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Abstract 

 

High Performance Computing (HPC) has served as the enabler for several scientific and 

engineering accomplishments. Consequently, there has been an ever-increasing demand to create 

larger and faster high performance systems. To efficiently utilize the HPC resources, parallel 

applications rely on software that abstract the cluster hardware. Currently, the most prominent 

software abstraction standard in HPC is the Message Passing Interface (MPI). Parallel applications 

entail communications to synchronize and to share intermediate results. To minimize the duration of 

application executions, it is crucial to overlap such communications with the computations. 

The MPI standard specifies three messaging semantics, namely, point-to-point communication, 

one-sided communication and collectives. In point-to-point communication, the overlap of large 

payloads has been a problem and there have been several proposals to address this. Among these 

approaches, asynchronous message progression is more adoptable because of its ability to deal with a 

wider range of inefficiencies and its non-reliance on specialized hardware. Traditional asynchronous 

message progression approaches have relied on either polling or interrupt based threads. The polling 

based approach is more responsive but is resource-intensive. On the other hand, the interrupt based 

approach is resource-efficient but is associated with overheads. This thesis proposes a node-wide 

asynchronous message progression technique that offers the advantages of both polling and interrupt 

based approaches, while minimizing or eliminating their adverse effects. This approach was found to 

be scalable, incur negligible overheads, induce the ideal amount of overlap in most scenarios of point-
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to-point communications and cast a small memory footprint. This technique was found to improve the 

overlap of certain collectives as well. 

One-sided MPI communication offers the ability to transfer messages with few or no 

synchronizations, regardless of the payload size. This scheme promotes overlaps but there are several 

overlap inhibiting scenarios. This thesis proposes a similar asynchronous message progression 

technique to address such scenarios. The one-sided implementation was able to achieve overlap in the 

different inefficient scenarios, with negligible overheads and a small addition to the memory footprint. 
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Chapter 1 

Introduction 

 

The speed of the computations can be enhanced by increasing the clock frequency of the 

processor, however, only up to a certain limit. However, power and heat dissipation requirements 

make it impractical to fabricate very high frequency processors [53]. Also, certain applications in 

science, engineering and business domains execute complex algorithms and work on large datasets 

that may take years, decades or even centuries to run on a single processor. The solution to this is 

parallel computing, in which the main problem is divided into smaller subsets and the sub-problems 

are solved on different processors. High Performance Computing (HPC) uses this idea to solve 

computationally-intensive problems on systems consisting of hundreds, thousands or even millions 

of CPU cores [7]. It may not be apparent, but HPC is ubiquitous. Today, HPC is a vital component 

of several scientific, industrial and commercial fields such as physics (nuclear, astrophysics, 

applied, particle, aerodynamics), biochemistry (cancer and drug research), geology, mathematics, 

defense, medical imaging and diagnosis, financial trading and climate modelling, to name a few. 

The performance of a computer is often measured in terms of floating-point operations per 

second (FLOPS). Top500 [80] is an organization that uses this yardstick to rank the fastest 

supercomputers of the world. At the time of writing, this list featured 95 supercomputers that are 

capable of delivering petascale performance. Meaning, that they can perform over quadrillion (1015) 
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floating-point operations per second. The fastest supercomputer in the November, 2016 rankings 

was Sunway TaihuLight with over 10 million cores and about 93 Petaflops of compute power. 

Because of the ever increasing demand for HPC, this list is not expected to stagnate anytime soon, 

in fact, the next milestone is to reach exascale [3] by 2023. In the past, the high procurement and 

maintenance costs limited HPC access to large government agencies and wealthy corporations. The 

scenario today, however, is quite different due to the widespread adoption of commodity 

computing. This is a cost effective solution in which an HPC system can be assembled from off-

the-shelf computer components instead of choosing proprietary options. Such a system is called a 

cluster, which is comprised of several compute nodes connected to each other by means of a high-

performance network. Among other components, each compute node contains one or more 

processors and can be supplemented with Graphics Processing Units (GPUs) and many-core co-

processors such as Intel Xeon Phi [69]. Clusters are becoming increasingly prevalent in HPC, in 

fact, at the time of writing, 86 percent of the Top500 supercomputers were found to be clusters. 

The rest were Massively Parallel Processing (MPP) systems which are proprietary solutions. 

In a cluster, the computations may be performed locally on each compute node but they 

communicate with each other to synchronize and exchange intermediate results. This exchange of 

information is accomplished by complex networking code, on top of high-speed networks, that use 

low-level Application Programming Interfaces (APIs). To alleviate the application programmers 

from this daunting task, parallel programming paradigms (or models) [6] have been introduced. 

Standardized programming models are also useful to facilitate the portability of application code 

as different clusters may have different underlying hardware. Not surprisingly, researchers think 

that the race to exascale computing requires as much attention on the parallel programming 

paradigms as the underlying hardware. One of the most prominent paradigms in HPC, that has been 

around for decades is the message passing paradigm, in which the data is exchanged between 

individual processes by explicit communication and synchronization. The Message Passing 
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Interface (MPI) standard is the flag-bearer of the message passing paradigm and is governed by 

the MPI Forum [54]. It specifies different messaging semantics and a set of API calls to facilitate 

communications between processes. Since its inception in 1992, the MPI standard has seen 

widespread acclamation by the HPC community, and it is expected to continue with its success in 

the years to come [29]. The flexibility that it offers and its suitability for HPC systems make it 

unlikely to be replaced by other paradigms in the near future. MPI can also be combined with other 

programming models such as shared memory [64] and PGAS [21] to form hybrid paradigms which 

are referred to as MPI + X, X referring to other programming models. 

1.1 Motivation 

When a serial application is parallelized, its speedup may not be equal to the amount of 

increase in the computational power. In other words, increasing the number of processors from one 

to one hundred cannot guarantee the execution time to come down to a hundredth. This is because 

of the necessary communications between the processors to exchange data and arrive at the final 

result. Therefore, the communication latency can significantly influence an application’s execution 

time. Also, MPI applications often contain chains of processes that depend on each other. In such 

a situation, a delay at one process can easily propagate to the rest of the processes in the chain. 

Such an effect can be devastating to the performance, especially when large clusters are involved. 

The frequency and volume of communications is largely dictated by the application and 

reducing such parameters is beyond the scope of the MPI standard. However, an effective usage of 

the MPI calls can improve the application performance by hiding the communication latency. That 

is, the MPI calls can be issued in a way such that the communication progresses in parallel with the 

computation. This communication/computation overlap is facilitated by modern interconnects, 

such as Intel Omni-Path [11], InfiniBand [36], iWARP Ethernet and BXI [20], in which the 

communication primitives can be offloaded to the network interface card (NIC) and the CPU 
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does not have to be involved throughout the length of the communication. Effective usage of MPI 

calls can provide the means to improve the overlap but there are scenarios where the serialization 

of communication and computation cannot be avoided by the application programmer. In some of 

these scenarios, the fundamental messaging semantics of MPI are not enough to hide the latencies 

of the communications. Such scenarios require optimizations to the MPI middleware or require 

augmenting it with support mechanisms to induce communication/computation overlap which 

would have not been possible with a reference MPI implementation. 

The MPI standard specifies three types of communication semantics, namely, two-sided or 

point-to-point communications, one-sided or RMA communications and collectives. The details of 

these communication semantics are discussed in Chapter 2. Two-sided communication is based on 

a send-receive model, in which both the sender and the receiver have to explicitly issue MPI calls 

for a successful message transfer. On the other hand, one-sided communication is based on the 

direct access to the remote peer’s buffer. Transfer of one-sided messages do not require MPI calls 

to be issued by all the involved peers. In fact, only the peer that intends to read or write data to the 

other peer is required to issue the MPI call. However, the transfer of an RMA message cannot be 

initiated until the peers have synchronized amongst themselves. This synchronization essentially 

grants permissions for remote memory operations. A synchronization is required again after all the 

RMA communications are complete. Finally, the MPI standard specifies API calls for some special 

communications patterns that are frequently used in parallel applications. These functions are called 

collectives and are usually used when more than two peers are involved. Collective calls can often 

be replaced by a group of two-sided or one-sided calls, however, the use of the former is generally 

suggested to take advantage of the middleware optimizations. 

There are a large number of scientific applications based on MPI, and a huge percentage of 

these applications have a large codebase. Such applications are often executed over extended 

periods of time, therefore, the occurrence of communication/computation serializations is not 
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implausible. Also, because of the nature of such applications and the scale at which they are 

executed, even small improvements in communication/computation overlap can have a huge 

overall impact on the performance. 

1.2 Problem Statement 

In the context of two-sided MPI communication, a blocking call is a function that does not 

return until the communication is complete. Use of a blocking call ensures the serialization of 

computation and communication, but it cannot be avoided in certain scenarios. Also, with modern 

high-speed interconnects, the latency of small messages (some bytes) does not have a huge impact 

on the performance if it gets serialized [22]. Therefore, using blocking calls for small messages is 

acceptable. But, in order to observe any overlap in the application, the use of non-blocking calls is 

mandatory. A non-blocking two-sided call tries to initiate the communication immediately if 

possible, otherwise, it defers the communication for later and returns. This message is then expected 

to transfer when the process is involved in other activities. However, each non-blocking call has to 

be ultimately blocked at some point. If the message transfer happens before that time, then there is 

negligible waiting at that blocking call.  

Point-to-point messages can be exchanged using two protocols, namely, eager and 

rendezvous. In the eager protocol, the sender sends the message directly to the receiver, without the 

need for any synchronization. On the other hand, the rendezvous protocols require synchronizations 

by means of control signals. With the eager protocol, there is always a 100 percent overlap but the 

assumption is that there will always be enough amount of registered buffer available at the receiver 

[34], which is an unrealistic assumption for large messages (above a few kilobytes). So, large 

messages are often sent using the rendezvous protocol, in which a co-ordination between the peers 

is required before the transfer of the message. Overlap can be achieved at either or both of the peers 

if certain conditions are met [67], such as the timely issuance of MPI calls and presence of enough 
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computation to overlap the communication with. In a reference MPI implementation, however, 

there might be no overlap even if these conditions are met [76]. This is possible when the control 

signal arrives while the process is involved in a computation. While it is busy, the control signal 

remains unacknowledged by it. So, even though the message transfer conditions were met, the 

transfer could not be initiated immediately, leading to a potentially impaired overlap. 

As mentioned previously, the transfer of RMA messages cannot be initiated until there is a 

synchronization between the peers. A synchronization is also required after the completion of all 

the RMA operations. The calls for the transfer of RMA messages is always non-blocking, however, 

the synchronization calls can be blocking or non-blocking. Blocking synchronizations have been 

shown to impede communication/computation overlaps [33, 45, 88], therefore, the use of non-

blocking RMA synchronizations is vital to observe overlaps [88]. Like two-sided communication, 

certain conditions need to be satisfied in order to overlap RMA communications with computations. 

If a peer does not synchronize timely or if it does so when the other peer is busy, then the RMA 

communications may end up being serialized. Therefore, the use of non-blocking calls does not 

guarantee overlaps in all scenarios. Also, unlike two-sided communications, there is no upper limit 

on the number of MPI processes that may be involved in RMA synchronizations, so the 

unproductive delays may get compounded and propagated to several other peers. This may have a 

significant impact on the overall performance of the application. 

This thesis focuses on the above mentioned inefficiencies and tries to answer the following research 

questions: 

1. What are the exact scenarios that inhibit communication/computation overlap in 

rendezvous protocols for point-to-point communications and RMA synchronizations for 

one-sided communication? What is the state-of-the-art in supporting communication/ 

computation overlap in rendezvous protocols as well as RMA synchronizations? 
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2. Is it possible to develop a node-wide message progression technique that could achieve the 

highest possible communication/computation overlap in all scenarios for point-to-point 

communications?  Is it possible for such a solution to be deterministic, scalable, resource 

efficient and with negligible overhead? Can parallel applications benefit from such a 

solution? 

3. Is it possible to extend such a communication/computation overlap technique to one-sided 

RMA communications? Does such a solution provide a low-overhead, scalable, and 

resource-efficient overlap approach for one-sided communications and applications that 

use them? 

