designs, we reveal the
importance of using multiple data copy mechanisms in performing multiple inter-
process communications.

Finally, we provide topology-aware solutions to improve the application inter-
process communication efficiency, both within multi-GPU nodes and across GPU
clusters. First, we study the performance of different communication channels used
for GPU inter-process communications. Next, we propose topology-aware designs that
consider both the system physical topology and application communication pattern.
These designs improve the communication performance by performing more intensive

inter-process communication on stronger communication channels.

11

Statement of Collaboration

The work in Chapter 6 was conducted collaboratively with Dr. Hessam Mirsadeghi.
The proposed design in Section 6.3.1 on topology-aware GPU selection schemes on
a multi-GPU node was mainly proposed and developed by me, and Dr. Mirsadeghi
provided some technical support and insights. The proposed work in Section 6.3.2 on
a 3-phase mapping approach for GPU clusters was mainly proposed and developed
by Dr. Mirsadeghi; I provided technical and intellectual assistance, and took care of
designing and integrating the third phase of the design.

Microbenchmarks were developed jointly. Dr. Mirsadeghi specifically provided
some technical supports regarding the implementation of different communication
patterns that were used in our microbenchmarks. The extension of the microbench-
marks to support GPU devices was done by me. Moreover, I developed a microbench-
mark suite for cluster-wide experiments; this benchmark is capable of providing si-
multaneous communications among CPUs and among GPUs with different commu-
nication patterns.

All the pre- and post-analysis results in this chapter were gathered by me. This
includes gathering the motivational, profiling, microbenchmark, and application re-
sults. Analysis of the microbenchmark and application results were performed jointly,

while analysis of the motivational and profiling results were mainly performed by me.

11

I also extended the FPMPI profiler to gather the HOOMD-Blue application profiling

results.

v

Acknowledgments

My deep gratitude first goes to my supervisor, Dr. Ahmad Afsahi, for his invaluable
support and feedback in writing this dissertation. I am thankful for his intellectual
support and expert guidance in my PhD research and study. I also thank him for
the patience, focus, and enthusiasm that he has with research that was contagious
and motivational for me, particularly during tough times of my PhD career. I would
also like to thank the my thesis examining committee, Dr. Tom Dean, Dr. Patrick
Martin , Dr. Steven Blostein, and Dr. Tarek Abdelrahman for their feedbacks and
comments.

I would like to thank for the financial support provided by Natural Science and En-
gineering Research Council of Canada (NSERC), Queen’s Graduate Award (QGA),
and International Tuition Award (ITA) to conduct this research. I also thank Elec-
trical and Computer Engineering Department for the teaching assistantship and fel-
lowship awards. I would also like to acknowledge the resource support from Com-
pute Canada, Calcul Quebec, and the HPC Advisory Council, and especially thank
Maxime Boissonneault and Pak Lui for their technical support.

I am thankful to all my colleagues in Parallel Processing Research Laboratory,
Dr. Mohammad Javad Rashti, Dr. Ryan Grant, Dr. Reza Zamani, Dr. Judicael

Zounmevo, Dr. Hessam Mirsadeghi, Grigori Inozemtsev, Mahdieh Ghazimirsaeeed,

Kaushal Kumar, Mac Fregeau, and Ramapriya Balasubramaniam for their support
and great discussions during my PhD program. I am particularly thankful to Hessam
Mirsadeghi for his collaboration in the topology-aware research and the technical
assistance and intellectual support that he provided.

Finally, I would like to specially thank my family for all of their love, support,
and encouragement. For my parents, Mitra and Saeed, who raised me with love
and continuously and faithfully supported me in all of my pursuits. For my sister,
Saharnaz and her caring support. I would also like to express my immense gratitude to
my wife, Arghavan for her love, support, encouragement and patience. I am thankful
for her invaluable presence during my PhD journey and look forward to embarking

upon new journeys in life with her.

vi

Contents

Abstract

Statement of Collaboration
Acknowledgments

Table of Contents

List of Tables

List of Figures

List of Abbreviation

Chapter 1: Introduction
1.1 Problem Statement
1.2 Contributions
1.3 Dissertation Outline

Chapter 2: Background
2.1 HPC Clusters with Accelerators

2.2 Graphics Processing Units (GPUs)

2.2.1 GPU Architectures . . .

2.2.2 GPU Programming Languages and Tools

2.2.3 GPU Advanced Features

2.3 Message Passing Interface (MPI)
2.3.1 Message Passing Communication Subsystem
2.3.2 MPI Communication Models
2.3.3 MPI Collective Communication Algorithms

2.3.4 GPU-Aware MPI

2.4 Modern Interconnects and Communication Channels
2.4.1 Interconnection Networks

2.4.2 Communication Channel

Chapter 3:

.

Efficient GPU Collective Communication Algorithms

3.1 Related Work

3.2 GPU-aware Collective Communication Algorithms

vii

3.3

3.4

3.2.1 GPU Shared Buffer-Aware Design (GSB) 41

3.2.2 GPU-Aware Binomial Tree Based Design (BTB) 46
3.2.3 Cluster-wide Extension of the GSB and BTB Algorithms . . . 50
Experimental Results and Analysis 51
3.3.1 Experimental Platform 51
3.3.2 Single-Node Single-GPU Results 52
3.3.3 Initialization Overhead: 56
3.3.4 Cluster-Wide Results 57
Summary ... oL 57

Chapter 4:

4.1
4.2

4.3

4.4

Hierarchical Framework for GPU Collective Communi-

cations 60
Related Work 62
Hierarchical Collective Framework for a Multi-GPU Node and GPU
Clusters 64
4.2.1 Designs for a Multi-GPU Node 64
4.2.2 Designs for a GPU Cluster 67
Experimental Results and Analysis 71
4.3.1 Experimental Platform 71
4.3.2 Results on a Single Multi-GPU Node 71
4.3.3 Results on a Cluster of Multi-GPU Nodes 74
SUMMATY . . . o o o v o v e 76

Chapter 5:

