
Improving Communication Performance in

GPU-Accelerated HPC Clusters

by

Iman Faraji

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

January 2018

Copyright c© Iman Faraji, 2018

Abstract

In recent years, GPUs have been adopted in many High-Performance Computing

(HPC) clusters due to their massive computational power and energy efficiency. The

Message Passing Interface (MPI) is the de-facto standard for parallel programming.

Many HPC applications, written in MPI, use parallel processes and multiple GPUs

to achieve higher performance and GPU memory capacity. In such applications,

efficiently performing GPU inter-process communication is the key in the application

performance.

In this dissertation, we present proposals to improve the GPU inter-process com-

munication in HPC clusters using novel GPU-aware designs, efficient and scalable

algorithms, topology-aware designs, and hardware features. Specifically, we propose

various approaches to improve the efficiency of MPI communication routines in GPU

clusters. We also propose designs that evaluate the total application inter-process

communication and provide solutions to improve its efficiency.

First, we propose efficient GPU-aware algorithms to improve MPI collective per-

formance. We show the importance of minimizing CPU intervention on GPU collec-

tive performance. We also utilize GPU features to enhance both collective communi-

cation and computation.

As inter-process communications scale to across multi-GPU nodes and clusters,

i

efficient inter-process communication routines must consider the physical structure

of the underlying system. Given the hierarchical nature of the GPU clusters with

multi-GPU nodes, we propose hierarchy-aware designs for GPU collectives and show

that different algorithms are favored at different hierarchy levels.

With the presence of multiple data copy mechanisms in modern GPU clusters, it

is crucial to make an informed decision on how to use them for efficient inter-process

communications. In this regard, we propose designs that intelligently decide which

data copy mechanisms to use in GPU collectives. Using these designs, we reveal the

importance of using multiple data copy mechanisms in performing multiple inter-

process communications.

Finally, we provide topology-aware solutions to improve the application inter-

process communication efficiency, both within multi-GPU nodes and across GPU

clusters. First, we study the performance of different communication channels used

for GPU inter-process communications. Next, we propose topology-aware designs that

consider both the system physical topology and application communication pattern.

These designs improve the communication performance by performing more intensive

inter-process communication on stronger communication channels.

ii

Statement of Collaboration

The work in Chapter 6 was conducted collaboratively with Dr. Hessam Mirsadeghi.

The proposed design in Section 6.3.1 on topology-aware GPU selection schemes on

a multi-GPU node was mainly proposed and developed by me, and Dr. Mirsadeghi

provided some technical support and insights. The proposed work in Section 6.3.2 on

a 3-phase mapping approach for GPU clusters was mainly proposed and developed

by Dr. Mirsadeghi; I provided technical and intellectual assistance, and took care of

designing and integrating the third phase of the design.

Microbenchmarks were developed jointly. Dr. Mirsadeghi specifically provided

some technical supports regarding the implementation of different communication

patterns that were used in our microbenchmarks. The extension of the microbench-

marks to support GPU devices was done by me. Moreover, I developed a microbench-

mark suite for cluster-wide experiments; this benchmark is capable of providing si-

multaneous communications among CPUs and among GPUs with different commu-

nication patterns.

All the pre- and post-analysis results in this chapter were gathered by me. This

includes gathering the motivational, profiling, microbenchmark, and application re-

sults. Analysis of the microbenchmark and application results were performed jointly,

while analysis of the motivational and profiling results were mainly performed by me.

iii

I also extended the FPMPI profiler to gather the HOOMD-Blue application profiling

results.

iv

Acknowledgments

My deep gratitude first goes to my supervisor, Dr. Ahmad Afsahi, for his invaluable

support and feedback in writing this dissertation. I am thankful for his intellectual

support and expert guidance in my PhD research and study. I also thank him for

the patience, focus, and enthusiasm that he has with research that was contagious

and motivational for me, particularly during tough times of my PhD career. I would

also like to thank the my thesis examining committee, Dr. Tom Dean, Dr. Patrick

Martin , Dr. Steven Blostein, and Dr. Tarek Abdelrahman for their feedbacks and

comments.

I would like to thank for the financial support provided by Natural Science and En-

gineering Research Council of Canada (NSERC), Queen’s Graduate Award (QGA),

and International Tuition Award (ITA) to conduct this research. I also thank Elec-

trical and Computer Engineering Department for the teaching assistantship and fel-

lowship awards. I would also like to acknowledge the resource support from Com-

pute Canada, Calcul Quebec, and the HPC Advisory Council, and especially thank

Maxime Boissonneault and Pak Lui for their technical support.

I am thankful to all my colleagues in Parallel Processing Research Laboratory,

Dr. Mohammad Javad Rashti, Dr. Ryan Grant, Dr. Reza Zamani, Dr. Judicael

Zounmevo, Dr. Hessam Mirsadeghi, Grigori Inozemtsev, Mahdieh Ghazimirsaeeed,

v

Kaushal Kumar, Mac Fregeau, and Ramapriya Balasubramaniam for their support

and great discussions during my PhD program. I am particularly thankful to Hessam

Mirsadeghi for his collaboration in the topology-aware research and the technical

assistance and intellectual support that he provided.

Finally, I would like to specially thank my family for all of their love, support,

and encouragement. For my parents, Mitra and Saeed, who raised me with love

and continuously and faithfully supported me in all of my pursuits. For my sister,

Saharnaz and her caring support. I would also like to express my immense gratitude to

my wife, Arghavan for her love, support, encouragement and patience. I am thankful

for her invaluable presence during my PhD journey and look forward to embarking

upon new journeys in life with her.

vi

Contents

Abstract i

Statement of Collaboration iii

Acknowledgments v

Table of Contents vii

List of Tables x

List of Figures xi

List of Abbreviation xv

Chapter 1: Introduction 1
1.1 Problem Statement . 4
1.2 Contributions . 5
1.3 Dissertation Outline . 8

Chapter 2: Background 10
2.1 HPC Clusters with Accelerators . 10
2.2 Graphics Processing Units (GPUs) 11

2.2.1 GPU Architectures . 12
2.2.2 GPU Programming Languages and Tools 14
2.2.3 GPU Advanced Features . 19

2.3 Message Passing Interface (MPI) . 21
2.3.1 Message Passing Communication Subsystem 22
2.3.2 MPI Communication Models 22
2.3.3 MPI Collective Communication Algorithms 26
2.3.4 GPU-Aware MPI . 30

2.4 Modern Interconnects and Communication Channels 31
2.4.1 Interconnection Networks . 32
2.4.2 Communication Channels . 33

Chapter 3:
Efficient GPU Collective Communication Algorithms 36

3.1 Related Work . 38
3.2 GPU-aware Collective Communication Algorithms 40

vii

3.2.1 GPU Shared Buffer-Aware Design (GSB) 41
3.2.2 GPU-Aware Binomial Tree Based Design (BTB) 46
3.2.3 Cluster-wide Extension of the GSB and BTB Algorithms . . . 50

3.3 Experimental Results and Analysis 51
3.3.1 Experimental Platform . 51
3.3.2 Single-Node Single-GPU Results 52
3.3.3 Initialization Overhead: . 56
3.3.4 Cluster-Wide Results . 57

3.4 Summary . 57

Chapter 4:
Hierarchical Framework for GPU Collective Communi-
cations 60

4.1 Related Work . 62
4.2 Hierarchical Collective Framework for a Multi-GPU Node and GPU

Clusters . 64
4.2.1 Designs for a Multi-GPU Node 64
4.2.2 Designs for a GPU Cluster . 67

4.3 Experimental Results and Analysis 71
4.3.1 Experimental Platform . 71
4.3.2 Results on a Single Multi-GPU Node 71
4.3.3 Results on a Cluster of Multi-GPU Nodes 74

4.4 Summary . 76

Chapter 5:
Efficient GPU Communications through Smart Data
Copy Mechanism Selection 78

5.1 Motivation . 81
5.1.1 Impact of MPS and Hyper-Q on Communication 81

5.2 Related Work . 84
5.3 GPU Collective Designs with Efficient Data Copy Mechanism Selection 86

5.3.1 Static Hyper-Q Aware Algorithm 87
5.3.2 Dynamic Hyper-Q Aware Algorithm 88
5.3.3 Cluster-wide Extension of the Static and the Dynamic Algorithms 95

5.4 Experimental Results and Analysis 97
5.4.1 Experimental Platform . 98
5.4.2 Node-wide Experimental Results 99
5.4.3 Cluster-wide Experimental Results 104
5.4.4 Comparative Analysis of Hyper-Q Aware Algorithms against

GSB/BTB Algorithms . 107

viii

5.5 Provision of Using Our Proposals with Future GPU Accelerators . . . 109
5.6 Summary . 112

Chapter 6:
Topology-aware GPU Communications 114

6.1 Motivation . 117
6.1.1 Impact of CPU/GPU Topology Levels on CPU/GPU Commu-

nication Performance in a Cluster with multi-GPU nodes . . . 117
6.2 Related Work . 121
6.3 Improving GPU Communication by Efficient GPU Assignment Schemes122

6.3.1 GPU Assignment Scheme on a Multi-GPU Node 123
6.3.2 GPU Assignment Scheme Across the GPU Cluster 126

6.4 Experimental Results and Analysis 129
6.4.1 Experimental Platform . 129
6.4.2 Multi-GPU Node Results and Analysis 129
6.4.3 GPU Cluster Results and Analysis 146

6.5 Provision of Using our Proposals with Future GPU Accelerators and
Clusters . 151

6.6 Summary . 153

Chapter 7: Conclusions and Future work 156
7.1 Future Work . 161

Bibliography 164

ix

List of Tables

6.1 Microbenchmark specification . 149

6.2 Uni-directional bandwidth of different GPU pairs in a 4-GPU node

with Pascal P100 and NVLink interconnect 152

x

List of Figures

2.1 Message passing communication diagram 23

2.2 Well-known MPI collective algorithms 29

2.3 The node interconnection, topology tree 34

3.1 Steps of the GPU shared-buffer aware approach for MPI Allreduce . . 44

3.2 Steps of the GPU-aware MPI Allreduce using the BTB design 47

3.3 MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on a

single K20 node (System A) with a single GPU 54

3.4 MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on a

single K80 node (System B) with a single GPU 55

3.5 Number of MPI Allreduce calls required to compensate for the initial-

ization overhead . 56

3.6 MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on 4

K80 node Helios cluster (System B) with single GPU per node 58

4.1 Steps of the hierarchical GPU-Aware MPI Allreduce on a multi-GPU

node . 66

4.2 Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB Re-

duce and Intranode Inter-GPU GSB Reduce algorithms - Reduce stage 67

xi

4.3 Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB and

Intranode Inter-GPU BTB Reduce algorithms - Reduce stage 68

4.4 Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB Broad-

cast and Intranode Inter-GPU GSB Broadcast algorithms - Broadcast

stage . 69

4.5 Steps of the hierarchical GPU-Aware MPI Allreduce on GPU clusters

with multi-GPU nodes . 70

4.6 GPU hierarchical MPI Allreduce with GSB for Intranode Intra-GPU

and GSB for Intranode Inter-GPU steps over MVAPCIH2 on a single

Helios K80 node with multiple GPUs 72

4.7 Evaluating the effect of using different algorithms in the GPU hier-

archical MPI Allreduce on a a single Helios K80 node with multiple

GPUs per node . 73

4.8 GPU Hierarchical MPI Allreduce with GSB for Intranode Intra-GPU

and GSB for Intranode Inter-GPU steps over MVAPCIH2 MPI Allreduce

on four Helios K80 nodes with multiple GPUs per node 74

4.9 Evaluating the effect of using different algorithms in the GPU hierar-

chical MPI Allreduce on four Helios K80 nodes with multiple GPUs

per node . 75

5.1 Hyper-Q effect on intranode point-to-point communication with and

without MPS . 83

5.2 Hyper-Q effect on intranode point-to-point communication with MPS

enabled . 84

5.3 Different steps of the node-wide Dynamic algorithm for MPI Allreduce 93

xii

5.4 Static and Dynamic algorithms across the cluster for MPI Reduce . . 97

5.5 Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR MPI Allgather

w and w/o the MPS on a single node of Odin cluster with a single GPU

per node . 100

5.6 Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR MPI Allreduce

w and w/o the MPS on a single node of Odin cluster with a single GPU

per node . 103

5.7 Profiling snapshot of the Dynamic algorithm in MPI Allreduce with

MPS . 105

5.8 Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR

using MPI Allgather w and w/o the MPS on 4 nodes with a single

GPU per node . 106

5.9 Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR

using MPI Allreduce w and w/o the MPS on 4 nodes with a single

GPU per node . 108

5.10 Improvement percentage of the Static approach over MVAPCIH2, MVAPICH2-

GDR, GSB, and BTB for MPI Allreduce with 64 processes using MPS

- System C with 4 nodes and a single GPU per node 109

5.11 Different intranode communication channels of a 4-GPU node with

NVLink and PCIe (adapted from [66]) 111

6.1 Different intranode GPU pair levels. This is also the topology of the

K80 GPU node used in our experiments 118

6.2 Impact of internode and intranode CPU and GPU topology level on

ping-ping latency in a GPU cluster 120

xiii

6.3 Impact of internode and intranode CPU and GPU topology level on

uni-directional bandwidth in a GPU cluster 120

6.4 Communication time improvements achieved by topology-aware GPU

selection over the default selection scheme for the non-weighted 2D and

3D microbenchmarks . 132

6.5 Communication time improvements achieved by topology-aware GPU

selection over the default selection scheme for the weighted 2D and 3D

microbenchmarks . 133

6.6 Communication time improvements achieved by topology-aware GPU

selection over the default selection scheme for the sub-communicator

collective microbenchmark, COLL . 134

6.7 Congestion values for the default and topology-aware GPU assignment 137

6.8 Communication time improvements achieved by topology-aware GPU

selection and random mapping over the default selection scheme . . . 139

6.9 TPS improvement of topology-aware mappings over default mapping

on a) single-precision and b) double-precision HOOMD-blue Application141

6.10 Normalized GPU communication pattern of double-precision HOOMD-

Blue with LJ-512K benchmark . 143

6.11 Distribution of different message sizes in GPU communications of double-

precision HOOMD-Blue with LJ benchmark 144

6.12 Share of GPU Communications in total HOOMD-Blue runtime 145

6.13 HOOMD-Blue GPU communication improvements 145

6.14 Microbenchmark runtime improvements using a 3-phase mapping frame-

work on various message sizes over the default selection scheme . . . 148

xiv

6.15 HOOMD-blue TPS (number of application time steps per second) im-

provements using a topology-aware scheme on various benchmarks . . 151

6.16 Node architecture of a 4-GPU node with Pascal GPUs and NVLink

interconnect (adapted from [66]) . 153

xv

List of Abbreviations

BTB Binomial Tree Based

CFD Computational Fluid Dynamic

CPU Central Processing Unit

CUDA Compute Unified Data Architecture

ECC Error Correcting Code

ExaFLOP 1018 FLoating-point Operations Per Second

FLOPS FLoating-point Operations Per Second

GPU Graphics Processing Units

GSB GPU Shared Buffer

HCA Host Channel Adapter

HPC High Performance Computing

IB InfiniBand

IPC Inter-Process Communication

MD Molecular Dynamic

MPI Message Passing Interface

MPP Massively Parallel Processor

MPS Multi Process Service

NIC Network Interface Card

NVCC NVIDIA C Compiler

NVML NVIDIA Management Library

xvi

NVPROF NVIDIA Profiler

NVTX NVIDIA Tools Extension

NVVP NVIDIA Visual Profiler

OpenCL Open Computing Language

OS Operating System

RDMA Remote Direct Memory Access

PCIe Peripheral Component Interconnect Express

PetaFlops 1015 FLoating-point Operations Per Second

RMA Remote Memory Access

SIMT Single Instruction Multiple Thread

SM Steaming Multiprocessor

SP Steaming Processor

TPS Time Steps Per Second

xvii

1

Chapter 1

Introduction

High-performance computing (HPC) refers to aggregating the computational power of

different processing units to deliver high performance for running challenging applica-

tions. These applications can span across different areas such as Molecular Dynamic

(MD) simulation in chemistry [27, 18], Computational Fluid Dynamic (CFD) [67] and

thermodynamics [45] in physics, N-Body simulations in cosmology [31], and training

using deep learning in applications such as speech recognition [14, 2], to name a few.

Massive computational power provided by HPC is a key requirement for the high

performance calculations and trainings of these applications.

Clusters are the predominant architecture for HPC systems; according to the

TOP500 list of the world’s most powerful supercomputers [91], 432 of the top 500

supercomputers are clusters. A computer cluster consists of a number of computing

systems that are loosely coupled through a high speed interconnection network. The

key advantage of the cluster architecture is that it provides high performance with

2

high degree of availability, and relatively lower cost compared to the alternative ar-

chitectures, such as massively parallel processors (MPP)1. The node architecture of

a modern HPC cluster typically consists of multi-core processors, co-processors, and

accelerators. GPUs, among other co-processors and accelerators, have successfully

established themselves in HPC clusters due to their high performance and energy

efficiency. These factors are the key requirements of the future supercomputers, thus

paving the way for GPUs to be continually used in current petaflop (1015 FLoating-

point Operations Per Second) and future exascale (1018 FLOP) systems. As a matter

of fact, the two next 100+ petaflops supercomputers announced by the CORAL pro-

gram [20] (i.e., Sierra [83] and Summit [89]) will use GPUs and move the world closer

to exascale.

GPUs are composed of thousands of processing units, and use a data-parallel

model to distribute the application dataset among them to parallelize and accelerate

computation. The massive computational capability of the GPU hardware makes it

a good candidate to offload and accelerate compute-intensive portions of the applica-

tions running on HPC clusters.

Inter-process communication is one of the key factors in determining the perfor-

mance of HPC applications. Different processes may communicate with each other us-

ing different programming models, such as shared memory or message passing model.

The message passing programming model provides higher scalability and thus is con-

sidered as the main programming model for high-end computing systems. The Mes-

sage Passing Interface (MPI) [56] is the de-facto standard for the message passing

programming model. In HPC clusters with GPU accelerators, while computation can

1Although our proposals in this dissertation are evaluated on GPU-accelerated HPC clusters,
they can also be adapted and used on the GPU-accelerated MPP architectures.

3

be offloaded and accelerated on the GPUs, support from MPI library is required to

allow processes to communicate the data residing in GPU memory.

While GPUs can accelerate the offloaded computation, inefficient GPU-to-GPU

communications may wipe out the benefits of offloading in the first place. Conse-

quently, efficient usage of GPU accelerators in HPC clusters demands both efficient

GPU computations and inter-process communications. In this dissertation, we seek

to improve GPU inter-process communication performance by improving communi-

cation latency/bandwidth and application communication efficiency (communication

efficiency in short). Communication latency refers to the inter-process communica-

tion time, and communication bandwidth refers to the message volume transferred per

second. Improving communication efficiency refers to improving the total application

communication performance involving all GPU inter-process communications. For

example, application communication efficiency can be improved by overlapping differ-

ent GPU inter-process communications or by efficiently assigning GPUs to processes,

while the latency or bandwidth of individual GPU inter-processes communications

may not be necessarily improved.

There are different ways to improve the performance of GPU inter-process commu-

nications; this includes devising efficient GPU-aware designs and algorithms, designs

that are aware of the topology of the GPU clusters, as well as exploiting advanced

GPU hardware features. In this dissertation, we use various combinations of these

approaches to propose designs that seek to improve the performance of GPU inter-

process communications.

1.1. PROBLEM STATEMENT 4

1.1 Problem Statement

In MPI, processes can pass messages to each other using three different communica-

tion models: 1) point-to-point; 2) collective; and 3) Remote Memory Access (RMA).

In point-to-point, a pair of processes communicate with each other in a cooperative

fashion. Collective operations, on the other hand, involve communications among

two or more processes. In RMA, a process is involved in a one-sided communication.

The current MPI standard is developed for systems with multiple CPUs and no ac-

celerators. With the emergence of GPU accelerators, MPI need to evolve to provide

efficient support for such accelerators. Integrating GPU awareness into communica-

tion runtime libraries requires careful designs and optimizations that are specific to

the GPU architectures. It is therefore crucial to understand that such designs and

optimizations do not have to necessarily follow the designs that work efficiently on

traditional CPU clusters. This is due to the fact that CPUs and GPUs have different

architecture, hardware features, and programming model. On the other hand, GPU

devices, similar to multi-core CPUs, use a hierarchy of communication channels to

interconnect with each other. However, these communication channels have different

nature and physical topology. Consequently, many of the concepts that are used to

improve CPU inter-process communications in homogeneous nodes and clusters can-

not apply to the heterogeneous nodes and clusters and must be redesigned. Taking

these into account, in this dissertation we seek to address the following questions:

• How can GPU-aware algorithms benefit MPI collective communication rou-

tines? What GPU features can be effectively used in these designs?

• Can hierarchical designs outperform the existing flat designs in MPI collective

1.2. CONTRIBUTIONS 5

communication performance on clusters of multi-GPU nodes? If yes, what is

the sensitivity of different algorithms to different hierarchy levels and which

combination of them is the most effective one?

• Which data copy mechanisms should be used for efficient GPU inter-process

communications? Can multiple data copy mechanisms be used in conjunction

with each other to perform multiple GPU inter-process communications and

enhance collective communications?

• What are the different communication channels in a cluster of multi-GPU nodes

and how does their performance vary from each other? What is the commu-

nication pattern of GPU applications and how it can be profiled? How can

topology-aware designs improve the efficiency of inter-process communications

in a multi-GPU node and across the GPU clusters?

1.2 Contributions

This dissertation presents several proposals to improve the GPU inter-process com-

munications in HPC clusters with GPU accelerators. It contributes by addressing

several sources of inefficiencies in such communications by providing new or improved

designs.

(1) Efficient GPU Collective Communication Algorithms

On one hand, collective communications contribute to considerable portions of

MPI applications runtime [75]; on the other hand, efficient GPU inter-process com-

munication is of crucial importance in GPU-accelerated applications [70]. Taking

these into account, in Chapter 3, we propose GPU-aware algorithms [23, 22] to im-

prove the performance of the GPU collective operations. We provide designs and

1.2. CONTRIBUTIONS 6

experimental results2 for MPI Allreduce operation that involves both collective com-

munication and computation. Our proposed algorithm can be applied to other collec-

tive communications with minor changes as well. In these designs, we also incorporate

advanced GPU features for further performance improvement. The proposed designs

show the importance of minimizing CPU intervention in GPU collective operations.

We achieve this by proposing designs that are capable of performing inter-process

communications through GPU shared memory regions, and utilizing in-GPU kernels

to manipulate the collective data residing in GPU memory. Our proposed collective

designs in this chapter provide up to 22 and 5 times performance improvement over

the existing designs within a single-GPU node and across the cluster of single-GPU

nodes, respectively.

(2) Hierarchical Framework for GPU Collective Communications

The contributions in Chapter 4 revolve around utilizing the hierarchical nature of

HPC clusters with multi-GPU nodes. This chapter proposes a hierarchical framework

for collective communication operations in clusters of multi-GPU nodes [22]. The

proposed hierarchical framework breaks down the collective operations into different

stages. Operations within each stage are performed on a single hierarchy level. This

chapter evaluates the effect of different algorithms within different hierarchy levels. It

also shows that by choosing the right set of algorithms in the hierarchal framework,

collective communication operations can highly outperform the native flat designs.

Using our hierarchical framework, we provide up to 80% and 65% performance im-

provement on MPI Allreduce over the existing flat designs within a multi-GPU node

and across the cluster of multi-GPU nodes, respectively.

2In this dissertation, all result are reproducible by following the proposed design steps and using
the same environment and settings.

1.2. CONTRIBUTIONS 7

(3) Efficient GPU Communications through Smart data copy mechanism

Selection

Chapter 5 first evaluates the impact of using different data copy mechanisms on

GPU inter-process communications. Depending on the GPU communication charac-

teristics such as the message size, one data copy mechanism is usually preferred over

the other. We then provide evidence that multiple GPU inter-process communications

can take advantage of jointly using different data copy mechanisms. Accordingly, this

chapter proposes alternative designs for GPU collective operations that use different

data copy mechanisms to perform collective operations [24, 22]. The proposed designs

are capable of efficiently deciding the data copy mechanisms based on the information

that they gather either during or prior to the runtime. The main contribution of this

chapter is to show the potential of using different GPU data copy mechanisms with

different communication channels to speedup the total GPU inter-process communi-

cations. Using our proposals, we show up to 2.62 times speedup in the total GPU

inter-process communications.

(4) Topology-aware GPU Communications

Chapter 6 first provides a comprehensive evaluation of different communication

channels that are used for inter-process communications in multi-GPU nodes. Evalu-

ation results show substantial performance difference among different communication

channels that are interconnecting processing units in multi-GPU nodes. Accordingly,

Chapter 6 presents topology-aware mapping solutions that map MPI processes to

processing units in a way to improve the total inter-process communications. The

proposed topology-aware designs target both single [25, 26] and clustered multi-GPU

1.3. DISSERTATION OUTLINE 8

node(s) [55]. For single-GPU nodes, we use a non-trivial topology-aware GPU selec-

tion scheme that considers the application communication pattern and the physical

topology of the node. Three metrics are proposed to represent the topology of the

multi-GPU nodes: 1) latency; 2) bandwidth; and 3) communication distance. This

chapter also contributes by extending the topology-aware GPU selection scheme from

a multi-GPU node to across the GPU cluster. In this regard, cluster-wide topology-

aware communication is defined as a mapping scheme which breaks down the map-

ping into three distinct phases: 1) internode process-to-node mapping; 2) intranode

process-to-CPU-core binding; and 3) intranode process-to-GPU assignment. Perfor-

mance results show substantial improvement over native designs at both microbench-

mark and application levels. On a multi-GPU node, our topology-aware proposal

provide up to 72% and 21% improvement in performance at the microbenchmark

and application levels, respectively. Our proposals also improve the total benchmark

runtime by 90% and show up to 8% application performance improvement across the

GPU cluster.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 provides some back-

ground materials on HPC clusters with GPUs, modern GPU architectures, and their

advanced programming tools and features. This chapter also overviews the Mes-

sage Passing Interface and GPU-aware MPI communication libraries. In Chapter 3,

GPU-aware algorithms for improving collective operations are presented. Chapter 4

presents a hierarchical framework for GPU collectives targeting clusters of multi-GPU

nodes; it also evaluates the sensitivity of different algorithms to different hierarchy

1.3. DISSERTATION OUTLINE 9

levels for these operations. Chapter 5 shows the efficiency of using different data copy

mechanisms to perform multiple inter-process communications; this chapter builds on

this observation and provides novel designs for GPU collective operations. In Chap-

ter 6, we provide topology-aware solutions for efficient communication in multi-GPU

nodes and clusters. Finally, Chapter 7 concludes this dissertation and outlines some

future research directions.

10

Chapter 2

Background

Over the past decade, the high-performance computing landscape has changed sig-

nificantly, particularly due to the emergence of accelerators. In particular, GPU

accelerators have established themselves in modern heterogeneous HPC clusters by

offering high performance and energy efficiency. Consequently, heterogeneous clusters

with GPU accelerators have become the platform of choice for many HPC applica-

tions. In this chapter, we provide a brief overview of the HPC clusters with GPU

accelerators. Then, we discuss the state-of-the-art architecture, programming model,

and features of the GPU accelerators. We introduce the Message Passing Interface

(MPI) as the de-facto standard for parallel programming and discuss integration of

GPU-awareness into some of its implementations. Finally, we go over modern inter-

connects and communication channels that are typically used in HPC clusters with

GPU accelerators.

2.1 HPC Clusters with Accelerators

An HPC cluster is composed of a large number of independent compute nodes loosely

interconnected together via an interconnection network, together providing a single

2.2. GRAPHICS PROCESSING UNITS (GPUS) 11

computing resource. This is in contrast to the Massively Parallel Processor architec-

ture, where there is only one machine with all processing units tightly interconnected

together usually with a custom designed interconnect. MPPs, due to their custom

and proprietary design are more expensive than clusters. However, the custom design

of MPPs can potentially make them a better fit for some specific applications. In this

dissertation, our designs target HPC clusters with GPU accelerators.

HPC clusters benefit from high bandwidth and low latency interconnection net-

works due to the high demand of HPC applications for frequent communications

among HPC nodes. The node architecture of modern HPC clusters consists of multi-

core processors and accelerators/co-processors. Accelerators/co-processors provide

high compute capacity and low power dissipation, making them a promising candi-

date in improving the performance per watt of the HPC clusters. GPUs, compared

to other accelerators and co-processors have gained the widest adoption in modern

HPC clusters. This trend is continued by the announcement of Sierra and Summit,

two 100+ petaflops supercomputers, in the CORAL program [20]. The high share of

GPUs in HPC clusters is mainly rooted in meeting the high performance, memory

bandwidth capacity, and power efficiency that is required by the compute engines of

the next generation HPC clusters.

2.2 Graphics Processing Units (GPUs)

In this section, we introduce the architecture, programming model, and advanced

hardware features of the state-of-the-art GPU accelerators. NVIDIA [62] and Ad-

vanced Micro Device (AMD) [1] are the two leading manufacturer of GPU chips.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 12

NVIDIA GPUs, however, have higher adoption in the top500 supercomputers. Ac-

cording to TOP500 list, only one out of 72 supercomputers with GPU accelerators

use AMD GPUs and the rest exploit NVIDIA GPUs. Taking this into account, we

only target NVIDIA GPUs and perform our experiments on them. Thus, the termi-

nologies and GPU features used in this dissertation, unless otherwise specified, only

apply to the NVIDIA GPUs.

2.2.1 GPU Architectures

A modern GPU architecture is assembled of an array of Streaming Multiprocessors

(SM) [44]. SMs are composed of a set of Stream Processors (SPs), each executing

instructions of a thread at a given time (cycle). SPs share control logic and an

instruction cache, while SMs have access to the global memory. GPUs follow SIMT

(Single Instruction Multiple Threads) model [47] in which a group of (currently 32)

threads known as a warp execute the same instruction. Thousands of such SPs exist in

modern GPU devices; this means that each GPU is capable of executing thousands

of threads at any given moment. But in reality, it is possible to issue many more

threads than the number of existing SPs.

Thread Organization:

Parallel execution on GPUs is handled by fine-grained threads. Upon GPU kernel

invocation, a grid of threads is issued, all executing the same kernel. Threads in

CUDA (Compute Unified Data Architecture) are organized in a two-level hierarchy:

grid are at the top of the hierarchy, consisting of blocks; blocks are placed at the lower

hierarchy, consisting of threads. Threads within a block have access to the shared

memory and executing the same instructions, while threads between the blocks have

2.2. GRAPHICS PROCESSING UNITS (GPUS) 13

access to the global memory and can execute different instructions. Both threads

and blocks are coordinated so individual threads can distinguish themselves among

each other and detect the portion of the data they are supposed to work on. The

maximum number of blocks/threads that can fit in a single grid/block is implemen-

tation dependent, and is known as gridDim (gird dimension) and blockDim (block

dimension), respectively. The SM bundles a group of threads into a warp to work

in an SIMT fashion; this way all of the threads within a warp require only a single

control unit.

GPU Memories:

Memory access latency is one of the limiting factors in CUDA applications that

undermines its computational capabilities. To address this, there exists different types

of GPU memories. The GPU global memory is the slowest and most spacious GPU

memory; this memory space can be accessed from the GPU that it belongs to, the

host, or other peer accessible GPUs in the system. Constant memory can be read

or written by the host, but threads on the device can have read-only access to it;

it provides a fast, high-bandwidth access, specifically when multiple threads try to

access the same location. Shared memory is a fast on-chip memory that threads on

a block have access to (a portion of the shared memory, depending on the number

of blocks, is assigned to each SM). Registers are also fast on-chip memories, but are

allocated to single threads, so each thread can only access its pertinent register.

Floating-Point Units:

GPU supports single- and double-precision floating point (as well as half-precision

in the latest Pascal GPU architecture) operations which has expanded the domain of

supported applications on GPU devices.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 14

Streams and Events:

Stream is a sequence of CUDA instructions, executed serially. After Compute

Capability 2, multiple CUDA streams can run on a single GPU. An event is a dummy

instruction injected into the stream. One purpose of the event is to calculate the

elapsed time between events; by also synchronizing on an event, one can make sure

all of the instructions before the event have already been executed.