1.3 Contributions 

From the last section, it can be inferred that both two-sided and one-sided communications 

suffer from similar inefficiencies. Not surprisingly, there are similar categories of solutions for 

these inefficiencies, such as, protocol improvement approaches [51, 61, 66, 74] for two-sided 

communication or non-blocking RMA synchronizations [88], hardware-assisted approaches [20, 

27, 70] and host-based approaches [34, 73, 76, 87]. One common inefficiency occurs when the 

send/receive or the RMA synchronization function is not called timely, that is, the other peer is so 

late that there is not enough computation to overlap with. The timely arrival of the peers depends a 

lot on the application’s algorithm. Altering this at the middleware could alter the behaviour of the 

application itself, therefore, the application programmer must take care to avoid such situations as 

much as possible. Certain solutions exist for two-sided communications [51, 74] but they are 

associated with issues of their own. The details of these approaches are discussed in Chapter 3. 

The other scenario in which an overlap might be prevented is when one of the peers tries to 

synchronize while the other peer is busy in a computation. In this case, the transfer of 

communications cannot initiate before the end of the latter’s computation. One solution that has 
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been proven to work well for this scenario is asynchronous message progression [34, 73]. The idea 

behind this approach is to have a thread that is dedicated for progressing the communications. If a 

peer issues the send/receive or RMA synchronization call while the application threads of the other 

peer are busy, then the communications are initiated immediately by the asynchronous progression 

thread of the latter. 

Chapter 3 discusses the asynchronous progression techniques that have been proposed in the 

literature. The problem with the current techniques is that they are either resource intensive or 

associated with several overheads. Also, there is no practical solution that works well for both two-

sided and one-sided communications. Bearing the limitations of the current techniques in mind, 

this dissertation makes the following contributions: 

1. The idea presented in this thesis is a novel asynchronous message progression solution that 

can improve the overlap of two-sided communications, one-sided communications, as well 

as some collectives. 

2. The existing approaches for point-to-point communication are either based on interrupts 

[46, 76] or polling [34]. Interrupt based approaches are resource efficient but are associated 

with several overheads. Polling based approaches are more responsive but since the 

existing techniques propose the usage of one progression thread per MPI process, this can 

either lead to the wastage of compute resources or cause oversubscription. The approach 

proposed in Chapter 4 is a node-wide message progression technique which utilizes the 

strengths of both polling and interrupt based approaches, while avoiding their 

shortcomings. It uses the available spare resources to launch processes that aid in message 

progression. This makes it suitable for modern compute nodes that are equipped with 

many-core and multi-core devices. Also, this is a deterministic approach, so it is immune 

to the overheads that are caused due to the erratic arrival order of the peers. 
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3. The lack of two-sided node-wide progression techniques meant that the existing micro-

benchmarks could not be used to evaluate the new proposal. Chapter 4 describes a set of 

new micro-benchmarks for two-sided communications where multiple processes of a node 

may communicate at the same time. 

4. The existing overlap techniques for one-sided communication address only a subset of the 

inefficiencies. Also, most these approaches work exclusively for one-sided communication 

only. The approach proposed in Chapter 5 is a node-wide asynchronous message 

progression technique that is implemented on top of NewRMA [86, 88]. NewRMA has 

been proven to address several RMA inefficiencies, therefore, the proposed 

implementation improves NewRMA and address a large subset of inefficiencies. 

1.4 Outline 

The rest of the thesis is divided into 5 chapters. Chapter 2 provides the background and lays 

the foundation for the following chapters.  It starts by briefly discussing the different parallel 

programming paradigms like message passing, shared memory and PGAS. It then focuses on MPI 

and describes the different message passing semantics specified in the MPI standard. Chapter 3 

discusses the inefficiencies that prevent communication/computation overlaps in MPI and presents 

a literature review of the existing approaches. Specifically, it presents an in-depth analysis of the 

rendezvous protocols and RMA synchronizations, and highlights the scenarios where the overlap 

is inhibited. Chapter 4 proposes a novel approach for improving the overlap of two-sided MPI 

communications. It is an asynchronous message progression technique called SmartInterrupts. This 

chapter describes the design and implementation of SmartInterrupts, followed by its performance 

evaluation. Chapter 5 extends the design of SmartInterrupts to one-sided communications. It 

highlights the issues that are yet to be efficiently handled in the current approaches and addresses 

them through SmartInterrupts. It then reports the performance results of the micro-benchmarks and 
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an application that were used to evaluate the proposed design. Finally, this thesis is concluded in 

Chapter 6 which remarks on the future scope of the research presented in this document. 
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Chapter 2 

Background 

 

Scientific and engineering applications execute complex algorithms that would take an 

impractical amount of time to run on a single processor. The executions of such applications may 

be sped up by using HPC, which utilizes parallel computing to run these applications on systems 

comprising of hundreds, thousands or millions of processors. The compute power of HPC systems 

are generally measured in terms of floating-point operations per second or FLOPS. This metric is 

used by Top500 [80] to rank the fastest supercomputers of the world. Currently, there are several 

petascale (1015) systems on this list and some of them employ millions of processors. However, the 

demand for HPC is immense and its horizons are ever-expanding. In fact, there is a strong drive 

among the HPC community to achieve exascale computing [3] by 2023. 

This chapter is intended to provide the relevant background for the rest of the discussion in 

this thesis. It will introduce the HPC hardware, with a detailed discussion on RDMA and 

InfiniBand. This will be followed by introducing the different parallel programming paradigms 

such as shared memory, PGAS and message passing. The focus will then be concentrated on MPI 

and its different messaging semantics such as point-to-point communication, collectives and one-

sided communication. With respect to these messaging semantics, this chapter also aims to discuss 

important concepts such as message matching, message progression and communication/ 

computation overlap. 



 

12 

 

2.1 HPC Clusters 

In the past, access to HPC systems was limited to government agencies and big corporations. 

One of the reasons for this is the relatively high monetary costs associated with proprietary 

solutions offered by companies such as IBM and Cray. The scenario today, however, is quite 

different due to the advent of commodity cluster computing. Clusters are associated with lower 

procurement and maintenance costs, and can be assembled using widely available components. 

Currently, 86 percent of the Top500 supercomputers are clusters. As illustrated in Figure 2.1, a 

cluster consists of several compute nodes that are connected to each other through an interconnect. 

The computations are performed on the compute nodes which use the interconnect to share the 

intermediate results or to synchronize. In the figure, the components inside the compute nodes that 

are highlighted in blue are mandatory and the ones in green are optional. The CPUs are the primary 

compute elements and may be supported by GPUs and co-processors. GPUs and co-processors are 

becoming increasingly prevalent in modern clusters. Compared to the CPUs, these have a large 

number of relatively low power cores and are ideal for some massively parallel applications. 

As mentioned in Chapter 1, the speedup of a serial application may not scale linearly when it 

is parallelized. Also, increasing the parallelization usually has a diminishing return on the speedup. 

This is because of the necessary communications and synchronizations between the parallel tasks. 

In case of a cluster, this entails inter-node communications through the interconnect. In order to 

achieve maximum speedup, these interconnects not only have to be fast but also provide special 

features to optimize the communications. One such feature is to support the offloading of the 

communications to the network interface card (NIC). This reduces the involvement of the CPU in 

communications and allows it to spend more time on computations; thereby providing the 

possibility of overlapping the communication latencies with the computations. Today, the most 

prevalent high performance interconnect is InfiniBand [36]. In fact, at the time of writing, more 
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than 40 percent of the top 500 fastest supercomputers use InfiniBand [80]. Other high performance 

interconnects include Intel Omni-Path Fabric [11], Bull eXascale Interconnect (BXI) [20], iWARP 

Ethernet and RoCE for clusters, and Cray Aries [24] and IBM PERCS [5] for MPP Systems. 

Because of its popularity, this thesis frequently refers to InfiniBand; however, the discussions and 

proposals presented herein are not bound to it and can be extended to other interconnects. The 

primary reason behind this is Remote Direct Memory Access (RDMA) [68], which is the common 

enabling technology behind most of the high performance interconnects. 

2.1.1 Remote Direct Memory Access and InfiniBand 

Over the years, RDMA has become synonymous with HPC networking. RDMA capable 

networks enable low-latency and high-throughput communications, which are desirable traits for 

the current petascale and future exascale systems. RDMA supports zero-copy semantics through 

which data can be moved between the communicating peers, without the involvement of the 

operating system (OS). Figure 2.2 compares the zero-copy mechanism of RDMA with the copy 

mechanism involved in a more traditional protocol such as TCP/IP (Transfer Control 

Protocol/Internet Protocol). As can be seen in the figure, TCP/IP requires copying the data at 

 

Fig. 2.1. Illustration of a HPC Cluster 
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multiple intermediate locations at both the sender and the receiver, before the data reaches the target 

application. All these intermediate transfers require the participation of the CPU. This is not 

suitable for HPC applications as it would cause frequent disruptions in the computations. RDMA, 

however, directly deals with the address of the remote application buffer, and the data transfer is 

carried out by the NICs themselves. The CPU is only involved for a very short time interval to add 

the message transfer request to the NIC. Also, in case of a traditional interconnect such as Ethernet, 

the operating system is the sole owner of the NIC. Therefore, the sending application cannot access 

the NIC directly and must depend on the operating system to relay the information to the NIC. On 

the other hand, the receiving application must depend on its operating system to relay the messages 

that arrive on its NIC and are addressed to it. RDMA offers OS-bypass mechanisms through which 

the applications can directly access the NIC and send or receive data without involving the 

operating systems at either ends. 

One of the most popular networking standards that supports RDMA natively is InfiniBand 

[36]. The high performance and versatility delivered by InfiniBand makes it the interconnect of 

choice in HPC. InfiniBand provides two transfer semantics; a channel semantic called 

Send/Receive and a memory semantic supporting RDMA Read and RDMA Write operations. In 

the channel semantic, the sending side does not have any information about the receiver’s buffer 

address. It requires a data-structure to be pre-posted at the receiver, so that when the sender sends 
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Figure 2.2. Comparison of Copy Mechanisms between TCP/IP and RDMA 
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its message, it gets stored at the right place in the receiver. If the data-structure is not pre-posted, 

then the receiver will either send a Receiver Not Ready (RNR) packet to the sender or silently drop 

the message, depending upon the transport service type such as Reliable Connected and Unreliable 

Connected. In the memory semantic, one of the following is required for message transfer: the 

sender is made aware of the receiver’s buffer address for RDMA Write or the receiver is made 

aware of the sender’s buffer address for RDMA Read. Typically, this information is exchanged via 

control messages before an RDMA Write is issued by the sender or an RDMA Read is issued by a 

receiver. Once the peer’s buffer address is known, in RDMA Write, the sender initiates a data 

transfer to the receiver’s buffer. Similarly, in RDMA Read, the receiver initiates a data transfer 

from the sender’s buffer to its local buffer. 

In InfiniBand, messages are exchanged over channels that connect the endpoint of one 

application to the endpoint of any other application or service with which the application needs to 

communicate. These endpoints are termed as Queue Pairs (QPs), consisting of one Send Queue 

and one Receive Queue. Message transfer operations are performed by adding Work Requests 

(WR) to these queue pairs. An important field in the WR data structure is the operation code 

(opcode) which should be set according to the desired operation. Another important group of fields 

are those that require information about the local or remote memory, which should be set according 

to the operation. Therefore, in order to create WRs, appropriately-sized memory regions have to be 

first registered with the Host Channel Adapter (HCA). For Send/Receive (non RDMA read/write) 

operations, WRs have to be posted at both sender and receiver, and the information about their 

local registered memory regions is specified in the WRs. Several of these non-contiguous local 

memory regions can be associated with one WR by specifying them in an array of data structure 

called Scatter-Gather Element (SGE). 

When WRs get completed, their completion information is added to a queue called 

Completion Queue (CQ).  InfiniBand provides two ways of knowing completions, event 
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notification and polling. By default, event notification is blocking in nature and is interrupt-driven. 