5.1

5.2
5.3

5.4

Efficient GPU Communications through Smart Data

Copy Mechanism Selection 78
Motivation L 81
5.1.1 Impact of MPS and Hyper-Q on Communication 81
Related Work 84
GPU Collective Designs with Efficient Data Copy Mechanism Selection 86
5.3.1 Static Hyper-Q Aware Algorithm 87
5.3.2 Dynamic Hyper-Q Aware Algorithm 88
5.3.3 Cluster-wide Extension of the Static and the Dynamic Algorithms 95
Experimental Results and Analysis 97
5.4.1 Experimental Platform 98
5.4.2 Node-wide Experimental Results 99
5.4.3 Cluster-wide Experimental Results 104
5.4.4 Comparative Analysis of Hyper-Q Aware Algorithms against

GSB/BTB Algorithms 107

5.5 Provision of Using Our Proposals with Future GPU Accelerators . . . 109

5.6 Summary . . oL ... 112
Chapter 6:
Topology-aware GPU Communications 114
6.1 Motivation 117
6.1.1 Impact of CPU/GPU Topology Levels on CPU/GPU Commu-
nication Performance in a Cluster with multi-GPU nodes . . . 117
6.2 Related Work oo 121
6.3 Improving GPU Communication by Efficient GPU Assignment Schemes122
6.3.1 GPU Assignment Scheme on a Multi-GPU Node 123
6.3.2 GPU Assignment Scheme Across the GPU Cluster 126
6.4 Experimental Results and Analysis 129
6.4.1 Experimental Platform 129
6.4.2 Multi-GPU Node Results and Analysis 129
6.4.3 GPU Cluster Results and Analysis 146
6.5 Provision of Using our Proposals with Future GPU Accelerators and
Clusters e 151
6.6 Summary 153
Chapter 7: Conclusions and Future work 156
7.1 Future Work 161
Bibliography 164

X

List of Tables

6.1 Microbenchmark specification
6.2 Uni-directional bandwidth of different GPU pairs in a 4-GPU node

with Pascal P100 and NVLink interconnect

List of Figures

2.1
2.2
2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

Message passing communication diagram
Well-known MPT collective algorithms

The node interconnection, topology tree

Steps of the GPU shared-buffer aware approach for MPI_Allreduce . .
Steps of the GPU-aware MPI_Allreduce using the BTB design
MVAPICH2 vs. GSB MPI_Allreduce vs. BTB MPI_Allreduce on a
single K20 node (System A) with a single GPU
MVAPICH2 vs. GSB MPI_Allreduce vs. BTB MPI_Allreduce on a
single K80 node (System B) with a single GPU
Number of MPI_Allreduce calls required to compensate for the initial-
ization overheado
MVAPICH2 vs. GSB MPI_Allreduce vs. BTB MPI_Allreduce on 4

K80 node Helios cluster (System B) with single GPU per node

Steps of the hierarchical GPU-Aware MPI_Allreduce on a multi-GPU

Hierarchical MPI_Allreduce utilizing Intranode Intra-GPU GSB Re-

duce and Intranode Inter-GPU GSB Reduce algorithms - Reduce stage

x1

44
47

54

95

26

o8

66

67

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

Hierarchical MPI_Allreduce utilizing Intranode Intra-GPU GSB and
Intranode Inter-GPU BTB Reduce algorithms - Reduce stage
Hierarchical MPI_Allreduce utilizing Intranode Intra-GPU GSB Broad-

cast and Intranode Inter-GPU GSB Broadcast algorithms - Broadcast

Steps of the hierarchical GPU-Aware MPI_Allreduce on GPU clusters
with multi-GPU nodes
GPU hierarchical MPI_Allreduce with GSB for Intranode Intra-GPU
and GSB for Intranode Inter-GPU steps over MVAPCIH2 on a single
Helios K80 node with multiple GPUs
Evaluating the effect of using different algorithms in the GPU hier-
archical MPI_Allreduce on a a single Helios K80 node with multiple
GPUspernode
GPU Hierarchical MPI_Allreduce with GSB for Intranode Intra-GPU

and GSB for Intranode Inter-GPU steps over MVAPCIH2 MPI_Allreduce

on four Helios K80 nodes with multiple GPUs per node
Evaluating the effect of using different algorithms in the GPU hierar-
chical MPI_Allreduce on four Helios K80 nodes with multiple GPUs

pernode

Hyper-Q effect on intranode point-to-point communication with and
without MPS
Hyper-Q effect on intranode point-to-point communication with MPS

enabled,

84

Different steps of the node-wide Dynamic algorithm for MPI_Allreduce 93

xii

5.4 Static and Dynamic algorithms across the cluster for MPI_Reduce . . 97

5.5 Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR MPI_Allgather
w and w/o the MPS on a single node of Odin cluster with a single GPU
pernode 100

5.6 Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR MPI_Allreduce
w and w/o the MPS on a single node of Odin cluster with a single GPU
pernode 103

5.7 Profiling snapshot of the Dynamic algorithm in MPI_Allreduce with

5.8 Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR
using MPI_Allgather w and w/o the MPS on 4 nodes with a single
GPUpernode. 106
5.9 Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR
using MPI_Allreduce w and w/o the MPS on 4 nodes with a single
GPUpernode 108
5.10 Improvement percentage of the Static approach over MVAPCIH2, MVAPICH2-
GDR, GSB, and BTB for MPI_Allreduce with 64 processes using MPS
- System C with 4 nodes and a single GPU per node 109
5.11 Different intranode communication channels of a 4-GPU node with