2.2.2 GPU Programming Languages and Tools

GPU Programming Languages

All of the GPU programming languages discussed here are aimed to provide an en-

vironment in which GPU and CPU programs can coexist with each other. The main

goal of these programming languages is to offload the GPU friendly potion of the

program into the GPU memory. To achieve this, different programming languages

use different techniques and APIs. In the rest of this section, we will review three of

the most popular GPU programming languages, namely CUDA [61], OpenCL [88],

and OpenACC [103].

CUDA: CUDA (Compute Unified Device Architecture) [61] is an extension to

ISO C, developed by the NVIDIA Corporation [62]. One way to look at a CUDA

program is to consider it as C code which only includes host code. To make use of

the GPU resources, the code can be optimized by adding device keywords and APIs.

The CUDA compiler is called NVCC (NVIDIA C Compiler) and is responsible for

separating the host code and the device code to be compiled by the C compiler and

the runtime component of NVCC, respectively. In this dissertation, we use CUDA as

our programming platform.

2.2. GRAPHICS PROCESSING UNITS (GPUS) 15

OpenCL: OpenCL [88] is another GPU programming language, designed for het-

erogeneous systems. OpenCL was initiated by Apple and maintained by the non-profit

technology consortium Khronos Group [58], and has been adopted by Intel, AMD and

NVIDIA. OpenCL is fundamentally the same as CUDA and in most cases there is

a one-to-one correspondence between their features. Like CUDA, OpenCL is also

based on the C language and targets heterogeneous systems. Unlike CUDA, OpenCL

is not platform-, vendor-, or hardware-specific. Portability of OpenCL across various

platforms and hardware does not come at no cost. It inevitably requires incorporat-

ing complex device management model and would require optional features that only

specific devices can use.

OpenACC: The OpenACC specification [103] is provided by a non-profit founda-

tion which is initially formed by Portland Group Inc. (PGI), Cray Inc., and NVIDIA.

The goal of OpenACC is to provide an environment for the scientists to easily acceler-

ate their programs using directives. OpenACC APIs are, in general, a set of compiler

directives and library routines that can be used to specify loops or other regions of

the code to be offloaded to the accelerator devices, including GPUs. OpenACC un-

like CUDA and OpenCL, removes the burden of initializing the kernel and associated

data movement from the user, leaving these heavy lifting details to the compiler and

the runtime library. However, like CUDA and OpenCL, the programmer is still re-

sponsible for recognizing parallelizable regions of the code and has to specify the data

that is going to be locally available to the accelerator. OpenACC compared to the

other two aforementioned programming languages is attractive in such a way that

it provides less barriers for heterogeneous programmers to utilize accelerators. On

the other hand, OpenACC directives just provide some hints from the programmer,

2.2. GRAPHICS PROCESSING UNITS (GPUS) 16

and efficient use of the accelerator is up to the compiler while CUDA/OpenCL re-

lies less on the compiler as parallelism is explicitly mentioned by the programmer.

In a nutshell, in CUDA/OpenCL, programmers have more flexibility to exploit the

accelerator resources.

In this dissertation, we only use the CUDA programming language which is specifi-

cally tuned for NVIDIA GPUs. We use NVIDIA GPU features (e.g., Hyper-Q), tools

(e.g., NVIDIA profiling tool), and libraries (e.g., NVIDIA management library) to

monitor and enhance the efficiency of our proposals. However, none of these tools

is required to implement our proposed designs in other programming libraries, such

as OpenCL. Our designs in CUDA can be potentially converted to OpenCL using

CUDA-to-OpenCL translator, such as CU2CL [51], which provides source-to-source

translation of CUDA to OpenCL codes.

GPU programming Tools

NVIDIA Management Library: The NVIDIA Management Library (NVML) [63]

includes a set of C-based APIs that can be used for extracting various states and

characteristics of the NVIDIA GPU devices, including monitoring, managing and

querying the GPU states and topology information. The NVML library can be used

to query various GPU states and information. Some of the query-able states include

the GPU performance state, current GPU core temperature and board power draw,

and GPU resource/memory utilization. The NVML library also allows the user to

modify various GPU states. Some of the modifiable states include, enabling/disabling

Error Correcting Code (ECC), changing the GPU compute mode (to control whether

compute processes can run exclusively or concurrently with other processes). The

2.2. GRAPHICS PROCESSING UNITS (GPUS) 17

NVML library also provides a set of APIs to retrieve some information from the

GPU(s). Some of this retrievable information includes, the GPU BUSID/UUID,

and the topology information. Moreover, NVML provides APIs to retrieve the GPU

topology information of the node. For instance, the topology API function nvmlDe-

viceGetTopologyCommonAncestor() can be used to find the common ancestor in a

GPU pair. The retrieved common ancestor value represents the node level relation-

ship between two GPUs (the larger this value, the higher the topology level between

the GPUs would be). The nvmlDeviceGetTopologyNearestGPUs() is another example

of NVML topology API, which provides a set of GPUs that are nearest to a given

GPU at a specific interconnectivity level. We use NVML topology APIs in Chapter

6 to extract the topology information of the multi-GPU node.

GPU Profiling Tools

GPU Profiling tools and APIs allow one to better understand and optimize the

GPU computation and communication performance of HPC applications.

NVIDIA Profiling Tools: NVIDIA provides a set of profiling tools and libraries [65]

to trace the CPU and GPU activities of the application. The NVIDIA Visual Profiler

(NVVP) is a graphical profiling tool that provides a timeline to demonstrate these

activities. The NVIDIA Profiler (NVPROF) allows to collect and view the application

profiling data from the command-line. With NVVP and NVPROF, one can collect

and show the trace of the application GPU calls that are made by the CPU threads.

However, in order to understand what tasks are being performed by the CPU threads

outside of the GPU function calls, the NVIDIA Tools Extension API (NVTX) can

be used. By adding the NVTX markers and ranges to the application, the Timeline

View is capable of showing both the CPU and GPU activities that are being executed

2.2. GRAPHICS PROCESSING UNITS (GPUS) 18

by the CPU threads. More specifically, we use NVTX to annotate MPI routines, and

assign MPI ranks to their associated process ids and GPU contexts on the profiler

timeline. We also use NVPROF to present an overview of the instructions launched by

the CUDA runtime or driver API. The log file provided by the NVPROF and NVTX

is eventually fed to NVVP which provides a trace of the CPU and GPU activities

of the application. We use NVIDIA profiling libraries in Chapter 5 to profile how

different data copy mechanisms are used in our proposed designs for GPU collective

operations.

GPU-Aware FPMPI Profiling library: FPMPI [29] is a profiling library which

provides various information about the underlying MPI (MPI will be discussed in

Section 2.3) communications of an application. Such information, in general, can be

categorized into three groups: 1) synchronization data; 2) asynchronous communica-

tion data; and 3) topology data. The synchronous communication routines provide

some related profiling data, while the asynchronous data lists the asynchronous com-

munication routines. The topology data provides a brief output of the communication

topology. While FPMPI is capable of providing such profiling information, it does

not distinguish between the CPU and GPU communications. In other words, FPMPI

provides one list of profiling data for all MPI routines regardless of where their associ-

ated communication buffer is allocated. In this regard, we have extended the FPMPI

library to provide profiling support for both CPU and GPU communications. The

extended profiler allows us to separately extract the CPU and GPU communication

characteristics of an application. To this end, we leverage various CUDA APIs to

analyze the buffer(s) in MPI routines. By analyzing the buffer(s), we can determine

whether it is located on the host main memory or on the GPU global memory. We

2.2. GRAPHICS PROCESSING UNITS (GPUS) 19

also instrument Open MPI [68] to expose specific information that will be queried by

the FPMPI library. For instance, we add the address type of the send/receive buffers

of MPI routines to the MPI Request object to distinguish among different types of

communications (i.e., CPU versus GPU). Our proposed GPU-aware FPMPI library

is capable of providing a separate profiling list for both the CPU and GPU MPI

routines. The GPU-aware FPMPI is used to profile the GPU application in Chapter

6.

2.2.3 GPU Advanced Features

In this section, we review some of the state-of-the-art features that exist in the latest

generations of the NVIDIA GPUs.

GPU Inter-process communications Modern NVIDIA GPUs provide data copy

mechanisms that can facilitate and improve the GPU inter-process communications.

In this regard NVIDIA introduced CUDA Inter-Process Copy (IPC) and GPUDirect

Remote Direct Memory Access (RDMA) technology for intranode and internode GPU

inter-process communications.

With The NVIDIA CUDA IPC, data can be directly copied (without host inter-

vention) from the GPU address space of one process to the GPU address space of

another process within the same root complex on the node. The CUDA IPC copy

requires a process to expose a portion of its address space to the remote processes. In

this regard, a memory handle of the shared address is created and passed to the re-

mote processes. The remote processes can then access and modify the shared remote

address space; however, synchronization between the involved processes is required

to guarantee the completion of the copy. This synchronization is performed using a

2.2. GRAPHICS PROCESSING UNITS (GPUS) 20

shared CUDA IPC event, by one process recording it after initiating its IPC copy and

the other process querying its completion.

GPUDirect RDMA is a capability that enables GPUs on different nodes to directly

exchange data without needing to go through the CPU/system memory. This feature

is introduced in the NVIDIA Kepler-class and allows third party devices such as

InfiniBand (IB) [32] adapters to directly access memory on multiple GPUs within the

same system but on different nodes, thus allowing them to directly communicate with

each other. None of the proposed techniques in this dissertation rely on this feature.

Hyper-Q and Multi Process Service: Hyper-Q [62] is an NVIDIA feature that

provides potential concurrency among CUDA tasks from a single process. However,

Hyper-Q by itself cannot provide concurrency among CUDA requests from multiple

processes to the GPU compute and memory engine, thus these tasks would have to

serialize. In order to provide such concurrency across multiple processes, NVIDIA has

introduced the Multi Process Service (MPS) [64] for GPUs with compute capability

of 3.5 and above. The MPS service acts as a funnel to collect CUDA tasks from

multiple intranode processes and issue them to the GPU as if coming from a single

process so that the Hyper-Q feature can take effect. Without this service, each of

the MPI processes has to allocate storage and scheduling resources on the GPU, and

only work from a single context can be launched on the GPU engines at a time. In

contrast, with the MPS service enabled, there is only a single context, known as MPS

context, present on the GPU. This allows all processes to share the GPU storage

and scheduling resources, eliminating the overhead of the context switching. This

feature is used in Chapter 5 to enhance the overlap between different GPU data copy

mechanisms used in GPU collective communications.

2.3. MESSAGE PASSING INTERFACE (MPI) 21

Unified Virtual Addressing (UVA) UVA is an NVIDIA feature which has become

available after CUDA 4.0. It maps GPU buffers into a single virtual address space

and provides an aggregated virtual address space that is shared among the CPUs and

the GPUs in the node. We use this feature in Chapter 3 to 6 to distinguish the GPU

and CPU physical memory locations based on the buffer address value.

Unified Memory (UM) NVIDIA UM was introduced with CUDA 6. It creates

a pool of managed memory that is shared between the CPU and GPU. With this

feature the system automatically migrates data allocated in unified memory between

host and device. This feature would allow codes running on the CPU and GPU

to seamlessly use the system CPU and GPU memories. This feature eases hybrid

programming and is not used in this dissertation.

2.3 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [56] is a message-passing library which is consid-

ered as the de-facto standard programming model in HPC clusters. MPI has mainly

gained interest due to its high performance, scalability, and portability. MPI has

resulted from a joint effort of numerous groups and individuals starting in 1992. The

first version of MPI standard (i.e, MPI-1.0) was released in 1994; The second MPI

standard, MPI-2, was completed in 1998. MPI-3 was approved in 2012, and the latest

available version of the MPI standard was released in 2015 (i.e., MPI-3.1). In the

rest of this section, we first overview the message passing communication subsystem.

Next, we introduce various MPI communication models and specifically overview

the well-known algorithms that are typically used with the collective communication

model. In this section, we also overview the current GPU support of some of the

2.3. MESSAGE PASSING INTERFACE (MPI) 22

well-known MPI libraries.

2.3.1 Message Passing Communication Subsystem

Fig. 2.1 shows different levels of the message passing subsystem architecture. The

application is at the highest level. Below the application level is the middleware li-

brary level; the MPI routines are exposed to the application developer at this level.

The middleware library sits on top of the kernel-level or the user-level communication

libraries. Both the middleware and the user-level libraries are directly accessible by

the user and do not require any OS kernel intervention. At the kernel communica-

tion level, libraries, such as socket, interact with the kernel-level network protocols

(such as TCP/IP); the kernel-level interfaces the kernel-level library with the Net-

work Interface Card (NIC) driver. The user-level library, on the other hand, provides

communication libraries that can bypass the OS; communications through this layer

decreases the processing overhead between the middleware library and the NIC. As

an example, the user level verb library allows MPI to interface to the Mellanox Infini-

Band NIC driver or directly to the NIC hardware. The NIC hardware is connected

to the network fabric (such as InfiniBand), which connects the node to the rest of the

computer cluster. Our proposals in this dissertation are applied in the middleware

library and we also utilize some functions from the user-level library.

2.3.2 MPI Communication Models

In MPI, processes pass messages to each other in a cooperative fashion; this is known

as the classical point-to-point communication model. MPI also provides an extension

to this model for collective and Remote Memory Access (RMA) operations, we discuss

2.3. MESSAGE PASSING INTERFACE (MPI) 23

Application

Middleware Library (e.g.,
MPI)

Kernel-level library (e.g.,
socket)

Kernel-level
protocol (e.g.,

TPC/IP)

NIC driver

User-level library (e.g.,
verb)

NIC hardware

Network fabric (e.g.,
InfiniBand)

User Space

Kernel Space

O
S

B
yp

as
s

Figure 2.1: Message passing communication diagram

these communication models in more detail below.

Point-to-point: In MPI point-to-point communication, both sender and receiver

take part in the communication. The sender calls a send routine, such as MPI Send(),

and the receiver calls a receive routine such as MPI Recv(), both providing matching

operations in order to recognize and select the right message. MPI point-to-point

2.3. MESSAGE PASSING INTERFACE (MPI) 24

communication comes in two flavors: 1) blocking and 2) non-blocking. The sender

and receiver can either be blocking or non-blocking. The blocking sender blocks the

calling process until it is safe to reuse the send buffer again; the blocking receiver

blocks the receiver process until the receive operation is complete. In non-blocking

send, the send operation will return as soon as the data is copied into the send

communication buffer; non-blocking receive returns as soon as the receive request is

posted. Non-blocking operations require polling or waiting to verify the completion

of the message.

Collectives: MPI also supports collective communication operations which in-

volves communications among two or more processes. Collective communications

simplifies programming parallel applications, and facilitates implementation of effi-

cient communication on various machines; this would in turn promote the portability

of the application. The performance of different collective operations with different

configurations, such as message size and process count, highly rely on the algorithm

used to implement them [76, 10, 90].

Prior to MPI-3 all of the collective operations were blocking. Non-blocking col-

lectives, first introduced in the MPI-3, are used to optimize collective communication

by enabling overlap between communication and computation. In the blocking col-

lective, the caller is blocked until it is safe to use the buffer it passed to the collective

operation; while, in the non-blocking version, the call returns immediately which can

be queried later to check its completion.

MPI collectives, in general, can be categorized as computational, synchroniza-

tion, and data movement routines. In computational collectives, a group of processes

work together to perform computations on a dataset that is distributed among them.

2.3. MESSAGE PASSING INTERFACE (MPI) 25

For example, MPI Reduce performs a reduction operation (such as addition) on a

dataset that is distributed among processes and stores the result in the root process.

MPI Allreduce is another example of the computational collectives in which a reduc-

tion operation is performed on a distributed dataset, and the result is gathered by all

processes.

The only operation in the synchronization category is MPI Barrier which also

comes in a non-blocking format (i.e., MPI Ibarrier). This routine is considered to

be complete once all of the processes have called it. Collective operations for data

movement have two types. The first type distributes/stores the result from/into one

process known as root (e.g., MPI Bcast and MPI Gather); the second type stores the

final result in all of the processes (e.g., MPI Allgather); another collective operation

in this type is MPI Alltoall in which each process sends a different chunk of data to

each of the other processes. Neighborhood and Non-blocking collectives are the newly

added collective operations in the MPI-3 standard [56].

Neighborhood collectives are introduced in MPI-3 standard [56] for the high de-

mand of applications with sparse communication patterns (e.g., applications with

stencil kernels). Before MPI-3, it was possible to use MPI process topology to create

process topology graph, however, no communication function was introduced to utilize

them. Neighborhood collectives enable collective operations to perform computation

along the edges of the process topology.

RMA: In an RMA operation, a process is involved in a one-sided communica-

tion, specifying communication parameters for both sending and receiving sides. One

side of the communication can directly read or write from/into an exposed memory

window of the other side. MPI-2 RMA was strictly devised for limited application

2.3. MESSAGE PASSING INTERFACE (MPI) 26

behavior patterns, and it had many missing features. MPI-3 addresses some of these

shortcomings and supports broader application domain by optimizing window cre-

ation, memory model, and the synchronization methods. In this dissertation, we

do not consider MPI RMA operations and mainly target collective communication

routines.

MPI Libraries: Today, various MPI implementations are available; some are pro-

prietary and some are open source. Intel-MPI [35] is an example of a proprietary im-

plementation, while MPICH [57], MVAPICH [59], and Open MPI [68] are three of the

open source implementations of the MPI library. MPICH is a widely portable imple-

mentation of the MPI standard that is maintained by the Argonne National Labora-

tory. MPICH3 is the base source code for many other open source and proprietary im-

plementations that target specific interconnection networks. MVAPICH/MVAPICH2

is an example of such implementations, which is maintained by the Ohio State Uni-

versity and is optimized for using InfiniBand [32], Omni-Path [19], iWARP [78], and

RoCE [5] networking technologies. Open MPI is also an open source implementation

of the MPI standard that is maintained by a consortium of academic, research, and

industry partners. It combines several features from different MPI implementations

and has widespread use due to its high community support. We utilize MVAPICH2

library in Chapter 3 and 4; we use both MVAPICH2 and MVAPICH2-GDR libraries

in Chapter 5; in Chapter 6, Open MPI library is used.

2.3.3 MPI Collective Communication Algorithms

2.3. MESSAGE PASSING INTERFACE (MPI) 27

Collective communications are important and highly used component of MPI [76].

In HPC applications, there are stages of local computation followed by global com-

munication. Programming such global communications can be simplified by using

MPI collective operations. Efficient implementation of such operations on one hand

removes this burden from the programmer and also promotes the portability of the

application to different machines. In this regard, various algorithms have been pro-

posed for different configurations of collective operations. Below, we overview some

of the well-known collective algorithms.

Fan-in/fan-out: In the fan-in algorithm [28] with radix-n, a single process, the

parent process, serially receives data from n other processes; this algorithm can be

used in collective operations such as MPI reduce and MPI gather. In the fan-out

algorithm with radix-m, the parent process informs processes that data is ready and

m processes can attempt to simultaneously read this data; this algorithm can be

used in collective operations such as MPI Scatter and MPI Bcast. The fan-in and

fan-out operations can be combined together and used in collective operations such

as MPI Allreduce. The fan-in/fan-out algorithm is useful when synchronization cost

among participating processes in the collective operation is costly. Fig. 2.2.(a) shows

the general steps of the radix-7 fan-in/fan-out algorithm.

Binomial Tree: The steps of the binomial tree algorithm [90] are shown in Fig.

2.2.(b). In the first step, the root process sends data to process root + P/2 with P

being the total number of processes; in the next step, both this and the root process

act as new roots in their own subtrees and algorithm continues recursively. This

communication takes a total of log(P) steps. The binomial tree algorithm can be

used in various collective operations such as broadcast, gather, and reduce. However,

2.3. MESSAGE PASSING INTERFACE (MPI) 28

this algorithm is traditionally favored for short message sizes in flat systems.

Recursive Doubling: Fig. 2.2.(c) shows the steps of the recursive doubling algo-

rithm [90]. In the first step, processes that are a distance 1 apart exchange their data.

In the second and third step, processes that are distance 2 and 4 apart exchange their

data, respectively. For P number of processes, recursive doubling ends in log(P)

steps. Recursive doubling works well for power-of-two number of processes, while it

is tricky to use it with non-power-of-two number of processes. Recursive Doubling is

used in MPI collectives such as MPI Allgather and MPI Allreduce. In MPI Allreduce,

however, each process also performs a local reduction on the exchanged data in each

step. Recursive doubling is usually avoided when large messages are involved and

other algorithms, such as the ring algorithm, are used [76].

Rabenseifner: The Rabenseifner algorithm [76] implements MPI Reduce as reduce-

scatter followed by a gather to the root. At each reduce-scatter step, each process

works on reducing a portion of the data. A gather operation (or allgather in case of

MPI Allreduce) is called to collect the reduction results into the root.

Ring: In the ring algorithm [90], each process sends its data around a virtual ring

of processes. As shown in Fig. 2.2.(d), in each step process i sends its contribution

to process i + 1 and receives the contribution from process i - 1 (with wrap-around).

In each step of this algorithm, each process sends the data it received in the previous

step. With P processes, the ring algorithm takes P - 1 steps to complete. The ring

algorithm is used in MPI collective operations such as MPI Allgather. It is showed,

however, to only work efficiently on collectives with large message sizes.

2.3. MESSAGE PASSING INTERFACE (MPI) 29

1 2 3 4 5 6 7

0

Fan-in

Fan-out

1 2 3 4 5 6 7

i Process with rank i involved in communication Single-sided communication

i Process with rank I not involved in communication Double-sided communication

Legends

(a) Fan-in/fan-out

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(b) Binomial Tree

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Step 1

Step 2

Step 3

(c) Recursive Doubling

0 1 2 3

7 6 5 4

(d) Ring

Figure 2.2: Well-known MPI collective algorithms

2.3. MESSAGE PASSING INTERFACE (MPI) 30

2.3.4 GPU-Aware MPI

There are many MPI applications that are written from scratch or have been adapted

to run on the GPU clusters. In such clusters, the compute-intensive portion of the

application is offloaded and accelerated on the GPU. In such applications, MPI pro-

cesses are required to communicate the data that is residing on the GPU buffers.

The GPU-aware MPI can remove the burden of learning a new programming lan-

guage from the programmer to use MPI efficiently in conjunction with the GPU. The

GPU-aware MPI would help the programmer to develop a more concise, readable and

even efficient application to run on the GPU clusters.

In this regard, the GPU support has been added to the well-known MPI imple-

mentations such as MVAPICH2 [59] and Open MPI [68] in order to facilitate the

data movement between MPI process from/to the GPU buffers. The GPU support

in MPI libraries may follow a general approach which involves staging the GPU data

into the host buffer and leveraging the CPU-based MPI routines. It may also involve

further tunings by pipelining the transfers and using specifically designed algorithms

for some MPI routines. The first step in the general approach involves copying the

pertinent data from the GPU global memory into their host memory buffers; next,

MPI operation is performed on data that resides on the host buffers, and finally the

result is written back to the GPU memory. Depending on the message size, some MPI

implementations such as MVAPICH2 may leverage a host-based pipelining design to

hide the CUDA memory copy latency or use a more advanced design such as, Fine

Grained Pipeline (FGP) algorithm [84] that is proposed for MPI Allgather. The FGP

algorithm exploits simultaneous asynchronous network transfers and CUDA copies in

a store and forward fashion.

2.4. MODERN INTERCONNECTS AND COMMUNICATION
CHANNELS 31

MVAPICH2-GDR 2.0 is a proprietary design of the MPI standard that lever-

ages the GPUDirect RDMA technology to achieve significant improvement for small

message GPU-to-GPU communication. MVAPICH2-GDR takes advantage of the

loopback and gdrcopy features in the intranode point-to-point and collective opera-

tions for small messages. The loopback design replaces the CUDA memory copy that

has an initial calling overhead that is not negligible for short messages; the loopback

design provides a virtual network interface allowing the node to communicate with

itself. The GDR copy has a non-blocking nature, allowing the transfer to progress

in parallel and thus incurring a lower latency compared to the CUDA memory copy

used in MVAPICH2.

Current GPU-aware collective operations neither utilize efficient GPU-aware algo-

rithms, nor fully exploit modern GPU features. Moreover, while different data copy

mechanisms have been proposed for GPU inter-process communications, efficiently

leveraging them in collective operations has not been investigated. The existing

GPU-aware collective operations leverage flat designs which are inefficient given the

hierarchical structure of many multi-GPU nodes and GPU clusters.

2.4 Modern Interconnects and Communication Channels

GPU inter-process communication plays a crucial role in the performance of the ap-

plications running on the GPU clusters. GPU inter-process communications can hap-

pen within a single node (known as intranode communication), or across the network

(known as internode communication). Both intranode and internode communications

have been shown to considerably affect the performance of the applications running

on the GPU clusters [70]. In this regard, several high-speed interconnection networks

2.4. MODERN INTERCONNECTS AND COMMUNICATION
CHANNELS 32

and communication channels are used to interconnect GPUs within and across the

nodes.

According to the Top500 [91], various interconnection networks can be used to

interconnect HPC clusters with GPU accelerators, such as InfiniBand [32], Aries

[19], Omni-Path [7], 10G Ethernet, and other proprietary interconnects. Among

these interconnection networks, InfiniBand has the highest share among the top 500

supercomputers with GPU accelerators [91].

Today, a common practice with many of the GPU clusters is to use multi-GPU

nodes to increase their computation power and bandwidth capacity. Inter-process

communications within these nodes can go through different communication channels

such as PCIe tree topology, NVLink connection [66], and inter-socket links.

In the rest of this section, we overview some of the popular interconnection net-

works and communications channels that are commonly used in HPC clusters with

GPU accelerators.

2.4.1 Interconnection Networks

InfiniBand: The InfiniBand architecture is maintained by the InfiniBand Trade

Association (IBTA) [32] which was formed in 1999. InfiniBand (IB) is highly in use

among Top500 HPC clusters, specifically those that are equipped with GPU acceler-

ators. This high share is mainly the fruit of its fast inter-process communication.

InfiniBand defines a System Area Network for connecting host nodes and external

devices. Host nodes and external devices are connected to the fabric by Host Channel

Adapters (HCA) and Target Channel Adapters (TCA), respectively. The interface to

the HCAs is defined by a set of standard features known as verbs, while the interface

2.4. MODERN INTERCONNECTS AND COMMUNICATION
CHANNELS 33

to the TCAs is vendor specific.

Various vendors are supporting InfiniBand networking technology and have their

own implementation of it, such as Mellanox technologies [52] and Intel [34]. Mellanox

has added a feature to the InfiniBand verb for managing ordered communications,

known as CORE-Direct technology [15]. This feature allows collective operations to

be offloaded into the HCAs, releasing the communication processing burden from the

CPUs.

IB, in general, has two transfer semantics: channel semantic and memory semantic.

In channel semantic, a send/receive approach is used; while in the memory semantic,

data is read/written directly from/into the remote process address space without

its involvement. The Remote Direct Memory Access (RDMA) feature of IB is used

in the memory semantic, which bypasses the operating system and sends the data

with no host intervention. The GPUDirect RDMA is a feature that allows the HCA

to directly access the remote GPUs without any host intervention. This provides

a significant decrease in the GPU inter-process communications across the network.

The GPUDirect RDMA is jointly developed by NVIDIA and Mellanox.

2.4.2 Communication Channels

PCIe: PCIe (Peripheral Component Interconnect Express) is a high-speed com-

puter bus used to connect peripheral devices (such as GPU) to the system. Fig.

2.3 shows an example connection of the PCIe devices to the node interconnection

topology tree. As shown in the figure, the PCIe tree is a subset of the node topol-

ogy tree. The root of the topology tree is called root node or root complex, that

directly communicates with the socket; in PCIe tree, the leaf nodes are the end-point

2.4. MODERN INTERCONNECTS AND COMMUNICATION
CHANNELS 34

PCIe devices that traverse a PCIe switch fabric which itself may consist of multiple

PCIe switches. Communications over the PCIe communication channels can go over

multiple lanes. In PCIe version 3.0, each lane provides 985 MB/s, thus a 16-lane

PCIe 3.0 can effectively provide communication at a rate of around 16 GB/s. PCIe is

also full-duplex leading the bi-directional bandwidth to be twice the uni-directional

bandwidth.

Root Complex

PCIe endpoint

PCIe
Switch

Memory

PCIe endpoint

Socket

Root Complex

PCIe endpoint

PCIe
Switch

Memory

PCIe endpoint

Socket
Inter-socket link (QPI or HT)

NODE

Figure 2.3: The node interconnection, topology tree

NVlink: NVLink [66] is designed as a high-bandwidth communication channel

between GPU and GPU or between GPU and CPU within the same node. NVlink

provides a common shared address space, allowing the programmer to directly read

or write the local GPU global memory, or peer GPU global memory, or CPU main

memory. NVLink uses bidirectional connections. Each connection can provide 20 and

40 GB per second uni- and bi-directional peak theoretical bandwidth, respectively.

2.4. MODERN INTERCONNECTS AND COMMUNICATION
CHANNELS 35

The Pascal GP100 supports four NVLinks connection, leading to a total of 160 GBps

of bidirectional bandwidth.

Inter-Socket Link: Intel Quick Path (QPI) [33] and HyperTransport (HT) [87]

links (Fig. 2.3) are used for inter-socket communications in the Intel and AMD

processors, respectively. Both QPI and HT are packet-based interconnect technologies

that are specially optimized to achieve low latency.

36

Chapter 3

Efficient GPU Collective Communication

Algorithms

In GPU clusters, efficient inter-process communications play a crucial role in the

MPI application performance. Considerable portion of the MPI communication time

is spent on collective communications in both HPC and deep learning applications.

Rabenseifner [75] provides a five-year profiling study of the HPC applications running

in production and showed more than 40% of the MPI communication time to be spent

on two of the MPI collective operations (i.e., MPI Allreduce and MPI Reduce). The

Deepbench microbenchmark [16] also lists MPI Allreduce as one of the three main

operations for deep learning applications. Taking this into account, in this chapter,

we propose two algorithms to improve the performance of GPU collective operations.

The GPU-aware algorithms in this chapter are evaluated using MPI Allreduce as an

example of MPI collective operations. However, our designs with minor changes can

also be applied to other MPI collective operations. In this chapter, we make the

following key contributions.

• We propose two novel designs for GPU collective operations targeting single

37

GPU nodes: 1) GPU Shared Buffer-aware (GSB); and 2) Binomial Tree Based

(BTB). Both GSB and BTB utilize GPU shared buffer to perform their collec-

tive inter-process communications. The GSB design uses an aggregated GPU

shared buffer to perform these communications in a first-come first-served order.

The BTB design, on the other hand, follows the binomial tree based algorithm

discussed to Chapter 2, for its communications, using a pair-wise GPU shared

buffer that is distributed among processes.

• We leverage the GPU communication and computation capabilities to further

improve the performance of our GPU collective designs. On the computation

front, a CUDA kernel function is used to accelerate the collective computation

within the GPU. On the communication front, CUDA IPC copies in conjunction

with the GPU shared buffer are used to speed up the inter-process communica-

tions [23].

• We extend our GSB and BTB collective designs to across the cluster. To this

aim, we use our proposed GSB Reduce/Broadcast and BTB Reduce/Broadcast

designs at the intranode level, and the existing collective designs for Allreduce at

the internode level of the collective communication operation across the cluster.

• We conduct our experiments on two different single-GPU platforms using the

OSU microbenchmark [11]. We show that our GPU-aware designs can consid-

erably improve the performance of MPI Allreduce with large message sizes on

both systems. We also provide an evaluation of our designs across the cluster

and demonstrate similar findings.

3.1. RELATED WORK 38

3.1 Related Work

In traditional clusters, using efficient algorithms for MPI operations is a well stud-

ied problem in the literature [10, 76, 90]. Brock et al. [10] proposed algorithms for

MPI Alltoall that are mainly optimized with respect to the startup time and data

transfer latency. Rabenseifner [76] proposed various algorithms for MPI Allreduce

and MPI Reduce that are optimized for different message sizes and process counts.