Also, for event notification, a request has to be first made using the appropriate API call. If a 

completion happens on the associated CQ, then an interrupt is generated based on the request made 

by the aforementioned API call. So, in interrupt-driven completion detection, the thread looking 

for completions simply “sleeps” until it is awoken by an interrupt. The idea behind polling based 

completion detection is very straightforward. Whenever completion information is required, the 

associated CQ is polled for completion events. Upon success, the API call returns a list of Work 

Completions (WC), and an empty list is returned if there are no WCs in the CQ. Note that this call 

is non-blocking. So, it may have to be called multiple times before the completion of a particular 

WR is known. 

2.1.2 NUMA Based Compute Node 

In addition to having multiple compute nodes, each compute node of modern clusters may be 

equipped with multiple CPUs, with each CPU having several cores. Therefore, intra-node 

communications may happen between CPU cores and between distinct CPU sockets. A NUMA 

node (Figure 2.3) consists of a CPU and one or more local memory modules that are directly 

connected to the CPU’s memory controller. A CPU can access the memory of other NUMA nodes 

by means of a proprietary inter-socket interconnect such as Intel’s QuickPath Interconnect [38] and 

AMD’s HyperTransport Technology [4]. Data access across NUMA nodes is slower than accessing 

the local memory but faster than accessing data on another compute node. Inter-socket 

communication happens implicitly and is entirely managed by the OS. The application merely has 

to use an inter-process communication (IPC) mechanism such as shared memory. 
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2.1.3 Parallel Programming Paradigms 

Fast execution of parallel applications not only requires high performance hardware but also 

the efficient use of the hardware resources. To achieve this and to relieve the application 

programmer of dealing with low-level communications and synchronizations, several parallel 

programming models have been developed over the years [6]. A parallel programming model 

essentially provides an abstraction for the underlying hardware and memory architecture to the 

application programmer. The memory architecture can be shared or distributed, and modern 

commodity clusters can support either. Nowadays, the parallel programming models can be 

implemented on any hardware architecture. However, the choice of a particular programming 

model for a certain application is not trivial, as the same application can produce different 

performance results when implemented using different programming models [50]. 

 

Fig. 2.3. Anatomy of a NUMA Compute Node 
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The existing parallel programming models can be broadly classified into three categories: 

shared memory, partitioned global address space and distributed memory or message passing. It 

is, however, possible to employ multiple parallel programming models in a single application. Such 

a combination of models is referred to as a hybrid model [21]. This chapter provides a brief 

description about the different parallel programming models and then discusses the different 

messaging semantics specified in the Message Passing Interface (MPI) [54] standard. 

2.2 Shared Memory Model 

The shared memory model can be thread based or non-thread based. In a non-thread based 

model, each process has access to a common address space to which reads and writes can be 

performed asynchronously. To avoid race conditions, access to the common address space can be 

controlled by the use of locks or semaphores. With respect to the shared memory model, a 

semaphore is a variable that allows a process to have an exclusive access to the common address 

space for a specific time interval. During this interval the process that has the exclusive access 

(lock) can manipulate the data in the common address space; whereas the other processes cannot 

do so until they are granted the lock. This is a simple programming model with no concept of data 

ownership; hence, any process can access or manipulate the data in the shared memory. On a 

machine with a shared memory architecture, support for a purely process based shared memory 

model may be provided natively through the operating system (OS) or through the compiler. On a 

distributed memory architecture, such a programing model can be supported through specialized 

hardware or software, for example, Linda [1] and TreadMarks [41]. 

In the thread based shared memory programming model, instead of executing instructions on 

multiple heavy-weight processes, each process can spawn multiple light-weight threads which can 

execute the tasks concurrently. In this model, all the threads of a particular process are associated 

with a common address space. If there are multiple processes involved; for example, in case of a 
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hybrid model, the processes themselves may or may not have a common address space. Two 

popular standards of this model are POSIX Threads or Pthreads [48] and OpenMP [14]. 

2.3 Partitioned Global Address Space Model 

In the partitioned global address space (PGAS) model [2], the address space of the entire job 

is global. The global address space is organized in a data structure such as an array or a cube and 

each element of this data structure is a dataset. In this model, work is performed by threads that 

collectively act on the global address space. Each thread has affinity with a partition and it works 

exclusively on that partition. However, it can access data from other partitions. The threads may 

also have a private address space and may synchronize among themselves by means of barriers and 

locks. The important distinction between PGAS and the thread based shared memory model is that 

in the latter, the shared memory is confined locally to the compute node. However, in PGAS, the 

local memory can be logically shared across the entire cluster. Two widely used implementations 

of PGAS are Unified Parallel C (UPC) [23] and Coarray Fortran [58]. 

2.4 Message Passing Model 

The message passing model or distributed memory model is the most popular programming 

model used in HPC [25]. A parallel job executed with this model may consist of several of these 

processes running on the same physical machine, or span across multiple machines. These 

processes communicate and synchronize with each other by sending and receiving messages.  

The Message Passing Interface [54] is the de-facto standard based on this model. MPICH 

[55], MVAPICH [56] and OpenMPI [60] are the popular open-source implementations of the MPI 

standard. These implementations are referred to as middleware as they completely abstract the low-

level hardware and communication functions, and expose only the API calls specified in the MPI 

standard. Most MPI implementations support a variety of networks like InfiniBand [36], iWARP 
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Ethernet, RoCE and Intel Omni-Path [11]. Also, they are responsible for tasks like process 

spawning and mapping, setting up connections between the processes and gracefully releasing 

hardware resources before application termination. The application programmer can simply use the 

appropriate MPI calls to perform intra-node or inter-node communications. 

The MPI standard specifies three types of communication semantics: two-sided or point-to-

point communication, collective communication and one-sided communication or Remote Memory 

Access (RMA). 

2.4.1 Point-to-point Communication 

As the name suggests, point-to-point communication involves only a source and a destination. 

The source and destination can be alternatively called sender and receiver, respectively. The 

sending of a message is initiated by the MPI_Send family of calls and the receiving is initiated by 

the MPI_Recv family of calls. The send requests are matched to the receive requests based on the 

parameters of rank, tag and communicator ID. The communicator ID or context ID is a handle 

to a group of processes. Rank specifies the rank of the peer in the specified context ID. The tag 

parameter can be used to distinguish between multiple messages that involve the same peers in the 

same communicator. Additionally, the receiver may use wildcards like MPI_ANY_TAG and/or 

MPI_ANY_SOURCE to accept messages with any tag and from any source, respectively. 

The sending and receiving MPI calls are available in both blocking and non-blocking variants. 

A blocking receive call (MPI_Recv) will cause the program flow to wait at the call until its 

expected message has arrived. On the other hand, a blocking send call (MPI_Send) returns when 

the local send buffer used for the communication can be reused. In several implementations, this 

implies that the message has been sent but it does not guarantee the arrival of the message at the 

destination. In a non-blocking two-sided MPI call (MPI_Isend/MPI_Irecv), a request for the 

send/receive operation is added to the middleware and the task of blocking is deferred to the 
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MPI_Wait family of calls. The middleware checks for the completion of this request at each 

blocking call made for other communications and at MPI_Test family of calls. This happens until 

the communication is complete or until it encounters the request’s own MPI_Wait; at which point, 

the MPI_Wait returns immediately if the communication is complete or blocks until completion. 

The implementation of the blocking and non-blocking point-to-point MPI calls depends largely on 

the protocol used for communication. 

The eager and rendezvous protocols are typically used in the implementations of point-to-

point communications. The MPI implementation dynamically decides between these two protocols 

depending upon the message size. If the message size is below a particular implementation specific 

threshold then the eager protocol is used; otherwise, the rendezvous protocol is used. 

Eager and Rendezvous Protocols 

In the eager protocol, the sender does not require any synchronization with the receiver before 

sending the user data. The rendezvous protocol on the other hand, requires synchronization between 

the sender and the receiver by means of control/handshaking messages, before the transfer of the 

user data is initiated. Eager messages are sent through Send/Receive semantics in InfiniBand or 

through similar mechanisms in other interconnects. In the rendezvous protocol, the control 

messages are sent eagerly but the application data is transferred through RDMA Read/Write [76]. 

The rendezvous protocol has traditionally been sender initiated. A receiver initiated 

rendezvous protocol is possible but is suboptimal compared to the sender initiated protocol. The 

receiver initiated rendezvous protocol is discussed in depth in the Chapter 3. Figure 2.4 shows the 

control signals involved in the sender initiated rendezvous protocol. Figure 2.4(a) shows an RDMA 

Write based implementation of this protocol. As shown in the figure, the communication is initiated 

by the sender by sending a Ready to Send (RTS) control message to the receiver. This message 

contains the message matching information (rank, tag and context ID), message size and some other 
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implementation specific information. The message matching information is also referred to as the 

message envelope. Upon arriving at the matching MPI receive call, the receiver replies by sending 

a Clear to Send (CTS) control message. This CTS control message contains the address of the 

buffer where the data must be written by the sender. At the MPI_Wait, the sender transfers the user 

data to the receiver’s buffer using RDMA Write and then issues a Finish (FIN) control message to 

signal the end of the rendezvous communication.  

Similarly, Figure 2.4(b) shows an RDMA Read based implementation of the sender initiated 

rendezvous protocol. As with the RDMA Write based version, the sender initiates the 

communication by issuing an RTS control message. However, instead of carrying just the message 
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matching information and message size, this RTS also contains the address of the buffer at the 

sender where the user data is stored. When the receiver arrives at the matching MPI receive call, it 

issues an RDMA Read operation to fetch the user data from the remote address specified in the 

RTS. Finally, at the MPI_Wait call, the receiver signals the end of the rendezvous communication 

to the sender through a FIN control message. Figure 2.4 represents the scenario where the sender 

arrives first. If the receiver arrives first, then the task of issuing the CTS/RDMA Read is deferred 

to MPI_Wait. 

Message Matching and Message Progression 

As previously mentioned, eager messages are sent through InfiniBand’s Send/Receive 

semantics. The registered memory region in this case is not the same as the application buffer, 

which means that the data sent from the sender to the receiver does not land into its ultimate 

destination directly but instead to an intermediate location. Figure 2.5 shows the hierarchy of 

buffers in an MPI process. The data needs to be moved from the application buffer of the sender to 

the application buffer of the receiver. However, it lands intermediately on the communication 

buffer. This is required for multiple reasons, such as minimizing memory registration costs and 

providing support for MPI’s message-matching semantics. To ensure that the message gets 

ultimately delivered to the right location, two important operations are employed, Message 

Progression and Message Matching. Unexpected Message Queue (UMQ) and Posted Receive 

Queue (PRQ) are two data structures that support these operations. Transferring a message from 

the application buffer of one peer to the application buffer of the other peer involves several steps. 

Such steps may require the copying of the message to intermediate buffers at the middleware or to 

transfer the message through the wire to the other peer. The execution of one or more of these steps 

is referred to as message progression. The entity that performs the message progression is often 
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referred to as the progress engine, and invoked by blocking MPI calls, some non-blocking MPI 

calls and MPI_Test family of calls. 

Point-to-point MPI receive calls, expecting a message from another process, first invoke 

message matching to check if their message has already arrived and processed by the progress 

engine. This is done by first examining the entries of the UMQ to find a match for the expected 

message. If a match is found, then the rest of the steps are performed according to the protocol 

followed. Otherwise, a request object is created for that MPI call and added to the PRQ. Messages 

and requests are said to be matched if their MPI rank, message tag and context ID conform to each 

other. To find a match for this request object, the progress engine will be called either immediately 

or at some point in the future. Upon invocation, the progress engine gets a list of WR completions 

since its last invocation. Among other things, this list contains information about the receive WRs 

that were completed. At this point, the arrived messages still reside in the registered memory region 

(the communication buffer). So, message matching is required for further processing. This is done 

by first comparing the messages with the request objects in the PRQ. If a match is found then the 

rest of the steps are performed according to the protocol. Otherwise, an entry is added to the UMQ. 

Note, that a call to the progress engine will progress all the arrived messages in the registered 

memory region, regardless of the request that it was called for. 
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One of the tasks of the progress engine is to check for work completions, which it does by 

calling the appropriate network API functions. As mentioned earlier, InfiniBand provides two ways 

of knowing completions, event notification by means of interrupts and polling. Consequently, the 

progress engine can be based on polling or interrupts.  In the interrupt based approach, the progress 

engine sleeps until an interrupt is generated due to a completion on its associated CQ. The progress 

engine then returns if it finds the message that it was called for; otherwise, goes back to sleep again. 