NVLink and PCle (adapted from [66]) 111

6.1 Different intranode GPU pair levels. This is also the topology of the
K80 GPU node used in our experiments 118
6.2 Impact of internode and intranode CPU and GPU topology level on

ping-ping latency in a GPU cluster 120

Xiil

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13
6.14

Impact of internode and intranode CPU and GPU topology level on
uni-directional bandwidth in a GPU cluster 120
Communication time improvements achieved by topology-aware GPU
selection over the default selection scheme for the non-weighted 2D and
3D microbenchmarkso 000 132
Communication time improvements achieved by topology-aware GPU
selection over the default selection scheme for the weighted 2D and 3D
microbenchmarkso 133
Communication time improvements achieved by topology-aware GPU
selection over the default selection scheme for the sub-communicator
collective microbenchmark, COLL 134
Congestion values for the default and topology-aware GPU assignment 137
Communication time improvements achieved by topology-aware GPU
selection and random mapping over the default selection scheme . . . 139
TPS improvement of topology-aware mappings over default mapping
on a) single-precision and b) double-precision HOOMD-blue Application141
Normalized GPU communication pattern of double-precision HOOMD-
Blue with LJ-512K benchmark 143

Distribution of different message sizes in GPU communications of double-

precision HOOMD-Blue with LJ benchmark 144
Share of GPU Communications in total HOOMD-Blue runtime 145
HOOMD-Blue GPU communication improvements 145

Microbenchmark runtime improvements using a 3-phase mapping frame-

work on various message sizes over the default selection scheme . . . 148

Xiv

6.15 HOOMD-blue TPS (number of application time steps per second) im-
provements using a topology-aware scheme on various benchmarks . .
6.16 Node architecture of a 4-GPU node with Pascal GPUs and NVLink

interconnect (adapted from [66])

XV

151

List of Abbreviations

BTB Binomial Tree Based

CFD Computational Fluid Dynamic

CPU Central Processing Unit

CUDA Compute Unified Data Architecture
ECC Error Correcting Code

ExaFLOP 10 FLoating-point Operations Per Second
FLOPS FLoating-point Operations Per Second
GPU Graphics Processing Units

GSB GPU Shared Buffer

HCA Host Channel Adapter

HPC High Performance Computing

IB InfiniBand

IPC Inter-Process Communication

MD Molecular Dynamic

MPI Message Passing Interface

MPP Massively Parallel Processor

MPS Multi Process Service

NIC Network Interface Card

NVCC NVIDIA C Compiler

NVML NVIDIA Management Library

xXvi

NVPROF NVIDIA Profiler

NVTX NVIDIA Tools Extension

NVVP NVIDIA Visual Profiler

OpenCL Open Computing Language

OS Operating System

RDMA Remote Direct Memory Access

PClIe Peripheral Component Interconnect Express
PetaFlops 10" FLoating-point Operations Per Second
RMA Remote Memory Access

SIMT Single Instruction Multiple Thread

SM Steaming Multiprocessor

SP Steaming Processor

TPS Time Steps Per Second

XVvil

Chapter 1

Introduction

High-performance computing (HPC) refers to aggregating the computational power of
different processing units to deliver high performance for running challenging applica-
tions. These applications can span across different areas such as Molecular Dynamic
(MD) simulation in chemistry [27, 18], Computational Fluid Dynamic (CFD) [67] and
thermodynamics [45] in physics, N-Body simulations in cosmology [31], and training
using deep learning in applications such as speech recognition [14, 2|, to name a few.
Massive computational power provided by HPC is a key requirement for the high
performance calculations and trainings of these applications.

Clusters are the predominant architecture for HPC systems; according to the
TOP500 list of the world’s most powerful supercomputers [91], 432 of the top 500
supercomputers are clusters. A computer cluster consists of a number of computing
systems that are loosely coupled through a high speed interconnection network. The

key advantage of the cluster architecture is that it provides high performance with

high degree of availability, and relatively lower cost compared to the alternative ar-
chitectures, such as massively parallel processors (MPP)!. The node architecture of
a modern HPC cluster typically consists of multi-core processors, co-processors, and
accelerators. GPUs, among other co-processors and accelerators, have successfully
established themselves in HPC clusters due to their high performance and energy
efficiency. These factors are the key requirements of the future supercomputers, thus
paving the way for GPUs to be continually used in current petaflop (10'® FLoating-
point Operations Per Second) and future exascale (10'® FLOP) systems. As a matter
of fact, the two next 100+ petaflops supercomputers announced by the CORAL pro-
gram [20] (i.e., Sierra [83] and Summit [89]) will use GPUs and move the world closer
to exascale.

GPUs are composed of thousands of processing units, and use a data-parallel
model to distribute the application dataset among them to parallelize and accelerate
computation. The massive computational capability of the GPU hardware makes it
a good candidate to offload and accelerate compute-intensive portions of the applica-
tions running on HPC clusters.

Inter-process communication is one of the key factors in determining the perfor-
mance of HPC applications. Different processes may communicate with each other us-
ing different programming models, such as shared memory or message passing model.
The message passing programming model provides higher scalability and thus is con-
sidered as the main programming model for high-end computing systems. The Mes-
sage Passing Interface (MPI) [56] is the de-facto standard for the message passing

programming model. In HPC clusters with GPU accelerators, while computation can

! Although our proposals in this dissertation are evaluated on GPU-accelerated HPC clusters,
they can also be adapted and used on the GPU-accelerated MPP architectures.

be offloaded and accelerated on the GPUs, support from MPI library is required to
allow processes to communicate the data residing in GPU memory.

While GPUs can accelerate the offloaded computation, inefficient GPU-to-GPU
communications may wipe out the benefits of offloading in the first place. Conse-
quently, efficient usage of GPU accelerators in HPC clusters demands both efficient
GPU computations and inter-process communications. In this dissertation, we seek
to improve GPU inter-process communication performance by improving communi-
cation latency /bandwidth and application communication efficiency (communication
efficiency in short). Communication latency refers to the inter-process communica-
tion time, and communication bandwidth refers to the message volume transferred per
second. Improving communication efficiency refers to improving the total application
communication performance involving all GPU inter-process communications. For
example, application communication efficiency can be improved by overlapping differ-
ent GPU inter-process communications or by efficiently assigning GPUs to processes,
while the latency or bandwidth of individual GPU inter-processes communications
may not be necessarily improved.

There are different ways to improve the performance of GPU inter-process commu-
nications; this includes devising efficient GPU-aware designs and algorithms, designs
that are aware of the topology of the GPU clusters, as well as exploiting advanced
GPU hardware features. In this dissertation, we use various combinations of these
approaches to propose designs that seek to improve the performance of GPU inter-

process communications.