Thakur et al. [90] evaluated various algorithms for different MPI collectives on

MPICH with the goal of minimizing the latency for short messages and the band-

width usage for long messages. While these work provide various collective algorithms

targeting the CPU domain in homogeneous environments, they may not necessarily

be applied in the GPU domain in heterogeneous environments. The CPU and the

GPU are different in terms of their architecture, as well as the topology and type

of their communication channels. Taking this into account, the work in this chapter

evaluates the effect of different algorithms in optimizing collective operations in the

context of GPU.

In the GPU domain, the efficiency of exploiting GPU-aware algorithms for MPI

operations is evaluated in various studies [85, 84, 12]. Singh et al. [85] optimized

MPI Alltoall by leveraging a pipelining mechanism to overlap device-to-host and

host-to-device CUDA memory copies with the network communications. Singh also

proposed an approach called Fine Grained Pipeline (FGP) [84] to implement the

MPI Allgather operation. The FGP approach utilizes simultaneous asynchronous

network transfers and CUDA copies in a store and forward fashion. It also breaks the

data into smaller pieces and operates independently on them in a pipelined manner

to provide further overlap. Chu et al. [12] investigated various flat algorithms for

3.1. RELATED WORK 39

GPU-aware MPI Allreduce across the nodes. In this chapter, we take on the challenge

to incorporate GPU awareness into the MPI collective operations. More specifically,

while previous work considers the same collective algorithm for both intranode and

internode collective operations, we propose algorithms that are tuned to the intranode

level and provide potential extension to across the cluster.

The benefit of using GPU features have been studied for various point-to-point

communication. Wang, et al. [97] proposed a design for GPU point-to-point op-

erations that unifies the data movement between the GPU copies and the network

(InfiniBand) transfer. This design leverages the GPUDirect and the Unified Virtual

Addressing (UVA) features to differentiate the GPU memory from the host memory.

The optimization in their work is mainly achieved by pipelining three steps of the

communication, GPU-to-host memory transfer, network transfer, and host-to-GPU

memory transfer. Shi et al. proposed various techniques to optimize inter-node GPU

point-to-point communications on small messages [82]. They utilized designs such as

loopback and fastcopy to avoid the costly CUDA memory copy operations involved

in the GPU point-to-point communication.

Various studies have also shown the benefit of using GPU features for non-contiguous

transfers [96, 38, 104]. Wang et al. [96] leveraged CUDA 2-dimensional memory copy

operation (i.e., cudaMemcpy2D) for fast in-GPU packing and unpacking the non-

contiguous data. Jenkins et al. [38] proposed to use GPU kernels to perform in-GPU

packing and unpacking of non-contiguous data. Wu et al. [104] used GPU kernels to

perform packing and unpacking operations and GPUDirect to transfer the data over

the network. The benefit of using CUDA kernels have been also used in complex and

derived datatype processing on the GPU [37, 81].

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 40

The GPU features have also been used in various MPI collective operations [97, 72,

73, 39]. Potluri et al. proposed various designs for internode MPI communications

between GPU memories using GPUDirect RDMA [72]. The authors, as a part of

their work, showed the benefit of using GPUDirect on some MPI collectives across

the node. The benefit of using CUDA IPC feature in intranode communications is

studied in [73, 39]. However, this feature is only explored for one-sided and two-sided

communications. In this chapter, on the other hand, we exploit GPU-aware features

to speed up collective computation and communication within the node. To this aim,

for the first time, we propose to use in-GPU kernel functions and GPU shared buffer

in conjunction with CUDA IPC to improve intranode collective operations.

3.2 GPU-aware Collective Communication Algorithms

GPU support for collective communications has been already added to some of the

well-known MPI implementations, such as MVAPICH2, MVAPICH2-GDR [59], and

Open MPI [68]. These operations may follow a general approach which involves

staging the GPU data into the host buffer and leveraging the traditional CPU-based

MPI routines. They may also involve further tunings by pipelining the transfers

and using specifically designed algorithms. For example, MVAPICH2 uses specific

designs for MPI Alltoall [85] and MPI Allgather [84]. However, these GPU collective

operations use costly CPU-assisted communications and computations. In this regard,

we propose alternative solutions for GPU collective operations. We evaluate different

algorithms in our designs and utilize a GPU shared buffer and in-GPU reduction

kernels to speed up collective communication and potential computation, respectively.

In our designs, we utilize GPU shared buffer to hold the collective pertinent data.

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 41

This buffer is a pre-allocated area in the address space of the GPU global memory.

This address is accessible by intranode processes and can be used as a shared medium

for inter-process communications and storing the collectives pertinent data. As a case

study, in this section, we propose two designs for the GPU MPI Allreduce collective

operation that leverages different algorithms : 1) A GPU Shared-Buffer (GSB) aware

approach; and 2) A Binomial Tree Based (BTB) approach. We will discuss the

different components of our proposed design for GSB and BTB Allreduce, including

the GSB/BTB Reduce and the GSB/BTB Broadcast, and how they are integrated

into this operation. Such collectives can be used to implement the associated MPI

collectives.

3.2.1 GPU Shared Buffer-Aware Design (GSB)

In the GPU Shared Buffer-Aware (GSB) design for MPI Allreduce, we use an ag-

gregated GPU shared buffer area to gather the pertinent collective data, manipulate

the data, and make the collective result available to the designated processes. In our

GSB design we use the fan-in/fan-out approach, discussed in Chapter 2. The GPU

shared buffer in our design is an aggregated space that is allocated in its entirety

in the address space of a predefined process. Below we discuss the general stages

involved in designing MPI Allreduce using the GSB approach; it consists of a GSB

Reduce and a GSB Broadcast stage.

GSB Allreduce

The GSB Allreduce exploits the GSB design to implement MPI Allreduce. The

GSB Allreduce is implemented by following two general stages: Stage1: GSB Reduce;

and Stage2: GSB Broadcast. In the rest of this section, we first introduce the GSB

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 42

Reduce and Broadcast components of the GSB Allreduce, and then further discuss

the implementation details of the GSB Allreduce design.

Stage1: GSB Reduce The GSB Reduce is used to implement the reduce component

of the GSB Allreduce. The GSB Reduce, uses the fan-in algorithm to gather the

collective pertinent data into the GPU shared buffer. The gathered data is then

reduced inside the GPU shared buffer using a GPU reduction kernel. The reduced

data is then read by the root process. It should be mentioned that the GSB Reduce

can be used to implement MPI Reduce.

Stage2: GSB Broadcast The GSB Broadcast is used to implement the broadcast

component of the GSB Allreduce. In the GSB Broadcast stage, all processes using

the fan-out algorithms read the collective data from the GPU shared buffer. With the

root process first copying the collective data into the GPU shared buffer, it is evident

that the GSB Broadcast can also be used to implement MPI Broadcast operation.

Fig. 3.1 shows the different components of the GSB Allreduce design. All intran-

ode processes copy their pertinent data from their GPU send buffers in their address

space in the GPU global memory to the GPU shared buffer to complete the gather

stage. Once all the data is available in the GPU shared buffer, the reduction opera-

tion takes place on the aggregated data and the result is stored back into the GPU

shared buffer. Upon availability of the result, all processes copy it into their own

GPU receive buffers.

According to the Fig. 3.1, the GPU shared buffer in its entirety is allocated in the

address space of a predefined process (without loss of generality, we assume process

with rank 0 as the predefined process). Processes exploit CUDA IPC to communicate

through the GPU shared buffer region. Processes on the same node also have access

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 43

to a shared directory which keeps track of the IPC copies into the GPU shared buffer

and report their completion. This buffer can be allocated either on the GPU global

memory or on the host memory. We have evaluated both design alternatives and

decided to keep the directory on the host memory. We provide some justifications for

this decision later in this section.

The size of the shared directory is intra comm size bits, representing the number

of processes on the node. Each of the first intra comm size - 1 bits (copy flags -

see Fig. 3.1) is associated with one process rank and is set once this process initiates

its IPC copy into the GPU shared buffer. The last bit in the directory (completion

flag) indicates the completion of the collective operation and the availability of the

results in the GPU shared buffer. This bit is set by the pre-defined process with rank

0.

The GPU shared buffer area should be sufficiently large to hold the gathered

dataset from all intranode processes (256 MB is used in our experiments). This is

directly related to the number of processes/GPUs per node, as well as the size of the

dataset that is typically in-use in applications leveraging MPI Allreduce. As such,

the size of the allocated GPU shared buffer is much less than the amount of global

memory available in modern GPUs (5 GB on Kepler K20 and 12 GB on Kepler K80).

Therefore, this is not a scalability concern in our design.

Fig. 3.1 shows the general steps of the GPU shared-buffer aware MPI Allreduce

design, as follows:

Step 1. All processes copy their share of data from their send buffers into their

associated addresses in the GPU shared buffer area.

Step 2. All processes (except process 0) set their associated copy flags in the

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 44

N bit

Shared
DIRECTORY Shared Buffer

Send buffer Receive buffer

.

.

.

Process 0

Process 1

Process 2

Process N-1

Receive bufferSend buffer

Send buffer

Send buffer Receive buffer

Receive buffer

GPU Global Memory
Host Main
Memory

1

1

3

4

7

1

2

2

2

6

6

6
7

7

7

1
5

C
o

m
p

le
ti

o
n

fl

a
g

C
o

p
y

fl
a

g
s

..
.

...

GPU-GPU
Copy

GPU-CPU
 Copy

Reduction

CPU Shared
Buffer

GPU Shared
Buffer

Figure 3.1: Steps of the GPU shared-buffer aware approach for MPI Allreduce

shared directory after initiating their IPC copies.

Step 3. Process 0 waits on all copy flags to be set (this step can overlap with

Step 2).

Step 4. Once all copy flags are set, all pertinent data is available in the GPU

shared buffer. Process 0 then performs an in-GPU element-wise reduction on the

aggregated data and stores the result in a predefined location inside the GPU shared

buffer.

Step 5. Once the collective result becomes available in the GPU shared buffer,

process 0 toggles the completion flag to indicate the completion of the collective

operation.

Step 6. All processes (except process 0) query the completion flag (this step

can overlap with Steps 3, 4, and 5).

Step 7. Once the completion flag is toggled, all processes copy their share of

collective result into their respective receive buffers.

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 45

Note that in Step 5, the completion flag has to be toggled in each instance

of MPI Allreduce call; otherwise, successive MPI Allreduce calls may end up reading

stale data.

Implementation Details:

The GPU shared-buffer aware approach leverages pre-allocated CPU and GPU

shared buffers. The CPU shared memory region is allocated during MPI initialization

stage, MPI Init(), and is attached to the address space of the intranode processes.

The memory handle of the GPU shared buffer is also created, broadcast, and mapped

to the address space of other processes during this stage. This is performed only once

to mitigate the costly operation of exposing the GPU shared buffer address space.

The IPC copies in CUDA have an asynchronous behavior, even if synchronous

CUDA memory copy operations are issued on the shared region. Therefore, the copy

flags in the shared directory only indicate the initiation of the IPC copies, but not

their completion. To guarantee the completion of the IPC copies, we leverage the

IPC events. The IPC event can be shared and used among processes residing on

the same node. To share an IPC event, the handle of the allocated event is created

and passed on by the predefined process to the other processes. To guarantee the

completion of the IPC copies, an IPC event using cudaEventRecord() command is

immediately recorded after each IPC copy (Step 1 in Fig. 3.1). Recording an event

is then followed by setting the associated copy flag in the shared directory in Step

2. Once each copy flag is set, process 0 issues cudaStreamWaitEvent() on the

associated event until the inter-process copy completes. The process 0 will wait on

all IPC events, by checking the copy flags that are tagged as unfinished in a round-

robin fashion; The process 0 will also tag each copy as complete once it finishes.

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 46

This way, the completion of all IPC copies can be guaranteed. Finally, all allocated

shared buffers and events are freed within the MPI Finalize() call.

3.2.2 GPU-Aware Binomial Tree Based Design (BTB)

The BTB approach utilizes the binomial algorithm (Chapter 2) in conjunction with

GPU shared buffer to perform collective operations. The GPU shared buffer in the

BTB approach (unlike the GSB approach) is distributed among processes involved in

the collective operation.

BTB Allreduce

The BTB Allreduce follows two stages to implement MPI Allreduce using the

BTB design: Stage1: BTB Reduce; and Stage2: BTB Broadcast. Below, we discuss

the general stages involved in designing MPI Allreduce using the BTB approach; it

consists of a BTB Reduce and a BTB Broadcast stage; In the following, we first

introduce these stages, and then further discuss the implementation details of the

BTB Allreduce design.

Stage1: BTB Reduce The BTB Reduce implements the reduction operation by

following the binomial algorithm. In each level of the algorithm, processes copy

their collective pertinent data into the GPU shared buffer of their peer process. The

received and the peer process data are then reduced inside the GPU shared buffer

using a GPU reduction kernel and the algorithm proceeds to the next level. In the

BTB Reduce, the binomial tree is traversed from the leaf to the root process.

Stage2: BTB Broadcast To implement the broadcast component of the BTB

Allreduce, all processes, using the the binomial tree algorithm read their collective

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 47

data from the GPU shared buffer. The binomial tree in the BTB broadcast is tra-

versed from the root to the leaf. With the root process first copying the collective

data into the GPU shared buffer, the BTB Broadcast can also be used to implement

MPI Broadcast operation.

Fig. 3.2 shows the detailed steps involved in the BTB Reduce stage followed by

the BTB Broadcast stage of the BTB Allreduce. Considering that the steps involved

in different levels of the collective operation are similar, we only discuss the first and

last levels of the BTB reduce part of our design.

R
ED

U
C

E

Le
ve

l 1
Le

ve
l l

o
g(

N
)

S

1

4

3

1

4

2

1

4

23

4

3

1

Process N-1.

B
R

O
A

D
C

A
ST

Le
ve

l 1

R R

1

2

R R

1

32

R R

1

2

..
.

32

1

Le
ve

l l
o

g(
N

)

Process N-2Process N/2 Process N/2 +1Process 0 Process 1

CPU Main
Memory

CPU Shared
Memory

GPU Global
Memory

GPU Shared
Memory

GPU-GPU
Copy

GPU-CPU
Copy

Reduction

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

2

2

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

3 3

S S S S SS

S R

Send
Buffer

Receive
Buffer

3

..
.

SS S S S

R RR RR R

Figure 3.2: Steps of the GPU-aware MPI Allreduce using the BTB design

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 48

BTB Reduce Stage-Level 1:

Step 1. First, each odd-ranked process uses IPC to copy the contents of its send

buffer to the GPU shared buffer of its adjacent, even-ranked peer process.

Step 2. Odd-ranked processes set their associated copy flag in the directory

(allocated on the CPU shared buffer) after initiating their IPC copies.

Step 3. Even-ranked processes query the flag in the directory to check the initi-

ation of the IPC copy from their peer process.

Step 4. Once the flag is set, each even-ranked process performs an element-wise

reduction between the data in its GPU send buffer and the pertinent data in its GPU

shared buffer. The reduced result is stored back into the GPU shared buffer.

This algorithm then proceeds to the next levels of the binomial tree. In each

level, the distance between the peer processes is doubled compared to the previous

level. This algorithm terminates when the last binomial tree level (i.e., Level log(N))

is processed. The steps of the final level is as follows:

BTB Reduce Stage-Level log(N):

Step 1. Process N/2 IPC copies the content of its GPU shared buffer into the

GPU shared buffer of its peer process (i.e., Process 0).

Step 2. Process N/2 sets its corresponding flag in the directory after initiating

its IPC copy.

Step 3. Process 0 queries the directory flag.

Step 4. Once the flag is set, process 0 performs the final reduction on the

pertinent data into the GPU shared buffer.

BTB Broadcast Stage

In the Broadcast Stage, process 0 broadcasts the reduced data from its GPU

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 49

shared buffer to the rest of the processes using the BTB-based broadcast algorithm.

In the broadcast step, IPC copy and setting/querying the directory are performed

similar to the reduce step. However, unlike the reduce step, the distance between the

peer processes is halved in each step.

Implementation Details

The BTB design, similar to the GSB design, utilizes both GPU and host shared

buffers. The GPU shared buffer is allocated by only half of the participating processes.

Thus, the size of the shared buffer in the BTB approach is half the size of the shared

buffer in the GSB approach. The directory is allocated on the host memory and its

size is also half the size of the directory in the GSB approach. The memory and

event handles are created and passed along during the MPI initialization time. In

the BTB design, we guarantee the order of the communications and computations by

enforcing processes on the same tree level to only communicate with each other. To

this aim, we store the tree level of the sending process in its associated entry in the

shared directory. This way, the sending and receiving processes can check and match

their tree levels before initiating the IPC copy. Matching the tree level indicates that

all of the copies in previous tree levels have been already completed. Consequently,

the ordered communication/computation can be guaranteed, preventing any potential

race condition.

Other Design Considerations

Both GSB and BTB designs allocate the shared buffer on the GPU global memory

while the directory is kept on the host main memory. In the first glance, having the

directory on the GPU memory with a kernel function querying its entries seems to be

justified; however, this can potentially lead to spin-waiting on the directory forever,

3.2. GPU-AWARE COLLECTIVE COMMUNICATION
ALGORITHMS 50

as the process querying the directory will take over the GPU resources and would

prohibit other processes to access them. We tried to address this issue by forcing

the querying process to release the GPU in time-steps. However, the performance

results were not promising and selecting the appropriate value for the time-step was

dependent on many factors such as message size and process count.

We also tried to query the directory using CUDA asynchronous copy operations.

Though this approach was feasible, it had high detrimental effect on the performance.

The performance slowdown is basically due to the high number of asynchronous copy

calls issued by the querying processes. These calls have to be synchronized at the

beginning of each MPI Allreduce invocation. Synchronization calls are costly, as they

require waiting on all previously issued copies on the directory to complete. Avoiding

synchronization calls can result in accessing stale data on the directory, which were

stored in the previous invocation of MPI Allreduce. This can ultimately result in

inaccurate directory checking. Taking everything into consideration, to achieve the

highest performance, we decided to allocate the directory on the host main memory,

while keeping the shared buffer on the GPU global memory.

3.2.3 Cluster-wide Extension of the GSB and BTB Algorithms

To extend the GSB (or BTB) design to across the cluster, we break the collective

operation into intranode intra-GPU and internode steps. For MPI Allreduce, we

extend the GSB or BTB design to across the cluster by following the steps below.

In the first step, the GSB Reduce (or alternatively BTB Reduce) design is used to

perform the intranode intra-GPU reduce and store the result in the address space of

the leader process. Next, MVAPICH2 MPI Allreduce is performed across the nodes

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 51

and among the leader processes. In the final step, the leader processes perform an

intranode intra-GPU broadcast using the GSB Broadcast or BTB Broadcast design.

This is an example of using a hierarchical design for GPU collective operations; in

Chapter 4, we comprehensively study a hierarchical framework for GPU collective

operations. In particular, we discuss how a hierarchical framework can be applied

to different collective operations and evaluate the sensitivity of different collective

algorithms to different hierarchy levels in multi-GPU nods and clusters.

3.3 Experimental Results and Analysis

3.3.1 Experimental Platform

In this section, single-node experiments are performed on two different GPU nodes:

1) K20 GPU node; and 2) K80 GPU node. The K20 GPU node (System A) is a

16-core node that is equipped with an NVIDIA Kepler K20M GPU. This node has

a dual socket Intel XEON E5-2650 clocked at 2.0 GHz, a 64 GB of memory, and is

running a 64-bit Red Hat Enterprise Linux 6.2 and CUDA Toolkit 5.5. The K80 GPU

node is a part of the Helios K80 cluster (System B) that is installed at Université

Laval provided by Compute Canada and Caclul Québec. This node has eight K80

GPUs, 256 GB of memory, and two Intel Xeon Ivy Bridge E5-2697 v2 processors.

Each of the Xeon processors provides twelve cores, operating at 2.7 GHz clock speed.

Thus, there exists a total of 24 cores per node. Moreover, this node runs a 64-bit

CentOS 6.7 and CUDA Toolkit 7.5. For our cluster-wide experiments we use four

K80 nodes. These nodes have identical configuration and use QDR InfiniBand as

their interconnect.

Microbenchmark Study

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 52

The experimental results in this chapter compare our proposed designs against the

default MVAPICH2 design. While our designs can be implemented in and compared

against any MPI library libraries, we opt to use MVAPICH2 library as it provides

GPU-specific designs [85, 84] for collective operations. For this comparison, we use the

OSU microbenchmark suite configured to support GPUs [11]. This suite provides a set

of microbenchmarks to evaluate the performance of MPI point-to-point and collective

operations. We utilize the collective benchmark from this suite to measure the latency

of MPI Allreduce operation. This benchmark reports the average latency of the

MPI Allreduce operation over a large number of iterations (100 to 1000 iterations

depending on the message size) across different number of processes and message sizes.

More specifically, on the K20 GPU node we use the OSU microbenchmark to evaluate

our proposed designs against MVAPICH2-1.9 on 4 Byte to 16 MB message sizes and

on 4, 8, and 16 processes. On the K80 GPU node, we use the OSU microbenchmark

to compare our proposed designs against MVAPICH2-2.1, and present the results for

4 Byte to 16 MB message sizes and on 4, 8, 16, and 24 processes; we use the same

configuration per node for our cluster-wide analysis. Noteworthy to mention, we get

consistent results across different runs as ordered communications and computations

in our designs would prevent the potential of any round-off errors or race conditions.

3.3.2 Single-Node Single-GPU Results

Fig. 3.3 and Fig. 3.4 compare MPI Allreduce using our proposed GSB and BTB ap-

proaches against the MVAPICH2 design on a K20 and a K80 GPU node, respectively.

According to Fig. 3.3, the GSB approach outperforms MVAPICH2 for all message

sizes on 4 and 8 processes on K20 GPU; with 16 processes, the benefit of the GSB

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 53

starts at message sizes greater than 16KB. The proposed designs on this node show

up to 22 times speedup over MVAPICH2. According to Fig. 3.4, the benefit of our

proposed designs starts at 256 KB message size on the K80 GPU. Using our proposed

designs, we can observe up to 19.5 times performance improvement for large messages

over the MVAIPCH2 MPI Allreduce. This is because MVAPICH2 uses host-based

data staging and reduction which are costly specifically for large message sizes. On

the other hand, our designs utilizes a GPU shared buffer to perform direct IPC copies

and in-GPU reductions. The startup and the peer synchronization of the CUDA IPC

copies impose high overhead in copying short message sizes; however, as the message

size increases the startup overhead becomes negligible compared to the data transfer

time.

As shown in Fig. 3.3 and Fig. 3.4, the performance of the GSB approach is su-

perior or at least similar to the BTB approach. This indicates that on a single-GPU

platform, the logarithmic nature of the binomial algorithm cannot provide any im-

provement over the GPU Shared Buffer-aware approach with linear complexity. The

performance results indicate a consistent behavior in the GSB and BTB approach

for message sizes up to 128KB. In this range, the startup latency for the IPC copy

and the in-GPU reduction kernel is almost oblivious to the message size and mainly

dominates the collective runtime. However for larger message sizes, the reduction and

the IPC copy time becomes mainly dependent on the message size. More specifically,

the message size and the number of IPC calls to/from the shared buffer mainly de-

termine the total execution time of large message sizes in our designs. These IPC

copies cannot overlap with each other, thus increasing the number of processes in our

design increases the total execution time accordingly.

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 54

0

200

400

600

800

1000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
µ

s)

0

2000

4000

6000

8000

10000

256K 512K 1M 2M

Message Size (Byte)

MVAPICH2

GSB

BTB

0

20000

40000

60000

80000

4M 8M 16M

(a) Single K20 GPU node - 4 Processes

0
200
400
600
800

1000
1200
1400
1600

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
µ

s)

0

5000

10000

15000

256K 512K 1M 2M

Message Size (Byte)

MVAPICH2

GSB

BTB

0

20000

40000

60000

80000

100000

120000

4M 8M 16M

(b) Single K20 GPU node - 8 Processes

0

500

1000

1500

2000

2500

3000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
µ

s)

0

5000

10000

15000

20000

25000

256K 512K 1M 2M

Message Size (Byte)

MVAPICH2

GSB

BTB

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

4M 8M 16M

(c) Single K20 GPU node - 16 Processes

Figure 3.3: MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on a single
K20 node (System A) with a single GPU

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 55

0

100

200

300

400

500

600

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

2000

4000

6000

8000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0

20000

40000

60000

4M 8M 16M

(a) Single K80 GPU node - 4 Processes

0

200

400

600

800

1000

1200

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

2000

4000

6000

8000

10000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0

20000

40000

60000

80000

4M 8M 16M

(b) Single K80 GPU node - 8 Processes

0

500

1000

1500

2000

2500

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

5000

10000

15000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0

20000

40000

60000

80000

100000

120000

4M 8M 16M

(c) Single K80 GPU node - 16 Processes

0

1000

2000

3000

4000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

S)

0

5000

10000

15000

20000

256K 512K 1M 2M
Message SIze (Byte)

MVAPICH2
GSB
BTB

0

40000

80000

120000

160000

200000

4M 8M 16M

(d) Single K80 GPU node - 24 Processes

Figure 3.4: MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on a single
K80 node (System B) with a single GPU

3.3. EXPERIMENTAL RESULTS AND ANALYSIS 56

0

50

100

150

200

250

300

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

M
P

I_
A

llr
ed

u
ce

 c
al

ls

Message Size (Byte)

4P

8P

16P

Figure 3.5: Number of MPI Allreduce calls required to compensate for the initializa-
tion overhead

3.3.3 Initialization Overhead:

Recall that in our designs, both of the host and GPU shared buffers are created

during MPI Init() and freed during MPI Finalize(). For an application to benefit

from the proposed designs, the one-time cost of this initialization overhead must be

amortized. Fig. 3.5 shows the number of MPI Allreduce calls required to compensate

this initialization overhead in the GPU shared-buffer aware approach on the K20

GPU node. As can be seen, for large message sizes, a few MPI Allreduce calls (only

a single call, in most cases) are just required to compensate for this overhead. For

smaller messages, more calls are required. Note that, for the 16-process case, we only

provide the results for message sizes above 16KB, as the benefit of our approach on

16 processes starts at messages greater than 16KB (Fig 3.3.c).

3.4. SUMMARY 57

3.3.4 Cluster-Wide Results

In this section, we evaluate the GSB and BTB designs on a 4-node Helios cluster

(System B) with a single GPU per node using MPI Allreduce. Fig. 3.6 compares the

GSB and BTB Allreduce with the MVAPICH2 MPI Allreduce on a 4-node cluster.

Our results show a similar trend with what we have observed earlier in our single-

node experiments (Fig. 3.4). According to our cluster-wide results (Fig. 3.6), the

benefit of the GSB Allreduce starts at 256 KB. The GSB approach also outperforms

the BTB approach across all message sizes, while the performance gap between the

two approaches reduces as the message size increases.

3.4 Summary

In this chapter, we investigated GPU-aware algorithms collective operations. We

proposed two design alternatives, called GPU Shared Buffer-aware (GSB) and Bino-

mial Tree Based (BTB). Both designs use IPC copies and in-GPU reductions, along

with GPU and host shared-buffers to speedup collective performance. We evaluated

our proposed designs using MPI Allreduce on single-GPU platforms and showed that

the GSB approach provides the highest improvement. In general, the GSB and the

BTB Allreduce provide significant speedup for large message sizes over MVAPICH2

MPI Allreduce by up to 22 and 16 times on a single node, respectively. The GSB and

the BTB Allreduce also showed up to 5 times improvement over the MPI Allreduce

across the clusters.

Our proposed designs in this chapter target single-GPU nodes and clusters; in

Chapter 4, we propose a hierarchical framework for GPU collectives targeting clusters

of multi-GPU nodes. In Chapter 3, while we observed considerable performance

3.4. SUMMARY 58

0

200

400

600

800

1000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

5000

10000

15000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0

20000

40000

60000

80000

4M 8M 16M

(a) 4 K80 nodes with single GPU per node - 16 Processes (4 processes per GPU)

0

500

1000

1500

2000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

5000

10000

15000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0

20000

40000

60000

80000

100000

4M 8M 16M

(b) 4 K80 nodes with single GPU per node - 32 Processes (8 processes per GPU)

0
500

1000
1500
2000
2500
3000
3500

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

5000

10000

15000

20000

256K 512K 1M 2M
Message Size (Byte)

MVAPICH2
GSB
BTB

0
20000
40000
60000
80000

100000
120000
140000
160000

4M 8M 16M

(c) 4 K80 nodes with single GPU per node - 64 Processes (16 processes per GPU)

0

1000

2000

3000

4000

5000

6000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

La
te

n
cy

 (
μ

s)

0

10000

20000

30000

256K 512K 1M 2M
Message SIze (Byte)

MVAPICH2
GSB
BTB

0

40000

80000

120000

160000

200000

240000

4M 8M 16M

(d) 4 K80 nodes with single GPU per node - 96 Processes (24 processes per GPU)

Figure 3.6: MVAPICH2 vs. GSB MPI Allreduce vs. BTB MPI Allreduce on 4 K80
node Helios cluster (System B) with single GPU per node

3.4. SUMMARY 59

improvement on large messages, our designs lead to performance degradation for small

and medium message sizes. In Chapter 5, we propose designs that can make informed

decisions in selecting the right data copy mechanism in their collective operations to

address small and medium size messages.

60

Chapter 4

Hierarchical Framework for GPU Collective

Communications

Today many of the homogeneous HPC clusters have hierarchical structures, which

usually consists of intranode hierarchical memory subsystem along a hierarchical in-

terconnection network. In this regard, collective communications on these clusters

usually utilize different algorithms at different hierarchy levels to enhance the perfor-

mance.

GPU accelerators, in recent years, have been adopted in HPC clusters to reach

higher compute density and power efficiency. Such clusters usually exploit multi-GPU

nodes to reach even higher compute power and larger GPU memory capacity. Such

heterogeneous clusters add to the hierarchical nature of clusters. Thus, GPU inter-

process communications in these clusters can take place within different hierarchy

levels, such as within a single GPU, across intranode GPUs, or across the network.

Given the hierarchical structure of the GPU clusters, in this chapter we extend

our initial study in Chapter 3 and investigate various hierarchical solutions for GPU

collectives running on clusters with multi-GPU nodes. In this regard, we propose a

61

general hierarchical framework for GPU collective operations. Our proposed frame-

work for different collectives within the node or across the cluster may consist of up

to three hierarchical levels, intranode intra-GPU, intranode inter-GPU and internode

inter-GPU. The intention of this framework is to highlight the importance of select-

ing the right algorithm at each hierarchy level for the GPU collective operations. In

this regard, we evaluate the effectiveness of using different GSB and BTB algorithms

proposed in Chapter 3 on different hierarchy level in our framework and discuss our

findings.

In general, our framework can be applied to any collective operation. In this

chapter, as a test case scenario, we evaluate our designs on MPI Allreduce operation.

We conduct our experiments on a multi-GPU cluster and provide our results on up

to 32 GPUs. In summary, we make the following key contributions.

• We propose a hierarchical framework for MPI collective operations targeting

multi-GPU nodes and multi-GPU clusters. We show that given the hierarchical

nature of the GPU clusters with multi-GPU nodes, hierarchical solutions can

significantly improve the performance of GPU collective operations.

• We analyze the impact of different algorithms within the intranode hierarchy

levels of our proposed framework and discuss our findings. In general, we show

that while a collective communication algorithm might be a good fit in one

hierarchy level, it may not be favored in another [22].

• We conduct our experiments within a multi-GPU node and across the GPU

cluster with up to 32 GPUs. Our experimental results show that our hierarchical

GPU-aware designs can significantly outperform the existing designs for large

message sizes.

4.1. RELATED WORK 62

4.1 Related Work

In traditional clusters, utilizing hierarchical solutions for MPI collective operations is

a well studied problem [43, 40, 86, 93, 80, 92, 28, 49, 74, 94, 46]. Researchers have

proposed hierarchical solutions for collective operations on wide-area distributed clus-

ters [43, 40]; the improvements achieved by these works are the result of minimizing

communications over the slow wide-area links, while increasing the communications

over the faster local links.