The polling based progress engine, on the other hand, calls the completion detection API function 

several times in a busy loop until the completion of a particular WR is known.  

The choice between polling and interrupts requires a careful consideration of the trade-offs. 

Polling is more responsive than interrupts but it is not as resource efficient. Since polling requires 

a continuous examination of the CQs in a busy loop, the progress engine inflicts a 100 percent CPU 

utilization on the core on which it is mapped. In contrast, an interrupt based progress engine 

essentially sleeps until a completion, so its CPU utilization during that time is zero. Polling does 

not require any interaction with the kernel and no context-switching is involved either. However, 

interrupts are associated with interrupt-generation and context-switching overheads, that make 

them less responsive compared to polling. 

Communication/Computation Overlap 

 As mentioned earlier, with RDMA, the communication is entirely offloaded to the NIC and 

the CPU only has to be involved for a very short duration to add a communication request to the 

NIC. This provides the ability to hide the latency of the communications by overlapping it with the 

computations. The semantics of blocking point-to-point MPI calls depends a lot on the type of the 

call (send/receive) and on the protocol used. In general, blocking MPI calls have to wait until the 

message is progressed partly or completely. This wait becomes even more severe with rendezvous 

protocols because of the size of the messages and the involvement of control signals. During this 
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wait, the CPU is basically wasting CPU cycles as the communication is being carried out by the 

NIC. Also, while the blocking call is waiting for its message to be progressed, the application thread 

obviously cannot proceed with the computation. Therefore, the use of blocking two-sided calls may 

cause the communication and computation to get serialized; although, this cannot be avoided in 

some circumstances. On the other hand, non-blocking calls perform the necessary actions and 

return immediately. If an expected message is not found then instead of waiting for it, a non-

blocking call adds a communication request at the middleware and delegates the task of message 

progression to the future progress engine calls. After issuing the non-blocking call, the application 

can immediately proceed to other activities. This promotes communication/computation overlap 

by deferring the communication to a more opportune time, and sneaking in computation in the 

meantime. Therefore, the use of non-blocking calls facilitates the overlap of communication and 

computation. 

 Figure 2.6 illustrates two code snippets that implement the same logic using blocking and 

non-blocking receive calls, and compares their communication/computation overlap. In this figure, 

assume that the message is larger than the eager threshold and that the sender initiated RDMA Read 

based rendezvous protocol is used. This section aims to explain the concept of communication/ 

computation overlap in two-sided communication, therefore, it uses a very specific example. For 

the same reason, this discussion is limited to the receiver side overlap. A detailed discussion on the 

overlap in other scenarios and other rendezvous protocols can be found in Chapter 3. 

 The sender and receiver in both the code snippets start with the MPI_Barrier to ensure that 

line 2 starts at almost the same time in both the peers. Since the focus is on the receiver side overlap, 

the sender simply issues the non-blocking send call, performs its computation and issues the 

MPI_Wait call to wait until the communication is complete. The receiver’s code in Figure 2.6(a) 

performs some computation, then issues a blocking receive (MPI_Recv) and continues with its 

computation. The receiver’s code in Figure 2.6(c) performs essentially the same actions but 
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replaces the MPI_Recv with its non-blocking version (MPI_Irecv) and adds an MPI_Wait after the 

second computation. Note, that in both the receiver snippets, the execution durations of the 

instrumentation functions at line 2 and line 6/line 7 are negligible compared to the other statements, 

hence their contribution to the total elapsed time can be ignored. As shown in Figure 2.6(b), the 

MPI_Recv does not return until the entire message is progressed. This is because it cannot send the 

Finish (FIN) control message until the RDMA Read is compete. Therefore, the result is a strict 

serialization of communication and computation. On the other hand, with MPI_Irecv, the RDMA 

Read overlaps with the computation at line 5. The RTS is already present at the receiver when the 

MPI_Irecv gets called, so the receiver issues the RDMA Read and continues with its computation. 

The MPI_Irecv is paired with the MPI_Wait at line 6, which would have ultimately blocked if the 

communication had not been progressed. In this case, however, the only task left for it is to send 

the FIN control signal. With same computations and message size, the two code snippets would 

perform exactly the same task, however, the lack of overlap with the blocking receive would cause 

the elapsed time to be greater. 

2.4.2 Collective Communications 

Along with performing communications between pairs of MPI processes, the MPI standard 

provides the provision of involving multiple processes in a communication through MPI 

collectives. The standard specifies collectives for communications such as: sending the same data 

from one process to the others (MPI_Bcast), distributing chunks of data from one process to the 

others (MPI_Scatter), gathering data from different processes to a single process (MPI_Gather), 

performing a reduction operation on numeric data supplied by the participating processes 

(MPI_Reduce), etc. Similar to point-to-point MPI calls, collectives are available in both blocking 

and non-blocking variants. At the middleware, collectives may be implemented using two-sided 

MPI calls [77] or one-sided MPI calls [79], or using special network API calls that are optimized 
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  SENDER: 
1. MPI_Barrier(MPI_COMM_WORLD) 
2. MPI_Isend 
3. Computation 
4. MPI_Wait 

RECEIVER: 
1. MPI_Barrier(MPI_COMM_WORLD) 
2. Measure start_time 

3. Computation 
4. MPI_Recv 
5. Computation 
6. Meaure stop_time 

7. elapsed_time = stop_time – 
start_time 

 

(a) Code Snippet with Blocking Receive Call (MPI_Recv) 

COMPUTATION UNPRODUCTIVE WAIT

SENDER

RECEIVER

MPI_Isend (Line 2)

MPI_Recv (Line 4)

RTS RDMA READ

Line 3

FIN

Line 5

MPI_Wait (Line 4)
Overlap

 

(b) Timing Diagram for (a) 
 

SENDER: 
1. MPI_Barrier(MPI_COMM_WORLD) 
2. MPI_Isend 
3. Computation 
4. MPI_Wait 

RECEIVER: 
1. MPI_Barrier(MPI_COMM_WORLD) 
2. Measure start_time 

3. Computation 
4. MPI_Irecv 
5. Computation 
6. MPI_Wait 
7. Meaure stop_time 

8. elapsed_time = stop_time – 
start_time 

 

(c) Code Snippet with Non-Blocking Receive Call (MPI_Irecv + MPI_Wait) 

SENDER

RECEIVER

MPI_Isend (Line 2)

MPI_Irecv (Line 4)

RTS RDMA READ

Line 3

FIN

MPI_Wait (Line 6)Line 5

Overlap

MPI_Wait (Line 4)
Overlap

 

(d) Timing Diagram for (c) 

Fig. 2.6. Comparison of Communication/Computation Overlap between Blocking and Non-Blocking 

Two-Sided Calls in RDMA Read Rendezvous Protocol 
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for collectives [32, 37]. Therefore, the message progression semantics of a collective 

communication would be similar to that of the implementation on which it is based. 

2.4.3 One-Sided Communication 

One-sided communication was introduced in the version 2.0 of the MPI standard and has 

undergone significant revisions in version 2.2 and version 3.0. It is not as widely used in scientific 

applications as two-sided communication [15], but is known to have lower latencies for large 

messages [40]. Unlike two-sided communication, in one-sided communication, data can be moved 

to or fetched from a remote process without requiring any synchronization with the remote process. 

Also, the remote process does not have to issue a matching API call to initiate the data transfer, 

unlike two-sided communication. Communications are done by directly performing operations on 

the exposed region of the remote process’s memory. Hence, one-sided communication is also 

referred to as Remote Memory Access (RMA). In RMA terminology, the exposed remote buffer is 

called a window. The remote process is called the target and the process that performs operations 

on the window of the target is called the origin. Before starting the RMA operations, all the 

involved peers call the MPI_Win_create function. MPI_Win_create is a collective call that returns 

a window object which can be used by these processes to perform RMA operations. Each process 

may specify a window of its local memory that it intends to expose to RMA accesses by the other 

processes in the group. Alternatively, a process may elect to expose no memory by specifying a 

window size of zero. 

The MPI standard specifies three types of RMA operations: MPI_Put to transfer data from 

the origin to the target, MPI_Get to transfer data from the target to the origin and 

MPI_Accumulate to perform a remote arithmetic operation. These operations do not require 

target-origin synchronizations; however, RMA as a whole is not synchronization free. In MPI, the 

RMA synchronizations can be of the following two types, namely, active target and passive target. 
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Active Target Synchronization 

In active target, synchronization between the targets and origins is required at two stages. The 

duration between these stages is the period for which a window remains exposed for RMA 

operations, and is referred to as the epoch. In the first stage, an epoch starting call is required among 

the peers to exchange window exposure information. Then, after all RMA operations are performed 

on the window, an epoch completing function is called to signal that the window is no longer 

required to be exposed. A target window can be accessed by RMA operations only within an 

exposure epoch. Such an epoch is started and completed by RMA synchronization calls executed 

by the target process. Similarly, RMA synchronization calls are executed by the origin to start and 

complete an access epoch, during which it may issue RMA operations to the target’s window.  

There are two semantics by which active target synchronization happens, namely, Fence and 

General Active Target Synchronization (GATS). Figure 2.7(a) shows a code snippet that uses fence 

synchronization for RMA communications.  In this, all processes associated with the window 

call MPI_WIN_FENCE to start an epoch which is both an access epoch as well as an exposure 

epoch. Consequently, all the peers are simultaneously both a target and an origin. If an origin issues 

an RMA operation during the exposure epoch of the peer then the operation is performed 

immediately. If an RMA operation is issued earlier than the exposure epoch, then the operation is 

queued as a request in the middleware of the target, which is processed when the origin exposes its 

window. Once all the RMA operations are done, each peer calls MPI_WIN_FENCE again to 

synchronize and complete the access and exposure epochs. 

Unlike fence, in GATS (Figure 2.7(b)), the epoch opening synchronization can either be for 

an exposure epoch or an access epoch. Therefore, during an epoch, a process can either be an origin 

or a target, but not both. In Figure 2.7(b), Process0 and Process2 are origins which start the access 

epoch by calling MPI_WIN_START. In this call, they specify the window and the process that 
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will be their target for RMA operations. In this example, Process1 is the target. Process1 starts the 

exposure epoch by calling MPI_WIN_POST and specifying the processes that are allowed to 

operate on its window. Once all the RMA calls are made, the origins complete the access epoch by 

issuing the MPI_WIN_COMPLETE synchronization call. The target calls MPI_WIN_WAIT to 

wait until all its origins have executed the MPI_WIN_COMPLETE function. After which, the 

exposure epoch completes. The MPI standard does not specify the blocking or non-blocking 

behaviour of the synchronization calls. In common MPI implementations, for both Fence and 

Process0 

 
MPI_WIN_FENCE(win) 

MPI_GET(win,1) 

MPI_PUT(win,2) 

.. 

.. 

MPI_WIN_FENCE(win) 

 

 

Process1 

 
MPI_WIN_FENCE(win) 

MPI_PUT(win,0) 

MPI_PUT(win,2) 

MPI_GET(win,0) 

.. 

MPI_WIN_FENCE(win) 

 

(a) Fence Epoch 

Process2 

 
MPI_WIN_FENCE(win) 

MPI_PUT(win,0) 

MPI_GET(win,1) 

.. 

.. 

MPI_WIN_FENCE(win) 

 

 

Process0 Process1 

 
MPI_WIN_POST(win, {0,2}) 
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MPI_WIN_START(win, {1}) 

MPI_GET(win,1) 

MPI_PUT(win,1) 

.. 

MPI_WIN_COMPLETE(win,  {1}) 

MPI_WIN_START(win, {1}) 

MPI_PUT(win,1) 

MPI_GET(win,1) 

.. 

MPI_WIN_COMPLETE(win,  {1}) 
MPI_WIN_WAIT(win) 

 

(b) General Active Target Synchronization (GATS) Epoch 
 

Process0 

 
MPI_WIN_LOCK(win, 1) 

MPI_GET(win,1) 

MPI_PUT(win,1) 

.. 