1.1. PROBLEM STATEMENT 4

1.1 Problem Statement

In MPI, processes can pass messages to each other using three different communica-
tion models: 1) point-to-point; 2) collective; and 3) Remote Memory Access (RMA).
In point-to-point, a pair of processes communicate with each other in a cooperative
fashion. Collective operations, on the other hand, involve communications among
two or more processes. In RMA, a process is involved in a one-sided communication.
The current MPI standard is developed for systems with multiple CPUs and no ac-
celerators. With the emergence of GPU accelerators, MPI need to evolve to provide
efficient support for such accelerators. Integrating GPU awareness into communica-
tion runtime libraries requires careful designs and optimizations that are specific to
the GPU architectures. It is therefore crucial to understand that such designs and
optimizations do not have to necessarily follow the designs that work efficiently on
traditional CPU clusters. This is due to the fact that CPUs and GPUs have different
architecture, hardware features, and programming model. On the other hand, GPU
devices, similar to multi-core CPUs, use a hierarchy of communication channels to
interconnect with each other. However, these communication channels have different
nature and physical topology. Consequently, many of the concepts that are used to
improve CPU inter-process communications in homogeneous nodes and clusters can-
not apply to the heterogeneous nodes and clusters and must be redesigned. Taking

these into account, in this dissertation we seek to address the following questions:

e How can GPU-aware algorithms benefit MPI collective communication rou-

tines? What GPU features can be effectively used in these designs?

e Can hierarchical designs outperform the existing flat designs in MPI collective

1.2. CONTRIBUTIONS 5

communication performance on clusters of multi-GPU nodes? If yes, what is
the sensitivity of different algorithms to different hierarchy levels and which

combination of them is the most effective one?

e Which data copy mechanisms should be used for efficient GPU inter-process
communications? Can multiple data copy mechanisms be used in conjunction
with each other to perform multiple GPU inter-process communications and

enhance collective communications?

e What are the different communication channels in a cluster of multi-GPU nodes
and how does their performance vary from each other? What is the commu-
nication pattern of GPU applications and how it can be profiled? How can
topology-aware designs improve the efficiency of inter-process communications

in a multi-GPU node and across the GPU clusters?

1.2 Contributions

This dissertation presents several proposals to improve the GPU inter-process com-
munications in HPC clusters with GPU accelerators. It contributes by addressing
several sources of inefficiencies in such communications by providing new or improved
designs.
(1) Efficient GPU Collective Communication Algorithms

On one hand, collective communications contribute to considerable portions of
MPI applications runtime [75]; on the other hand, efficient GPU inter-process com-
munication is of crucial importance in GPU-accelerated applications [70]. Taking
these into account, in Chapter 3, we propose GPU-aware algorithms [23, 22] to im-

prove the performance of the GPU collective operations. We provide designs and

1.2. CONTRIBUTIONS 6

experimental results? for MPI_Allreduce operation that involves both collective com-
munication and computation. Our proposed algorithm can be applied to other collec-
tive communications with minor changes as well. In these designs, we also incorporate
advanced GPU features for further performance improvement. The proposed designs
show the importance of minimizing CPU intervention in GPU collective operations.
We achieve this by proposing designs that are capable of performing inter-process
communications through GPU shared memory regions, and utilizing in-GPU kernels
to manipulate the collective data residing in GPU memory. Our proposed collective
designs in this chapter provide up to 22 and 5 times performance improvement over
the existing designs within a single-GPU node and across the cluster of single-GPU
nodes, respectively.
(2) Hierarchical Framework for GPU Collective Communications

The contributions in Chapter 4 revolve around utilizing the hierarchical nature of
HPC clusters with multi-GPU nodes. This chapter proposes a hierarchical framework
for collective communication operations in clusters of multi-GPU nodes [22]. The
proposed hierarchical framework breaks down the collective operations into different
stages. Operations within each stage are performed on a single hierarchy level. This
chapter evaluates the effect of different algorithms within different hierarchy levels. It
also shows that by choosing the right set of algorithms in the hierarchal framework,
collective communication operations can highly outperform the native flat designs.
Using our hierarchical framework, we provide up to 80% and 65% performance im-
provement on MPI_Allreduce over the existing flat designs within a multi-GPU node

and across the cluster of multi-GPU nodes, respectively.

2In this dissertation, all result are reproducible by following the proposed design steps and using
the same environment and settings.

1.2. CONTRIBUTIONS 7

(3) Efficient GPU Communications through Smart data copy mechanism
Selection

Chapter 5 first evaluates the impact of using different data copy mechanisms on
GPU inter-process communications. Depending on the GPU communication charac-
teristics such as the message size, one data copy mechanism is usually preferred over
the other. We then provide evidence that multiple GPU inter-process communications
can take advantage of jointly using different data copy mechanisms. Accordingly, this
chapter proposes alternative designs for GPU collective operations that use different
data copy mechanisms to perform collective operations [24, 22]. The proposed designs
are capable of efficiently deciding the data copy mechanisms based on the information
that they gather either during or prior to the runtime. The main contribution of this
chapter is to show the potential of using different GPU data copy mechanisms with
different communication channels to speedup the total GPU inter-process communi-
cations. Using our proposals, we show up to 2.62 times speedup in the total GPU
inter-process communications.
(4) Topology-aware GPU Communications

Chapter 6 first provides a comprehensive evaluation of different communication
channels that are used for inter-process communications in multi-GPU nodes. Evalu-
ation results show substantial performance difference among different communication
channels that are interconnecting processing units in multi-GPU nodes. Accordingly,
Chapter 6 presents topology-aware mapping solutions that map MPI processes to
processing units in a way to improve the total inter-process communications. The

proposed topology-aware designs target both single [25, 26] and clustered multi-GPU