Hierarchical solutions have been also proposed for clusters of SMPs [86, 93, 80]. In

these work, the intranode part of the collective operations are improved by utilizing

intranode shared memory communication. Shared memory is also used in [28, 49]

for specifically designing intranode collective operations. Graham and Shipman [28]

evaluated various implementation options for shared memory-based collectives within

a node. They showed the benefit of their shared-memory based collectives over the

point-to-point-based collectives that only utilize shared memory within the transport

layer. Mamidala et al. [49] proposed shared memory-based collectives designs that are

aware of the multi-core aspect of the clusters. They evaluated various architectural

attributes of the AMD and Intel processors that were used for data transfer on multi-

core nodes. They utilized these insights to develop different intranode collective

operations. Qian and Afsahi [74] proposed hierarchical designs for MPI Alltoall and

MPI Allgather for multi-core SMP clusters. The authors take into account both the

system shared memory and the arrival pattern of the collective processes in their

designs.

Traff and Rougier [94] discussed the use of MPI 3.0 functionality that reflect

the hierarchy of the cluster in implementing hierarchical collectives. The authors

4.1. RELATED WORK 63

concluded that utilizing MPI 3.0 hierarchy-aware features can be an effective and

portable means for application developers to implement their own (non-MPI) hierar-

chical collectives. Li et al. [46] also proposed shared memory-aware collective designs

to avoid the intermediate copies involved in point-to-point-based and shared-memory

based collectives. To this aim, they proposed alternative thread-based designs for

the typical process-based collective operations. This way, different threads involved

in the collective operation can share their address space and communicate with each

other without any intermediate copy. The authors also considered the NUMA effect

in their collective design. The performance of their thread-based collectives showed to

significantly outperform the process-based designs. However, the process-based MPI

applications need to be modified and become thread-based. While these work study

the impact of hierarchical designs on homogeneous CPU clusters, in this chapter we

propose hierarchical solutions for GPU clusters with multi-GPU nodes.

Some researchers have studied various collective operations for GPU clusters. In-

ternode GPU collectives have been studied by various researchers [85, 84, 72, 12].

These studies utilize a combination of different GPU-aware algorithms and the un-

derlying hardware features to improve collective operation across the node. However,

none of these work take into account the hierarchical structure of the clusters with

multi-GPU nodes. In this chapter, on the other hand, we propose a hierarchical

framework for GPU collective operations. Using this framework, we break down the

collective operation into different hierarchy levels. We also evaluate the sensitivity

of different algorithms on different hierarchy levels and accordingly suggest the best

combination for GPU collective operations.

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 64

4.2 Hierarchical Collective Framework for a Multi-GPU Node and GPU

Clusters

4.2.1 Designs for a Multi-GPU Node

In a multi-GPU node, processes can be assigned to different GPUs or share a single

one. The intranode intra-GPU communications have different characteristics com-

pared to the intranode inter-GPU communications; for example, the intranode intra-

GPU communication bandwidth is at least an order of magnitude higher than the

intranode inter-GPU communications. Moreover, multiple intranode intra-GPU com-

munications, unlike intranode inter-GPU communications, would serialize. The ex-

isting collective designs as well as the proposed designs in Chapter 3 when applied to

a multi-GPU node would consider a flat design which is oblivious to these differences.

Taking these into consideration, we propose a hierarchical communication framework

for multi-GPU nodes consisting of two general hierarchies: 1) an intranode intra-GPU

communication hierarchy; and 2) an intranode inter-GPU communication hierarchy.

We also investigate the efficiency of the GSB and BTB algorithms proposed in Chap-

ter 3 within these hierarchy levels. Below, we discuss how our proposed hierarchical

framework can be applied, as a case study, to MPI Allreduce.

MPI Allreduce

To apply our proposed hierarchical communication framework to MPI Allreduce,

we propose a hierarchical design for MPI Allreduce collective operation in multi-GPU

nodes that consists of two stages: Stage1) Reduce; and Stage 2) Broadcast. In the

rest of this section, we discuss the Reduce Stage and the Broadcast Stage, and explain

how our framework is applied to them.

Stage1 Reduce:

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 65

Step1-Intranode Intra-GPU: All processes sharing the same GPU use the GSB

Reduce (or BTB Reduce) algorithm to reduce the data into the GPU shared buffer

of their leader process.

Step2-Intranode Inter-GPU: All the intra-GPU leader processes use the GSB

Reduce (or BTB Reduce) algorithm to further reduce the data into the GPU shared

buffers of the root process. Next, the root process reads the reduced data into its

receive buffer. Noteworthy to mention, the reduce stage can be used to implement

MPI Reduce as well.

Stage2 Broadcast

Step1-Intranode Inter-GPU: The root process uses the GSB Broadcast (or BTB

Broadcast) algorithm to broadcast the collective data into the GPU shared buffer of

the leader process in other intranode GPUs.

Step2-Intranode Intra-GPU: All the leader processes use the GSB Broadcast (or

BTB Broadcast) algorithm to broadcast the data into the GPU shared buffers of all

processes within the same GPU. It is evident that the Broadcast Stage can be used

to implement MPI Broadcast as well.

Fig. 4.1 shows the general steps involved to apply our proposed hierarchical

framework into MPI Allreduce targeting a multi-GPU node. According to the figure,

in Step 1 of the Reduce Stage, intranode intra-GPU processes reduce their pertinent

data and store it in the GPU shared buffer of their pre-defined leader process (without

loss of generality, process with rank 0 is considered as the leader process). In Step 2

of the Reduce Stage, the reduce operation is performed among the intra-GPU leader

processes within the node and the result is stored in the pre-defined node leader

process. The result of this operation is then used in the Broadcast Stage. In Step 1

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 66

of the Broadcast Stage, the node leader broadcasts the data into the leader process

in each GPU within the node. In Step 2 of the Broadcast Stage, the leader process

in each intranode GPU broadcasts the data to the rest of the intranode intra-GPU

processes.

R
ed

u
ce GSB Reduce

or
BTB Reduce

GSB Broadcast
or

BTB BroadcastSt
a

ge
2

B
ro

ad
ca

st

Step2
Intranode Inter-GPU

Step1
Intranode Intra-GPU

A
llr

e
d

u
ce St

a
ge

1

Step2
Intranode Intra-GPU

Step1
Intranode Inter-GPU

Figure 4.1: Steps of the hierarchical GPU-Aware MPI Allreduce on a multi-GPU
node

To investigate our hierarchical framework, we propose four design alternatives on

a multi-GPU node: 1) GSB-GSB; 2) GSB-BTB; 3) BTB-GSB; and 4) BTB-BTB. In

each scenario, the first term determines the algorithm for the intranode intra-GPU

step and the second term determines the algorithm for the intranode inter-GPU step.

As an example, the GSB-BTB design selects the GSB and the BTB algorithms for

the intranode intra-GPU and the intranode inter-GPU steps, respectively. More

specifically, GSB-BTB means GSB Reduce followed by BTB Reduce for the reduce

stage, and BTB Broadcast followed by GSB Broadcast for the Broadcast stage.

Fig. 4.2 and Fig. 4.3 illustrate the general steps involved in performing the Reduce

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 67

stage of the MPI Allreduce, as shown in Fig. 4.1, using the GSB-GSB and the GSB-

BTB designs, respectively. According to these figures, both designs perform a GSB

Reduce in their intranode intra-GPU level. For the intranode inter-GPU level, the

GSB Reduce algorithm is used in the GSB-GSB design (Fig. 4.2), while the BTB

Reduce is used in the GSB-BTB design (Fig. 4.3). Fig. 4.4 shows the general steps

involved in performing the Broadcast stage of the MPI Allreduce, as shown in Fig.

4.1, using the GSB-GSB algorithm.

L0 ... L0 ... L0 ...LEVEL 0

LEVEL 1

GPU 0 GPU 1 GPU N-1

Reduction

GPU
 Global

 Memory
GPU Shared

Buffer

zz

Inter-GPU
Copy

Intra-GPU
Copy

Lx
Level x

Reduction Result

...

L0 L1 ...L0 L0 ... L0

In
tr

an
o

d
e

In
tr

a-
G

P
U

In
tr

an
o

d
e

In
te

r-
G

P
U

Figure 4.2: Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB Reduce
and Intranode Inter-GPU GSB Reduce algorithms - Reduce stage

4.2.2 Designs for a GPU Cluster

We propose a hierarchical communication framework for clusters of multi-GPU nodes

consisting of three general hierarchies: 1) an intranode intra-GPU communication

hierachy; 2) an intranode inter-GPU communication hierachy; and 3) an internode

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 68

Log N
- 2

Log N
- 2

 L0 L0

 L0 L0

..
.

..
.

..
.

..
.

..
.

..
.

... ... L1Log N
- 1

L0L0
Log N

- 1
Log N

 - 1
Log N L0

... ...L0
Log N

- 2
Log N

- 2
Log N

- 1
L0

Log N
- 2

Log N
- 2

Log N
- 1

... ... L0L0 L0 L1 L0L0L0 L0 L1 L0 L0L0 L0 L1 L0

L0 ... L0 ... L0 ... L0 ... L0 ... L0 ...

L1 L0L0

L0

L0

LEVEL 0

LEVEL 1

LEVEL
Log(N)-1

LEVEL
Log(N)

GPU 0 GPU 1 GPU N/2 GPU N/2 + 1 GPU N-2 GPU N-1

Reduction

GPU
 Global

 Memory
GPU Shared

Buffer
Inter-GPU

Copy
Intra-GPU

Copy

Lx
Level x

Reduction Result

In
tr

an
o

d
e

In
tr

a-
G

P
U

In
tr

an
o

d
e

In
te

r-
G

P
U

Figure 4.3: Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB and In-
tranode Inter-GPU BTB Reduce algorithms - Reduce stage

inter-GPU communication hierarchy.

MPI Allreduce

To apply our proposed hierarchical communication framework to MPI Allreduce,

we propose a hierarchical design for MPI Allreduce collective operation in clusters

of multi-GPU nodes that consists of three hierarchical stages: Stage1) Intranode

Reduce; Stage 2) Internode Allreduce; and Stage3) Intranode Broadcast. Fig. 4.5

illustrates these general stages. In the following, we discuss these stages and explain

how our proposed framework is applied to them.

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 69

L0 ...

L0 L0 ...L0 L0 L0 ...L0

LEVEL 0

LEVEL 1

GPU 0 GPU 1 GPU N-1

GPU
 Global

 Memory
GPU Shared

Buffer

zz

Inter-GPU
Copy

Intra-GPU
Copy

...L0 L0 ...L0

...
In

tr
an

o
d

e
In

te
r-

G
P

U

In
tr

an
o

d
e

In
tr

a-
G

P
U

Figure 4.4: Hierarchical MPI Allreduce utilizing Intranode Intra-GPU GSB Broad-
cast and Intranode Inter-GPU GSB Broadcast algorithms - Broadcast
stage

Stage1: Intranode Reduce

Step1: Intranode Intra-GPU Reduce: Intranode intra-GPU processes reduce

their pertinent data and store it in the GPU shared buffer of their pre-defined leader

process; this step is performed using the GSB Reduce (or BTB Reduce) algorithm.

Step2: Intranode Inter-GPU Reduce: On each node, using the GSB Reduce (or

BTB Reduce) algorithm the reduce operation is performed among the intra-GPU

leader processes and the result is stored in the pre-defined node leader process.

Note that by adding an internode inter-GPU Reduce stage after the above two

steps in Stage 1, MPI Reduce can be can be implemented across the cluster.

Stage 2: Internode AllReduce:

The node leader processes engage in an Internode Inter-GPU Allreduce stage. We

use the existing internode MVAPICH2 algorithm to perform MPI Allreduce in this

4.2. HIERARCHICAL COLLECTIVE FRAMEWORK FOR A
MULTI-GPU NODE AND GPU CLUSTERS 70

step. At this point, the final reduction result is available at the node leader processes.

Stage 3:Intranode Broadcast

Step1: Intranode Inter-GPU Broadcast: The node leader process in each node

use the GSB Broadcast (or BTB Broadcast) to broadcast the data to the GPU leader

processes.

Step2: Intranode Intra-GPU Broadcast: Each GPU leader process use the GSB

Broadcast (or BTB Broadcast) to broadcast the reduced data to its intranode intra-

GPU processes.

Note that by adding an internode inter-GPU Broadcast stage before the above

two steps, MPI Bcast can be implemented across the multi-GPU cluster.

St
ag

e
1

In

tr
an

o
d

e

R
e

d
u

ce GSB Reduce
or

BTB Reduce

GSB Broadcast
or

BTB BroadcastSt
ag

e
3

In
tr

an
o

d
e

B

ro
ad

ca
st

Step2
Intranode Inter-GPU

Step1
Intranode Intra-GPU

A
llr

e
d

u
ce

Step2
Intranode Intra-GPU

Step1
Intranode Inter-GPU

Internode Inter-GPU
MVAPICH2
Allreduce

St
ag

e
2

In

te
rn

o
d

e

A
llr

e
d

u
ce

Figure 4.5: Steps of the hierarchical GPU-Aware MPI Allreduce on GPU clusters
with multi-GPU nodes

4.3. EXPERIMENTAL RESULTS AND ANALYSIS 71

4.3 Experimental Results and Analysis

In this section, we evaluate our proposed hierarchical framework on a multi-GPU

node and across the cluster. In our tests, we consider the GSB and BTB designs in

different intranode hierarchy levels. In all of these figures, we compare two different

design scenarios and provide the relative performance improvement.

4.3.1 Experimental Platform

We conduct our experiments on a cluster with multi-GPU nodes. In this regard, we

use System B (Helios cluster) with 4 nodes and 8 K80 GPUs in each node, as described

in Chapter 3. The System B nodes use QDR InfiniBand as their interconnect. We

compare our proposed designs against the existing design in MVAPICH2-2.1 and

present the results for various message sizes (256KB to 16MB)1. We consider up to 24

processes per node (a total of 96 processes) in our tests that are uniformly distributed

among different GPUs. Our results are reported for 256 KB to 16 MB message sizes,

as for smaller message sizes our designs provide limited or no improvement. In the

rest of this section, we discuss our results on a single multi-GPU node and then across

the cluster.

4.3.2 Results on a Single Multi-GPU Node

Fig. 4.6 and Fig. 4.7 evaluate our designs on a single 8-GPU Helios node (System

B). Fig. 4.6 compares the GSB-GSB design with the MVAPICH2 MPI Allreduce.

According to the figure, the GSB-GSB design is superior over MVAPICH2 in all test

cases. We can also observe that the GSB-GSB design provides higher improvement

1Note that MVAPICH2-GDR was not available on System B.

4.3. EXPERIMENTAL RESULTS AND ANALYSIS 72

256K
1M

4M 16M

0%

20%

40%

60%

80%

100%
Im

p
ro

ve
m

en
t

(%
)

Figure 4.6: GPU hierarchical MPI Allreduce with GSB for Intranode Intra-GPU and
GSB for Intranode Inter-GPU steps over MVAPCIH2 on a single Helios
K80 node with multiple GPUs

for cases with larger message size and higher number of processes per GPU.

To investigate the choice of algorithms in our framework, we compare the GSB-

GSB case (Case1) against the BTB-GSB (Case2), BTB-BTB (Case3), and GSB-BTB

(Case4) in Fig. 4.7(a), 4.7(b), and 4.7(c), respectively. According to Fig. 4.7(a), the

BTB-GSB design underperforms the GSB-GSB design in all test cases. These results

comply with the results in Fig. 3.4, showing that the BTB design is not preferable

in the intranode intra-GPU step. Using the BTB-BTB design (Fig. 4.7(b)) can lead

to some performance improvement in cases of 4 and 8 GPUs. Interestingly, with the

BTB-BTB design, performance improves as the number of GPUs per node increases,

and degrades as the number of processes per GPUs increases. This implies that

despite the inefficiency of using the BTB design in the intranode intra-GPU step, it

can lead to performance improvement when used in the intranode inter-GPU step.

Finally, the GSB-BTB design outperforms the GSB-GSB design in all test cases (Fig.

4.7(c)). This verifies that the GSB and the BTB approach should be the algorithm

of choice for the intranode intra-GPU and intranode inter-GPU step, respectively.

4.3. EXPERIMENTAL RESULTS AND ANALYSIS 73

256K
1M

4M 16M

-40%

-20%

0%

20%
Im

p
ro

ve
m

en
t

(%
)

(a) Case2: Hierarchical design - Intra-GPU: BTB, Inter-GPU: GSB over Case1: Hierarchi-
cal design - Intra-GPU: GSB, Inter-GPU: GSB

256K
1M

4M 16M

-40%

-20%

0%

20%

40%

60%

Im
p

ro
ve

m
e

n
t

(%
)

(b) Case3: Hierarchical design - Intra-GPU: BTB, Inter-GPU: BTB over Case1: Hierar-
chical design - Intra-GPU: GSB, Inter-GPU: GSB

256K
1M

4M 16M

-20%

0%

20%

40%

60%

Im
p

ro
ve

m
e

n
t

(%
)

(c) Case4: Hierarchical design - Intra-GPU: GSB, Inter-GPU: BTB over Case1: Hierarchi-
cal design - Intra-GPU: GSB, Inter-GPU: GSB

Figure 4.7: Evaluating the effect of using different algorithms in the GPU hierarchical
MPI Allreduce on a a single Helios K80 node with multiple GPUs per
node

4.3. EXPERIMENTAL RESULTS AND ANALYSIS 74

256K
1M

4M 16M

0%

20%

40%

60%

80%

Im
p

ro
ve

m
en

t
(%

)

Figure 4.8: GPU Hierarchical MPI Allreduce with GSB for Intranode Intra-GPU and
GSB for Intranode Inter-GPU steps over MVAPCIH2 MPI Allreduce on
four Helios K80 nodes with multiple GPUs per node

4.3.3 Results on a Cluster of Multi-GPU Nodes

Fig. 4.8 and Fig. 4.9 provide our cluster-wide results on a cluster of four 8-GPU Helios

nodes (System B). Similar to our single-node analysis, our cluster-wide experiments

indicate that the GSB-GSB design can outperform the MVAPICH2 MPI Allreduce in

all test cases (Fig. 4.8), although with a lower improvement compared to the single-

node results (Fig. 4.6). This is an expected behavior as we are using a fixed internode

algorithm in the internode step of our framework. Thus, the higher the share of the

intranode step (the more processes per node) in the collective operation, the higher

the improvement potential in our proposals. In Fig. 4.9, we also evaluate the choice of

different algorithms for the intranode step of a cluster-wide MPI Allreduce operation.

According to this figure and similar to our intranode results in Fig. 4.7, the GSB-

BTB approach is showing to be the algorithm of choice for the intranode step of the

cluster-wide MPI Allreduce operation as well.

4.3. EXPERIMENTAL RESULTS AND ANALYSIS 75

256K
1M

4M 16M

-40%

-20%

0%

20%
Im

p
ro

ve
m

en
t

(%
)

(a) Case2: Hierarchical design - Intra-GPU: BTB, Inter-GPU: GSB over Case1: Hierarchi-
cal design - Intra-GPU: GSB, Inter-GPU: GSB

256K
1M

4M 16M

-40%

-20%

0%

20%

Im
p

ro
ve

m
e

n
t

(%
)

(b) Case3: Hierarchical design - Intra-GPU: BTB, Inter-GPU: BTB over Case1: Hierar-
chical design - Intra-GPU: GSB, Inter-GPU: GSB

256K
1M

4M 16M

-20%

0%

20%

Im
p

rv
o

em
e

n
t

(%
)

(c) Case4: Hierarchical design - Intra-GPU: GSB, Inter-GPU: BTB over Case1: Hierarchi-
cal design - Intra-GPU: GSB, Inter-GPU: GSB

Figure 4.9: Evaluating the effect of using different algorithms in the GPU hierarchical
MPI Allreduce on four Helios K80 nodes with multiple GPUs per node

4.4. SUMMARY 76

4.4 Summary

Multi-GPU nodes have become a prevailing choice for HPC clusters to reach higher

compute power. In such clusters, GPU inter-process communication can take place

at different hierarchy levels, such as within a single GPU, across intranode GPUs, or

among GPUs on different nodes. Taking this structure into account, in this chapter

we proposed a hierarchical framework for collective operations for both single Multi-

GPU nodes as well as cluster of multi-GPU nodes.

On a multi-GPU node, we applied our proposed hierarchical framework to MPI All-

reduce, while our framework can also be applied to other collective operations. We

performed MPI Allreduce in two stages: Stage1) Reduce; and Stage2) Broadcast.

Our hierarchical framework is then applied to both stages by breaking them into in-

tranode intra-GPU and intranode inter-GPU steps. By studying various algorithms

within these steps, we showed the importance of choosing the right algorithm for

different hierarchy levels of the GPU collective operations. We also evaluated our

framework on MPI Allreduce across the clusters and showed promising performance

results. Our experimental results showed to highly benefit MPI Allreduce with large

message sizes which are highly used in deep learning and big data applications.

Our hierarchical collective designs in this chapter complements our GPU-aware

collective communication algorithms in Chapter 3. In Chapter 3, we leveraged dif-

ferent algorithms and hardware features for GPU collectives targeting single GPU

nodes. In this chapter, on the other hand, we utilized the hierarchical structure

of GPU clusters with multi-GPU nodes to propose hierarchy-aware GPU collectives.

Our proposals in these chapters show to mainly benefit large message sizes. We inves-

tigate this behavior in Chapter 5, and propose various designs to intelligently select

4.4. SUMMARY 77

the right data copy mechanism in collective operations targeting single-GPU nodes.

78

Chapter 5

Efficient GPU Communications through Smart

Data Copy Mechanism Selection

GPU accelerators have tremendously evolved over the past decade. During this pe-

riod, the main and probably the most noticeable improvement in these accelerators

is the increase in their floating-point operations per second (FLOPS) and power effi-

ciency. Apart from this, GPUs have also evolved by introducing advanced features,

such as GPUDirect, Dynamic Parallelism, UVA, UM, and Hyper-Q (discussed in

Chapter 2) which can help to further harness the potential of the GPU resources.

While such advances provide a vehicle for increasing the performance, GPU applica-

tions can find themselves constrained by potentially costly inter-process GPU com-

munication performance. Thus, efficiently leveraging the GPU resources as well as

the latest GPU features are of paramount importance in improving the performance

of GPU applications.

Modern GPUs have the ability to leverage different data copy mechanisms and

communication channels for inter-process communications. For such communications,

79

a single data copy mechanism is selected that well fits the communication characteris-

tics, such as the message size and the communication channel between GPU processes.

Taking this into consideration, researchers have utilized an efficient single GPU data

copy mechanism to propose GPU-aware point-to-point and collective designs [73], and

as proposed in Chapter 3 and 4of this dissertation. The fruit of these work is showing

the high impact of using the right single data copy mechanism in point-to-point and

collective operations.

While it is most efficient to use a specific data copy mechanism for a single GPU

inter-process communication, in this chapter we show the benefit of using multiple

data copy mechanisms to perform multiple inter-process communications. To this

aim, we propose collective designs that use different data copy mechanisms in con-

junction with each other to perform GPU collective operations. The rationale behind

our proposals in this chapter is to overlap the use of different data copy mechanisms

for different inter-process communications, thus improving the total collective com-

munication runtime. Therefore, our goal is to propose designs that can assess the

performance and availability of multiple data copy mechanisms and cooperatively ex-

ploit them to perform GPU inter-process communications of the collective operations.

We first present our designs for a single-GPU node and next provide the scalability

of our designs to across the cluster.

In this chapter we make the following key contributions:

• We first provide evidence of using multiple data copy mechanisms in intranode

inter-process GPU communications. We also demonstrate that the benefit of

using multiple data copy mechanisms can be accentuated with the GPU feature,

called Nvidia MPS service. For intranode GPU communications, we utilize two

80

inter-process data copy mechanisms: 1) CUDA IPC; and 2) host-staged. We

observe that, not only does the MPS service can improve the performance of

each of these data copy mechanisms, it can also further overlap them as well.

We also show that for multiple inter-process communications, the most efficient

combination of data copy mechanisms can vary based on the message size and

process count.

• We propose a Static algorithm and an alternative Dynamic algorithm for intra-

node MPI Allgather and MPI Allreduce operations. Both designs are tuned to

leverage the MPS service and use a combination of different data copy mecha-

nisms to perform their collective operations. The Static algorithm decides the

number and the mechanism of the copy for inter-process communications based

on a tuning table that is provided prior to the runtime. The Dynamic algo-

rithm, on the other hand, chooses the right number and mechanism of the copy

based on the information that it gathers at runtime [24, 22].

• We provide a node-wide and cluster-wide analysis of our proposed designs. We

compare our proposals against the existing GPU-aware collectives, including our

proposed GSB and BTB algorithms in Chapter 3. We show that the Static and

the Dynamic approaches, by intelligently selecting the right number and mech-

anism of the copies, can outperform the existing collective designs, specifically

for cases that an inefficient data copy mechanism is in-use.

• We shed some light on the effect of the MPS service on our proposed designs

by profiling and performing further experiments. We conclude that efficient

design decisions are indeed required to utilize the MPS service, as otherwise this

5.1. MOTIVATION 81

service can only provide limited improvement or even impose overhead. With

our collective designs being aware of the Hyper-Q feature, further improvement

compared to the other alternative designs can be realized.

5.1 Motivation

In this section, we provide some motivational results that serve as the backbone of

our designs. With these results, we show the benefit of using the Nvidia Multi-

Process Service (MPS) [64] on the inter-process GPU communications using different

data copy mechanisms. Our goal in this section is twofold. First, we show that

there are certain message ranges in which a single specific data copy mechanism is

most favored for inter-process communications. With the MPS service this trend will

not change, even though the communication performance can potentially improve.

Second, we provide evidence that for some message sizes utilizing multiple data copy

mechanisms in conjunction with the MPS service is the best way to improve multiple

inter-process communications.

5.1.1 Impact of MPS and Hyper-Q on Communication

The Nvidia Hyper-Q feature, as discussed in Chapter 2, provides potential concur-

rency among different tasks on a single process. The MPS service [64], on the other

hand, allows the Hyper-Q feature to take effect among multiple processes and allow

them to potentially run their tasks on single GPU resources. The benefit of using

the Hyper-Q feature through the MPS service is already evaluated on various appli-

cations and offloaded computational kernels [102, 13, 71, 9]. In this section, on the

other hand, we specifically evaluate the impact of the Hyper-Q feature and the MPS

5.1. MOTIVATION 82

service on the point-to-point intranode communications. We consider four point-to-

point communicating pairs that are first synchronized and then perform pair-wise

communications with either the host-staged (HS) or CUDA IPC data copy method.

We consider three scenarios: 1) all communications are performed with only host-

staged copy; 2) half of the communications are performed using host-staged and the

other half are performed using CUDA IPC; and 3) all communications are performed

using CUDA IPC.

Fig. 5.1 presents our microbenchmark results with and without the MPS service.

According to the figure, three main observations can be made. The most apparent

observation is that both host-staged and IPC data copy mechanisms can benefit from

the MPS service mainly for small and medium message sizes. For 128KB messages

and above, however, the MPS service imposes overhead on both data copy mecha-

nisms, with a larger impact on the host-staged data copy mechanism. This is due

to the fact that MPS allows multiple memory copies to be issued faster and reduce

their initialization overhead. However, for large message sizes this overhead is negli-

gible compared to the data copy time. MPS service imposes more overhead on the

host-staged copies on large message sizes which we believe is mainly implementation

dependent. We also observed that the MPS service provides the possibility of multiple

CUDA IPC copies to overlap with each other while this overlap possibility already

exists among multiple host-staged copies without the MPS service. Secondly, it can

be seen that the host-staged copies (with or without MPS) are faster than the CUDA

IPC copies for small and medium message sizes. The opposite trend can be seen

for large message sizes, in which the CUDA IPC copies (with or without MPS) are

superior to the host-staged copies. Finally, we can also observe that in some message

5.1. MOTIVATION 83

sizes (32KB and 64KB) with MPS enabled, the communication using both data copy

mechanisms is superior to the communication with a single data copy mechanism.

This implies that the Hyper-Q feature through the MPS service is providing some

overlap between the host-staged and CUDA IPC communications.

0

100

200

300

400

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

HS-Only 2HS-2IPC IPC-Only HS-Only--MPS 2HS-2IPC--MPS IPC-Only--MPS

0

100

200

300

400

8K 16K 32K 64K 128K

0

1000

2000

3000

4000

5000

6000

256K 512K 1M 2M 4M

0

200

400

600

800

256K 512K

Figure 5.1: Hyper-Q effect on intranode point-to-point communication with and with-
out MPS

While Fig. 5.1 shows the potential benefit of the Hyper-Q feature in intranode

communications with different data copy mechanisms, it only considers three out of

five possible combinations. For further investigations, we repeated the tests with

the MPS service enabled, but this time considering all possible combinations. As

shown in Fig. 5.2, the Hyper-Q feature through the MPS service provides faster

communication when using both data copy mechanisms for a larger message range

(8KB to 256KB). It can be argued that there is no silver bullet combination working

efficiently across all message sizes; thus, the best approach is to leverage different

combinations of data copy mechanisms across different message sizes.

5.2. RELATED WORK 84

0
20
40
60
80

100

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

HS-Only--MPS 3HS-1IPC--MPS 2HS-2IPC--MPS 1HS-3IPC--MPS IPC-Only--MPS

0

2000

4000

6000

256K 512K 1M 2M 4M

0

50

100

150

200

250

8K 16K 32K 64K 128K

0
200
400
600
800

256K 512K

Figure 5.2: Hyper-Q effect on intranode point-to-point communication with MPS en-
abled

In Chapter 3 and Chapter 4, we addressed the following question: what should

be the algorithm of choice in GPU collective operations. In this chapter, on the

other hand, considering the findings in the motivational study, we raise the following

question: how different GPU data copy mechanisms can be used in conjunction with

each other to improve the GPU collective communication?

5.2 Related Work

Since the introduction of the Nvidia Fermi GPUs, researchers have studied various

ways to avoid GPU underutilization. Guevara et al. [30] introduced concurrent ker-

nel execution for Nvidia GT200 GPUs. The authors proposed an approach to allow

multiple kernels to share the same GPU resources by merging them into a large

kernel. Wang et al. evaluated different approaches for concurrent kernel execution

[98, 100, 99]. The authors evaluated sharing the CUDA context feature, which be-

came available with CUDA 4, among multiple processes. Their experimental results

5.2. RELATED WORK 85

showed up to 90% performance improvement by using context sharing. Wende et al.

[101] proposed an approach to reduce the false-serialization effect of running multiple

independent GPU kernels on Fermi GPUs. The false serialization effect in Fermi is

due to the use of a single task queue by the CUDA scheduler. The authors proposed a

GPU kernel re-ordering mechanism to mitigate this effect. This inefficiency, however,

was addressed by Nvidia in the next generation GPUs followed by Fermi (i.e., Nvidia

Kepler). The Kepler GPUs by using 32 task queues reduced the false serialization

effect significantly. NVIIDA has also introduced the MPS service to allow multiple

processes share the same GPU resources. The benefit of the MPS service has been

evaluated on various applications and computational kernels [102, 13, 71, 9]. Wende

et al. [102] performed a detailed analysis of the MPS service on multiple offloaded

computational kernels. This work showed that the MPS service can efficiently allow

multiple compute kernels to share resources of a single GPU and improve its uti-

lization. On the other hand, to the best of our knowledge, this chapter for the first

time evaluates the effect of the MPS service and the Hyper-Q feature on the intran-

ode GPU inter-process data copy mechanisms. Accordingly, we propose two different

algorithms that can efficiently use these features to improve the GPU inter-process

communication performance.

In GPU clusters, various GPU-aware solutions for MPI operations have been pro-

posed. All of these designs unanimously utilize a single data copy mechanism to

perform their GPU inter-process communication [85, 84, 39, 73, 72]. Singh et al. [85]

optimized internode MPI Alltoall utilizing host-staged copy in their designs. To im-

prove the performance of this costly operation, they overlapped the device-to-host and

host-to-device CUDA memory copies with the network communications. Singh also

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 86

used host-staged copy to optimize internode MPI Allgather using a store-and-forward

approach [84]. The CUDA IPC data copy mechanism was studied in [39, 73] and used

for one-sided and point-to-point communications. In this chapter, we leverage a com-

bination of both data copy mechanisms for intranode inter-process communications.