MPI_WIN_UNLOCK(win, 1) 

 

 

Process1 

 

 

 

 

 

 

(c) Lock/Unlock Epoch 

Process2 

 
MPI_WIN_LOCK(win, 1) 

MPI_PUT(win,1) 

MPI_GET(win,1) 

.. 

MPI_WIN_UNLOCK(win, 1) 

 

Figure 2.7: MPI 3.1 RMA Synchronizations 
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GATS, the epoch starting synchronization calls are non-blocking and the epoch completing ones 

are blocking. 

Passive Target Synchronization 

In passive target synchronization, the target (Process1 in Figure 2.7(c)) does not make any 

synchronization calls. In fact, it does not even need to be aware of RMA operations upon it. Passive 

target synchronization can be thought of as an emulation of distributed shared memory. To perform 

RMA operations on the target, an origin (Process0 or Process2 in Figure 2.7(c)) needs to first open 

an epoch by calling the MPI_WIN_LOCK function. This lock can be exclusive or be shared with 

other origins. If an origin has an exclusive lock on a target, then other origins cannot lock that target 

until the lock holding origin completes the epoch by issuing the MPI_WIN_UNLOCK call. 

However, in a shared lock synchronization, a target can be locked and operated upon by multiple 

origins at once. It is also possible to lock/unlock all the processes associated with an RMA window 

using a pair of MPI_WIN_LOCK_ALL and MPI_WIN_UNLOCK_ALL calls, but these calls 

can only request shared locks. 

 

Message Progression 

 Message progression in one-sided communication is required for the epoch opening and 

closing signals, and for the RMA operations. These two operations are similar to the progression 

of the control signals and the message in the rendezvous protocols, with the important distinction 

that multiple messages can be transferred within each epoch in case of one-sided communication. 

On RDMA enabled networks, the RMA operations are performed using RDMA Read or RDMA 

Write. As mentioned earlier, the MPI standard does not define the blocking or non-blocking nature 

of the epoch manipulation calls and the designers are free to decide this behaviour for their MPI 

implementation. However, from version 3.0, the MPI standard mandates a non-blocking behavior 
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for all RMA operations. Depending upon whether the synchronization calls are blocking or non-

blocking, the RMA operations are progressed in one of the following ways: 

a) With blocking synchronization calls, any RMA operation that gets issued is progressed 

immediately using RDMA. In case of fence and GATS, blocking synchronization 

guarantees that the exposure epoch will be open when the RMA operation is issued. 

Similarly, in case of exclusive lock epoch, blocking synchronizations ensure that the lock 

to the target window will already be acquired when the RMA operation call is made. 

Therefore, there is no necessity of queuing or deferring the RMA operations. 

b) With non-blocking synchronizations, in case of fence and GATS, the RMA operation is 

progressed immediately if the exposure epoch is open. Similarly, in case of exclusive lock 

epoch, the RMA operation will be progressed immediately if the lock to the target window 

is already acquired. However, if the exposure epoch is found to be closed or if the lock is 

not acquired yet then the RMA operation is queued at the origin’s middleware and deferred 

to be progressed later. This message will then be attempted to progress during subsequent 

calls to the progress engine, and the RMA operation will be initiated when the transfer 

conditions are met, that is, when the synchronizations are complete. Once this happens, 

subsequent RMA operations to the same target will always be progressed immediately. 

Note, that in shared lock epochs, all RMA operation calls are progressed immediately as the origin 

is not required to wait for the exposure epoch or the lock.      

In fence and GATS, the epoch opening synchronization requires the targets to signal the 

opening of their exposure epochs to all the origins associated with the window object. Essentially, 

all the targets act as the sender and all the origins act as the receivers. In the epoch closing 

synchronization, the roles get reversed and the origins signal the targets about the closing of the 

access epoch. In case of exclusive lock epoch, the target does not issue any synchronization calls 

but participates by acting as the mediator between the other origins. It does this implicitly at the 
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middleware when the progress engine is invoked. When the origins want the lock to the target’s 

window, they send a signal to the target to request for the lock. The lock is granted by the progress 

engine of the target by signalling the origin whose request arrived earliest at the target. After 

completing all its RMA operations, the origin that has the lock has to relinquish it by signalling the 

target. When the next call to the progress engine at the target sees this signal, it will grant the lock 

to the origin that is next in the queue. 

The semantics of blocking RMA synchronizations are very similar to that of MPI_Barrier. A 

blocking RMA synchronization call does not return until all the peers associated with the window 

object have issued the matching epoch manipulating call. On the other hand, a non-blocking 

synchronization call performs the necessary signalling to the peers if required and returns 

immediately. RMA synchronizations may be implemented using two-sided communication with 

the eager protocol or using RDMA directly. If the implementation is done using the eager protocol, 

then MPI send/receive calls are used at the middleware for signalling. Therefore, the message 

matching and message progression semantics of the RMA synchronizations in this case would be 

exactly the same as two-sided communication. The other option is to use RDMA Write and directly 

write the signal to a pre-allocated remote buffer. Message matching would not be required in this 

case and the progression will happen immediately as the signal is directly transferred to the intended 

location. However, this would require an exchange of the remote addresses among the peers before 

the synchronization calls are made. 

Communication/Computation Overlap 

The discussion in Section 2.3.1 about the need of non-blocking calls for communication/ 

computation overlap holds true for one-sided communication as well. However, it is important to 

note that with blocking epoch manipulating calls, the RMA operations are progressed immediately, 

so there will always be some degree of overlap. The major problem with blocking calls is 
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unproductive wait which can easily get propagated to other peers. These unproductive waits are 

caused when a blocking epoch manipulating call has to wait for some signal from its peers. This 

signal could be about the opening or closing of an epoch, or about the granting or revoking of a 

lock. Such waits are unproductive because while the call is blocking, the CPU is wasting its cycles 

which could have been used for computation. A non-blocking epoch manipulating call never waits 

for the arrival of its signal. Therefore, it can completely avoid an unproductive wait. This does not 

mean that it makes the entire system wait-free. RMA communications must be ultimately blocked 

somewhere to make sure that the pending RMA operations are progressed. Because of the impact 

that it has on the performance of RMA communications, the notion of overlap in this section is 

equivalent to the absence of unproductive wait. 

Figure 2.8 shows a code snippet that uses fence epochs and compares the timing diagrams of 

this snippet with blocking and non-blocking epoch manipulating calls. The objective is to introduce 

the concept of unproductive waits in RMA by using blocking and non-blocking fence as the 

example. However, such inefficiencies can be found in other types of RMA synchronizations as 

well, the details of which are covered in Section 3.2.1. Figure 2.8(b) uses blocking calls for epoch 

opening synchronization as well as for epoch closing. Figure 2.8(c), on the other hand, uses non-

blocking calls for epoch opening synchronization, but the epoch closing synchronization is 

performed using blocking calls. This is because of the previously stated reason that RMA 

communications must be ultimately blocked somewhere. As can be seen in Figure 2.8(b), the 

target’s fence arrives earlier but it cannot return until it receives the epoch opening signal from the 

origin. This causes it to unnecessarily wait for the entire duration of computation that is performed 

at line 3 at the origin. This unproductive wait can be observed between line 3 and line 4 at the target 

in Figure 2.8(b). On the other hand, in Figure 2.8(c), the non-blocking fence call at line 3 of the 

target initiates an epoch opening signal to the origin and returns without waiting for the origin’s 

signal. This enables the target to avoid the wastage of CPU cycles by immediately preceding to the 
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computation at line 4. Similarly, the epoch opening call at the origin initiates a signal to the target 

and returns. When the RMA operation calls at line 5 and line 6 of the origin are issued, the 

ORIGIN: 
1. MPI_Barrier 

2. Measure start_time 

3. Computation 
4. MPI_Win_fence 

5. MPI_Put 

6. MPI_Get 

7. Computation 

8. MPI_Win_fence 

9. Meaure stop_time 

10. elapsed_time = stop_time –         

start_time 

TARGET: 
1. MPI_Barrier 

2. Measure start_time 

3. MPI_Win_fence 

4. Computation 

5. MPI_Win_fence 

6. Meaure stop_time 

7. elapsed_time = stop_time – 

start_time 

 

(a) Code Snippet for RMA Communications with Fence Synchronization 
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(b) Timing Diagram with Blocking Fence Synchronizations 
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(c) Timing Diagram with Non-Blocking Epoch Opening Fence Synchronization 

 

Fig. 2.8. Comparison of Unproductive Waits with Blocking and Non-Blocking RMA Synchronization 

Calls 
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information about the opening of the target’s exposure epoch is already present, so those RMA 

operations are progressed immediately. Keeping the computations and message sizes same, the 

elapsed time at the target would be greater with the blocking fence call, and the difference would 

be equivalent to the computation duration at line 3 of the origin. 

2.5 Summary 

This chapter provides the relevant background for the rest of the content in this thesis. It starts 

by providing an insight on the modern HPC systems by describing a commodity cluster. It 

highlights the different components of a compute node, emphasizes the importance of high 

performance interconnects, introduces RDMA and InfiniBand, and discusses intra-node and inter-

node communications.      

In HPC, software is as critical to the performance as hardware, therefore, the above discussion 

is followed by a discussion on different parallel programming paradigms such as shared memory, 

PGAS and message passing. This thesis is focused on the MPI standard, therefore, the rest of this 

chapter provides an in-depth background on the different messaging semantics of MPI and 

discusses their communication/computation overlap. The MPI standard specifies three ways of 

exchanging messages: two-sided communication, collective communication and one-sided 

communication. 

This chapter describes important aspects of point-to-point communications, such as the eager 

and rendezvous protocols, message matching and message progression in the MPI middleware and 

the concept of communication/computation overlap in two-sided communications. Then, it briefly 

describes the collective communications and mentions the different ways that they may be 

implemented. Finally, this chapter discusses the different aspects of one-side communication, such 

as active and passive RMA synchronizations, RMA operations, message progression and 

communication/computation overlap. 
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Chapter 3 discusses the inefficiencies associated with the massage passing semantics and their 

impact on the performance of parallel applications. Also, it presents a literature review of the 

approaches that are aimed at addressing the inefficiencies. 
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Chapter 3 

Literature Review 

 

As discussed in Chapter 2, increasing the parallelization of applications may lead to a 

diminishing return on performance because of the increased need for communications. Therefore, 

in order to achieve appreciable speedup, it becomes important to hide the communication latencies 

through communication/computation overlap. The idea behind this is to let the NIC perform the 

communications with other NICs and switches, without engaging the CPU for the entire length of 

a particular communication. Reduced utilization of the CPU for communication translates to its 

greater availability for computation, which ultimately leads to a reduced application execution time. 

This is possible in RDMA enabled networks, which offer zero-copy and OS-bypass mechanisms. 

In such a network, the NIC has the ability to transfer the data from one host to the other, without 

having to perform any intermediate copies and without involving the operating system of either of 

the hosts. However, this requires an effective use of network APIs. In MPI’s context, overlap can 

be supported at the application layer by careful usage of non-blocking communication calls, such 

that long communications can happen while the application is busy in a computation. This practice 

is often referred to as latency hiding. This chapter investigates the first research question mentioned 

in Section 1.2. It discusses the application layer inefficiencies that may lead to the serialization of 

computation and communication; and then discusses the research proposals that aim to improve 

the overlap by suggesting modifications at the MPI middleware or at the network layer. 
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3.1 Point-to-Point Communication 

3.1.1 Inefficiencies Associated with the Rendezvous Protocols 

As previously mentioned, the rendezvous protocol has traditionally been sender initiated. The 

details of the receiver initiated rendezvous protocol will be discussed shortly in Section 3.2. The 

sender-initiated rendezvous protocol can employ either an RDMA Read based strategy (Figure 3.1) 

or an RDMA Write based strategy (Figure 3.2). Also, recall that the control messages are sent 

through the eager protocol. Figure 3.1 and Figure 3.2 show the signaling, data movement and the 

MPI_WAIT duration under the following scenarios of arrival orders of the sender and the receiver: 

 Sender arrives first and calls its MPI_Wait ahead of the receiver’s MPI_Wait. 

 Sender arrives first and calls its MPI_Wait after the receiver’s MPI_Wait. 

 Receiver arrives first and calls its MPI_Wait ahead of the sender’s MPI_Wait. 