1.3. DISSERTATION OUTLINE 8

node(s) [55]. For single-GPU nodes, we use a non-trivial topology-aware GPU selec-
tion scheme that considers the application communication pattern and the physical
topology of the node. Three metrics are proposed to represent the topology of the
multi-GPU nodes: 1) latency; 2) bandwidth; and 3) communication distance. This
chapter also contributes by extending the topology-aware GPU selection scheme from
a multi-GPU node to across the GPU cluster. In this regard, cluster-wide topology-
aware communication is defined as a mapping scheme which breaks down the map-
ping into three distinct phases: 1) internode process-to-node mapping; 2) intranode
process-to-CPU-core binding; and 3) intranode process-to-GPU assignment. Perfor-
mance results show substantial improvement over native designs at both microbench-
mark and application levels. On a multi-GPU node, our topology-aware proposal
provide up to 72% and 21% improvement in performance at the microbenchmark
and application levels, respectively. Our proposals also improve the total benchmark
runtime by 90% and show up to 8% application performance improvement across the

GPU cluster.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 provides some back-
ground materials on HPC clusters with GPUs, modern GPU architectures, and their
advanced programming tools and features. This chapter also overviews the Mes-
sage Passing Interface and GPU-aware MPI communication libraries. In Chapter 3,
GPU-aware algorithms for improving collective operations are presented. Chapter 4
presents a hierarchical framework for GPU collectives targeting clusters of multi-GPU

nodes; it also evaluates the sensitivity of different algorithms to different hierarchy

1.3. DISSERTATION OUTLINE 9

levels for these operations. Chapter 5 shows the efficiency of using different data copy
mechanisms to perform multiple inter-process communications; this chapter builds on
this observation and provides novel designs for GPU collective operations. In Chap-
ter 6, we provide topology-aware solutions for efficient communication in multi-GPU
nodes and clusters. Finally, Chapter 7 concludes this dissertation and outlines some

future research directions.

10

Chapter 2

Background

Over the past decade, the high-performance computing landscape has changed sig-
nificantly, particularly due to the emergence of accelerators. In particular, GPU
accelerators have established themselves in modern heterogeneous HPC clusters by
offering high performance and energy efficiency. Consequently, heterogeneous clusters
with GPU accelerators have become the platform of choice for many HPC applica-
tions. In this chapter, we provide a brief overview of the HPC clusters with GPU
accelerators. Then, we discuss the state-of-the-art architecture, programming model,
and features of the GPU accelerators. We introduce the Message Passing Interface
(MPI) as the de-facto standard for parallel programming and discuss integration of
GPU-awareness into some of its implementations. Finally, we go over modern inter-
connects and communication channels that are typically used in HPC clusters with

GPU accelerators.

2.1 HPC Clusters with Accelerators

An HPC cluster is composed of a large number of independent compute nodes loosely

interconnected together via an interconnection network, together providing a single

2.2. GRAPHICS PROCESSING UNITS (GPUS) 11

computing resource. This is in contrast to the Massively Parallel Processor architec-
ture, where there is only one machine with all processing units tightly interconnected
together usually with a custom designed interconnect. MPPs, due to their custom
and proprietary design are more expensive than clusters. However, the custom design
of MPPs can potentially make them a better fit for some specific applications. In this
dissertation, our designs target HPC clusters with GPU accelerators.

HPC clusters benefit from high bandwidth and low latency interconnection net-
works due to the high demand of HPC applications for frequent communications
among HPC nodes. The node architecture of modern HPC clusters consists of multi-
core processors and accelerators/co-processors. Accelerators/co-processors provide
high compute capacity and low power dissipation, making them a promising candi-
date in improving the performance per watt of the HPC clusters. GPUs, compared
to other accelerators and co-processors have gained the widest adoption in modern
HPC clusters. This trend is continued by the announcement of Sierra and Summit,
two 100+ petaflops supercomputers, in the CORAL program [20]. The high share of
GPUs in HPC clusters is mainly rooted in meeting the high performance, memory
bandwidth capacity, and power efficiency that is required by the compute engines of

the next generation HPC clusters.

2.2 Graphics Processing Units (GPUs)

In this section, we introduce the architecture, programming model, and advanced
hardware features of the state-of-the-art GPU accelerators. NVIDIA [62] and Ad-

vanced Micro Device (AMD) [1] are the two leading manufacturer of GPU chips.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 12

NVIDIA GPUs, however, have higher adoption in the top500 supercomputers. Ac-
cording to TOP500 list, only one out of 72 supercomputers with GPU accelerators
use AMD GPUs and the rest exploit NVIDIA GPUs. Taking this into account, we
only target NVIDIA GPUs and perform our experiments on them. Thus, the termi-
nologies and GPU features used in this dissertation, unless otherwise specified, only

apply to the NVIDIA GPUs.

2.2.1 GPU Architectures

A modern GPU architecture is assembled of an array of Streaming Multiprocessors
(SM) [44]. SMs are composed of a set of Stream Processors (SPs), each executing
instructions of a thread at a given time (cycle). SPs share control logic and an
instruction cache, while SMs have access to the global memory. GPUs follow SIMT
(Single Instruction Multiple Threads) model [47] in which a group of (currently 32)
threads known as a warp execute the same instruction. Thousands of such SPs exist in
modern GPU devices; this means that each GPU is capable of executing thousands
of threads at any given moment. But in reality, it is possible to issue many more
threads than the number of existing SPs.

Thread Organization:

Parallel execution on GPUs is handled by fine-grained threads. Upon GPU kernel
invocation, a grid of threads is issued, all executing the same kernel. Threads in
CUDA (Compute Unified Data Architecture) are organized in a two-level hierarchy:
grid are at the top of the hierarchy, consisting of blocks; blocks are placed at the lower
hierarchy, consisting of threads. Threads within a block have access to the shared

memory and executing the same instructions, while threads between the blocks have

2.2. GRAPHICS PROCESSING UNITS (GPUS) 13

access to the global memory and can execute different instructions. Both threads
and blocks are coordinated so individual threads can distinguish themselves among
each other and detect the portion of the data they are supposed to work on. The
maximum number of blocks/threads that can fit in a single grid/block is implemen-
tation dependent, and is known as gridDim (gird dimension) and blockDim (block
dimension), respectively. The SM bundles a group of threads into a warp to work
in an SIMT fashion; this way all of the threads within a warp require only a single
control unit.