We propose algorithms for GPU collective operations that are capable of deciding the

number and mechanism of the inter-process copies. Depending on the algorithm, we

opt to make this decision based on the information that is gathered either during or

prior to the runtime.

5.3 GPU Collective Designs with Efficient Data Copy Mechanism Selec-

tion

In this section, we exploit the Nvidia MPS and the Hyper-Q feature to propose a

Static algorithm and an alternative Dynamic algorithm for intranode GPU collec-

tives. Both of the Static and Dynamic approaches decide the number and mechanism

(host-staged or IPC) of the GPU inter-process communications that are involved in

the collective operation. The Static algorithm makes this decision based on a priori

information that it extracts from a tuning table. The Dynamic algorithm, on the

other hand, dynamically decides the number and mechanism of the copies at run-

time. Our proposed algorithms can be applied to any collective operation; however,

in this chapter we will consider MPI Allgather and MPI Allreduce operations as our

case studies. While both the Static and Dynamic designs go through the same gen-

eral steps (i.e., Gather, Kernel Function, and Broadcast), each step has a different

algorithm.

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 87

5.3.1 Static Hyper-Q Aware Algorithm

Tuning collective operations can be performed by conducting experiments on the

underlying system and exploiting the gathered information; this has been extensively

studied and shown to highly improve the collective performance [95]. In our work,

the tuning table for each collective associates the most efficient combination of the

data copy mechanisms to each message size and process count. For example, the

configuration of using 10 host-staged and 5 CUDA IPC copies has shown to be the

most efficient combination to perform MPI Allgather on 16 processes (that are bound

to the 16 CPU cores) and 16KB of data1. The main steps of the Static algorithm are

described below.

Stage1: Intranode Intra-GPU Gather

All processes copy their share of data into the GPU shared buffer area in a first-

come first-serve order, using a data copy mechanism that is assigned to them by the

leader process (without loss of generality, process with rank 0 is considered as the

leader process). The leader retrieves the most efficient combination of the data copy

mechanisms from the tuning table, assigns a particular data copy mechanism to each

process, and then queries their completion.

Stage 2: Kernel Function

In this step, a kernel function is called by the leader process on the aggregated data

in its GPU shared buffer. This step is only required for some collective operations. In

our test cases, only MPI Allreduce goes through this step and performs an element-

wise reduction on the aggregated data in the GPU shared buffer.

Stage 3: Intranode Intra-GPU Broadcast

1note that the leader process in our algorithms does not use any of the host-staged or IPC data
copy mechanisms

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 88

The collective result is now available in the GPU shared buffer and is copied

out into the destination buffer of the participating processes. Similar to the Gather

step, the leader process assigns a particular data copy mechanism for each of the

inter-process copies on the information that is extracted from the tuning table.

5.3.2 Dynamic Hyper-Q Aware Algorithm

The Static algorithm is dependent on tuning parameters that must be available prior

to the runtime. On top of that, the tuning parameters for a particular platform may

not necessarily be useful on another platform. We propose a Dynamic algorithm that

is independent of any tuning parameters and is capable of determining the data copy

mechanism for each process by solely exploiting the runtime information. The idea

behind this approach is to decide the data copy mechanisms based on their availability

and efficiency. We acquire this information by querying the responsiveness of these

data copy mechanisms. In other words, the Dynamic algorithm tends to choose the

slower and less available data copy mechanism less frequently, while the faster and

more responsive data copy mechanism is more frequently selected. The main steps of

this algorithm are discussed below:

Stage 1: Intranode Intra-GPU Gather

All of the participating processes copy their share of data into the GPU shared

buffer of the leader process. In this step, the leader process uses an algorithm that

decides the mechanism of its inter-process copy based on the responsiveness of the

data copy mechanisms; this algorithm goes through the following phases:

Phase1. Initialization: Considering that at this point no prior knowledge about

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 89

the data copy mechanisms exists, assessing the responsiveness of a data copy mech-

anism can only be done by actually assigning a host-staged and a CUDA IPC data

copy mechanism to the first two (non-leader) processes arriving at the collective call

and then querying their completion.

Phase2. Progress: The leader process queries the pending copies and waits until

one completes. Our intuition is that it is more efficient to issue multiple copies

on a faster data copy mechanism all at once. In this regard, once an inter-process

communication using a specific data copy mechanism completes, we calculate the

difference between the number of completed communications using the host-staged

and the CUDA IPC data copy mechanisms. A zero or a negative difference indicates

that the currently completed data copy mechanism is not as fast as the other data

copy mechanism, thus only a single copy is issued with this slow but yet available

data copy mechanism. A positive difference, on the other hand, indicates that the

completed data copy mechanism is faster than the other mechanism and thus multiple

copies should be assigned to the next available processes. We determine the number

of the issued copies to be two to the power of this difference; this way, we ensure quick

assignment of the inter-process communications to the faster data copy mechanism

and thus using it more frequently. This procedure continues until the last copy is

issued.

Phase3. Final Copy Completion: For the final pending copy, the leader takes a

different approach. The rationale behind this is that the last pending copy could

potentially linger for a long time and also there is no pending copy using the other

mechanism. At this point, the leader checks if there has been any successful comple-

tion of this data copy mechanism before. If this is not the case, the leader considers

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 90

this data copy mechanism to be extremely slow and assigns the final copy to be re-

sent with the other data copy mechanism. If the slow copy turns out to be of the

host-staged mechanism, the remaining portion of the host-staged copy (if any) will

be discarded. This can be supported by packetizing the host-staged copies into large

chunks and sending them back to back. Once a process receives a re-send assignment

with the IPC data copy mechanism, the remaining packets of the host-staged copy

will be discarded. However, this approach cannot be applied to the slow IPC data

copy mechanism; therefore, we overlap the slow IPC copy with the next steps of the

collective operation.

Stage2: Kernel Function

This step is similar to the Static algorithm.

Stage 3: Intranode Intra-GPU Broadcast

Both data copy mechanisms can be potentially used to broadcast the available

result in the GPU shared buffer among the participating processes. However, unlike

Step 1, the leader now has some knowledge about the efficiency of the data copy

mechanisms. Based on this information, this step goes through the following phases:

Phase1. Initialization: If there has been no successful completion of a data copy

mechanism since the beginning of the collective operation, the leader tags it as a slow

data copy mechanism and avoids using it in the broadcast step. Otherwise, both data

copy mechanisms can potentially be used in this step.

Phase2. Progress: If all copies are initiated using a single mechanism, the comple-

tion of that mechanism is only required to be queried. Otherwise, the leader monitors

the progress of both data copy mechanisms and uses the faster data copy mechanism

more frequently and waits for all of the pending copies in the current or previous

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 91

step(s) to complete before returning form the collective operation.

Implementation Details

Both Static and Dynamic algorithms use pre-allocated CPU and GPU shared buffers.

These buffers are allocated during MPI Init(), with the CPU shared buffer also being

registered to prevent it from being swapped out. During MPI Init(), we also check

the status of the MPS service in order to choose the right tuning parameters. After the

leader allocates its GPU shared buffer, it broadcasts its memory handle to the other

processes. Buffer allocation and broadcasting the handle are expensive operations

and thus are only performed once to mitigate their high cost.

Fig. 5.3 illustrates different components of the Dynamic algorithm and shows how

processes can communicate with each other through the CPU and GPU shared buffers.

The GPU shared buffer is used to gather the pertinent data from all participating

processes. The CPU shared buffer is used for staging the data in the host-staged

mechanism of copy; it also serves as a directory to track the communications between

the processes. The directory is composed of two parts, the Completion Flag and

the Copy Status Flags; setting the Completion Flag indicates that the result of

the collective operation is available in the GPU shared buffer and can be copied

out. The Copy Status Flags show the status of the copy operations. In the Static

algorithm, these flags indicate the initiation and completion of the copies; in the

Dynamic algorithm these flags are also used by the leader process to assign the data

copy mechanism to the other processes. Given the use of directory in the Static

algorithm is a simplified version of the Dynamic algorithm, in the following we will

only discuss the implementation details of the Dynamic algorithm.

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 92

The Copy Status Flags in the directory of the Dynamic algorithm for MPI Allreduce

can take one of the following eight states: INIT, RTS, IPC ASGN, HS ASGN, IPC INIT,

HS INIT, IPC CMP, and HS CMP. The INIT state represents the initial state, and the

Copy Status Flags are set to this state before entering and exiting the collective

operation. The RTS (Ready To Send) flag indicates a process arrival to the collec-

tive operation. The IPC ASGN and the HS ASGN are the assignment flags, set by the

leader process to assign IPC and host-staged data copy mechanisms for inter-process

communication, respectively. The IPC INIT and HS INIT indicate the initiation of

the IPC and host-staged copy, respectively. The IPC CMP and the HS CMP indicate

completion of the IPC and host-staged copy, respectively.

Fig. 5.3 illustrates the different steps of the Dynamic algorithm for MPI Allreduce

and shows how processes can communicate with each other through the directory. Fig

5.3(a) shows the initial state, in which the Copy Status Flags are all set to the INIT

state and the Completion Flag is set to zero. Fig. 5.3(b) shows a snapshot of the

Gather step of the Dynamic algorithm. In this step, the leader process first queries

the Copy Status Flags, looking for an RTS state. As can be seen in the figure, P1

(process with rank 1) has arrived at the collective operation and is ready to send its

data, while Pn-3 has not yet arrived at the operation. All processes (except the leader)

initiate their copy once their data copy mechanism is determined. In Fig. 5.3(b), the

leader has assigned the host-staged data copy mechanism to Pn-1. The status of the

Pn-4 indicates that it has initiated its IPC copy. Depending on the initiated data

copy mechanism, different course of actions is required to guarantee its completion.

The completion of the CUDA IPC copy requires synchronization between the sender

and the receiver sides. In this regard, a CUDA inter-process event is recorded right

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 93

Send Buffer Receive Buffer

Pending Copy Completed CopyIPC Copy Host-Staged Copy

Kernel
Function

b. Step 1 - Gather

0 RTS
HS_
CMP

IPC_
CMP

IPC_
INIT

HS_
CMP

HS_
ASGN

Host Main Memory

Completion
Flag

Copy Status Flags

Pn-3 Pn-2 Pn-1P1 P2 P3 Pn-4P0(Leader)
GPU Global Memory

a. Initial State

Host Main Memory

P0 (Leader)

Completion
Flag

Copy Status Flags

Pn-3 Pn-2 Pn-1P1 P2 P3 Pn-4

1
IPC_
CMP

HS_
CMP

IPC_
CMP

IPC_
INIT

HS_
CMP

INIT

GPU Global Memory

Host Main Memory

Pn-3 Pn-2 Pn-1P1 P2 P3P0 (Leader)

Completion
Flag

Copy Status Flags

INIT

GPU Global Memory

Host Main Memory

P0 (Leader)

Completion
Flag

Copy Status Flags

Pn-4

c. Step 2 - Kernel Function d. Step 3 - Broadcast

Pn-3 Pn-2 Pn-1P1 P2 P3 Pn-4

Result
Copy

GPU Global Memory

... ...

...

...

...

.

. . .

GPU Shared Buffer CPU Shared Buffer

INIT. . .0 INIT INIT INIT INIT INIT INITINIT

1 INIT INIT INIT INIT INITINIT

. . .

. . .

HS_
INIT

...

... ...

. . .

. . .

. . .

. . .

cudaMemcpy

Figure 5.3: Different steps of the node-wide Dynamic algorithm for MPI Allreduce

after the sender process starts its CUDA IPC copy and before it sets its associated

flag in the directory to IPC INIT. The leader (the receiving process), once observes

this flag, queries the inter-process event to check the IPC copy completion; once the

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 94

copy completes, the leader sets the associated entry in the Copy Status Flags to

the IPC CMP state. In the case of the host-staged copy, the process initiating the

copy is also responsible for querying its completion and setting its associated flag

to the HS CMP. Note that IPC and host-staged copies are initiated asynchronously,

thus allowing the sending process to query the potential re-send assignment from the

leader. According to the figure, P2 and Pn-2 have completed their host-staged copies

and their share of data are available in the GPU shared buffer. The leader is also

copying the staged data from P2 and has already completed the copy from Pn-2. The

state of P3 shows that its IPC copy is completed. The dotted copies in the figure

resemble pending copies and have the potential to be overlapped with each other

using the Hyper-Q feature.

Fig. 5.3(c) shows the Kernel Function step. This step can be skipped in some

collectives (MPI Allgather in our case) by immediately setting the Completion Flag

and resetting all of the Copy Status Flags back to the INIT state once the Gather

step completes. In some collectives (MPI Allreduce in our case), a kernel function

is called on the aggregated data and the result is stored in the GPU shared buffer.

Once the kernel function completes, the leader sets the Completion Flag to inform

other processes that the result is available.

Fig. 5.3(d) shows a snapshot of the Broadcast step of the Dynamic algorithm. In

this step, the collective result is broadcast to all participating processes. The steps

shown in the figure applies to MPI Allreduce in which the reduced result is broadcast

from the shared buffer to all processes. For other collective operations this step may

require some modifications; for example, in MPI Allgather, the entire gathered data

in the GPU shared buffer is broadcast to all participating processes. According to

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 95

Fig. 5.3(d), using the Dynamic algorithm, the leader assigns IPC or host-staged

data copy mechanism to other processes through the Copy Status Flags to notify

them how and from which shared buffer (CPU or GPU) they can read their collective

results. If the Dynamic algorithm opts to use the host-staged data copy mechanism,

the leader requires to first copy the result from the GPU shared buffer to the CPU

shared buffer.

5.3.3 Cluster-wide Extension of the Static and the Dynamic Algorithms

To extend the node-wide Static and Dynamic approaches to across the cluster, we

propose a general three-level hierarchical framework similar to those presented in

Chapter 4. A node-wide collective algorithm, reduce for MPI Allreduce or gather for

MPI Allgather, is first performed among processes that share the same GPU using

the static or dynamic algorithm. A cluster-wide collective operation, allreduce for

MPI Allreduce or allgather for MPI Allgather, is then performed among GPU leader

processes on each node using the MVAPICH library. Finally, a node-wide collective

algorithm, broadcast for both MPI Allreduce and MPI Allgather, is performed among

processes that share the same GPU using the static or dynamic approach. In the

following, we discuss the general steps involved in extending the Static and Dynamic

approaches to across the cluster for MPI Allreduce and MPI Allgather.

MPI Allreduce

The MPI Allreduce with Static and Dynamic approach is performed in three

stages as follows:

Stage 1: Intranode Intra-GPU Reduce Intranode intra-GPU processes use the

Static or Dynamic approach to reduce the data into their predefined GPU leader

5.3. GPU COLLECTIVE DESIGNS WITH EFFICIENT DATA COPY
MECHANISM SELECTION 96

process.

Stage 2: Internode Inter-GPU Allreduce The GPU leader processes call MPI Allreduce

using the existing internode MVPAICH2 algorithm.

Stage 3: Intranode Intra-GPU Broadcast The GPU leader processes use the Static

or Dynamic approach to broadcast the data among the intranode intra-GPU pro-

cesses.

In order to extend and use the MPS service across the cluster, an instance of this

service is required to be running on each node of the cluster. Fig. 5.4 shows how the

MPS service can be used with the Static and Dynamic algorithms on MPI Reduce. As

shown in the figure, the MPS server on each node allocates one instance of the GPU

storage and scheduling resources that can be shared by all intranode MPI processes,

which are also called MPS clients. This way, all intranode processes can use their

own instance of the MPS service to share the GPU within their node; therefore, they

can concurrently access and share the GPU resources.

MPI Allgather

To extend the Static and Dynamic algorithm to across the cluster in MPI Allgather,

this operation is performed in three stages as follows:

Stage1: Intranode Intra-GPU Gather Intranode intra-GPU processes use the

Static or Dynamic approach to gather the data into their predefined GPU leader

process.

Stage2: Internode Inter-GPU Allgather The GPU leader processes call MPI Allgather

using the default MVPIACH2 algorithm.

Stage3: Intranode Intra-GPU Broadcast The GPU leader processes use the Static

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 97

or Dynamic approach to broadcast the data among the intranode intra-GPU pro-

cesses.

MPI Process0

MPS Client

MPS Server Process

CUDA
Context

GPU0
MPS

Client
MPS

Client

. . .

MPI Processp-1

MPS Client

CUDA
Context

Node0

MPI Process0

MPS Client

MPS Server Process

CUDA
Context

GPUn-1
MPS

Client
MPS

Client

. . .

MPI Processp-1

MPS Client

CUDA
Context

Noden-1

. . .

MPI Process0

MPS Client

MPS Server Process

CUDA
Context

GPU0
MPS

Client
MPS

Client

. . .

MPI Processp-1

MPS Client

CUDA
Context

Node0

MPI Process0

MPS Client

MPS Server Process

CUDA
Context

GPUn-1
MPS

Client
MPS

Client

. . .

MPI Processp-1

MPS Client

CUDA
Context

Noden-1

. . .

In
tr

an
o

d
e

St
at

ic
 o

r
D

yn
am

ic
In

te
rn

o
d

e

Figure 5.4: Static and Dynamic algorithms across the cluster for MPI Reduce

5.4 Experimental Results and Analysis

In this section, we compare our Hyper-Q aware collective designs against MVA-

PICH2 and MVAPICH2-GDR and evaluate the effect of the MPS service on them.

While our proposed algorithms can be applied to all collective operations, we consider

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 98

MPI Allgather and MPI Allreduce as our test cases. It is worth noting that MVA-

PICH2 and MVAPICH2-GDR fail to use the Nvidia MPS to perform MPI Allgather

for some message sizes and process counts. We speculate this failure to be rooted in

using the FGP algorithm [84] in MVAPICH2. So for these test cases, we do not have

any results to report.

In the rest of this section, we first provide our experimental platform; then, we

discuss our results on a single-GPU platform and provide some profiling results to

show how our Hyper-Q aware algorithms can successfully overlap different data copy

mechanisms and improve the total communication performance. Finally, we will

discuss the results on the GPU cluster.

5.4.1 Experimental Platform

Our experiments in this section are conducted on a 4-node GPU cluster (System C),

called Odin, at the HPC Advisory Council. Each of the Odin nodes is equipped with

3 (or 4) K80 GPUs, 64 GB of memory, and two Intel Xeon E5-2697 processors. Each

Xeon processor operates at 2.6 GHz and provides 14 cores; thus, each Odin node has

28 cores. Each node runs a 64-bit RHEL 7.2 as the operating system and utilizes the

CUDA Toolkit 7.5. In our experiments, we compare our collective designs with the

existing collectives in MVAPICH2-2.1 and MVAPICH2-GDR-2.0.

Evaluation of our Hyper-Q aware proposals require to frequently change the GPU

mode in order to stop and start the MPS service. These actions require an interactive

access to the GPU cluster and cannot be scheduled in a PBS script. Taking this into

consideration, we solely provide our results on the Odin cluster to which we had

dedicated access, unlike the other clusters that were available to us.

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 99

We conduct our experiments using the OSU microbenchmark that is configured

to support GPUs [11]. We also provide some profiling results for our Hyper-Q aware

designs with the OSU microbenchmark. We use the Nvidia Profiler (nvprof) [65]

in conjunction with the Nvidia Tools Extension (NVTX) as our profiling tool. The

nvprof presents an overview of the instructions launched by the CUDA runtime or

driver APIs, whereas we used NVTX to annotate MPI routines and assign MPI ranks

to their associated process ids and GPU contexts on the profiler timeline. Note that

while we use the modified version of the OSU benchmark to get our profiling results,

the original (unmodified) version of this benchmark is used to report the performance

results.

5.4.2 Node-wide Experimental Results

MPI Allgather

In Fig. 5.5, we compare the Static and Dynamic approach against MVAPICH2

and MVAPICH2-GDR on MPI Allgather. We also evaluate the effect of the MPS

service on our results. According to Fig. 5.5, the benefit of the Static and Dynamic

approach on 16 processes mainly starts at 4 KB and 8 KB, respectively. For message

sizes below these thresholds, both the Static and Dynamic approach also provide

competitive results with MVAPICH2 and MVAPICH2-GDR. The only exception to

this is on the very short message sizes (less than 16 Bytes) of the MVAPICH2-GDR.

For these message sizes, we speculate some features, such as gdrcopy, are the reasons

behind the better performance of the MVAPICH2-GDR.

In Fig. 5.5, we can also observe that the performance of the Dynamic algorithm in

most cases is comparable with the Static algorithm and there are a few cases in which

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 100

0

100

200

300

400

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

200

400

600

800

1000

1200

8K 16K 32K 64K 128K 256K

0

2000

4000

6000

8000

10000

512K 1M 2M 4M 8M 16M

7
5

3
8

3

2
7

4
0

3

3
7

1
8

30.E+0

5.E+2

1.E+3

2.E+3

512K 1M 2M 4M

1
2

8
6

5

1
7

8
7

5

5
8

9
2

8
2

8
1

(a) MPI Allgather on 4 processes

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

2000

2500

8K 16K 32K 64K 128K 256K

0

5000

10000

15000

20000

25000

512K 1M 2M 4M 8M 16M

1
9

0
6

9

9
6

8
5

7

9
3

7
9

2

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3

512K 1M 2M 4M

4
6

5
7

94
6

1
0

52
1

3
1

02
3

2
0

6

(b) MPI Allgather on 8 processes

0

10000

20000

30000

40000

50000

60000

70000

512K 1M 2M 4M 8M 16M

5
6

1
9

5
5

3
7

2
2

9
5

2
8

0
8

8
2

1
8

3
7

9
5

1
3

7
4

4
9

8
6

1
2

8

6
6

7
8

4

4
3

3
5

2

0

200

400

600
800

1000

1200

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

1000

2000

3000

4000

8K 16K 32K 64K 128K 256K

6
9

5
1

5
0

9
1

0.0E+0

4.0E+3

8.0E+3

1.2E+4

1.6E+4

512K 1M 2M 4M

(c) MPI Allgather on 16 processes

Figure 5.5: Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR
MPI Allgather w and w/o the MPS on a single node of Odin cluster
with a single GPU per node

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 101

the Dynamic algorithm can outperform the Static algorithm. We associate this to the

way that the tuning table is constructed for the Static algorithm. This table stores

integer values for different configurations of the collective operation. These integer

values represent the number of data copy mechanisms to be used in a collective

operation and are the rounded average of a thousand runs. For instance, we use 11

(10.8 rounded up) host-staged copies and 4 (4.2 rounded down) CUDA IPC copies

for 64KB message size and 16 processes. While the Static algorithm in different runs

always stick to these rounded numbers, the Dynamic algorithm decides the number

and mechanism of the copy within each run. Consequently, the Dynamic approach

has the potential to be more accurate in choosing the right number and mechanism

of the copies across multiple runs. We can also observe that all approaches in most

cases are benefiting from the MPS service. The only exception to this is the case of

MVAPICH2-GDR with small message sizes. In this case, the MPS service provides

no improvement or even sometimes adversely affect the performance. In general, the

Static and Dynamic approach benefit the most from the MPS service and on average

achieve 2.17× and 2× speedup, respectively.

MPI Allreduce

Fig. 5.6 compares our Static and Dynamic approach against MVAPICH2 and

MVAPICH2-GDR for MPI Allreduce. The benefit of the Static and Dynamic ap-

proach starts at 32 Bytes and 4 KB on 16 processes, respectively. For message

sizes below these thresholds, (similar to our results for MPI Allgather) both the

Static and Dynamic approach provide competitive results with the MVAPICH2 and

MVAPICH2-GDR. The only exception to this is on the very short message sizes (less

than 16 Bytes) of the MVAPICH2-GDR. In general, the Dynamic approach provides

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 102

competitive results compared to the Static approach. The overhead of the Dynamic

approach also decreases as the message size increases. There are also a few cases in

which the Dynamic approach can outperform the Static approach.

According to Fig. 5.6, all approaches in most cases are benefiting from the MPS

service. The Dynamic approach on average benefits more from the MPS service

(2.62×), compared to the Static approach (2.49×).

Profiling results

In this section, we discuss the main reasons behind the benefit of our Hyper-Q

aware algorithms. In this regard, we shed some light on how our Hyper-Q aware

algorithms work with the MPS service by providing some profiling results.

The GPU computational kernels and memory operations are performed using the

compute and memory engines, respectively. Without the MPS service, each engine

can be assigned to a single process at a time and cannot be shared among them.

A time sliced scheduler is used on the GPU to handle the requests from different

processes to these engines. With the MPS service, however, requests for accessing

the GPU engines are funneled through the MPS server through the only available

context on the GPU (i.e., the MPS context); consequently, there will be no need for

any context switching.

Profiling MPS service on multiple processes communicating with the host-staged

copies reveals that not only is the context switching overhead eliminated, device-to-

host and host-to-device copies from different processes can also further overlap with

each other. While the MPS server allows computational kernels from different MPI

processes to share the compute engine on the GPU and overlap, we observed that

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 103

0

100

200

300

400

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

200

400

600

800

8K 16K 32K 64K 128K 256K

0
2000
4000
6000
8000

10000
12000

512K 1M 2M 4M 8M 16M

3
6

7
8

7
1

4
9

7
7

3
4

7
3

6

2
0

6
4

9
1

9
0

7
9

2
0

9
8

3

1
7

2
8

0

0.E+0

5.E+2

1.E+3

2.E+3

2.E+3

512K 1M 2M 4M

(a) MPI Allreduce on 4 processes

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

200

400

600

800

1000

1200

8K 16K 32K 64K 128K 256K

0

4000

8000

12000

16000

512K 1M 2M 4M 8M 16M

5
5

8
8

3
3

6
9

2
8

5
9

3
6

2

0.E+0

1.E+3

2.E+3

3.E+3

512K 1M 2M 4M

3
1

1
6

1 2
7

1
2

2 2
7

9
2

1 29
0

4
5

(b) MPI Allreduce on 8 processes

0
10000
20000
30000
40000
50000
60000
70000

512K 1M 2M 4M 8M 16M

1
0

4
2

9

7
5

4
7

3
1

0
6

2
4

5

0

200

400

600

800

1000

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

400

800

1200

1600

8K 16K 32K 64K 128K 256K

0.0E+0
2.0E+3
4.0E+3
6.0E+3
8.0E+3
1.0E+4

512K 1M 2M 4M 8M 16M

(c) MPI Allreduce on 16 processes

Figure 5.6: Static and Dynamic vs. MVAPICH2 and MVAPICH2-GDR
MPI Allreduce w and w/o the MPS on a single node of Odin cluster
with a single GPU per node

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 104

with this service, among the three data copy mechanisms (i.e., host-to-device, device-

to-host, and device-to-device), device-to-host and host-to-device engines cannot be

shared among different MPI processes.

The MPS service highly improves the IPC copies by reducing the context-switching

overhead. It also allows various CUDA IPC copies to share their local memory band-

width and overlap their device-to-device communications. The IPC copies can also

overlap with the host-staged copies. Our Hyper-Q aware designs select the right num-

ber and mechanism of the inter-process copies to provide the maximal overlap among

them through the MPS service. In Fig. 5.7, we reflect this behavior by profiling the

MPI Allreduce operation (on 16 processes and 128 KB of data) that is implemented

by our Dynamic algorithm. This figure is the output of the nvvp visual profiler that

provides a runtime snapshot of the MPI Allreduce operation with the MPS service.

The profiling information in this figure is gathered using nvprof and nvtx profiling

tools. According to the figure, the Dynamic algorithm selects 2 host-staged and 13

IPC copies in the Gather step, and 3 host-staged and 12 IPC copies in the Broadcast

step of the MPI Allreduce operation, respectively. We can also observe that with

the MPS service, different inter-process copies with the same or different data copy

mechanisms can overlap with each other.

5.4.3 Cluster-wide Experimental Results

MPI Allgather

Fig. 5.8 depicts cluster-wide comparative results for the Static and Dynamic

algorithm against the MVAPICH2 and MVAPICH2-GDR using MPI Allgather. Ac-

cording to the figure, the Static approach in most cases provide comparable results

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 105

23 J I 0�'.$3 0 � 0 -bCCI co� ...

:3 Process "osu_allreduce -...

El Thread MPI Rank 15

L Runtime API

L Driver API

L Markers and Ranges

L Profiling Overhead

:3 [OJ Tesla K20m

El Context MPS (CUDA)

L "'T MemCpy (HtoD)

L "'T MemCpy (DtoH)

L "'T MemCpy (DtoD)

El Compute

L "'T 100.())(k _gpu ...

I
I I 11

10049.5 ms 10049.75 ms
' '

••

• •
•

11 111 111 I
I

MPLAllreduce()

I

10050 ms
'

I
I

I • •

11 11 1 111 1 1
13 I P C Co p i e s 12 I P C Co p ies I

2 Host-Staged Copies 3 Host-Staged Copies

s
Gather Step Broadcast Step

Kernel
Function

Figure 5.7: Profiling snapshot of the Dynamic algorithm in MPI Allreduce with MPS

or outperform MVAPICH2 and MVPAICH2-GDR (except for message sizes less than

16 Bytes on MVAPICH2-GDR). The benefit of the Static and Dynamic approach

can be better realized as either the message size or the number of processes per node

increases. More specifically, the benefit of the Static approach starts at 16KB, 8KB,

and 512 Bytes for 4, 8, and 16 processes, respectively. The Dynamic approach in

most cases also provides comparable results with the Static approach.

MPI Allreduce

Fig. 5.9 illustrates the cluster-wide comparaitve results for the Static and Dy-

namic algorithms against MVAPICH2 and MVAPICH2-GDR using MPI Allreduce.

According to the figure, the Static approach in most cases outperforms the MVA-

PICH2 and MVPAICH2-GDR and for other cases provide comparable results (except

for message sizes less than 16 Bytes on MVAPICH2-GDR). The Dynamic approach

also in most cases provide a comparable result with the Static approach. In general,

we can observe that the extent of the improvement of our Hyper-Q aware approaches

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 106

0

100

200

300

400

500

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

2000

8K 16K 32K 64K 128K 256K
2

7
5

7

0

10000

20000

30000

40000

512K 1M 2M 4M 8M 16M

1
6

5
7

1
3

1
3

5
5

2
0

8
2

2
7

9

4
0

9
0

3

3
2

7
3

2

6
6

7
7

8

0.E+0

1.E+3

2.E+3

3.E+3

4.E+3

512K 1M 2M 4M

(a) MPI Allgather on 16 processes - 4 processes per node

0

200

400

600

800

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
B

yt
e

)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

2000

2500

3000

8K 16K 32K 64K 128K 256K

8
5

1
9

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

512K 1M 2M 4M 8M 16M

5
6

7
9

9
8

4
5

4
4

7
5

2
8

3
3

1
9

1
4

0
6

0
4

1
1

0
6

1
8

2
2

6
1

8
9

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3
6.E+3
7.E+3

512K 1M 2M 4M

7
3

4
0

4
5

3
1

3
6

4
2

(b) MPI Allgather on 32 processes - 8 processes per node

0

500

1000

1500

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

1000

2000

3000

4000

5000

6000

8K 16K 32K 64K 128K 256K

3
3

3
9

6

0

40000

80000

120000

160000

200000

240000

512K 1M 2M 4M 8M

1
0

9
1

7
5

7

9
0

4
1

5
8

5
3

7
5

6
0

2
6

7
3

6
6

2
2

0
5

8
4

4
4

5
3

7
4

0.0E+0
4.0E+3
8.0E+3
1.2E+4
1.6E+4
2.0E+4

512K 1M 2M 4M

2
9

7
9

4

1
6

6
6

6

1
4

9
8

2

1
1

6
8

3

1
1

6
7

0

(c) MPI Allgather on 64 processes - 16 processes per node

Figure 5.8: Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR us-
ing MPI Allgather w and w/o the MPS on 4 nodes with a single GPU
per node

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 107

is higher for MPI Allreduce, compared to MPI Allgather. We associate this to the

benefit that is provided by using GPU kernel functions in performing reduction op-

erations in MPI Allreduce.