 Receiver arrives first and calls its MPI_Wait after the sender’s MPI_Wait. 

In the rendezvous protocol, a non-timely arrival of the control messages may cause the peers 

to waste valuable CPU cycles at the MPI_Wait. This unproductive wait may be caused due to a 

delayed arrival of a control message or a combination of a late control message along with a 

synchronous message propagation. For instance, consider Figure 3.1(c) and Figure 3.1(d), where 

the MPI_Isend call gets issued later than its MPI_Irecv call. When the receiver issues the MPI_Irecv 

call, it does not find its control signal (RTS). This RTS will contain the address of the remote buffer 

so the receiver cannot initiate an RDMA Read and must return immediately. After returning, the 

receiver enters into a long computation, during which the RTS arrives. Even though the RTS has 

arrived at the receiver, the RDMA Read for the MPI_Irecv cannot be issued as the receiving 

application is busy in the computation. The computations at both the peers end and they issue the 

MPI_Wait call. Both of these MPI_Wait calls must block until the transfer of data and control 

signals are complete. The receiving side blocks at its MPI_Wait until the RDMA Read is complete 
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(a) Sender Arrives First and Issues MPI_Wait First

(c) Receiver Arrives First and Issues MPI_Wait First

COMPUTATION UNPRODUCTIVE WAIT

Fig. 3.1: Sender Initiated RDMA Read Based Rendezvous Protocols
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and returns after it has sent the FIN control signal. The delay at the sender’s MPI_Wait depends 

upon the arrival of the FIN control message, which could be large if the FIN is very late or 

negligible if the MPI_Wait gets issued after the arrival of the FIN control message. These delays 

at the MPI_Waits of the sender and receiver are essentially unproductive because with RDMA, the 

CPU does not have to be actively involved in the computation. This leads to the wastage of CPU 

cycles which could have been used productively for the computations. On the other hand, as shown 

in Figure 3.1(a) and Figure 3.1(b), a timely arrival of the RTS would have overlapped the RDMA 

Read with the computation and led to negligible unproductive waits. 

In the RDMA write based protocol (Figure 3.2), the receiver conveys the address of the remote 

buffer to the sender through the CTS control signal. Since this is a sender-initiated protocol, it 

cannot do so until it receives the RTS from the sender. Compared to the RDMA Read based 

protocol, the first problem this leads to is the requirement of an extra control signal. Moreover, 

there is no scenario of arrival orders in which there can be a natural communication/computation 

overlap for both the peers. The reason behind this is that, regardless of the arrival orders of 

MPI_Isend and MPI_Irecv, it is impossible for the MPI_Isend to have complete message 

progression information when it is issued. A receiver side overlap is possible if the sender arrives 

ahead of the receiver and the receiver issues its MPI_Wait call substantially later than its peer 

(Figure 3.2(a)). Overall, there is only one scenario (Figure 3.1(b)) in which both the sender and the 

receiver can be wait free. This happens when the RTS arrives ahead of the arrival of the receiver 

and the receiver’s MPI_Wait arrives ahead of the sender’s MPI_Wait, so that the sender does not 

have to wait for the FIN control message. In general, in a sender initiated RDMA Read based 

protocol, a good degree of overlap can be expected for both the peers if the sender arrives ahead of 

the receiver (Figure 3.1(a) and Figure 3.1(b)). 
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3.1.2 Literature Review 

There have been several research proposals over the years to improve communication-

computation overlap for point-to-point communication. Particularly, the ones related to the 

middleware and the network layer can be classified into three categories: protocol improvement 

[66, 75, 51], hardware-assisted approaches [43, 27, 62] and host-based approaches [31, 46, 73]. 

Protocol improvement methodologies involve either a redesign of the handshaking mechanisms or 

adaptive/predictive switching between the protocols. Hardware-assisted approaches make use of 

special NICs that support offloading of communication primitives. Host-based approaches use CPU 

or accelerator cores for overlap. 

Protocol Improvement Approaches 

In [61, 66], the authors describe a receiver-initiated rendezvous protocol instead of the 

traditional sender-initiated protocol that we have discussed thus far. In [61], this scheme is used in 

a light-weight implementation of MPI for the Cell Broadband Engine [30]. Figure 3.3 shows the 

timing of control and data messages under different arrival orders of MPI calls. In this protocol, the 

RTS is replaced by the Request to Receive (RTR) control signal. This signal carries the remote 

address of the buffer at the receiver to which the RDMA Write will be performed by the sender. 

Figure 3.3(d) shows the ideal situation where a full overlap is possible at both the sender and the 

receiver. In this case, the RTR is already present at the sender when the MPI_Isend call is issued. 

So it can immediately progress the message by RDMA Writing it to the remote buffer. If there is 

enough computation at the sender, then the entire message will be overlapped and the sender’s 

MPI_Wait will simply have to send the FIN control message without waiting. Also, since the FIN 

has already arrived at the receiver, its MPI_Wait does not have to block either. In general, the 

sender can be wait free if the receiver is early (Figure 3.3(c) and Figure 3.3(d)). Also, as shown in 

Figure 3.3(a), a receive side overlap is possible if the receiver’s MPI_Wait call is sufficiently late 
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compared to the sender’s MPI_Wait call. In fact, a full receive-side overlap is possible if its 

MPI_Wait is called after the arrival of the FIN control message. Receiver-initiated rendezvous 

protocol can be implemented with both RDMA Read and RDMA Write. However, using RDMA 

Read is suboptimal as it entails the usage of an extra control signal and loses the natural overlap 

ability of RDMA Write when the receiver arrives first. 

In [61], the authors argue that this approach is well suited for small-memory processors such 

as the Cell Synergistic Processing Elements (SPE), which run applications that have a regular 

communication pattern. However, this approach cannot efficiently deal with two specifications in 

the MPI standard. First, the MPI standard specifies a “push” communication mechanism, where the 

receiver may choose to accept messages from an arbitrary sender using the MPI_ANY_SOURCE 

wildcard. However, the sender has to be specific. Because of this, the receiver-initiated protocols 

cannot cope with wildcards effectively as it would be impractical for the receiver to send RTRs to 

all the processes in the communicator. Second, according to the MPI standard, the receiver may 

specify a buffer size that is larger than the data that it receives. However, the protocol that ends up 

being used depends on the exact size of the message, which is known only to the sender. If the size 

of the buffer at the receiver is larger than the eager threshold and the size of the data is less than 

the threshold, then the receiver will incorrectly issue an RTR for a message that ends up being sent 

eagerly.      

  A receiver-initiated rendezvous protocol is also employed in Gravel [16], which is a 

communication library that can be used in MPI applications to replace some MPI calls with Gravel 

calls. Using the APIs in this library, the programmer can explicitly specify the protocol to be used 

for a particular communication. [66] presents a mechanism to adaptively select between an RDMA 

Read based sender-initiated protocol or an RDMA Write based receiver-initiated protocol based on 

the arrival order of the communicating processes. If the sender arrives first, then the RDMA Read 

based sender-initiated rendezvous protocol is used, otherwise, the RDMA Write based receiver-
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initiated protocol is used. This approach assures overlap when there is a sufficient amount of delay 

between the arrival of the sender and the receiver. 

In [74, 75], in addition to adaptively selecting between the protocols, a set of rendezvous 

protocols are proposed in which the sender buffers the message locally if the receiver is very late. 

Specifically, if the sender arrives at its MPI_Wait and the receiver has not arrived at its MPI_Irecv 

yet, then the sender buffers the message locally, informs the receiver of the protocol change and 

exits. This enables the sender to be wait-free if the receiver is late. Upon arriving at the MPI_Irecv, 

the receiver can issue an RDMA Read to fetch the data from the sender. Similarly, in [51] this 

buffering is done at the receiver by RDMA writing the message to a pre-allocated buffer. When the 

receiver arrives, it can fetch its message from this buffer. These buffering approaches, aim to 

improve the sender side overlap. However, they pose a risk of memory exhaustion [12], especially 

considering the relatively larger size of the rendezvous messages as compared to the eager 

messages. 

Adaptive approaches employing the receiver-initiated protocols, suffer from the inabilities of 

the receiver-initiated protocols which are discussed above. In addition, none of these protocols cope 

well with a scenario called similar arrival times [75]. This situation happens when the sender 

arrives at its MPI_Isend at almost the same time as the receiver arrives at its MPI_Irecv. The RTR 

may be on its way but the sender does not see it, so it mistakenly sends an RTS to the receiver. 

Similarly, the receiver mistakenly sends an RTR because it is not aware of the incoming RTS. 

Hence, this situation leads a race condition. 

This race condition can be avoided by using additional synchronization steps [66, 75] or by 

employing predictive mechanisms [51, 75]. Extra synchronization steps limit the overlap potential 

and mandate that all the control signals are acknowledged before initiating any communication. In 

[75], a syntactic profiling of the MPI application is performed to predict the relative arrival times 

of the MPI calls across all processes. Instead of static profiling, [51] profiles the application at run-
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time over two iterations. Because of factors like operating system noise [17, 35, 10] and network 

sharing, there is no guarantee that the profiled results will stay consistent over multiple runs of the 

application. Therefore, predictive approaches are purely speculative. OS noise or jitter are subtle 

variations in the expected execution of an application caused due to the interaction of hardware, 

user-space software, kernel daemons and OS management operations. Also, in a shared resource 

facility, the profiled application may be run on nodes that share the network with other nodes 

running other applications. This may cause variations in message latencies due to congestion, even 

if the messages are of the same size and between the same peers.  Both of these factors may 

introduce unexpected delays in the execution of MPI calls, causing the application to behave 

differently than the expected profile. Additionally, in run-time profiling [51], the profiling 

mechanism may itself attribute to variations in execution times. 

The approach in [9] leverages triggered operations specified in Portals 4 [63] to improve the 

rendezvous protocol. However, the triggered rendezvous protocol cannot deal with the 

MPI_ANY_SOURCE wildcard, so the approach falls back to the suboptimal default rendezvous 

protocol in such a scenario. 

Hardware-Assisted Approaches 

In the previous section, we discussed protocol improvement approaches to achieve 

communication/computation overlap. Overlap can also be achieved by effectively using features 

available in the network hardware. This section discusses such research proposals. For InfiniBand 

based networks, [43] presents a mechanism called TupleQ, in which each message matching tuple 

of rank, tag and context ID is mapped to a Shared Receive Queue (SRQ). If a send call is issued to 

an SRQ address that has not been posted yet at the receiver, then the HCA itself blocks the call 

until the SRQ gets posted. In other words, no blocking is required at the middleware, leading to a 

sender-side overlap. When the corresponding receive call is issued, the SRQ is created if it is not 
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already present. The SRQ for a particular tuple is created only once and its address is cached at the 

sender for future use. In this approach, there is a full overlap at both the sender and the receiver if 

the receiver has already arrived and the SRQ address is known to the sender before arriving. 

Another advantage of this approach is that it completely avoids the use of control messages. 

However, this approach suffers from two major disadvantages. First, this approach is not scalable. 

In complex applications running on large clusters, the number of SRQs can scale exponentially; 

and it is known that large scale creation of InfiniBand queues per MPI process is not scalable [44]. 

This issue is aggravated by the fact that the cached SRQs are not freed until the termination of the 

application. The second disadvantage is its inability to deal with wildcards like 

MPI_ANY_SOURCE and MPI_ANY_TAG. In such cases, this approach resorts to the inefficient 

traditional approaches that use software control signals. 

Certain NICs provide support for the offloading of communication primitives. In [27, 28, 37] 

the authors investigate one such feature available on Mellanox HCAs called CORE-direct. 

Specifically, CORE-direct supports the offloading of collective communications. It is possible to 

offload rendezvous communications to CORE-direct as well. However, it requires the duplication 

of all queue pairs across all processes and this approach is not scalable [37]. 