GPU Memories:

Memory access latency is one of the limiting factors in CUDA applications that
undermines its computational capabilities. To address this, there exists different types
of GPU memories. The GPU global memory is the slowest and most spacious GPU
memory; this memory space can be accessed from the GPU that it belongs to, the
host, or other peer accessible GPUs in the system. Constant memory can be read
or written by the host, but threads on the device can have read-only access to it;
it provides a fast, high-bandwidth access, specifically when multiple threads try to
access the same location. Shared memory is a fast on-chip memory that threads on
a block have access to (a portion of the shared memory, depending on the number
of blocks, is assigned to each SM). Registers are also fast on-chip memories, but are
allocated to single threads, so each thread can only access its pertinent register.
Floating-Point Units:

GPU supports single- and double-precision floating point (as well as half-precision
in the latest Pascal GPU architecture) operations which has expanded the domain of

supported applications on GPU devices.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 14

Streams and Events:

Stream is a sequence of CUDA instructions, executed serially. After Compute
Capability 2, multiple CUDA streams can run on a single GPU. An event is a dummy
instruction injected into the stream. One purpose of the event is to calculate the
elapsed time between events; by also synchronizing on an event, one can make sure

all of the instructions before the event have already been executed.

2.2.2 GPU Programming Languages and Tools
GPU Programming Languages

All of the GPU programming languages discussed here are aimed to provide an en-
vironment in which GPU and CPU programs can coexist with each other. The main
goal of these programming languages is to offload the GPU friendly potion of the
program into the GPU memory. To achieve this, different programming languages
use different techniques and APIs. In the rest of this section, we will review three of
the most popular GPU programming languages, namely CUDA [61], OpenCL [88],
and OpenACC [103].

CUDA: CUDA (Compute Unified Device Architecture) [61] is an extension to
ISO C, developed by the NVIDIA Corporation [62]. One way to look at a CUDA
program is to consider it as C code which only includes host code. To make use of
the GPU resources, the code can be optimized by adding device keywords and APIs.
The CUDA compiler is called NVCC (NVIDIA C Compiler) and is responsible for
separating the host code and the device code to be compiled by the C compiler and
the runtime component of NVCC, respectively. In this dissertation, we use CUDA as

our programming platform.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 15

OpenCL: OpenCL [88] is another GPU programming language, designed for het-
erogeneous systems. OpenCL was initiated by Apple and maintained by the non-profit
technology consortium Khronos Group [58], and has been adopted by Intel, AMD and
NVIDIA. OpenCL is fundamentally the same as CUDA and in most cases there is
a one-to-one correspondence between their features. Like CUDA, OpenCL is also
based on the C language and targets heterogeneous systems. Unlike CUDA, OpenCL
is not platform-, vendor-, or hardware-specific. Portability of OpenCL across various
platforms and hardware does not come at no cost. It inevitably requires incorporat-
ing complex device management model and would require optional features that only
specific devices can use.

OpenACC: The OpenACC specification [103] is provided by a non-profit founda-
tion which is initially formed by Portland Group Inc. (PGI), Cray Inc., and NVIDIA.
The goal of OpenACC is to provide an environment for the scientists to easily acceler-
ate their programs using directives. OpenACC APIs are, in general, a set of compiler
directives and library routines that can be used to specify loops or other regions of
the code to be offloaded to the accelerator devices, including GPUs. OpenACC un-
like CUDA and OpenCL, removes the burden of initializing the kernel and associated
data movement from the user, leaving these heavy lifting details to the compiler and
the runtime library. However, like CUDA and OpenCL, the programmer is still re-
sponsible for recognizing parallelizable regions of the code and has to specify the data
that is going to be locally available to the accelerator. OpenACC compared to the
other two aforementioned programming languages is attractive in such a way that
it provides less barriers for heterogeneous programmers to utilize accelerators. On

the other hand, OpenACC directives just provide some hints from the programmer,

2.2. GRAPHICS PROCESSING UNITS (GPUS) 16

and efficient use of the accelerator is up to the compiler while CUDA /OpenCL re-
lies less on the compiler as parallelism is explicitly mentioned by the programmer.
In a nutshell, in CUDA/OpenCL, programmers have more flexibility to exploit the
accelerator resources.

In this dissertation, we only use the CUDA programming language which is specifi-
cally tuned for NVIDIA GPUs. We use NVIDIA GPU features (e.g., Hyper-Q), tools
(e.g., NVIDIA profiling tool), and libraries (e.g., NVIDIA management library) to
monitor and enhance the efficiency of our proposals. However, none of these tools
is required to implement our proposed designs in other programming libraries, such
as OpenCL. Our designs in CUDA can be potentially converted to OpenCL using
CUDA-to-OpenCL translator, such as CU2CL [51], which provides source-to-source

translation of CUDA to OpenCL codes.

GPU programming Tools

NVIDIA Management Library: The NVIDIA Management Library (NVML) [63]
includes a set of C-based APIs that can be used for extracting various states and
characteristics of the NVIDIA GPU devices, including monitoring, managing and
querying the GPU states and topology information. The NVML library can be used
to query various GPU states and information. Some of the query-able states include
the GPU performance state, current GPU core temperature and board power draw,
and GPU resource/memory utilization. The NVML library also allows the user to
modify various GPU states. Some of the modifiable states include, enabling/disabling
Error Correcting Code (ECC), changing the GPU compute mode (to control whether

compute processes can run exclusively or concurrently with other processes). The

2.2. GRAPHICS PROCESSING UNITS (GPUS) 17

NVML library also provides a set of APIs to retrieve some information from the
GPU(s). Some of this retrievable information includes, the GPU BUSID/UUID,
and the topology information. Moreover, NVML provides APIs to retrieve the GPU
topology information of the node. For instance, the topology API function nvmlDe-
viceGetTopologyCommonAncestor() can be used to find the common ancestor in a
GPU pair. The retrieved common ancestor value represents the node level relation-
ship between two GPUs (the larger this value, the higher the topology level between
the GPUs would be). The nvmlDeviceGetTopologyNearestGPUs() is another example
of NVML topology API, which provides a set of GPUs that are nearest to a given
GPU at a specific interconnectivity level. We use NVML topology APIs in Chapter
6 to extract the topology information of the multi-GPU node.