5.4.4 Comparative Analysis of Hyper-Q Aware Algorithms against GSB/BTB

Algorithms

To further investigate our Hyper-Q aware proposals and evaluate their efficiency with

the presence of the MPS service, we compare them against our Hyper-Q agnostic

collective algorithms in Chapter 3 (i.e., the GSB and the BTB). In this regard, Fig.

5.10 provides the speedup achieved by using the Static design over MVAPICH2,

MVAPICH2-GDR, GSB, BTB and Dynamic design in MPI Allreduce. This experi-

ment is conducted on 64 processes that are evenly distributed among 4 single-GPU

nodes of the Odin cluster. As shown in the figure, the Static approach in most cases

outperforms the rest of the designs, with few exceptions.

The results in Fig. 5.10 confirm our findings in Fig. 3.6, that while our GPU-aware

collective communication algorithms (GSB and BTB) are capable of outperforming

the conventional MVAPICH2 design for large message sizes, they fall behind for small

and medium message sizes. We attribute this to the high startup overhead of the IPC

copies for small and medium message sizes. However, our Hyper-Q aware designs can

rectify this problem by selecting the right number and mechanism of the copies for

different message sizes and process counts. In addition, the Dynamic approach, by

dynamically selecting the right number and mechanism of the copies, is capable of

providing comparable results with the Static approach in most cases.

5.4. EXPERIMENTAL RESULTS AND ANALYSIS 108

0

100

200

300

400

500

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

8K 16K 32K 64K 128K 256K
0

5000
10000
15000
20000
25000
30000

512K 1M 2M 4M 8M 16M

4
6

1
4

1
3

6
2

9
2

8
3

4
7

7

3
8

8
0

3

0.E+0
1.E+3
2.E+3
3.E+3
4.E+3
5.E+3
6.E+3
7.E+3

512K 1M

(a) MPI Allreduce on 16 processes - 4 processes per node

0

200

400

600

800

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

2000

2500

8K 16K 32K 64K 128K 256K

0

10000

20000

30000

40000

50000

512K 1M 2M 4M 8M 16M

6
9

6
3

3
6

8
9

5
2

1
5

2
6

9
7

7
1

4
0

5

0.E+0
2.E+3
4.E+3
6.E+3
8.E+3
1.E+4

512K 1M

(b) MPI Allreduce on 32 processes - 8 processes per node

0

500

1000

4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
μ

s)

Message Size (Byte)

MV2 MV2-GDR Static Dynamic MV2-HQ MV2-GDR-HQ Static-HQ Dynamic-HQ

0

500

1000

1500

2000

2500

3000

8K 16K 32K 64K 128K 256K

0

10000

20000

30000

40000

512K 1M 2M 4M 8M 16M

1
3

2
1

2
9

2
8

8
0

3
9

6
5

6
8

6
1

3
8

9
6

7

4
4

5
3

7
4

6
6

2
9

8
6

3
0

2
0

1
2

6
4

7
00.0E+0

4.0E+3

8.0E+3

1.2E+4

512K 1M

4
3

2
0

(c) MPI Allreduce on 64 processes - 16 processes per node

Figure 5.9: Comparison of Static, Dynamic, MVAPICH2, and MVAPICH2-GDR us-
ing MPI Allreduce w and w/o the MPS on 4 nodes with a single GPU
per node

5.5. PROVISION OF USING OUR PROPOSALS WITH FUTURE
GPU ACCELERATORS 109

-40

-20

0

20

40

60

80

100

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16MIm
p

ro
ve

m
e

n
t

(%
)

Message Size (Byte)

MV2 MV2-GDR GSB BTB Dynamic

Figure 5.10: Improvement percentage of the Static approach over MVAPCIH2,
MVAPICH2-GDR, GSB, and BTB for MPI Allreduce with 64 processes
using MPS - System C with 4 nodes and a single GPU per node

5.5 Provision of Using Our Proposals with Future GPU Accelerators

In this chapter, we showed the benefit of cooperatively using different data copy

mechanisms in performing multiple inter-process communications. Accordingly, we

proposed Hyper-Q aware designs for GPU collective operations that cooperatively use

different data copy mechanisms to perform inter-process communications. We also

analyzed the MPS service on various collective designs and showed that our Hyper-Q

aware proposals can benefit the most from this service.

Our Hyper-Q aware designs in this chapter utilize two of the existing intranode

inter-process data copy mechanisms (i.e., CUDA IPC and host-staged copy). How-

ever, our designs are not dependent to any specific data copy mechanism. In general,

our proposals can be applied to any combination of different copy mechanisms as

long as they provide different means for inter-process communications and have the

potential to overlap.

As an example, in some multi-GPU nodes, QPI is used for GPU inter-socket

inter-process communications. However, given the slow nature of this communication

5.5. PROVISION OF USING OUR PROPOSALS WITH FUTURE
GPU ACCELERATORS 110

channel in some architectures, network-assisted loopback copy may be preferred. In

the loopback copy, the intranode communication goes through network interface cards

and loopbacks to the remote GPU on the same node, thus avoiding potentially slow

inter-socket connections. Our Hyper-Q aware designs can potentially use the loopback

and QPI data copy mechanisms in conjunction with each other when multiple inter-

socket GPU communications are on the fly, leading to improvements in the total

communication performance.

The next generation of the Nvidia GPUs (codenamed Pascal) benefit from a high-

bandwidth interconnect, called NVLink. Fig. 5.11 (adapted from the NVLINK con-

figuration of the Pascal architecture [66]) illustrates an example multi-GPU architec-

ture that is equipped with NVLink interconnects. The four GPUs in this figure are

interconnected to the CPU and also together using the existing PCIe communication

channel (with 16 GB/s peak uni-directional bandwidth). Moreover, the GPUs are

also interconnected together with NVLink connections. According to the figure, the

GPUs can use one or two NVLink connections (each NVLink connection has 20 GB/s

peak uni-directional bandwidth) to reach each other. In such node, inter-process

communication using the conventional designs would only consider a single commu-

nication channel path between the GPU peers (for example, PATH1 will be only used

for inter-process communications between GPU0 and GPU1). On the other hand, us-

ing our proposed Hyper-Q aware designs, all of the available communication channels

will be assessed and potentially used in multiple inter-process communications. For

instance, using our Hyper-Q aware proposals multiple inter-process communications

between GPU0 and GPU1 can be potentially routed through PATH1, PATH2, and

PATH3.

5.5. PROVISION OF USING OUR PROPOSALS WITH FUTURE
GPU ACCELERATORS 111

Switch Switch

CPU

GPU0 GPU1 GPU2 GPU3PATH1

PATH2

PATH3

PCIe Gen3

NVLink

x16

Peak (Effective) 16 GB/s (12 GB/s)

Peak (Effective)

Single Link

20 GB/s (16 GB/s)

Inter-process Comm Path

Figure 5.11: Different intranode communication channels of a 4-GPU node with
NVLink and PCIe (adapted from [66])

As of today, NVIDIA provides the CUDA DISABLE NVLINK MAPPINGS envi-

ronment variable to enable/disable the use of NVLINK communication channel; using

this environment variable, it is possible to force processes to either use NVLINK or

PCIe communication channel prior to the runtime; however, forcing processes to avoid

a communication channel is not yet supported during runtime. While the potential for

overlapping inter-process GPU communications between NVLINK and PCIe commu-

nication channels exists, the use Static or Dynamic algorithms require support from

the runtime libraries. In summary, with our proposed Static and Dynamic designs,

no matter the mechanism of the GPU and the architecture of the node, with the right

support from the runtime libraries, different communication channels can be assessed

and used cooperatively to perform multiple GPU inter-process communications and

speed up the total communication performance.

We have also observed the benefit of using the MPS service with our Hyper-Q

5.6. SUMMARY 112

aware designs. It is noteworthy to mention that as the GPU architecture evolves, it

often inherits the GPU features from its previous generations. In particular, the MPS

service or a similar services should exist in the upcoming GPU generation, as it allows

multiple processes to share the GPU resources and tackle the GPU underutilization.

Whether the MPS service remains available or gets replaced with another technology,

the ability to share a single GPU by multiple processes will remain an important asset

in future GPU generations.

5.6 Summary

For GPU inter-process communications different data copy mechanisms with differ-

ent performance characteristics can be used. Different data copy mechanisms are

usually favored for different message sizes. However, we observed the benefit of

jointly using them when performing multiple inter-process communications. This

way, different data copy mechanisms can overlap with each other and speed up the

total inter-process communications. Accordingly, we proposed two Hyper-Q aware

MPI Allreduce algorithms for GPU collectives: 1) Static Hyper-Q aware; and 2) Dy-

namic Hyper-Q aware. Both designs jointly utilize CUDA IPC and host-staged data

copy mechanisms in their collective operation. However, they use different mecha-

nism of information to decide their data copy mechanisms to perform inter-process

communications.

We evaluated the effect of the MPS service on our proposed algorithms. The

MPS service can allow different MPI processes to further overlap with each other and

more efficiently share single GPU resources. Most of the collective designs showed

to benefit from this service, however we achieved the highest improvement with our

5.6. SUMMARY 113

Hyper-Q aware algorithms.

We analyzed our designs using MPI Allgather and MPI Allreduce. Unlike our

collective designs in Chapter 3, our designs in this chapter by selecting the right data

copy mechanism can provide improvement across all message sizes. In general, the

Static approach provides higher improvement compared to the Dynamic approach.

However, the Dynamic approach in most cases provide comparable performance im-

provement. The Dynamic approach also has the advantage of being independent of

any tuning parameter and thus can be portable across different platforms.

In Chapter 3, we introduced our GPU-aware algorithms for collective communica-

tions targeting single-GPU nodes and clusters. In Chapter 4, we proposed a hierarchi-

cal framework for GPU collectives and evaluate the sensitivity of different algorithms

to different hierarchy levels in multi-GPU nodes and clusters. In this chapter, we

proposed various designs to intelligently select the right data copy mechanism in col-

lective operations targeting single-GPU nodes. In all of these chapters, our proposals

have targeted improving the performance of specific GPU communication operations.

In Chapter 6, on the other hand, we propose topology-aware designs to improve the

total communication efficiency of HPC applications running on multi-GPU nodes and

clusters.

114

Chapter 6

Topology-aware GPU Communications

The node architecture of modern GPU clusters usually consist of multi-core processors

and multiple GPU devices interconnected by a hierarchy of different communication

channels. In such clusters, not only will the intranode and internode inter-process

communications traverse different paths, but also different intranode inter-process

communications may have different traversal paths. We show that in a multi-GPU

node, not only should one expect heterogeneity in terms of the computational power

and characteristics of different processing units (i.e., CPUs and GPUs), but also an

added heterogeneity in terms of the topology and performance of different communi-

cation channels used to interconnect them.

Our goal in this chapter is to propose designs that can ultimately lead to efficient

utilization of different communication channels to improve the performance of inter-

process communications in GPU clusters. To do so, we propose designs to lead MPI

processes to intelligently select GPUs (among the available GPUs that are visible to

them) in a way that more intensive inter-process GPU communications take place on

the more efficient communication channels. In this regard, in this chapter we make

the following contributions:

115

• We first report the latency and bandwidth results of different intranode GPU

communication channels in a multi-GPU node and show that they can consid-

erably vary from each other. We also provide similar analysis for different GPU

and CPU communication channels across the GPU cluster. Our results show

that the performance and the number of various CPU and GPU communication

channels can be significantly different as well.

• We propose a GPU assignment policy that would take into account the GPU

communication pattern and the physical topology of the multi-GPU node to

improve the communication performance among the GPUs [25, 26]. We have

integrated the proposed GPU scheme into the Open MPI library. To the best

of our knowledge, this is the first application of topology awareness for GPU to

MPI process assignment on multi-GPU nodes. We use three metrics (latency,

bandwidth, and communication distance) to reflect the performance of different

intranode GPU communication channels in a multi-GPU node.

• We propose a GPU assignment scheme which considers different computational

entities within a heterogeneous cluster [55]. More specifically, we argue that in

order to extend our GPU assignment scheme to across the cluster, one should

consider both the CPU and GPU communications, as well as their physical

topologies. In this regard, we propose a three-level hierarchical mapping scheme.

Our proposed scheme breaks down the mapping into three distinct phases: 1)

internode process-to-node mapping; 2) intranode process-to-CPU-core binding;

and 3) intranode process-to-GPU assignment.

• To evaluate our GPU assignment scheme on multi-GPU nodes, we develop

116

three microbenchmarks and use one real application. The microbenchmarks

model three of the commonly used communication patterns in parallel appli-

cations. Namely, they model 2D and 3D stencil patterns, as well as alltoall

communications over sub-communicators. For application evaluations, we use

HOOMD-Blue [3, 27] which is a general-purpose toolkit used for molecular dy-

namics simulations. The results show that our topology-aware GPU selection

scheme can highly outperform the default selection scheme. We can achieve

up to 72% and 21% improvement in performance at the microbenchmark and

application levels, respectively.

• We provide a comprehensive analysis of our experimental results. In this regard,

we evaluate both the single- and double-precision versions of HOOMD-Blue with

different input benchmarks and particle sizes. We also provide detailed profil-

ing analysis of our single-node results. In this regard, we extend the FPMPI

library [29] and build a tool for profiling both CPU and GPU communications.

We apply our profiling tool into HOOMD-Blue in order to provide further in-

sights into the extent of improvements that can be achieved with our proposed

topology-aware GPU selection scheme.

• We also use both microbenchmarks and application analysis in our cluster-

wide experiments. In this regard, we develop a benchmark suite with a set

of microbenchmarks that represent different communication patterns used in

scientific applications. We designed this microbenchmark suite in a way to

allow concurrent inter-process communications among CPUs and GPUs with

different communication patterns. Our experimental results show that our GPU

selection scheme can highly improve the communication performance of these

6.1. MOTIVATION 117

microbenchmarks. We also show the effect of our GPU selection schemes on

an end-point application: HOOMD-Blue. According to our microbenchmark

results, our proposed GPU selection scheme can improve the total benchmark

runtime by 90% across the GPU cluster. Our application results also show up

to 8% performance improvement across the GPU cluster.

6.1 Motivation

In this section, we discuss various topology levels with different communication chan-

nels in a multi-GPU node and across the GPU cluster, and also evaluate their corre-

sponding latency and bandwidth.

6.1.1 Impact of CPU/GPU Topology Levels on CPU/GPU Communica-

tion Performance in a Cluster with multi-GPU nodes

In a multi-GPU node, various traversal paths may exist among different GPUs. There-

fore, communication between different GPU pairs may go through different commu-

nication channels. Fig. 6.1 depicts an example configuration of a multi-GPU node

which we also use as our experimental testbed (Section 6.4). As shown in the figure,

GPUs can communicate with each other through different paths. In general, commu-

nication path between different GPU pairs can traverse four topology levels which we

refer to as Level 0, Level 1, Level 2, and Level 3.

At Level 0, the communication path between GPU pairs traverses a PCIe inter-

nal switch; this path exists among the on-board GPUs of a single GPU accelerator

(e.g., path between GPU 0 and GPU 1). Communication path at Level 1 goes

through multiple PCIe switches (e.g., path between GPU 0 and GPU 2). At Level

6.1. MOTIVATION 118

2, communication path crosses a root complex1 (RC) device (e.g., path between

GPU 0 and GPU 4); RC connects the PCIe switch fabric to the socket. Commu-

nications at Level 3 goes through an inter-socket (IS) link such as Intel QPI (e.g.,

path between GPU 0 and GPU 8) [33]. Such a variety of communication channels

at different topology levels can result in different GPU communication latency and

bandwidth. To evaluate the latency and bandwidth characteristics of various intra-

node GPU and CPU topology levels, we perform intranode ping-pong latency and

uni-directional bandwidth tests. More specifically, the ping-pong latency provides

the half-way round-trip data transfer latency between two GPUs. In uni-directional

bandwidth test, we measure the data transfer rate between two processes in number

of Bytes per second.

RC

0

GPU Internal PCIe Switch Multiple PCIe Switches Root Complex Inter-Socket Link

1 4 5 6 7

RC

8 9
1
0

1
1

1
2

1
3

1
4

1
5

RC

K
8

0

Level 0

2 3

Level 1

Level 2

Level 3

IS

IS

Figure 6.1: Different intranode GPU pair levels. This is also the topology of the K80
GPU node used in our experiments

1The root complex is a part of the hostbridge logic; in the sequel, we use the root complex and
hostbridge terms interchangeably.

6.1. MOTIVATION 119

In Fig. 6.2 and 6.3, we provide the latency and bandwidth results on different

CPU and GPU topology levels, respectively. We perform our experiments both within

and across the cluster with multi-GPU nodes using two Helios nodes (System B). The

GPU latency and bandwidth analyses are conducted by first performing the latency

and bandwidth tests for all possible GPU pairs in our experimental platform. Each

test is performed one at a time and measures the latency (or bandwidth) across

various message sizes for a single-GPU pair. Next, depending on the GPU topology

level, we categorize the latency and bandwidth results into five GPU topology levels,

and report the average values in Fig. 6.2 and Fig. 6.3, respectively. Similar to the

GPU experiments, the CPU latency and bandwidth experiments are conducted and

reported; however, unlike the GPU latency and bandwidth tests, the CPU tests are

conducted among the CPU core pairs and categorized into three CPU topology levels.

According to Fig. 6.2 and 6.3, the internode topology level is shown to have differ-

ent latency and bandwidth characteristics compared to the intranode topology levels.

We can observe that the number and performance of the CPU topology levels vary

from the GPU topology levels. The only exception is the bandwidth of the internode

CPU and GPU topology levels that provide similar results. At this level, the same

interconnection network (i.e., Mellanox QDR InfiniBand) is used for data network

transfer both between the CPUs, and between the GPUs. However, the latency of

these topology levels are still different. In general, the GPU communications have

higher initialization cost compared to the CPU communications.

6.1. MOTIVATION 120

0

200

400

600

800

1000

1200

1400

1M 2M 4M

0

50

100

150

200

250

4K 8K 16K 32K 64K 128K256K512K

MESSAGE SIZE (BYTE)

GPU LATENCY
Level 0: Internal PCIe

Level 1: Multiple Intrenal PCIe

Level 2: PCIe Host Bridge

Level 3: Inter-Socket

Level 4: Inter-Node

0
5

10
15
20
25
30
35
40

1 2 4 8 16 32 64 128256512 1K 2K

LA
TE

N
C

Y
 (

U
S)

0

1

2

3

4

5

1 2 4 8 16 32 64 128256512 1K 2K

LA
TE

N
C

Y
 (

U
S)

0

50

100

150

200

4K 8K 16K 32K 64K 128K256K512K

MESSAGE SIZE BYTE)

CPU LATENCY

Level0: Intra-Socket

Level1: Inter-socket

Level2: Inter-node

0

200

400

600

800

1000

1200

1400

1M 2M 4M

Figure 6.2: Impact of internode and intranode CPU and GPU topology level on ping-
ping latency in a GPU cluster

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M

B
A

N
D

W
ID

TH
 (

G
B

/S
)

MESSAGE SIZE (BYTE)

GPU UNI-BANDWIDTH

Level 0: Internal PCIe

Level 1: Multiple Intrenal PCIe

Level 2: PCIe Host Bridge

Level 3: Inter-Socket

Level 4: Inter-Node

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M

B
A

N
D

W
ID

TH
 (

G
B

/S
)

MESSAGE SIZE (BYTE)

CPU UNI-BANDWIDTH

Level0: Intra-Socket

Level1: Inter-socket

Level2: Inter-node

Figure 6.3: Impact of internode and intranode CPU and GPU topology level on uni-
directional bandwidth in a GPU cluster

6.2. RELATED WORK 121

6.2 Related Work

In GPU clusters, GPU communications play a crucial role in the performance of

MPI applications. In this regard, researchers have studied various GPU-aware point-

to-point and collective operations to improve the GPU communication performance

[39, 73, 85]. The CUDA IPC data copy mechanism is used in [39, 73] to improve one-

sided and point-to-point communications. Singh et al. proposed designs to improve

the performance of the MPI Alltoall operation on the GPU. While these studies target

to improve the efficiency of specific MPI routines, our goal in this chapter is to improve

the overall MPI communication runtime among GPUs by efficiently assigning them

to MPI processes.

Martinasso et al. [50] provide a detailed analysis of the congestion behavior asso-

ciated with the PCIe fabric that is used to connect the GPUs in a multi-GPU node.

Accordingly, a congestion-aware performance model is proposed that can be used to

predict the communication times in presence of congestion on a given PCIe topology.

The proposed model can help to design more efficient algorithms for intranode GPU

communications. Lutz, et al. [48] propose an autotuning framework for distribution

of stencil computations across multiple GPUs. They show that various PCIe layouts

could have adverse effects on the performance, thereby utilizing all GPUs might not

be necessarily a better choice in all cases. Similarly, we show that different communi-

cation channels among GPUs can have different performance characteristics, however

we exploit this to propose a topology-aware GPU assignment for MPI processes.

Topology-aware mapping has been extensively studied in the context of CPU-to-

CPU communications. Several experiments carried out on large-scale systems such

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 122

as IBM BG/P and Cray XT supercomputers have verified the adverse effects of con-

tention and hop-count on message latencies [6]. Another study [4] shows that differ-

ent mappings of an application on large-scale IBM BG/P systems can significantly

affect the overall performance. Rashti, et al. [77] proposed a topology-aware map-

ping mechanism for two of the MPI topology functions, i.e., MPI Graph create and

MPI Cart create; the authors used the network distance to model the physical topol-

ogy. Ito, et al. [36] proposed a similar mapping algorithm, but uses actual bandwidth

measurements to model the physical topology. Mércier and Jeannot [53] modified

the implementation of the MPI Dist graph create function in MPICH2 to provide it

with a topology-aware reordering of processes. Mirsadeghi and Afsahi [54] proposed a

parallel mapping approach that takes into account the underlying routing mechanism

in addition to topology. Rodrigues, et al. [79] also used bandwidth measurements

to model the physical topology of the target system. In this chapter, unlike these

previous work, we exploit topology awareness and mapping concepts in the context

of GPU communications, and show how a topology-aware GPU selection scheme can

help to improve the performance of communications on a multi-GPU node and across

the cluster.

6.3 Improving GPU Communication by Efficient GPU Assignment Schemes

As the number of GPUs within a multi-GPU node increases, the topology of the GPU

interconnects becomes more hierarchical, effectively increasing the heterogeneity of

the GPU communication channels. Taking this into consideration, in this section we

first propose a topology-aware GPU selection scheme for a multi-GPU node. Using

our scheme, GPUs can be efficiently assigned to the processes. Next, we discuss

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 123

the extension of our proposed scheme to across the cluster. With our cluster-wide

scheme, processes can be efficiently mapped to CPU cores and GPUs assigned to the

processes, thus improving the total inter-process communication performance.

6.3.1 GPU Assignment Scheme on a Multi-GPU Node

We model our proposed scheme in this section as a graph mapping problem where

the GPU communication graph is mapped onto the GPU physical topology graph.

A given solution of this mapping problem would designate a specific assignment of

GPUs to MPI processes.

We extract the GPU communication pattern by profiling the application in an

initial run. In this regard, we instrument the MPI library to gather the GPU inter-

process communications, and save it into a square matrix. The matrix captures the

total volume of GPU messages transferred between each pair of processes. Using this

matrix, we construct a GPU virtual topology graph, representing the application’s

GPU communication pattern. In this graph, vertices stand for MPI processes, and

the weighted edges represent the existence and significance of GPU communications

among each pair of processes. Thus, the higher the edge weight, the higher the

communication volume between the associated GPU peers.

We use three different metrics to reflect the impact of different topology levels in

a multi-GPU node: 1) latency; 2) bandwidth; and 3) distance. For each metric, we

perform a series of tests to extract the associated physical topology matrix file (note

that none of the tests require root access). Using the generated files, we construct

the GPU physical topology graph. Vertices in this graph represent the GPU device

indices, and the edges represent the strength of the connection between two GPUs.

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 124

All intranode GPUs are capable of communicating with each other, thus the GPU

physical topology graph will be a complete graph. A higher edge value represents a

lower latency, higher bandwidth, and lower communication distance in the latency-

based, bandwidth-based, and distance-based physical topology graphs, respectively.

In this work, we use the SCOTCH library [69] to map the constructed virtual

topology graph onto the physical topology graph. SCOTCH is a graph mapping

library in which a guest graph G is mapped onto a host graph H. The problem is

known to be NP-hard, and SCOTCH library and other mapping libraries (such as

METIS [41], and ParaMETIS [42]) provide sub-optimal solutions for that. SCOTCH,

in particular is capable of mapping a given source graph onto a given target graph

with any topology, and with weighted or non-weighted vertices and edges.

We also use the SCOTCH library to construct the GPU virtual and physical

topology graphs out of the virtual and physical matrix files. These matrix files are

required to be available prior to the application execution. The virtual topology

matrix file is generated once in an initial profiling run. The physical topology matrix

file is created for each target multi-GPU node.

Depending on the chosen metric, we use different tests to generate the physical

matrix file. For the latency-based metric, we use the normalized GPU pair latency

values from the ping-pong test results (Fig. 6.2). For each pair of GPUs, we calculate

the ratio of the Level 3 communication latency to the latency of the topology level

associated with each pair of GPUs. To this end, we consider all latency values for

message sizes in the range 1B to 2KB and store the resulting average in the topology

matrix file. Note that channel latency is the dominating factor in the communication

performance of the small messages.

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 125

For the bandwidth-based metric, we use the normalized GPU pair bandwidth

values from the uni-directional bandwidth test results (Fig. 6.3). For each GPU pair,

we first calculate the ratio of the bandwidth corresponding to the topology level of

each GPU pair to the bandwidth of the Level 3 topology level. To this end, we only

consider the message sizes for which their bandwidth values varies (2KB to 16MB).

For each GPU pair, we store the average ratio in the physical topology matrix file.

Note that the channel bandwidth is the dominating factor (and the channel latency

is negligible) in the communication performance of the large messages.

Finally, for the distance-based metric, we use a set of APIs from the NVIDIA

management library (NVML) [62] to extract the communication distance of different

GPU pairs that are available on the node. In this regard, we mainly use the NVML

topology APIs such as nvmlDeviceGetTopologyCommonAncestor() with which we

retrieve the common ancestor for all GPU pairs. For each pair of GPUs, the depth of

their common ancestor can represent the physical distance between them. Based on

the maximum number of detected topology levels (4 in our case), for each GPU pair,

we store the difference between this maximum value and the topology level value of

the pair into the physical topology matrix file.

We have integrated our proposed topology-aware GPU selection scheme into the

MPI initialization phase of the Open MPI library [68]. During this phase, we use the

SCOTCH library to map the GPU virtual topology graph onto the physical topology

graph. The output mapping table determines the desired GPU-to-process assignments

in terms of an array M . The element M [i] designates the GPU id to be assigned to

rank i. Due to the nature of the SCOTCH mapping algorithms, which can lead to

different mapping results in different runs, only one process2 performs the mapping

2Without loss of generality, process with rank 0

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 126

and scatters the results M to other processes. Upon receiving the GPU id, each MPI

process calls the CUDA device selection function cudaSetDevice(GPU id) to select

its assigned GPU.

6.3.2 GPU Assignment Scheme Across the GPU Cluster

Our GPU selection approach for a single node can be extended to across the cluster by

considering all GPU units within a cluster. This way, processes can select any of the

GPUs within the cluster. However, this approach has multiple obstacles that would

make it less practical. First, by default the only GPUs that are visible to a process are

those that reside on the same node to which the process is mapped. Consequently,

accessing the GPUs on a remote node requires a middleware software framework

(such as rCUDA [17]). Second, applications would require to move the data back and

forth between the GPU global memory and the host CPU main memory; by select-

ing GPUs across the node, such interactions would have to go through the network

communication channels that are generally more costly compared to the intranode

communication channels. Third, in some GPU-aware MPI designs [85, 84], CPU-

assisted mechanisms are used to perform the GPU inter-process communications; in

such communications, data transfer is pipelined through the CPU host buffers; such

designs would suffer from inter-process GPU assignment as pipelining would require

costly internode data staging.

Taking these into consideration, we model our cluster-wide topology-aware GPU

selection scheme as a joint problem of CPU and GPU mapping. In this regard, we

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 127

break down the mapping into three distinct phases: Phase1) internode process-to-

node mapping; Phase2) intranode process-to-CPU-core binding; and Phase3) intran-

ode GPU-to-process assignment.

Phase 1: Internode Process-to-Node Mapping

In this phase, we determine the cluster node that each process should be mapped

to. This phase takes care of the internode CPU and GPU mapping. The commu-

nication pattern that is considered in this phase is the combination (summation) of

the CPU and GPU communication patterns; the rationale behind this is that the

internode CPU pairs and GPU pairs share the same communication channel; Fig.

6.2 also verifies and shows identical performance results for CPU and GPU inter-

process communications across the nodes. Consequently, the aggregated CPU and

GPU communications would represent the network activity with respect to both

CPU and GPU inter-process communications. The physical topology in this phase is

constructed based on the network topology of the cluster. The physical and virtual

network topologies are then passed as the inputs to the SCOTCH mapping algorithm.

The mapping result would lead processes with intensive network communications to

potentially share the same node, thus minimizing the costly network activities.

Phase 2: Intranode Process-to-Core Binding

In this phase, each process that is now mapped to a node is bound to an individual

core within that node. To perform the mapping, the required virtual and physical

topologies have to be passed to the SCOTCH mapping algorithm. The virtual topol-

ogy on each node is constructed based on the CPU communication pattern on that

node; the physical topology, on the other hand, represents different intranode CPU

communication channels.

6.3. IMPROVING GPU COMMUNICATION BY EFFICIENT GPU
ASSIGNMENT SCHEMES 128

Phase 3: Intranode GPU-to-Process Assignment

In this phase, processes that are mapped to a single node select a GPU device

within that node. In this regard, we use our proposed node-wide GPU selection

scheme from Section 6.3.1. Our scheme utilizes the intranode GPU communication

pattern and intranode GPU topology that is constructed based on the bandwidth

metric.

In all three phases, the SCOTCH [69] mapping library with the default strategy is

used. Other mapping algorithms can also be used in different phases; these mapping

algorithms do not have to be necessarily the same and can be tuned for each phase.

Mirsadeghi, et al. [55] provide a through analysis of this 3-phase mapping framework

with different mapping algorithms.

Implementation details

To extract the network topology level, we used the InfiniBand [32] subnet discovery

command, ibnetdiscover. At the intranode level, the CPU and GPU topology levels

are determined by the HWLOC (Hardware Locality) [8] and NVML [63] library,

respectively. HWLOC [8] is a well-known library that provides a set of portable

APIs to query the attributes of a node including cores, sockets, caches as well as

I/O devices such as InfiniBand network interfaces [32] or GPUs. The NVML library

includes a set of C-based APIs that can be used for extracting various information

about the NVIDIA GPU devices, including the topology information. We use the

nvmlDeviceGetTopologyCommonAncestor() API in the NVML library to retrieve

the common ancestor of each pair of GPUs. The retrieved common ancestor represents

the highest level of hierarchy that the communication path between two GPUs will

pass through.

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 129

6.4 Experimental Results and Analysis

6.4.1 Experimental Platform

We conduct our experiments on four Helios nodes of System B as described in Chapter

3. For single-node experiments, we use 16 MPI processes with each MPI rank assigned

to a single CPU core and a GPU device. In the cluster-wide experiments 64 processes

are evenly distributed among the four nodes of the cluster. We also use Open MPI

1.10.2, CUDA 7.5, and SCOTCH 6.0 in our experiments. Our proposed designs in

this chapter is not dependent to any MPI library. In this Chapter, we opt to use Open

MPI library to compare against and implement our design. This library provides close

to peak inter-process communication performance on various GPU communications

channels, thus the importance of efficiently utilizing these communication channels

can be better realized. In the rest of this section, we first provide our results and

analysis on a single multi-GPU node and then discuss our cluster-wide evaluations.

6.4.2 Multi-GPU Node Results and Analysis

All our experiments in this section are running on one node of the Helios cluster

(System B) with 16 MPI processes (one process per GPU) that are evenly distributed

among the cores on the two sockets. We analyze our GPU selection scheme at both

microbenchmark and application levels.