Similarly, hardware progression threads were available on Quadrics’ Elan and Myricom’s 

Myrinet NICs. These are investigated in [62] and [84] respectively. At the time of writing, Bull 

eXascale Interconnect (BXI) is the latest interconnect to support offloading of communication 

primitives [20] and is based on the Portals 4 protocol [63, 72]. BXI NICs support the offloading of 

point-to-point communications, collectives, as well as one-sided communications. The limiting 

factors in these proposals are the cost and availability of the specialized hardware. Since these 

special features are provided by specific hardware manufacturers, they do not adhere to a standard 

like InfiniBand and require different API calls for their usage. This restricts the portability of the 

middleware. 
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Host-Based Approaches 

In CPU-based asynchronous message progression, additional threads or processes are 

spawned along with the MPI processes and they are responsible for progressing the messages in 

parallel with the execution of the application threads. Each of these progress threads or processes 

may be assigned to an entire CPU core or be over-subscribed with others. As discussed in Chapter 

2, polling and interrupts are the two approaches that can be used for message progression. 

Consequently, most asynchronous message progression proposals are based on them.  

The polling based approach has long been regarded as the “silver bullet” [34] for 

asynchronous message progression and employed in popular MPI implementations like MPICH 

[55] and MVAPICH [56]. The idea involves polling for completions in a busy loop. To maintain 

the responsiveness, sleeping of the thread is avoided. So, this approach leads to a 100 percent CPU 

utilization. Its advantage is that it is more responsive than an interrupt based approach, but it leads 

to one of the two major disadvantages: non-optimal resource utilization and oversubscription.  

Since each MPI process is a distinct context, each of them needs to have its own progression thread 

as well. For single threaded MPI applications, this may lead to the occupation of half of the CPU 

cores by the progress threads, which may not be actively involved in progressing communications 

but nonetheless use valuable computing resources. Also, it is a common practice among MPI users 

to use most (if not all) of the available cores for application threads to maximize the parallelization 

of their jobs, but in this case, using polling threads would lead to oversubscription of the cores. 

Oversubscription is known to incur performance penalties, especially with a polling thread [34]. In 

a multithreaded application, both of these adverse effects are less severe but still very prominent. 

The interrupt based approaches [46, 76] involve the use of a progress thread that sleeps until 

it is awoken. It is awoken by an interrupt that is caused due to the completion of a communication 

request. Upon waking, the thread progresses the recently arrived messages, requests another 
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interrupt and goes back to sleep again. The advantage of an interrupt based approach is that it does 

not consume any CPU cycles while it is sleeping. The disadvantage, however, is the overheads 

associated with it. They are: the interrupt cost, the cost of context switch that happens when the 

thread wakes up and the cost of locking into the progress engine. In [46], the cost of locking into 

the progress engine is replaced by an interrupt cost that is incurred in signaling the application 

thread to call the progress engine. In [76], the authors propose an interrupt-thread mechanism for 

the sender-initiated RDMA Read based rendezvous protocol (Figure 3.1). With this protocol, for 

non-blocking receive, there can be two scenarios, (a) the sender arrives before the receiver (Figure 

3.1(a) and Figure 3.1(b)) or (b) the sender arrives after the receiver (Figure 3.1(c) and Figure 

3.1(d)). In the latter scenario, an interrupt would be useful because the message can potentially be 

progressed earlier than the MPI_Wait at the receiver, leading to a receiver side overlap. In scenario 

(a) however, an interrupt will incur all the previously discussed overheads, without accomplishing 

anything useful. The proposal in [76] selectively generates interrupts and dynamically requests 

them to minimize the overheads but is not immune. For instance, consider a situation shown in 

Figure 3.4. Since MPI_Irecv1 does not find its RTS (from MPI_Isend1), the requests for interrupts 

will be turned on. Now, if the sender calls MPI_Isend for some other MPI_Irecv, say MPI_Isend2 

for MPI_Irecv2, and if MPI_Irecv2 has not been posted yet then an undesired interrupt will occur, 

leading to all the previously discussed overheads. 

[18, 19] and [87] describe schemes that opportunistically use CPU cores for message 

progression. In [18, 19] the communication can be offloaded to ltasks which are similar to tasklets 

available in the kernel-space. These are scheduled to run asynchronously on idle cores when they 

become available. If idle cores are not available then ltask execution is triggered by timers or at 

explicit polling points. Ltasks are essentially threads and the use of a progression thread requires 

thread safety mechanisms, the overheads of which are not inconsequential [82]. [87] presents 
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another opportunistic progression scheme which steals CPU cycles from the application thread to 

poll for message completions. As shown in Figure 3.5, this approach adds a parasitic execution 

flow to the default application execution flow. The application execution flow executes the program 

instructions and the parasitic execution flow executes the progress engine. By default, the parasitic 

execution flow is disabled and the CPU is entirely occupied by the application execution flow. 

However, if the application arrives at its MPI_Irecv and does not find its RTS, then the parasitic 

flow execution flow is enabled. From this point, until the message gets progressed, the application 

thread momentarily transfers the flow of execution from the application instructions to the parasitic 

instructions at regular intervals. If the RTS arrives while the parasitic execution flow is enabled, 

the message is progressed when the execution flow gets transferred to it. 

[85] employs MPI Profiling Interface (PMPI) in its asynchronous progression proposal. In 

this paper, non-blocking point-to-point MPI calls and file I/O calls are redirected through PMPI to 

the progress thread. In the progress thread, MPI_Test or MPI_Wait may be called depending on 

the implementation. The problem with this approach is that it may lead to inheriting the 

shortcomings of polling or interrupts, depending upon the MPI implementation. 
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RECEIVER
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All the above mentioned host-based approaches can work well with co-processors/processors 

such as Intel Xeon Phi [69] as well. This is because of their similarity in architecture and supported 

instruction set with CPUs. For host-based overlap in GPUs, the authors of [31] propose a scheme 

to overlap GPU-to-GPU communications by over-decomposing the tasks into smaller sub-tasks 

and then over-subscribing the hardware with these sub-tasks with more threads than the hardware 

limits. 

3.2 One-Sided Communication 

3.2.1 Inefficiencies Associated with RMA Synchronizations 

In RMA, a non-timely opening or closure of epochs may lead to unproductive waits at the 

peers. Unlike two-sided communication, the standard does not specify the blocking or non-blocking 

behaviour of the RMA synchronization calls. So the implementers are free to decide this nature as 

they see fit. Popular implementations of MPI [55, 56, 60] provide non-blocking epoch opening 
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calls for active target RMA synchronizations. The non-blocking nature of a synchronization call 

dictates the amount of communication/computation overlap that can be expected in its epoch. Also, 

it is important to note that most calls that issue RMA operations, such as MPI_Put and MPI_Get 

are inherently non-blocking when implemented using RDMA. The operation either completes 

immediately in the same call or gets deferred.  

[8, 26, 78] try to circumvent the unproductive wait at the epoch opening by adopting a lazy 

approach, in which both the synchronization and the RMA operations are deferred to the epoch-

closing call. To avoid the buffering of RMA operations, [81] suggests blocking the origin at epoch-

opening until the target becomes ready for access. Similarly, to ensure timely execution of the RMA 

operations in a fence epoch, [71] suggests blocking at both epoch opening and epoch closure. This 

improves the overlap of RMA operations with computation but may cause a stalling of the early 

peers. All these approaches have one thing in common; they all block at the epoch closure. This 

leads to inefficiency patterns discussed in [33, 45, 88]. These inefficiency patters are as follows: 

 Late Post: This happens in GATS when the origin has to block either at epoch opening 

(MPI_WIN_START) or epoch closure (MPI_WIN_COMPLETE) because the target has 

not opened its exposure epoch yet (MPI_WIN_POST). In the latest versions of MPICH, 

MVAPICH and OpenMPI, there is no blocking at epoch opening calls like 

MPI_WIN_START. This is important because a blocking behaviour at epoch opening has 

been shown to be suboptimal [8, 78]. 

 Early Transfer: This happens when an RMA operation call has to block because its 

exposure epoch has not been opened yet. The MPI 3.0 standard mandates a non-blocking 

behaviour for the RMA operation calls. Therefore, the early transfer inefficiency is 

expected to be absent in the latest implementations. 

 Early Wait: In GATS, the target closes the exposure epoch by calling MPI_WIN_WAIT. 

However, this call blocks until all its origins have called MPI_WIN_COMPLETE. If 
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MPI_WIN_WAIT gets called before a target has finished all the RMA operations, then it 

would lead to an unproductive wait at the target. 

 Late Complete: Similar to early wait, an unproductive wait is also inflicted upon the target 

when it has called MPI_WIN_WAIT in a timely fashion but the origin delays in calling 

MPI_WIN_COMPLETE after the last RMA communication call. 

 Early Fence: This wait happens in a fence epoch when a peer calls the epoch closure 

function before all the RMA operations are complete. In fence, each peer is both a target 

and an origin, so neither of the peers are immune to this inefficiency. 

 Wait at Fence:  An epoch closing fence call blocks until all the peers associated with the 

window have issued the same function. Consequently, if a peer delays in closing its epoch 

after all its RMA operations, and if other peers have already called the epoch closure 

function, then that delay gets propagated to the rest of the peers as the Wait at Fence 

inefficiency. 

 Late Unlock:  Late Unlock is an inefficiency associated with passive target synchronization 

and can occur in both exclusive lock epochs and shared lock epochs. 

o In an exclusive lock epoch, this inefficiency can occur when the lock holding peer 

has completed all the RMA operations but delays in relinquishing the lock by 

calling MPI_WIN_UNLOCK. Meanwhile, if other peers are trying to acquire the 

lock then this delay gets propagated to them. 

o In a shared lock epoch, this happens when all the peers have completed their RMA 

operations but one of the peers delays in calling MPI_WIN_UNLOCK. Recall, 

that in a shared lock epoch, MPI_WIN_UNLOCK does not return until all the 

peers have called it. 
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3.2.2 Literature Review 

This section discusses the research proposals that aim to improve the overlap by suggesting 

new non-blocking RMA synchronization calls or by exploring hardware-assisted or host-based 

approaches similar to Section 3.1.2. The above mentioned inefficiency patterns are addressed in 

[88], which proposes entirely non-blocking RMA synchronizations; even for epoch-closing 

routines. This is done by deferring the synchronizations to future RMA and progress engine calls, 

allowing overlap across multiple epochs. 

Like two-sided communication, host based approaches have been proposed for RMA as well. 

These approaches include opportunistic message progression [88] and asynchronous message 

progression [39, 83, 73]. RMA GET/PUT operations do not need to involve the target as those calls 

are supported in hardware through RDMA Read/Write [40, 49]. However, for RMA operations 

involving non-contiguous data type like MPI_PACKED, the target has to be involved to unpack 

the data received on the contiguous temporary buffer and get the non-contiguous message. In [39], 

a thread based approach is used to asynchronously progress RMA operations involving non-

contiguous data. The target also has to be involved in case of RMA Accumulate operations. Intra-

node RMA communications require the active participation of the CPU as there can be no support 

from the NIC for such communications. In [86], the authors noted this inefficiency and also 

observed that in certain scenarios, inter-node RMA communications exhibit 100 percent overlap 

with some spare computation time. They exploit this residual overlap potential to overlap intra-

node communications by deferring the transfer of such messages (above a threshold) to the spare 

computation time. [70] proposes a hardware-assisted approach to use InfiniBand’s atomic functions 

like Compare-and-Swap and Fetch-and-Add to improve the overlap for RMA operations in passive 

target epochs. 
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Non-blocking routines are important to facilitate overlap but not enough to achieve ideal 

overlap. Similar to the Rendezvous protocol in two-sided communication, merely issuing a 

synchronization call is not enough to progress the communications. Certain conditions have to be 

met before the RMA communications can be initiated; otherwise, the requests are queued at the 

middleware and deferred to later calls. For instance, consider a situation in GATS where the origin 

has pending RMA operations and is involved in a long computation. Meanwhile, if the target opens 

its epoch then the pending RMA operations should ideally be initiated immediately. However, this 

cannot happen since the origin is busy in computation. An opportunistic message progression 

technique is proposed in [88] to address such inefficiencies. Similar to the two-sided version, this 

involves stealing CPU cycles from the application thread to progress pending RMA 

communications. [73] attempts to address these inefficiencies through an approach that uses 

process based asynchronous message progression with PMPI call redirection. These progression 

processes are called ghost processes, which can progress RMA communications for multiple MPI 

processes. Instead of calling the low-level network functions for RMA operations, the MPI 

processes use PMPI call redirection to offload this task to the ghost processes. The ghost process 

transparently redirects the call to the intended target and also progresses the RMA operations on 

behalf of the MPI processes that it is associated with. Since the ghost processes do not perform any 

computation, they are expected to be responsive in making RMA calls and progressing them. This 

approach uses shared memory so that the ghost processes can access the application data.  