GPU Profiling Tools

GPU Profiling tools and APIs allow one to better understand and optimize the
GPU computation and communication performance of HPC applications.

NVIDIA Profiling Tools: NVIDIA provides a set of profiling tools and libraries [65]
to trace the CPU and GPU activities of the application. The NVIDIA Visual Profiler
(NVVP) is a graphical profiling tool that provides a timeline to demonstrate these
activities. The NVIDIA Profiler (NVPROF) allows to collect and view the application
profiling data from the command-line. With NVVP and NVPROF, one can collect
and show the trace of the application GPU calls that are made by the CPU threads.
However, in order to understand what tasks are being performed by the CPU threads
outside of the GPU function calls, the NVIDIA Tools Extension API (NVTX) can
be used. By adding the NVTX markers and ranges to the application, the Timeline

View is capable of showing both the CPU and GPU activities that are being executed

2.2. GRAPHICS PROCESSING UNITS (GPUS) 18

by the CPU threads. More specifically, we use NVTX to annotate MPI routines, and
assign MPI ranks to their associated process ids and GPU contexts on the profiler
timeline. We also use NVPROF to present an overview of the instructions launched by
the CUDA runtime or driver API. The log file provided by the NVPROF and NVTX
is eventually fed to NVVP which provides a trace of the CPU and GPU activities
of the application. We use NVIDIA profiling libraries in Chapter 5 to profile how
different data copy mechanisms are used in our proposed designs for GPU collective
operations.

GPU-Aware FPMPI Profiling library: FPMPI [29] is a profiling library which
provides various information about the underlying MPI (MPI will be discussed in
Section 2.3) communications of an application. Such information, in general, can be
categorized into three groups: 1) synchronization data; 2) asynchronous communica-
tion data; and 3) topology data. The synchronous communication routines provide
some related profiling data, while the asynchronous data lists the asynchronous com-
munication routines. The topology data provides a brief output of the communication
topology. While FPMPI is capable of providing such profiling information, it does
not distinguish between the CPU and GPU communications. In other words, FPMPI
provides one list of profiling data for all MPI routines regardless of where their associ-
ated communication buffer is allocated. In this regard, we have extended the FPMPI
library to provide profiling support for both CPU and GPU communications. The
extended profiler allows us to separately extract the CPU and GPU communication
characteristics of an application. To this end, we leverage various CUDA APIs to
analyze the buffer(s) in MPI routines. By analyzing the buffer(s), we can determine

whether it is located on the host main memory or on the GPU global memory. We

2.2. GRAPHICS PROCESSING UNITS (GPUS) 19

also instrument Open MPI [68] to expose specific information that will be queried by
the FPMPT library. For instance, we add the address type of the send/receive buffers
of MPI routines to the MPI_Request object to distinguish among different types of
communications (i.e., CPU versus GPU). Our proposed GPU-aware FPMPI library
is capable of providing a separate profiling list for both the CPU and GPU MPI
routines. The GPU-aware FPMPI is used to profile the GPU application in Chapter
6.

2.2.3 GPU Advanced Features

In this section, we review some of the state-of-the-art features that exist in the latest
generations of the NVIDIA GPUs.

GPU Inter-process communications Modern NVIDIA GPUs provide data copy
mechanisms that can facilitate and improve the GPU inter-process communications.
In this regard NVIDIA introduced CUDA Inter-Process Copy (IPC) and GPUDirect
Remote Direct Memory Access (RDMA) technology for intranode and internode GPU
inter-process communications.

With The NVIDIA CUDA IPC, data can be directly copied (without host inter-
vention) from the GPU address space of one process to the GPU address space of
another process within the same root complex on the node. The CUDA IPC copy
requires a process to expose a portion of its address space to the remote processes. In
this regard, a memory handle of the shared address is created and passed to the re-
mote processes. The remote processes can then access and modify the shared remote
address space; however, synchronization between the involved processes is required

to guarantee the completion of the copy. This synchronization is performed using a

2.2. GRAPHICS PROCESSING UNITS (GPUS) 20

shared CUDA IPC event, by one process recording it after initiating its IPC copy and
the other process querying its completion.

GPUDirect RDMA is a capability that enables GPUs on different nodes to directly
exchange data without needing to go through the CPU/system memory. This feature
is introduced in the NVIDIA Kepler-class and allows third party devices such as
InfiniBand (IB) [32] adapters to directly access memory on multiple GPUs within the
same system but on different nodes, thus allowing them to directly communicate with
each other. None of the proposed techniques in this dissertation rely on this feature.

Hyper-@Q and Multi Process Service: Hyper-Q [62] is an NVIDIA feature that
provides potential concurrency among CUDA tasks from a single process. However,
Hyper-Q by itself cannot provide concurrency among CUDA requests from multiple
processes to the GPU compute and memory engine, thus these tasks would have to
serialize. In order to provide such concurrency across multiple processes, NVIDIA has
introduced the Multi Process Service (MPS) [64] for GPUs with compute capability
of 3.5 and above. The MPS service acts as a funnel to collect CUDA tasks from
multiple intranode processes and issue them to the GPU as if coming from a single
process so that the Hyper-Q feature can take effect. Without this service, each of
the MPI processes has to allocate storage and scheduling resources on the GPU, and
only work from a single context can be launched on the GPU engines at a time. In
contrast, with the MPS service enabled, there is only a single context, known as MPS
context, present on the GPU. This allows all processes to share the GPU storage
and scheduling resources, eliminating the overhead of the context switching. This
feature is used in Chapter 5 to enhance the overlap between different GPU data copy

mechanisms used in GPU collective communications.