Microbenchmark studies

For our microbenchmark studies, we develop and use the following three mi-

crobenchmarks that model communication patterns commonly used in parallel ap-

plications:

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 130

1. 2D Stencil (2D),

2. 3D Stencil (3D),

3. Sub-communicator collective (COLL).

The 2D and the 3D microbenchmarks model a 2-dimensional 5-point and a 3-

dimensional 7-point Stencil patterns, respectively. The processes are first organized

into a logical 2-dimensional (3-dimensional) grid, and then each process communi-

cates with its immediate neighbors along each of the dimensions of the grid. With

16 processes, the 2D and 3D microbenchmarks organize the processes into a 4 × 4

and a 2 × 2 × 4 grid, respectively. In addition, we consider the options of having

wraparound and weighted connections for these microbenchmarks. In this regard,

the microbenchmarks with wraparound will include an extra link for connecting the

processes at the two edges of each dimension together. Microbenchmarks without

wraparound do not have any such links. On the other hand, in the weighted case,

a higher weight is assigned to the communications along a specific dimension of the

grid. In other words, each process sends and receives larger messages (3 times larger)

to its neighbors that fall along the first dimension of the grid. In the non-weighted

case, the same message volume is communicated along all dimensions. Thus, we will

have the following four cases for the 2D and 3D microbenchmarks:

1. Without weight and without wraparound,

2. Without weight, but with wraparound,

3. With weight, but without wraparound,

4. With weight and with wraparound.

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 131

In the sub-communicator collective microbenchmark (COLL), the processes are

first organized into a 3-dimensional grid (4 × 2 × 2), and an MPI sub-communicator

is created for each group of processes that fall along the first dimension of the grid.

Next, an MPI collective (i.e., MPI Alltoall in our tests) is called over each sub-

communicator.

Microbenchmark performance results and analysis

Fig. 6.4 through Fig. 6.6 show the results in terms of the improvements in the

communication time of each microbenchmark. We report the improvements achieved

by our topology-aware scheme over the default (naive) GPU selection. In the default

scheme, each process selects a GPU based on its associated rank number; for instance,

a common approach is for process with rank i to select the GPU with index i. Our

experimental results in this section represent the average of four runs and also include

standard deviation.

According to Fig. 6.4, for the non-weighted 2D and 3D microbenchmarks with

no wraparound, performance improvement is achieved mainly for message sizes larger

than 64KB. With wraparound connection, in the 2D case (Fig. 6.4(b)), no perfor-

mance improvement can be achieved for any of the metrics. We can also observe some

performance degradation using the distance metric. For the 3D case (Fig. 6.4(d)),

all metrics provide the same amount of improvement across all message sizes.

Fig. 6.5 shows that for the weighted 2D and 3D microbenchmarks, we can achieve

up to 65% performance improvement by using the topology-aware GPU selection

scheme. In addition, we can also see that the bandwidth metric consistently provides

an equal or higher improvement compared to the latency and distance metrics. Fig.

6.6 shows that for the COLL microbenchmark, all three metrics can improve the

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 132

-10

-5

0

5

10

15

20

25

30

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(a) 2D without wraparound without weight

-15

-10

-5

0

5

10

15

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(b) 2D with wraparound without weight

-15

-10

-5

0

5

10

15

20

25

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(c) 3D without wraparound without weight

0

10

20

30

40

50

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(d) 3D with wraparound without weight

Figure 6.4: Communication time improvements achieved by topology-aware GPU se-
lection over the default selection scheme for the non-weighted 2D and 3D
microbenchmarks

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 133

-15

-5

5

15

25

35

45

55

65

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(a) 2D without wraparound with weight

-15

-5

5

15

25

35

45

55

65

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(b) 2D with wraparound with weight

-15

-5

5

15

25

35

45

55

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(c) 3D without wraparound with weight

0

10

20

30

40

50

60

70

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

(d) 3D with wraparound with weight

Figure 6.5: Communication time improvements achieved by topology-aware GPU se-
lection over the default selection scheme for the weighted 2D and 3D
microbenchmarks

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 134

0

10

20

30

40

50

60

70

80

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

latency-map bandwidth-map distance-map

Figure 6.6: Communication time improvements achieved by topology-aware GPU se-
lection over the default selection scheme for the sub-communicator col-
lective microbenchmark, COLL

performance by up to 70% across all messages.

We also observe that the weighted 2D and 3D microbenchmarks can benefit more

from our topology-aware GPU selection scheme when compared to their non-weighted

counterparts. This is an expected behavior because in the weighted cases, the GPUs

should be assigned to the processes in a way that the heavier-communicating processes

end up using the GPU pairs with stronger physical connections. This would in turn

provide more opportunity for performance optimizations through topology awareness.

On the contrary, we do not see the same behavior in presence of the wraparound

connections. In fact, while adding wraparound connections would lead to further

improvements for the 3D microbenchmark, we do not observe any improvements for

the 2D microbenchmark; we can even see some performance degradation. To investi-

gate this further, we analyzed the communication pattern of these microbenchmark

with and without the wraparound connections. We noticed that wraparound con-

nections in the 3D microbenchmark will result in communications between processes

that are far from each other (in terms of the GPUs assigned to them by the default

approach). As shown in Fig. 6.2 and Fig. 6.3, the farther two GPUs are from each

other, the lower their communication performance would be. In the 2D case on the

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 135

other hand, adding wraparound connections will cause most of the communications

to take place among the GPUs with stronger connections among them. In conclusion,

adding wraparound connections makes the default GPU assignment an already-good

match for the 2D microbenchmark communication pattern, whereas it is the opposite

for the 3D microbenchmark.

In general, we can observe that our topology-aware schemes are more beneficial

for large messages (greater than 16KB). The reason, as shown in Fig. 6.2 and Fig.

6.3, is that the difference in the latency of the small messages at different levels is not

as much as the difference in the bandwidth of the large messages. More specifically,

the latency ratio of Level 1, Level 2, and Level 3 to Level 0 for small messages is

1.01, 1.17, and 1.57, respectively. On the other hand, the bandwidth ratio of Level

0 to Level 1, Level 2, and Level 3 for large messages is 2.47, 4.22, and 4.47, re-

spectively. So, the main difference between the channels at different levels is in their

bandwidth. As a result, the performance of different topology levels are more diverse

for large message sizes as they are mostly affected by the bandwidth characteristics

of the underlying communication channels. For small messages, on the other hand,

there is much less room for improvement (1.57 latency ratio compared to 4.47 band-

width ratio). In addition, small-message communications are highly affected by the

startup latencies which are not affected by the topology awareness and the specific

strategy used for GPU assignment. Taking this into consideration, there are still three

microbenchmarks for which we can get performance improvement for small messages.

There are also some cases where we see slight performance degradation for small mes-

sages. We leave further investigations on this trend for small messages to a future

work. Designing a scheme that is finely tuned for small-message communications falls

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 136

within the scope of our future work.

Congestion analysis

We further investigate our results by analyzing how our topology-aware scheme

affects the congestion across the GPU communication channels. We define congestion

as the total volume of the traffic that passes through a link divided by the bandwidth

of that link. Different mappings will result in different congestion across the links that

interconnect GPUs. We would like to find a mapping that leads to lower congestion

across the communication channels.

In the following, we compare our topology-aware scheme against the default map-

ping with respect to their resulting congestion for two of our microbenchmarks: 2D

non-weighted and 3D weighted (both without wraparound). Figure 6.7 shows the

congestion values for the 2D and 3D microbenchmarks. The numbers above each

link (shown in red) represent the congestion values for the default mapping, while

the numbers below each link (shown in green) represent the congestion values for our

topology-aware mapping using the bandwidth metric. Moreover, the numbers below

each GPU denotes the rank of the process mapped onto that GPU by the default and

topology-aware schemes, respectively.

As shown in Fig. 6.7(a), for the 2D non-weighted benchmark the congestion values

for both mappings are similar to each other except at Level 2 (encircled area), where

our topology-aware mapping leads to a lower congestion. On the other hand, as

shown by Fig. 6.7(b), for the 3D weighted benchmark the topology-aware mapping

can significantly decrease the congestion values across the links at different levels of

the tree. In particular, the maximum congestion at Level 3 is decreased from 1600 to

264 (encircled area). This also correlates well with our microbenchmark performance

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 137

RC

0

GPU Internal PCIe Switch Multiple PCIe Switches Root Complex Inter-Socket Link

1 4 5 6 7

RC

8 9
1
0

1
1

1
2

1
3

1
4

1
5

RC
K

8
0

Level 0

2 3

Level 1

Level 2

Level 3

IS

IS

Default

BW-map

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P11 P14 P15 P8 P9 P12 P13 P6 P7 P3 P2 P4 P5 P0 P1

800

800
800
800

323

323
647

323
323

323

647
323

89
13

4

13489 13
4

13
4

89178 13
4

89

178134 17
8

13
4

134178

13
4

13
4

178178

17
8

13
4

13489 89
17

8

134134

13
4

13
4

8989

14
2
142

142236 23
6
142

236236 23
6

236
236142 14

2

236
142142

P10

(a) 2D without wraparound without weight.

RC

0 1 4 5 6 7

RC

8 9
1
0

1
1

1
2

1
3

1
4

1
5K

8
0

Level 0

2 3

Level 1

Level 2

Level 3 IS

Default

BW-map

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P12 P8 P6 P4 P14 P11 P3 P0 P13 P9 P7 P5 P15 P10 P2 P1

1600

264

1600
264

430

160
430

213

430

106

430
160

74
74

8974 89
89

7489 74
74

8974 89
89

7489 74
89

8989 89
89

7489 74
74

8974 89
74

7489

14
1

62

14193 14
1

62

14193 14
1

93

14193 14
1

93
14193

(b) 3D without wraparound with weight

Figure 6.7: Congestion values for the default and topology-aware GPU assignment

results for which we achieve higher communication time improvements for the 3D

weighted benchmark (≈ 50% in Fig. 6.5(c)) compared to the 2D non-weighted (≈

20% in Fig. 6.4(a)).

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 138

Comparison with Random Mapping

To further show the benefits of the topology-aware GPU selection, we compare our

approach (using bandwidth metric) against four different random mappings. These

mappings use a random sequence of numbers that is generated for each run. We

change the random seed across different runs to avoid getting the same results. We

provide our results as the average of four runs (with standard deviation) in Fig. 6.8.

According to the figure, the random mapping for both benchmarks underperforms

the default mapping. We can also see a higher standard deviation for the random

results compared to our scheme. Moreover, we did not observe any performance

improvement with any of the four random mappings over the default mapping. This

highlights the importance of using a non-trivial and topology-aware design for GPU

assignment.

Application Study

In this section, we evaluate our proposed scheme across an end-point application:

HOOMD-Blue [3, 27]. HOOMD-Blue (Highly Optimized Object-oriented Many-

particle Dynamics-blue edition) is a general-purpose toolkit used for molecular dy-

namics simulations. It supports multi-CPU and multi-GPU simulations using MPI,

with a one-to-one mapping between CPU cores (MPI ranks) and GPU devices. Each

GPU is assigned a sub-domain of the multi-dimensional simulation box. The length

of the sub-domains are calculated by dividing the lengths of the box by the number

of processors per dimension.

We configure HOOMD-Blue for both single- and double-precision computations,

and use two different benchmarks: 1) MicroSphere (MS), and 2) Lennard-Jones (LJ)

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 139

-100

-80

-60

-40

-20

0

20

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

bandwidth-map random-map

(a) 2D without wraparound without weight

-70

-50

-30

-10

10

30

50

IM
P

R
O

V
EM

EN
T

(%
)

MESSAGE SIZE (BYTE)

bandwidth-map random-map

(b) 3D without wraparound with weight

Figure 6.8: Communication time improvements achieved by topology-aware GPU se-
lection and random mapping over the default selection scheme

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 140

liquid. The MS benchmark simulates 1,428,364 particles; it runs a system of star

polymers in an explicit solvent which organize into a microspherical droplet. The LJ

benchmark is a classic benchmark in general-purpose molecular dynamics simulations.

It is representative of the performance that HOOMD-Blue can achieve with straight

pair potential simulations. We use a range of particle sizes from 32,000 to 4,000,000

with this benchmark.

Application performance results and analysis

Fig. 6.9 reports the TPS (number of application Time Steps Per Second) improve-

ments using our scheme over the default approach for the single- (Fig. 6.9(a)) and

double-precision (Fig. 6.9(b)) versions of HOOMD-Blue. According to the figure, our

scheme can provide up to 21.7% and 17.8% improvement for the single- and double-

precision versions, respectively. We can also see that in most cases, the bandwidth

and the distance metrics tend to outperform the latency metric.

The general trend in Fig. 6.9 shows that the improvement increases as the particle

size grows up to 512K and then drops. In order to understand the reason behind such

a drop in improvement, we need to evaluate the communication characteristics of the

application in detail. To this end, we use the FPMPI [29] library to get more insights

into the nature of the communications in HOOMD-Blue. FPMPI [29] is a profiling

library which provides various information about the underlying MPI communications

of an application. However, FPMPI does not distinguish between the CPU and GPU

communications. In this regard, we have extended the FPMPI library to provide

profiling support for both CPU and GPU communications. The extended profiler

allows us to separately extract the CPU and GPU communication characteristics of

an application. To this end, we leverage various CUDA APIs to analyze the buffer(s)

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 141

0

5

10

15

20

25

Im
p

ro
ve

m
en

t
(%

)

Benchmark - Particle Size

latency-map bandwidth-map distance-map

(a) Single-precision

0
2
4
6
8

10
12
14
16
18
20

Im
p

o
rv

em
en

t
(%

)

Benchmark - Particle Size

latency-map bandwidth-map distance-map

(b) Double-precision

Figure 6.9: TPS improvement of topology-aware mappings over default mapping on
a) single-precision and b) double-precision HOOMD-blue Application

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 142

in MPI routines. By analyzing the buffer(s), we can determine whether it is located

on the host main memory or on the GPU global memory. We also instrument Open

MPI to expose specific information that will be queried by the FPMPI library. For

instance, we add the address type of the send/receive buffers of MPI routines to the

MPI Request object to distinguish among different types of communications (i.e.,

CPU versus GPU).

Fig. 6.10 demonstrates the GPU communication pattern of the double-precision

HOOMD-Blue with LJ-512K benchmark. The pattern is represented by a square

matrix, where each row and column corresponds to an MPI rank. The ijth element

of the matrix denotes the total volume of messages transferred between the pair of

GPU devices assigned to rank i and j in both directions3. As shown by Fig. 6.10, only

a small portion (around 20%) of the GPU pairs are involved in heavy communications.

More importantly, the communication pattern closely resembles the pattern induced

by a 3D Stencil with wrap-around and non-weighted connections. On the other hand,

Fig. 6.11 shows the distribution of GPU communications across various message sizes

(averaged over all ranks) for three different particle sizes. We can observe that as the

particle size increases, the share of the larger message sizes also increases. With such

communication characteristics and in accordance to the result shown in Fig. 6.4.d, we

expect to observe a non-decreasing improvement with the increase in particle size for

HOOMD-blue. However, the highest improvement is achieved with the 512K particle

size in Fig. 6.9.

To further investigate our application results, in Fig. 6.12 we provide the share

of CPU and GPU communications in the total application runtime on LJ benchmark

with different particle sizes. As shown in this figure, our mapping schemes can improve

3Note that the values have been normalized between 0 and 100.

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 143

0 95 99 5 93 5 5 0 0 0 0 0 96 5 5 0

97 0 5 97 5 95 0 5 0 0 0 0 4 97 0 6

97 4 0 94 4 0 97 5 0 0 0 0 4 0 95 4

5 97 96 0 0 4 4 95 0 0 0 0 0 4 4 96

96 4 5 0 0 99 95 4 97 4 4 0 0 0 0 0

4 96 0 4 97 0 4 95 5 97 0 4 0 0 0 0

4 0 99 5 93 4 0 99 4 0 93 4 0 0 0 0

0 4 5 96 5 95 99 0 0 4 4 95 0 0 0 0

0 0 0 0 95 5 4 0 0 96 92 4 97 4 5 0

0 0 0 0 4 97 0 4 96 0 4 99 4 93 0 4

0 0 0 0 5 0 94 4 97 3 0 96 4 0 95 5

0 0 0 0 0 4 3 93 4 96 94 0 0 5 4 98

98 5 5 0 0 0 0 0 95 5 4 0 0 94 94 4

4 97 0 5 0 0 0 0 4 97 0 5 94 0 4 95

4 0 97 5 0 0 0 0 4 0 92 4 96 4 0 97

0 4 5 99 0 0 0 0 0 4 5 93 5 95 100 0

𝐏𝟎 𝐏𝟏𝟓

𝐏𝟏𝟓

0 𝟏𝟎𝟎𝐓𝐨𝐭𝐚𝐥 𝐆𝐏𝐔 𝐓𝐫𝐚𝐧𝐬𝐟𝐞𝐫𝐫𝐞𝐝 𝐕𝐨𝐥𝐮𝐦𝐞

Figure 6.10: Normalized GPU communication pattern of double-precision HOOMD-
Blue with LJ-512K benchmark

the total application runtime for all three benchmarks. We can also observe that our

mapping schemes only improve the GPU communication portion of the application

and the rest of the application runtime is almost left intact. Fig. 6.12 also shows

that as the particle size increases, the share of GPU communications in the total

application runtime decreases. Consequently, any GPU communication improvements

would have a relatively lower impact on the total application performance. To verify

this, we also measure the GPU communication time improvements achieved by our

scheme for the HOOMD-Blue application. Fig. 6.13 shows the corresponding results.

This time, we can see a steady improvement of about 20% for our topology-aware

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 144

0

10

20

30

40

50

60

70

80

90

100

0 4 8 16 32 64 128 256 512 1K 4K 8K 16K 32K 64K 128K256K512K 1M

%
 C

O
M

M
. ≤

 B
U

FF
ER

 S
IZ

E

GPU BUFFER SIZE (BYTE)

LJ-32K

LJ-512K

LJ-4M

Figure 6.11: Distribution of different message sizes in GPU communications of
double-precision HOOMD-Blue with LJ benchmark

scheme across all particle sizes. The only exception is with the latency metric and

4M particle size for which we see a reduction in the achieved improvement. This is

expected to some extent, as latency is not a good representative of communication

channel characteristics for large messages that this application mainly uses.

In conclusion, although larger message sizes provide more opportunity to improve

communication performance thorough our topology-aware scheme, the lower share of

GPU communications in the total runtime of the application leads to a lower reflec-

tion of such improvements. This is why we see a drop in the achieved performance

improvements after the 512k particle size shown by Fig. 6.9. However, we see a gen-

erally increasing trend in the improvements up to (and including) 512K particle size.

This implies that the 512K particle size is a turning point in terms of the impact of

GPU message size versus communication time share on the overall improvements.

Mapping overhead

In this section, we analyze the overhead that is associated with our proposed

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 145

0

50

100

150

200

250

LA
TE

N
C

Y
 (

SE
C

O
N

D
)

LJ-32KB

0

50

100

150

200

250

300

350

LJ-512KB
BENCHMARK

GPU Communication

CPU Communication

Other

0

100

200

300

400

500

600

700

800

900

1000

LJ-4MB

Figure 6.12: Share of GPU Communications in total HOOMD-Blue runtime

0

5

10

15

20

25

LJ-32K LJ-512K LJ-4MG
P

U
 C

O
M

M
. I

M
P

R
O

V.
 (

%
)

BENCHMARK

latency-map bandwidth-map distance-map

Figure 6.13: HOOMD-Blue GPU communication improvements

topology-aware GPU assignment scheme. To this end, we measure the time it takes

to do the mapping and compare it against the application runtime. According to

our results, regardless of the mapping metric, benchmark type, and the particle size

that are used for the application, the mapping time is around 0.5 ms. This time

is negligible compared to the total application runtime and contributes to at most

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 146

0.0003% of that. This mapping time is also considered to be a one-time overhead for

each instance of the application. We note that the main purpose of our work in this

chapter is to show the importance of topology-aware GPU selection and the mapping

choice falls into the scope of future study. Thus, one may replace SCOTCH with

another mapping heuristic. In particular, for small multi-GPU nodes (with 4 or 8

GPUs), one could use an exhaustive search to find the optimal mapping.

6.4.3 GPU Cluster Results and Analysis

In this section, we evaluate our cluster-wide mapping scheme over the default pro-

cess mappings and GPU assignments. Our experiments are performed at both the

microbenchmark and application levels and are averaged over four runs. Our experi-

ments are performed on 4 nodes of the Helios cluster (System B in Chapter 3). We

only consider and report results of our topology-aware scheme using the bandwidth

metric in this section4.

Microbenchmark Studies

For our microbenchmark analysis, we have developed a microbenchmark suite, called

Accelerated MPI Benchmark [21]. We use this benchmark suite to evaluate the per-

formance of both CPU and GPU MPI communications. The Accelerated MPI Bench-

mark models various communication patterns among the CPU cores as well as among

the GPU devices of a cluster. To better resemble the communication patterns of the

real world applications, this benchmark is also capable of simultaneously modeling

various CPU and/or GPU communication patterns. The current version of this suite

4Our preliminary experimental evaluations on other metrics showed identical or worse perfor-
mance results

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 147

consists of three microbenchmarks: 1) 2D Stencil (2D), 2) 3D Stencil (3D), and 3)

Sub-communicator collective (COL). The 2D and the 3D microbenchmarks model

a 2-dimensional 5-point and a 3-dimensional 7-point Stencil patterns, respectively.

The processes are organized into a 2D/3D mesh, and each process communicates

with its two immediate neighbors along each dimension. For these two microbench-

marks we consider two cases: a) non-weighted and b) weighted. In the former, we

use the same message size for the communications along all dimensions, whereas in

the latter, larger messages are used along the first dimension (3 times larger). In

the sub-communicator collective microbenchmark, the processes are organized into

a 3-dimensional grid with a sub-communicator created for each group of processes

falling along the first dimension. An MPI collective (MPI Alltoall in our tests) is

called over each sub-communicator. Table 6.1 summarizes the specifications of our

developed microbenchmark.

Each of the microbenchmarks can be independently used as the communication

pattern among CPU cores and among GPU devices. In this section, we consider all

possible combinations of such microbenchmarks (9 in total) to model a wide variety

of communication patterns. We represent each combination as an X-Y pair, where X

and Y respectively denote the microbenchmark of choice for CPU-to-CPU and GPU-

to-GPU communications. For instance, 2D-Col represents the case where we use the

2D pattern for CPU communications, and the sub-communicator collective pattern

for GPU communications.

Fig. 6.14 shows the improvements achieved by using our proposed 3-phase map-

ping framework over the default mapping. We report performance improvement on

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 148

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

2D-2D 2D-3D 2D-COL 3D-2D 3D-3D 3D-COL COL-2D COL-3D COL-COL

Im
p

ro
ev

e
m

tn
 (

%
)

Benchmark: CPU_BENCH-GPU_BENCH

Non-Weighted Weighted

(a) Short message size: 256 Byte

0

10

20

30

40

50

60

70

80

90

100

2D-2D 2D-3D 2D-COL 3D-2D 3D-3D 3D-COL COL-2D COL-3D COL-COL

Im
p

ro
ve

m
e

n
t

(%
)

Benchmark: CPU_BENCH-GPU_BENCH

Non-Weighted Weighted

(b) Medium message size: 64 KB

0

10

20

30

40

50

60

70

80

90

100

2D-2D 2D-3D 2D-COL 3D-2D 3D-3D 3D-COL COL-2D COL-3D COL-COL

Im
p

ro
ve

m
e

n
t

(%
)

Benchmark: CPU_BENCH-GPU_BENCH

Non-Weighted Weighted

(c) Large message size: 1 MB

Figure 6.14: Microbenchmark runtime improvements using a 3-phase mapping frame-
work on various message sizes over the default selection scheme

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 149

XXXXXXXXXXXXArguments
Name

2D 3D Col

Benchmark Description 2D Stencil 3D Stencil Alltoall on a sub-comm

Message Weight 1 or 3 1 or 3 N/A

Wraparound W or W/O W or W/O N/A

Dimensions on 64P 8x8 4x4x4 4x4x4

Table 6.1: Microbenchmark specification

three different message sizes on all nine combinations of our microbenchmarks. Ac-

cording to the figure, the improvement increases with the message size. Fig. 6.14(a)

shows the result on short message sizes (256 Byte), where in most cases our topology-

aware scheme does not provide any performance improvement and there are also cases

with performance degradation. This is an expected behavior as we do not consider

latency-based optimizations and metrics to determine the mapping algorithm. For

medium and large message sizes, as shown in Fig. 6.14(b) and 6.14(c), we can ob-

serve consistent performance improvement (up to 91.4%) for all microbenchmarks.

Fig. 6.14 also provides result for both of the weighted and non-wighted benchmark

cases. Improvements for weighted microbenchmarks are generally higher than the

non-weighted versions. This is because in the weighted microbenchmarks, larger

message sizes communicate along one of the grid dimensions, providing more room

for optimizations. While the default mapping and GPU assignment is oblivious to the

communication volume and bandwidth among different processes, our design takes

advantage of such information and improves performance by mapping intense com-

munications on higher-bandwidth channels.

Application Level Analysis

In this section, we evaluate our mapping scheme on HOOMD-blue and consider

two cases of single- and double-precision formats of the application. For the input,

6.4. EXPERIMENTAL RESULTS AND ANALYSIS 150

we use the classic Lennard-Jones (LJ) liquid and MicroSphere (MS) benchmarks. In

our experiments, we vary the particle size of LJ from 64 thousand to 4 million, and

use the default 1.4 million particle size in MS.

Fig. 6.15 shows the TPS (number of application time steps per second) improve-

ments achieved from our topology-awere scheme on various benchmarks. We can see

up to 8.3% and 7.1% improvements on single- and double-precision version of the

application, respectively. Moreover, for both clusters, the highest improvements are

achieved with 512K particle size. We can make two general observations from the

figure. First, while we can observe performance improvement in almost all cases,

the extent of the improvement is lower compared to our single-node results in Fig.

6.9. The main reason behind this is that the number of processes in our cluster-wide

experiment has quadrupled compared to our single-node experiments. This effec-

tively lowers the size of the GPU messages leading to less improvement opportunity.

Consequently, the expected trend should be higher improvement as the particle size

increases. However, this trend cannot be observed in the figure. In order to further

investigate this odd trend we profiled the application and investigated the results.

According to our profiling results, as the particle size increases, the total com-

putation load of the application also increases. Our profiling results also show that

by increasing the particle size the majority of the communicated messages still fall

below 32KB on our platforms. Therefore, the messages are not large enough to consis-

tently make the application bandwidth-bound. Moreover, the communication pattern

resembles a non-weighted 3-dimensional stencil with wraparounds, which makes the

pattern quite symmetric. These are the main reasons for which we do not see greater

6.5. PROVISION OF USING OUR PROPOSALS WITH FUTURE
GPU ACCELERATORS AND CLUSTERS 151

performance enhancements for HOOMD-blue as they limit the improvement oppor-

tunity through our topology-aware scheme. We expect to see higher improvements

for applications that use larger messages and/or employ irregular communication

patterns.

-1

1

3

5

7

9

MS-1.4m LJ-64K LJ-512K LJ-1M LJ-2M LJ-4M

Im
p

ro
ve

m
e

n
t

(%
)

Benchmark - Particle Size

Single-Precision Double-Precision

Figure 6.15: HOOMD-blue TPS (number of application time steps per second) im-
provements using a topology-aware scheme on various benchmarks

6.5 Provision of Using our Proposals with Future GPU Accelerators and

Clusters

Future GPU clusters will be equipped with the next generation GPUs and will poten-

tially use more advanced node architectures. These GPU clusters, however, should

continue to benefit from our GPU selection schemes. On one hand, our schemes are

oblivious to the GPU computational capability, and mainly target the efficiency of

communications among them. On the other hand, our GPU selection proposals can

6.5. PROVISION OF USING OUR PROPOSALS WITH FUTURE
GPU ACCELERATORS AND CLUSTERS 152

adapt to any node architecture and GPU clusters that consist of different communica-

tion channels. It does so by extracting the physical characteristics for each node and

the cluster. Having said that, the more diverse the performance of these communica-

tion channels, the more opportunity for our schemes to improve the communication

efficiency.

Fig 6.16 (repeated here from Fig. 5.11 for convenience) shows an example node

architecture that is equipped with the latest GPU generation (i.e. Pascal P100)

and the latest NVIDIA Nvlink intranode interconnect, as discussed in Chapter 5 as

well. Table 6.2 lists the uni-directional communication bandwidth of all of the GPU

pairs. According to the table, two of the GPU pairs provide 40 GB/s communication

bandwidth, while the rest of the four pairs provide 20 GB/s. Such a node architec-

ture would provide the opportunity for our proposed GPU selection scheme with the

bandwidth metric to map more intensive communications on the stronger commu-

nication channels (i.e., channels with 40 GB/s bandwidth) and thus improving the

communication efficiency.

GPU Pair Uni-Directional Bandwidth

GPU0-GPU1 40 GB/s
GPU0-GPU2 20 GB/s
GPU0-GPU3 20 GB/s
GPU1-GPU2 20 GB/s
GPU1-GPU3 20 GB/s
GPU2-GPU3 40 GB/s

Table 6.2: Uni-directional bandwidth of different GPU pairs in a 4-GPU node with
Pascal P100 and NVLink interconnect

In summary, our proposed GPU selection schemes will remain independent of

future GPU types and node architectures. Moreover, as long as performance diversity

6.6. SUMMARY 153

Switch Switch

CPU

GPU0 GPU1 GPU2 GPU3

PCIe Gen3

NVLink

x16

Peak (Effective) 16 GB/s (12 GB/s)

Peak (Effective)

Single Link

20 GB/s (16 GB/s)

Figure 6.16: Node architecture of a 4-GPU node with Pascal GPUs and NVLink
interconnect (adapted from [66])

among different communication channels exists, our schemes will continue to benefit

the communication performance.

6.6 Summary

In this chapter, we showed that intranode GPU topology can have significant impact

on the communication performance. We showed that in heterogeneous clusters with

GPU accelerators, heterogeneity not only does exist in terms of the computational

units, but also in terms of the communication channels that interconnect them. To

this aim, we proposed topology-aware mapping solutions for both single and clustered

multi-GPU nodes.

For single multi-GPU nodes, we proposed a non-trivial topology-aware GPU selec-

tion scheme that considers the application communication pattern and the physical

6.6. SUMMARY 154

topology of the node. We modeled the problem as a graph mapping problem and

used the SCOTCH library to solve it. We also used three metrics to represent the

physical topology of the multi-GPU nodes: 1) latency; 2) bandwidth; and 3) com-

munication distance. Our experimental results show that our proposed scheme can

highly improve the communication performance at both the microbenchmark and

application levels. We also observed that the microbenchmarks with more distant

communications between the GPUs (with respect to their GPU ID) are more suscep-

tible to improvement by our topology-aware scheme. Moreover, higher improvement

is achieved with the weighted microbenchmarks compared to the non-weighted ones.

On the application front, we observed more improvements for cases with larger mes-

sages and higher share of GPU communications in the total runtime. In general, our

topology-aware scheme shows to efficiently utilize all three metrics and improve the

communication performance. However, we observed the highest improvement with

the bandwidth metric and with large message sizes.

We also extended our topology-aware GPU selection scheme from a multi-GPU

node to across the GPU cluster. In this regard, we defined a cluster-wide topology-

aware GPU selection as a joint problem of process-to-CPU-core mapping and GPU-to-

process assignment. To address this problem, we proposed a mapping scheme which

breaks down the mapping into three distinct phases: 1) internode process-to-node

mapping; 2) intranode process-to-CPU-core binding; and 3) intranode process-to-

GPU assignment. We evaluated our mapping scheme at both microbenchmark and

application levels. For microbenchmark analysis, we developed a microbenchmark

suite capable of modeling different communication patterns among the GPU buffers

and/or the CPU buffers. Our microbenchmark and application results indicate that

6.6. SUMMARY 155

by efficient process to core binding and GPU assignment, we can achieve performance

improvement over the naive mapping schemes on GPU clusters.

156

Chapter 7

Conclusions and Future work

Today, many of the modern HPC clusters are equipped with GPU accelerators due to

their high computational power and low energy consumption. Accordingly, many of

the HPC applications are re-written or adjusted to exploit the massive computational

power of GPUs. Performing compute-intensive portions of the application on GPUs

seems to be a well justified approach. However, this has to be bundled with efficient

GPU communications so the actual benefit of offloading can be realized. Optimizing

GPU communication should not remain as an afterthought, and has to be efficiently

addressed. While, some communication libraries provide support for GPUs, there

are many communication routines within them that do not efficiently utilize GPU-

aware designs and hardware features. For instance, many of the communication

routines do not exploit GPU communication and computation features in conjunction

with efficient algorithms to amortize their high overhead in application runtime. In

addition, with the presence of different data copy mechanisms and communication

channels for GPU inter-process communications, efficient usage of these resources is

of paramount importance. The absence of hierarchical designs for GPU clusters is

another one of important feature missing in GPU communication routines. While

157

GPU accelerators have added heterogeneity in terms of the computational units,

they have also added heterogeneity in terms of the communication channels that are

interconnecting them; this is another important factor that has been overlooked in

optimizing GPU inter-process communications.

In this dissertation, we are focused on improving the GPU inter-process commu-

nication performance by utilizing innovative designs, efficient algorithms, topology-

aware designs, and advanced hardware features. The main contributions of this dis-

sertation are as follows:

(1) Efficient GPU Collective Communication Algorithms

In Chapter 3, we proposed two GPU-aware algorithms for collective communi-

cations: 1) GPU Shared Buffer-aware (GSB); and 2) Binomial Tree Based (BTB).

In both designs, we used GPU-specific capabilities to accelerate communication and

computation. As a test case scenario, these designs were applied to MPI Allreduce.

The designs in this chapter target clusters of single-GPU nodes. In Chapter 4, on

the other hand, we provide how hierarchical designs can be applied to collective op-

erations targeting clusters of multi-GPU nodes. We also evaluate the efficiency of

different algorithms within different hierarchy levels of our designs. Our proposed

collective designs provided up to 22 and 5 times performance improvement over the

existing designs within a single-GPU node and across the cluster of single-GPU nodes,

respectively.

(2) Hierarchical Framework for GPU Collective Communications

In HPC clusters with multi-GPU nodes, GPU inter-process communications can

take place at different hierarchy levels. For instance, communications can take place

158

within a single GPU, across intranode GPUs, or over the network. However, pre-

vious research are either oblivious to this hierarchical structure or provide limited

hierarchy-aware support through their transport layer. In this regard, we proposed a

hierarchical framework for MPI collective operations on the GPU. Using our frame-

work, we break down the collective operation into different hierarchical steps. We

evaluated the effectiveness of our proposed framework by analyzing different algo-

rithms in each hierarchy level, and showing the importance of choosing the right one.

Our proposed framework is evaluated using MPI Allreduce. Our evaluation showed

promising results for large message sizes which are highly in-use in deep learning

and big data applications. Our proposals provided up to 80% and 65% performance

improvement on MPI Allreduce over the existing flat designs within a multi-GPU

node and across the cluster of multi-GPU nodes, respectively. However, for short and

medium message sizes, similar to Chapter 3, our designs showed no improvement.

This is mainly due to the high startup and synchronization costs that are associated

with the data copy mechanism (i.e., CUDA IPC) that we used for GPU inter-process

communications. In this regard, we investigated how to intelligently select the data

copy mechanisms to efficiently perform GPU inter-process communications in Chap-

ter 5.

(3) Efficient GPU Communications through Smart Data Copy Mechanism

Selection

Inter-process communications among GPU buffers can be performed through dif-

ferent communication channels and data copy mechanisms. In Chapter 5, we provided

a comprehensive analysis of two of these data copy mechanisms (i.e., CUDA IPC and

Host-Staged). Our evaluation showed the benefit of jointly using different data copy

159

mechanisms to perform multiple inter-process communications. The benefit is mainly

rooted in overlapping different data copy mechanisms that traverse different commu-

nication channels. Taking this observation into account, we proposed two algorithms

for GPU collective operations that are capable of efficiently managing their copy

mechanisms: 1) Static Hyper-Q aware; and 2) Dynamic Hyper-Q aware.

The Static algorithm decides what data copy mechanisms to use based on a pri-

ori information that it extracts from a tuning table. The Dynamic algorithm, on

the other hand, dynamically decides the number and mechanism of the copies at

runtime. These designs were evaluated on MPI Allgather and MPI Allreduce. The

experimental results showed that the proposed designs outperform the native design

across most of the message sizes. In general, the Static approach showed to provide

higher improvement compared to the Dynamic approach. However, the Dynamic

approach in most cases provide competitive results, and is also independent of any

tuning parameter, thus having the portability advantage. We also evaluated the effect

of the NVIDIA MPS service on the Static and Dynamic approach. The MPS service

allowed different data copy mechanisms in our design to further overlap with each

other and more efficiently share GPU resources. Our proposed designs showed up to

2.62 times speedup in the total GPU inter-process communications.

Our proposals in Chapter 3, 4, and 5 were targeted to improve the performance

of GPU communications through efficient algorithms, novel designs, and modern

features. In Chapter 6, on the other hand, we target to improve the communication

and applications performance on multi-GPU nodes through topology-awareness.

(4) Topology-aware GPU Communications

In Chapter 6, we first provided a comprehensive analysis of different traversal

160

paths that interconnect different GPUs as well as different CPUs in a GPU clus-

ter with multi-GPU nodes. The performance results showed that, depending on

the physical topology level that interconnects these processing units, their perfor-

mance can highly vary from each other. Taking this into consideration, we proposed

topology-aware mapping solutions for both single and clustered multi-GPU nodes.

For multi-GPU nodes, we used a non-trivial topology-aware GPU selection scheme

that considers the application communication pattern and the physical topology of

the node. We used three metrics for the GPU selection/mapping purpose: 1) latency;

2) bandwidth; and 3) communication distance. The bandwidth, among these metrics

showed to provide the highest improvement in our experiments.

We also discussed the extension of our topology-aware GPU selection scheme to

across the GPU cluster. We defined a cluster-wide topology-aware assignment as a

joint problem of process-to-CPU-core mapping and GPU-to-process assignment. To

address this problem, we proposed a mapping scheme that breaks down the mapping

into three distinct phases: 1) process-to-node mapping; 2) intranode process-to-CPU-

core binding; and 3) intranode GPU-to-process assignment.

Our comprehensive evaluation included both microbenchmark and application

levels. We developed a microbenchmark suite that is capable of modeling different

communication patterns among the GPUs and CPUs. Using our proposed topology-

aware solutions, we observed considerable performance improvement at both the mi-

crobenchmark and application levels. More specifically, on a multi-GPU node, our

topology-aware proposal provided up to 72% and 21% improvement in performance at

the microbenchmark and application levels, respectively. Our proposals also improved

the total benchmark runtime by 90% and showed up to 8% performance improvement

7.1. FUTURE WORK 161

across the GPU cluster.

7.1 Future Work

Our future research plans in general revolve around developing designs that can tackle

the major communication challenges in the HPC clusters with accelerators. In the

following, we will outline some of the opportunities to extend the proposals discussed

in this dissertation.

In Chapter 3, we proposed GPU-aware algorithms for MPI Allreduce operation.

We utilized CUDA reduction kernels and GPU communication features within the

proposed designs to further accelerate this operation. An interesting avenue for future

research would be to extend these designs to other collective operations, such as

MPI Alltoall. A CUDA transpose kernel or CUDA two-dimensional memory copies

can be potentially applied in our designs to accelerate this operation.

In Chapter 4, we proposed a hierarchical framework for collective operations tar-

geting clusters with multi-GPU nodes. We would like to extend this framework by

studying more algorithms within different hierarchy levels. More specifically, we are

interested to further tune our collective algorithms for the underlying hardware, for

instance by utilizing the PCIe full duplex capability, minimizing slow inter-socket

communications, and avoiding throttling the HCA in network transfers. Moreover,

we would like to investigate hierarchical collectives that are tuned for certain message

sizes. While our proposal in this chapter showed to highly improve the microbench-

mark performance for large message sizes, we would also like to evaluate it using

real-world deep learning and HPC applications.

7.1. FUTURE WORK 162

In Chapter 5, we proposed designs that jointly use the CUDA IPC and Host-

Staged data copy mechanisms for GPU collective operations. We also showed that

the NVIDIA MPS service can be used to speedup the proposed designs. However, the

CUDA IPC and MPS service showed some inconsistencies with each other that pre-

vented us from extending our designs to multi-GPU nodes. While this inconsistency

may be resolved with the next generation of this service, we would like to investigate

alternative designs to avoid it in the first place.

We are interested to evaluate our topology-aware schemes in Chapter 6 with other

GPU applications. More specifically, we would like to study applications with dif-

ferent communication patterns and study their behavior. Currently, we manually

decide the metric (i.e., latency, bandwidth, and distance) in our topology-aware map-

ping schemes. An interesting avenue for the future work is to automate this process,

allowing appropriate metric to be selected based on the profiled application char-

acteristics. In general, our topology-aware schemes showed higher improvements for

applications that use larger messages. For applications with small messages, we intend

to study the latency characteristics of the physical topology and utilize latency-based

mapping heuristics to perform efficient GPU assignment.

NVIDIA has recently released the NVIDIA Collective Communications Library

(NCCL) [60] to facilitate the development effort for multi-GPU applications. This

library mimics the MPI collective operations and has a familiar interface for HPC

developers. The NCCL library implements ring-style collectives that are optimized

for throughput. Designing other collective algorithms in this library that can minimize

the slow inter-socket communications and exploit the PCIe full-duplex capability can

be an interesting future work.

7.1. FUTURE WORK 163

While heterogeneous clusters provide resources with massive computational power,

efficiently utilizing them is of paramount importance. Inefficient utilization of these

resources can lead to performance per watt degradation. Our investigation on vari-

ous HPC applications shows that many of them highly underutilize the memory and

computational GPU resources. In this regard, as a future work we would like to

investigate designs that can improve resource utilization and consequently increase

the performance per watt of the application. A potential solution would be to offload

more work on the underutilized GPUs by allowing multiple processes to share their re-

sources. For instance, the number of processes and GPU devices can be decided from

a tuning table and prior to the application runtime. Another interesting alternative

solution is to propose designs that can intelligently select a set of processes to share

different underutilized GPUs. One way to tackle this problem is to use the Minimum

Consistent Subset Cover algorithms to select the minimum subset of processes that

would lead to highest GPU utilization by sharing the GPU resources. The expected

outcome of this work would be improved performance per watt of multi-process ap-

plications running on multi-GPU nodes.

Improving communication in HPC clusters using the underlying hardware or soft-

ware features is another topic of interest for our future work. With the latest GPU

capabilities introduced in Pascal and Volta architectures, new doors for improvement

are opened for our future research. For instance, leveraging the fast NVLink inter-

connect in conjunction with the Unified Virtual Memory (UVM) technology should

fit well in Remote Memory Access operations. GPU kernel designs that are used for

datatype processing should be revisited, specifically with the emergence of the new

fast High-Bandwith Memory 2 (HBM2) technology.

BIBLIOGRAPHY 164

Bibliography

[1] Advance Micro Device - AMD. http://www.amd.com/. [Online; last accessed
07/19/2017].

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al. Deep speech 2: End-to-end
speech recognition in English and Mandarin. In International Conference on
Machine Learning, pages 173–182, 2016.

[3] J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular
dynamics simulations fully implemented on graphics processing units. Journal
of Computational Physics, 227(10):5342–5359, 2008.

[4] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman. Mapping communication
layouts to network hardware characteristics on massive-scale Blue Gene systems.
Computer Science - Research and Development, 26(3-4):247–256, 2011.

[5] M. Beck and M. Kagan. Performance evaluation of the RDMA over ethernet
(RoCE) standard in enterprise data centers infrastructure. In Proceedings of
the 3rd Workshop on Data Center-Converged and Virtual Ethernet Switching,
pages 9–15. International Teletraffic Congress, 2011.

[6] A. Bhatele and L. V. Kalé. An evaluative study on the effect of contention on
message latencies in large supercomputers. In Proc. International Symposium
on Parallel & Distributed Processing (IPDPS), pages 1–8, 2009.

[7] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer,
K. D. Underwood, and R. C. Zak. Intel R© Omni-path architecture: Enabling
scalable, high performance fabrics. In High-Performance Interconnects (HOTI),
2015 IEEE 23rd Annual Symposium on, pages 1–9, 2015.

[8] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst. HWLOC: A generic framework for managing
hardware affinities in HPC applications. In Proc. 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, pages 180–186, 2010.

[9] W. M. Brown, J.-M. Y. Carrillo, N. Gavhane, F. M. Thakkar, and S. J. Plimp-
ton. Optimizing legacy molecular dynamics software with directive-based of-
fload. Computer Physics Communications, 195:95–101, 2015.

BIBLIOGRAPHY 165

[10] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient algorithms for
all-to-all communications in multiport message-passing systems. IEEE Trans-
actions on parallel and distributed systems, 8(11):1143–1156, 1997.

[11] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda. OMB-GPU:
A Micro-benchmark suite for evaluating MPI libraries on GPU clusters. In
European MPI users’ group meeting (EuroMPI), pages 110–120, 2012.

[12] C. Chu, K. Hamidouche, A. Venkatesh, A. Awan, D. Panda . CUDA kernel
based collective reduction operations on large-scale GPU clusters. In Cluster,
Cloud and Grid Computing (CCGrid), 16th IEEE/ACM International Sympo-
sium on, pages 726–735, 2016.

[13] Z. Chen, J. Xu, J. Tang, K. Kwiat, C. Kamhoua, and C. Wang. GPU-
accelerated High-throughput Online Stream Data Processing. IEEE Trans-
actions on Big Data, 2016.

[14] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew. Deep
learning with COTS HPC systems. In International Conference on Machine
Learning, pages 1337–1345, 2013.

[15] CORE-Direct The Most Advanced Technology for MPI/SHMEM Collec-
tives Offloads. http://www.mellanox.com/related-docs/whitepapers/TB_
CORE-Direct.pdf. [Online; last accessed 07/19/2017].

[16] DeppBench, benchmark tool for measuring basic operations involved in training
deep neural network, https://svail.github.io/DeepBench/. [Online; last accessed
03/03/2017].

[17] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı. rCUDA:
Reducing the number of GPU-based accelerators in high performance clusters.
In Proc. Int. Conf. on High Performance Computing and Simulation (HPCS),
pages 224–231, 2010.

[18] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal
of Parallel and Distributed Computing, 74(12):3202–3216, 2014.

[19] G. Faanes, A. Bataineh, D. Roweth, E. Froese, B. Alverson, T. Johnson, J. Kop-
nick, M. Higgins, J. Reinhard, et al. Cray cascade: a scalable HPC system based
on a Dragonfly network. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012.

[20] Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore National
Labs. http://energy.gov/downloads/fact-sheet-collaboration-oak-
ridge-argonne-and-livermore-coral - [Online; last accessed 06/13/2017].

BIBLIOGRAPHY 166

[21] I. Faraji. Accelerated MPI benchmark, https://github.com/imanfaraji/MPI-
ACC (Last updated 09/20/2016).

[22] I. Faraji and A. Afsahi. Design considerations for GPU-aware collective com-
munications in MPI. Concurrency and Computation: Practice and Experience
- Accepted for publication.

[23] I. Faraji and A. Afsahi. GPU-aware intranode MPI Allreduce. In Proceedings
of the 21st European MPI users’ group meeting, pages 45–50. ACM, 2014.

[24] I. Faraji and A. Afsahi. Hyper-Q aware intranode MPI collectives on the GPU.
In Proceedings of the First International Workshop on Extreme Scale Program-
ming Models and Middleware, ESPM2, pages 47–50, 2015.

[25] I. Faraji, S. H. Mirsadeghi, and A. Afsahi. Topology-aware GPU selection on
multi-GPU nodes. In Proc. International Parallel and Distributed Processing
Symposium - Accelerators and Hybrid Exascale Systems Workshop (AsHES),
pages 712–720, 2016.

[26] I. Faraji, S. H. Mirsadeghi, and A. Afsahi. Exploiting heterogene-
ity of communication channels for efficient GPU selection on multi-
GPU nodes. Parallel Computing Journal - in press - 0167-8191
http://dx.doi.org/10.1016/j.parco.2017.07.001, 2017.

[27] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C.
Morse, and S. C. Glotzer. Strong scaling of general-purpose molecular dynamics
simulations on GPUs. Computer Physics Communications, 192:97–107, 2015.

[28] R. L. Graham and G. Shipman. MPI Support for Multi-core Architectures:
Optimized Shared Memory Collectives. In European Parallel Virtual Ma-
chine/Message Passing Interface (PVM/MPI) Users Group Meeting, pages
130–140. 2008.

[29] W. Gropp and K. Buschelman. FPMPI-2 fast profiling library for MPI. [Online;
last accessed 10/14/2016].

[30] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron. Enabling task par-
allelism in the CUDA scheduler. In Workshop on Programming Models for
Emerging Architectures, volume 9, 2009.

[31] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,
V. Morozov, G. Zagaris, T. Peterka, et al. HACC: Simulating sky surveys on
state-of-the-art supercomputing architectures. New Astronomy, 42:49–65, 2016.

[32] InfiniBand Trade Association (IBTA), http://www.infinibandta.org/.

[33] Intel, An Introduction to the Intel QuickPath Interconnect. Intel White Paper,
January 2009.

BIBLIOGRAPHY 167

[34] Intel InfiniBand. http://www.intel.com/Infiniband. [Online; last accessed
07/14/2017].

[35] Intel MPI. http://software.intel.com/en-us/intel-mpi-library. [On-
line; last accessed 10/24/2017].

[36] S. Ito, K. Goto, and K. Ono. Automatically optimized core mapping to sub-
domains of domain decomposition method on multicore parallel environments.
Computers & Fluids, 80:88–93, 2013.

[37] J. Jenkins, J. Dinan, P. Balaji, T. Peterka, N. F. Samatova, and R. Thakur.
Processing MPI derived datatypes on noncontiguous GPU-resident data. IEEE
Transactions on Parallel and Distributed Systems, 25(10):2627–2637, 2014.

[38] J. Jenkins, J. Dinan, P. Balaji, N. F. Samatova, and R. Thakur. Enabling
fast, noncontiguous GPU data movement in hybrid MPI + GPU environments.
In Cluster Computing (CLUSTER), 2012 IEEE International Conference on,
pages 468–476, 2012.

[39] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W. Feng, and
X. Ma. DMA-assisted, intranode communication in GPU accelerated systems.
In Proc. 14th International Conference on High Performance Computing and
Communication & 9th International Conference on Embedded Software and Sys-
tems (HPCC-ICESS), pages 461–468, 2012.

[40] N. T. Karonis, B. R. De Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bres-
nahan. Exploiting hierarchy in parallel computer networks to optimize collec-
tive operation performance. In Parallel and Distributed Processing Symposium,
2000. IPDPS 2000. Proceedings. 14th International, pages 377–384. IEEE, 2000.

[41] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[42] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering. Journal of Parallel and Distributed Computing,
48(1):71–95, 1998.

[43] T. Kielmann, R. F. Hofman, H. E. Bal, A. Plaat, and R. A. Bhoedjang. MagPIe:
MPI’s collective communication operations for clustered wide area systems.
ACM Sigplan Notices, 34(8):131–140, 1999.

[44] D. B. Kirk and W. H. Wen-Mei. Programming massively parallel processors: a
hands-on approach, 3rd edition. Morgan Kaufmann, 2016.

[45] X. Lapillonne, O. Fuhrer, P. Spörri, C. Osuna, A. Walser, A. Arteaga, T. Gysi,
S. Rüdisühli, K. Osterried, and T. Schulthess. Operational numerical weather

BIBLIOGRAPHY 168

prediction on a GPU-accelerated cluster supercomputer. In EGU General As-
sembly Conference Abstracts, volume 18, page 13554, 2016.

[46] S. Li, T. Hoefler, and M. Snir. NUMA-Aware Shared Memory Collective
Communication for MPI. In Proceedings of the 22nd international symposium
on High-performance parallel and distributed computing (HPDC), pages 85–96,
2013.

[47] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
unified graphics and computing architecture. IEEE micro, 28(2), 2008.

[48] T. Lutz, C. Fensch, and M. Cole. PARTANS: An autotuning framework for
stencil computation on multi-GPU systems. ACM Transactions on Architecture
and Code Optimization, 9(4):59:1–59:24, 2013.

[49] A. R. Mamidala, R. Kumar, D. De, and D. K. Panda. MPI collectives on mod-
ern multicore clusters: Performance optimizations and communication char-
acteristics. In Cluster Computing and the Grid, 2008. CCGRID. 8th IEEE
International Symposium on, pages 130–137, 2008.

[50] M. Martinasso, G. Kwasniewski, S. Alam, T. Schulthess, and T. Hoefler. A
PCIe congestion-aware performance model for densely populated accelerator
servers. In In Proc. International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2016.

[51] G. Martinez, M. Gardner, and W.-c. Feng. Cu2cl: A cuda-to-opencl translator
for multi-and many-core architectures. In Parallel and Distributed Systems
(ICPADS), 2011 IEEE 17th International Conference on, pages 300–307. IEEE,
2011.

[52] Mellanox Technologies. http://www.mellanox.com/index.php. [Online; last
accessed 07/14/2017].

[53] G. Mercier and E. Jeannot. Improving MPI applications performance on multi-
core clusters with rank reordering. In Recent Advances in the Message Passing
Interface, pages 39–49, 2011.

[54] S. H. Mirsadeghi and A. Afsahi. PTRAM: A parallel topology-and routing-
aware mapping framework for large-scale HPC systems. In Proc. International
Parallel and Distributed Processing Symposium Workshops (), pages 386–396,
2016.

[55] S. H. Mirsadeghi, I. Faraji, and A. Afsahi. MAGC: A mapping approach
for GPU clusters. In Computer Architecture and High Performance Comput-
ing (SBAC-PAD), 2016 28th International Symposium on, pages 50–58. IEEE,
2016.

BIBLIOGRAPHY 169

[56] MPI3.1. http://www.mpi-forum.org/docs/mpi-3.1/. [Online; last accessed
03/03/2017].

[57] MPICH. http://www.mpich.org/. [Online; last accessed 10/14/2016].

[58] A. Munshi. The OpenCL specification. In Hot Chips 21 Symposium (HCS),
2009 IEEE, pages 1–314, 2009.

[59] MVAPICH2. http://mvapich.cse.ohio-state.edu. [Online; last accessed
10/14/2016].

[60] NCCL - NVIDIA collective communication library (NCCL)
https://github.com/NVIDIA/nccl (Last updated 09/20/2016).

[61] NVIDIA compute unified device architecture programming. http://docs.
nvidia.com/cuda/cuda-c-programming-guide/. [Online; last accessed
06/12/2017].

[62] NVIDIA Corporation, http://www.nvidia.com.

[63] NVIDIA management library, https://developer.nvidia.com/nvidia-
management-library-nvml (Last accessed 09/24/2017).

[64] NVIDIA, ”MPS”, Sharing a GPU between MPI processes: Multi-Process Ser-
vice - vR352, 2015.

[65] NVIDIA profiler user’s guide, http://docs.nvidia.com/cuda/profiler-users-
guide/. [Online; last accessed 09/24/2017].

[66] NVIDIA Tesla P100 - The Most Advanced Datacenter Accelerator
Ever Built, https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf. [Online; last accessed 03/13/2017].

[67] C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux. Scalable lattice Boltz-
mann solvers for CUDA GPU clusters. Parallel Computing, 39(6):259–270,
2013.

[68] Open MPI. http://www.open-mpi.org/. [Online; last accessed 09/24/2017].

[69] F. Pellegrini and J. Roman. Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In High-
Performance Computing and Networking, pages 493–498, 1996.

[70] A. J. Pena and S. R. Alam. Evaluation of inter-and intra-node data transfer
efficiencies between GPU devices and their impact on scalable applications. In
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Inter-
national Symposium on, pages 144–151, 2013.

BIBLIOGRAPHY 170

[71] A. Pompili, A. Di Florio, and C. Collaboration. GPUs for statistical data
analysis in HEP: a performance study of GooFit on GPUs vs. RooFit on CPUs.
In Journal of Physics: Conference Series, volume 762, pages 012–044, 2016.

[72] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda. Effi-
cient Inter-node MPI Communication using GPUDirect RDMA for InfiniBand
Clusters with NVIDIA GPUs. In Parallel Processing (ICPP), 2013 42nd Inter-
national Conference, pages 80–89, 2013.

[73] S. Potluri, H. Wang, D. Bureddy, A. K. Singh, C. Rosales, and D. K. Panda. Op-
timizing MPI communication on multi-GPU systems using CUDA inter-process
communication. In Proc. Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pages 1848–1857, 2012.

[74] Y. Qian and A. Afsahi. Process arrival pattern aware alltoall and allgather on
infiniband clusters. International Journal of Parallel Programming, 39(4):473–
493, 2011.

[75] R. Rabenseifner. Automatic MPI counter profiling of all users: First results on a
CRAY T3E 900-512. In Proceedings of the message passing interface developers
and users conference, volume 1999, pages 77–85, 1999.

[76] R. Rabenseifner. Optimization of collective reduction operations. In Interna-
tional Conference on Computational Science, pages 1–9. Springer, 2004.

[77] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp. Multi-core and
network aware MPI topology functions. In Recent Advances in the Message
Passing Interface, pages 50–60, 2011.

[78] RDMA Consortium. [Online]. available: http://www.rdmaconsortium.org/
(Last accessed 06/13/2017).

[79] E. R. Rodrigues, F. L. Madruga, P. O. a. Navaux, and J. Panetta. Multi-core
aware process mapping and its impact on communication overhead of parallel
applications. In Proc. Symposium on Computers and Communications, pages
811–817, 2009.

[80] P. Sanders and J. Träff. The hierarchical factor algorithm for all-to-all commu-
nication. Euro-Par 2002 Parallel Processing, pages 17–51, 2002.

[81] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang, and D. K. Panda. HAND:
A hybrid approach to accelerate non-contiguous data movement using MPI
datatypes on GPU clusters. In Parallel Processing (ICPP), 2014 43rd Interna-
tional Conference on, pages 221–230. IEEE, 2014.

[82] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and D. K. D.
Panda. Designing efficient small message transfer mechanism for inter-node MPI

BIBLIOGRAPHY 171

communication on InfiniBand GPU clusters. In High Performance Computing
(HiPC), 2014 21st International Conference on, pages 1–10, 2014.

[83] ”Sierra”, Lawrence Livermore National Laboratory. http://computation.
llnl.gov/computers/sierra. [Online; last accessed 06/13/2017].

[84] A. K. Singh. Optimizing All-to-All and Allgather Communications on GPGPU
Clusters. PhD thesis, The Ohio State University, 2012.

[85] A. K. Singh, S. Potluri, H. Wang, K. Kandalla, S. Sur, and D. K. Panda. MPI
Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and
Benefit. In Cluster Computing (CLUSTER), 2011 IEEE International Confer-
ence on, pages 420–427, 2011.

[86] S. Sistare, R. Vaart, and E. Loh. Optimization of MPI collectives on clusters
of large-scale SMPs. In Supercomputing, ACM/IEEE 1999 Conference, pages
23–23. IEEE, 1999.

[87] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open-source hyper-
transport core. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 1(3):14, 2008.

[88] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard
for heterogeneous computing systems. Computing in science & engineering,
12(3):66–73, 2010.

[89] ”SUMMIT”, Oak Ridge National Laboratory. https://www.olcf.ornl.gov/
summit/. [Online; last accessed 06/13/2017].

[90] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective commu-
nication operations in MPICH. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[91] The TOP500 June 2017 List. https://www.top500.org/lists/2017/06/.
[Online; last accessed 09/03/2017].

[92] V. Tipparaju, J. Nieplocha, and D. Panda. Fast collective operations using
shared and remote memory access protocols on clusters. In Parallel and Dis-
tributed Processing Symposium, 2003. Proceedings. International, 2003.

[93] J. L. Träff. Improved MPI all-to-all communication on a Giganet SMP cluster.
Lecture notes in computer science, pages 392–400, 2002.

[94] J. L. Traff and A. Rougier. MPI collectives and datatypes for hierarchical all-
to-all communication. In Proceedings of the 21st European MPI users’ group
meeting, page 27. ACM, 2014.

BIBLIOGRAPHY 172

[95] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically tuned collective
communications. In Super Computing, International Conference on, 2000.

[96] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, and D. K. Panda.
Optimized non-contiguous MPI datatype communication for GPU clusters: De-
sign, implementation and evaluation with MVAPICH2. In Cluster Computing
(CLUSTER), 2011 IEEE International Conference on, pages 308–316, 2011.

[97] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda.
MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clus-
ters. Computer Science-Research and Development, 26(3-4):257, 2011.

[98] L. Wang, M. Huang, and T. El-Ghazawi. Exploiting concurrent kernel execution
on graphic processing units. In High performance computing and simulation
(HPCS), 2011 international conference on, pages 24–32, 2011.

[99] L. Wang, M. Huang, and T. El-Ghazawi. Towards efficient GPU sharing on
multicore processors. ACM SIGMETRICS Performance Evaluation Revision,
40(2):119–124, 2012.

[100] L. Wang, M. Huang, V. K. Narayana, and T. El-Ghazawi. Scaling scientific
applications on clusters of hybrid multicore/GPU nodes. In Proceedings of the
8th ACM international conference on computing frontiers, page 6. ACM, 2011.

[101] F. Wende, F. Cordes, and T. Steinke. On improving the performance of
multi-threaded CUDA applications with concurrent kernel execution by ker-
nel reordering. In Application Accelerators in High Performance Computing
(SAAHPC), 2012 Symposium on, pages 74–83, 2012.

[102] F. Wende, F. Cordes, and T. Steinke. Multi-threaded Kernel Offloading to
GPGPU using Hyper-Q on Kepler Architecture. In Technical Report 14-19,
ZIB, Takustr, 2014.

[103] M. Wolfe. The OpenACC application programming interface, version 2.0, 2013.

[104] W. Wu, G. Bosilca, R. Vandevaart, S. Jeaugey, and J. Dongarra. GPU-Aware
Non-contiguous Data Movement In Open MPI. In Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed Com-
puting, pages 231–242, 2016.

BIBLIOGRAPHY 173

Publication List

Journal Publications

• Iman Faraji, Seyed H. Mirsadeghi, and Ahmad Afsahi. Exploiting Hetero-

geneity of Communication Channels for Efficient GPU Selection on Multi-GPU

Nodes. Parallel Computing Journal - in press - 0167-8191, http://dx.doi.org/10.

1016/j.parco.2017.07.001, 2017.

• Iman Faraji and Ahmad Afsahi. Design Considerations for GPU-Aware Col-

lective Communications in MPI. Concurrency and Computation: Practice and

Experience Journal - Accepted for publication.

Conference and Workshop Publications

• Iman Faraji, Seyed H. Mirsadeghi, and Ahmad Afsahi. Topology-aware GPU

selection on multi-GPU nodes. In Proceedings of the International Parallel and

Distributed Processing Symposium, Accelerators and Hybrid Exascale Systems

Workshop (AsHES), 712–720, 2016 - Best Paper Award.

• Seyed H Mirsadeghi, Iman Faraji, and Ahmad Afsahi. MAGC: A Map-

ping Approach for GPU Clusters. In Computer Architecture and High Per-

formance Computing (SBAC-PAD), 28th International Symposium on, 50–58,

IEEE, 2016.

• Iman Faraji and Ahmad Afsahi. Hyper-A Aware Intranode MPI Collectives on

the GPU. In Proceedings of the SuperComputing Conference, First International

Workshop on Extreme Scale Programming Models and Middleware (ESPM2),

pages 47–50, 2015.

BIBLIOGRAPHY 174

• Iman Faraji and Ahmad Afsahi. GPU-Aware Intranode MPI Allreduce. In

Proceedings of the 21st European MPI Users’ Group Meeting (EuroMPI), page

45–50. ACM, 2014.