2.3. MESSAGE PASSING INTERFACE (MPI) 21

Unified Virtual Addressing (UVA) UVA is an NVIDIA feature which has become
available after CUDA 4.0. It maps GPU buffers into a single virtual address space
and provides an aggregated virtual address space that is shared among the CPUs and
the GPUs in the node. We use this feature in Chapter 3 to 6 to distinguish the GPU
and CPU physical memory locations based on the buffer address value.

Unified Memory (UM) NVIDIA UM was introduced with CUDA 6. It creates
a pool of managed memory that is shared between the CPU and GPU. With this
feature the system automatically migrates data allocated in unified memory between
host and device. This feature would allow codes running on the CPU and GPU
to seamlessly use the system CPU and GPU memories. This feature eases hybrid

programming and is not used in this dissertation.

2.3 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [56] is a message-passing library which is consid-
ered as the de-facto standard programming model in HPC clusters. MPI has mainly
gained interest due to its high performance, scalability, and portability. MPI has
resulted from a joint effort of numerous groups and individuals starting in 1992. The
first version of MPI standard (i.e, MPI-1.0) was released in 1994; The second MPI
standard, MPI-2, was completed in 1998. MPI-3 was approved in 2012, and the latest
available version of the MPI standard was released in 2015 (i.e., MPI-3.1). In the
rest of this section, we first overview the message passing communication subsystem.
Next, we introduce various MPI communication models and specifically overview
the well-known algorithms that are typically used with the collective communication

model. In this section, we also overview the current GPU support of some of the

2.3. MESSAGE PASSING INTERFACE (MPI) 22

well-known MPI libraries.

2.3.1 Message Passing Communication Subsystem

Fig. 2.1 shows different levels of the message passing subsystem architecture. The
application is at the highest level. Below the application level is the middleware li-
brary level; the MPI routines are exposed to the application developer at this level.
The middleware library sits on top of the kernel-level or the user-level communication
libraries. Both the middleware and the user-level libraries are directly accessible by
the user and do not require any OS kernel intervention. At the kernel communica-
tion level, libraries, such as socket, interact with the kernel-level network protocols
(such as TCP/IP); the kernel-level interfaces the kernel-level library with the Net-
work Interface Card (NIC) driver. The user-level library, on the other hand, provides
communication libraries that can bypass the OS; communications through this layer
decreases the processing overhead between the middleware library and the NIC. As
an example, the user level verb library allows MPI to interface to the Mellanox Infini-
Band NIC driver or directly to the NIC hardware. The NIC hardware is connected
to the network fabric (such as InfiniBand), which connects the node to the rest of the
computer cluster. Our proposals in this dissertation are applied in the middleware

library and we also utilize some functions from the user-level library.

2.3.2 MPI Communication Models

In MPI, processes pass messages to each other in a cooperative fashion; this is known
as the classical point-to-point communication model. MPI also provides an extension

to this model for collective and Remote Memory Access (RMA) operations, we discuss

2.3. MESSAGE PASSING INTERFACE (MPI) 23

Application

\

Middleware Library (e.g., User Space
MPI)

User-level library (e.g.,
verb) Kernel-level library (e.g.,
socket)
Kernel Space
Kernel-level
b protocol (e.g.,
o TPC/IP)
>
(aa]
7
@)
NIC driver

\

NIC hardware

Network fabric (e.g.,
InfiniBand)

Figure 2.1: Message passing communication diagram

these communication models in more detail below.

Point-to-point: In MPI point-to-point communication, both sender and receiver
take part in the communication. The sender calls a send routine, such as MPI_Send(),
and the receiver calls a receive routine such as MPI_Recv(), both providing matching

operations in order to recognize and select the right message. MPI point-to-point

2.3. MESSAGE PASSING INTERFACE (MPI) 24

communication comes in two flavors: 1) blocking and 2) non-blocking. The sender
and receiver can either be blocking or non-blocking. The blocking sender blocks the
calling process until it is safe to reuse the send buffer again; the blocking receiver
blocks the receiver process until the receive operation is complete. In non-blocking
send, the send operation will return as soon as the data is copied into the send
communication buffer; non-blocking receive returns as soon as the receive request is
posted. Non-blocking operations require polling or waiting to verify the completion
of the message.

Collectives: MPI also supports collective communication operations which in-
volves communications among two or more processes. Collective communications
simplifies programming parallel applications, and facilitates implementation of effi-
cient communication on various machines; this would in turn promote the portability
of the application. The performance of different collective operations with different
configurations, such as message size and process count, highly rely on the algorithm
used to implement them [76, 10, 90].

Prior to MPI-3 all of the collective operations were blocking. Non-blocking col-
lectives, first introduced in the MPI-3, are used to optimize collective communication
by enabling overlap between communication and computation. In the blocking col-
lective, the caller is blocked until it is safe to use the buffer it passed to the collective
operation; while, in the non-blocking version, the call returns immediately which can
be queried later to check its completion.

MPI collectives, in general, can be categorized as computational, synchroniza-
tion, and data movement routines. In computational collectives, a group of processes

work together to perform computations on a dataset that is distributed among them.

2.3. MESSAGE PASSING INTERFACE (MPI) 25

For example, MPI Reduce performs a reduction operation (such as addition) on a
dataset that is distributed among processes and stores the result in the root process.
MPI_Allreduce is another example of the computational collectives in which a reduc-
tion operation is performed on a distributed dataset, and the result is gathered by all
processes.

The only operation in the synchronization category is MPI _Barrier which also
comes in a non-blocking format (i.e., MPI_Ibarrier). This routine is considered to
be complete once all of the processes have called it. Collective operations for data
movement have two types. The first type distributes/stores the result from/into one
process known as root (e.g., MPI_Bcast and MPI_Gather); the second type stores the
final result in all of the processes (e.g., MPI_Allgather); another collective operation
in this type is MPI_Alltoall in which each process sends a different chunk of data to
each of the other processes. Neighborhood and Non-blocking collectives are the newly
added collective operations in the MPI-3 standard [56].

Neighborhood collectives are intro