3.3 Summary 

This chapter discusses the inefficiencies associated with point-to-point communication and 

RMA, and presents a literature review of the approaches that try to address them. 

Communication/computation overlap is the key parameter in deciding the efficiency of a messaging 

semantic, as serialization leads to suboptimal resource utilization which is undesirable in HPC. 
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In point-to-point communication, there is always a natural 100 percent overlap for eager 

messages because the application data is sent directly to the receiver, without any synchronization. 

In the rendezvous protocol, a natural overlap is possible only when certain conditions of process 

arrival patterns are met. For two-sided communication, the existing overlap proposals can be 

classified into three categories: protocol improvement, hardware-assisted approaches and host-

based approaches. In an adaptive protocol improvement approach, the middleware automatically 

switches between receiver/sender initiated protocols based on the arrival order of the peers. Some 

adaptive approaches are augmented with buffering at the remote peer so that the local peer can be 

wait free in case the remote peer is very late. Other protocol improvement approaches involve 

profiling the communication pattern of an application and then choosing the protocols that can 

provide the maximum amount of communication/computation overlap. Profiling of the application 

can be performed statically through syntax analysis or dynamically during run-time. Hardware-

assisted approaches rely on specialized features on the NIC that can be exploited to offload 

communication primitives or to provide asynchronous message progression. Finally, host-based 

approaches employ CPU or GPU cores to improve the overlap. The most common host-based 

approach is to use CPU cores for asynchronous message progression. In this approach, the 

asynchronous progress thread can be based on polling or interrupts. Other proposals include 

opportunistic message progression and PMPI call redirection. 

In one-sided communication, serialization can happen due to a non-timely opening or closure 

of epochs. In GATS, this can happen if the exposure epoch is opened late or closed early, or if the 

access epoch is closed late. Serialization happens in Fence when one of the peers tries to close its 

epoch before all the RMA operations are complete or when a peer issues the epoch closing call 

significantly later than the rest of the peers. In Lock/Unlock (passive target) this can happen in an 

exclusive lock epoch if the lock holder delays in relinquishing the lock. Similarly, in a shared lock 

epoch, a delayed epoch closure by one of the peers can lead to the propagation of this delay to the 
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rest of the peers. One way to address these inefficiencies is by using entirely non-blocking epoch 

manipulating calls. RDMA can be used for high performance and asynchronous RMA operations; 

however, serialization can still occur on RDMA enabled networks in certain scenarios. For 

instance, the progress of RMA operations should ideally not require any intervention from the target 

but this cannot be avoided if the RMA operation involves non-contiguous data. This inefficiency 

was addressed using InfiniBand’s atomic operations. Quite often, there may be scenarios where the 

target opens the exposure epoch while the origin is involved in a long computation. In such a 

scenario, the pending RMA operations cannot be progressed until the origin’s computation is 

complete, leading to an unproductive wait at the origin and possibly at the target as well. This 

scenario can be handled through host-based approaches like opportunistic message progression and 

asynchronous message progression with PMPI call redirection. 

From the discussion in this chapter, it can be inferred that almost all overlap approaches suffer 

from some kind of drawback. Also, there is no documented approach that can address the 

inefficiencies of both two-sided and one-sided communications. The next two chapters discuss the 

design and implementation of a novel asynchronous message progression technique that works well 

for both two-sided and one-sided communication. This approach addresses all of the two-sided 

inefficiencies and most of the one-sided inefficiencies while incurring negligible overheads. 
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Chapter 4 

Node-Wide Asynchronous Message 

Progression for Point-to-Point 

Communication 

 

Chapter 3 discusses the inefficiencies associated with the rendezvous protocol and surveys 

the literature on communication/computation overlap for two-sided MPI communications. With the 

sender initiated protocols, a natural overlap is only possible when the sender arrives ahead of the 

receiver in the RDMA Read based protocol. The RDMA Write based protocol uses an extra control 

signal and presents no scenario where a natural overlap is possible. On the other hand, the receiver 

initiated rendezvous protocols [61] do not comply well with some of the specifications in the MPI 

standards. Chapter 3 then discusses the different researches through which communication/ 

computation overlap can be achieved. One of the techniques discussed is a host-based approach 

called asynchronous message progression [34, 46]. This technique involves the usage of 

CPU/GPU/Co-Processor cores to spawn progression threads/processes that can asynchronously 

progress the communications initiated by the application threads. This chapter investigates the 

second research question posed in Section 1.2 by discussing the design, implementation and 

performance evaluation of a novel overlap approach based on asynchronous message progression. 

This approach, called SmartInterrupts, is a hybrid node-wide message progression technique 
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which utilizes the advantages of both polling and interrupts. In the rest of this chapter, the design 

and implementation of SmartInterrupts is followed by a discussion on the micro-benchmarks and 

application study used for its performance evaluation. 

4.1 Motivation 

Chapter 3 classifies the existing overlap approaches into three categories: protocol 

improvement methods, hardware-assisted approaches and host-based approaches. Protocol 

improvement approaches are mostly adaptive [66, 74, 75] or predictive in nature [51]. Adaptive 

approaches cannot efficiently deal with a scenario where both the peers arrive at almost the same 

time. In such a situation, these approaches have to resort to the suboptimal default protocol or 

impose expensive synchronizations. Some adaptive approaches [74, 75] are augmented with 

buffering at one of the peers but they pose a risk of buffer exhaustion. Predictive approaches assume 

that the communication pattern of an application can be profiled using static or dynamic techniques. 

However, such techniques cannot account for unpredictable elements like OS noise. 

SmartInterrupts is completely deterministic; hence it guarantees the correctness of the entire 

mechanism. 

Hardware-assisted approaches exploit specialized features provided on the NIC to either 

offload the communications to the NIC [20, 27, 37] or asynchronously progress them [62, 84]. One 

deterrent to employing these approaches is the need for a specialized hardware. In modern multi-

core and many-core architecture machines, it is not inconceivable to find a few spare cores that are 

not involved in any computation. These few spare cores are enough for SmartInterrupts to improve 

the application performance by improving the communication efficiency. Another problem with 

hardware-assisted approaches is that they inhibit code portability, which arises due to the fact that 

the specialized features are provided by specific vendors, and they may not adhere to an API 

standard like InfiniBand. SmartInterrupts' design is based on standard operating system concepts 
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and implemented using standard UNIX calls on top of InfiniBand. Also, the design is not dependent 

on InfiniBand and can work with any RDMA enabled interconnect that offers similar 

communication semantics. 

Among host-based approaches, the most common overlap technique is asynchronous message 

progression [18, 19, 46, 76, 87]. In this technique, the progression thread can either be polling based 

or interrupt based. A polling thread is more responsive but it is resource intensive. This can lead to 

suboptimal resource utilization or oversubscription. Since each MPI process is a unique context 

with its own address space, each of them needs its own asynchronous progression thread. Therefore, 

for a single threaded application, this can lead to the wastage of half of the CPU cores or cause 

oversubscription on each CPU core. On the other hand, interrupt thread based approaches are 

resource efficient but as discussed in Section 3.1.2, they may lead to the generation of futile 

interrupts which incur several overheads. They are, the cost to generate an interrupt, the context-

switch cost and either the cost of locking into the progress engine or the cost to signal the 

application to call the progress engine. SmartInterrupts is a hybrid asynchronous message 

progression technique that combines the responsiveness of polling and the resource efficiency of 

interrupts, while practically eliminating the detrimental effects of both the approaches. It utilizes a 

fraction of the CPU cores compared to polling and generates interrupts based on MPI’s message 

matching tuple of rank, tag and context ID. Since the interrupt generation mechanism is completely 

deterministic and essentially based on MPI’s message matching semantics, interrupts are only 

generated when they are useful. 

4.2 Design of SmartInterrupts 

To improve the communication/computation overlap of point-to-point communications, 

SmartInterrupts’ design was based on asynchronous message progression. The motivation behind 

the design was to consume minimum amount of compute resources and avoid the issues associated 
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with protocol improvement and hardware-assisted approaches. However, asynchronous message 

progression has its own disadvantages which are discussed in depth in Chapter 3. As mentioned in 

Chapter 2, when an MPI communication completes, the network driver generates information about 

the completion of this communication. For instance, in case of the sender initiated RDMA Read 

based rendezvous protocol, this completion information is generated when the RTS arrives at the 

receiver. The progress engine then uses this information to progress the message by issuing the 

RDMA Read. The network API calls to get this completion information can be blocking or non-

blocking. The interrupt based progress engine is designed using the blocking API call, which causes 

the calling thread at the receiver to go sleep until interrupted by the NIC when there is a work 

completion. On the other hand, the non-blocking API call must return immediately regardless of 

whether there was a communication completion or not. Therefore, a progress engine using the non-

blocking API call must issue this call repeatedly until it finds the completion information of its MPI 

communication. This is the idea behind the polling based progress engine.  

In asynchronous message progression, the main thread of each MPI process spawns a thread 

which keeps the progress engine active until the process terminates. This thread then progresses 

the communications when its application threads are busy in computations, ensuring the timely 

initiation of the communications and improving the communication/computation overlap. Since 

polling and interrupts are the only two options for the design of the progress engine, most of the 

existing asynchronous message progression techniques are also based on one of them. In interrupt 

based asynchronous message progression, the progression thread sleeps until it awoken due to a 

communication completion. The progression thread then takes the necessary actions and goes back 

to sleep again. This interrupt thread does not consume any CPU cycles while it is asleep but it is 

associated with several overheads that are described in Chapter 3. On the other hand, a polling 

based progression thread continuously polls for communication completions in a busy loop. When 

a communication completion happens, it takes the necessary steps and goes back to polling again. 
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The major advantage of the polling thread is its responsiveness. This is made possible due to the 

complete avoidance of kernel-userspace context switches by directly polling on the user-level data 

structures that are automatically populated by the NIC when the communications complete. 

However, polling on a busy loop incurs 100 percent CPU utilization, which ultimately leads to the 

wastage of compute resources as discussed in Chapter 3. Therefore, to harness the strengths of 

polling and interrupt based approaches and to avoid their shortcomings, the following design 

objectives were formulated for SmartInterrupts: 

1) Hardware interrupts are expensive. At the minimum, each hardware interrupt requires the 

NIC to first generate a hard-interrupt on the Peripheral Component Interconnect Express 

(PCIe) bus. This hard-interrupt is then handled by the NIC’s driver at the kernel and a soft-

interrupt is triggered if a userspace thread is waiting for it. A large number of incoming 

messages may not result in soft-interrupts but lead to unnecessary hard-interrupts anyway. 

Therefore, a mechanism was required to minimize the hard-interrupts or eliminate it 

entirely if possible. 

2) A soft-interrupt triggered to an expecting interrupt thread leads to a context-switch and a 

call to the progress engine. Also, the interrupt thread might have to contend for the progress 

engine lock. These activities are costly, but the costs are justified if the interrupt is useful. 

However, as mentioned earlier, this is not always the case. Therefore, a deterministic 

mechanism was required to make sure that the interrupts are only triggered when they are 

helpful. 

3) The problem with the existing polling based approach is that each MPI process requires its 

own progression thread, which leads to the wastage of computing resources. This is 

because of the fact that the completion information data structure is only confined to the 

address space of individual MPI processes. However, the responsiveness of polling was 

desired in the design, which led to the following design objectives: 
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a) Associating multiple MPI processes with a single polling agent, so as to be 

resource efficient. This polling agent could be a tasklet at the kernel or a thread at 

the userspace.  

b) Polling for the completion information of multiple MPI processes at the same place 

meant that the available network API function and its associated data structure 

could no longer be used to poll. Therefore, a mechanism was required to emulate 

the completion information data structure and share it across multiple contexts, 

which could be between the userspace process and the kernel or between multiple 

userspace processes. 

These design objectives were accomplished by developing a hybrid approach that uses both 

polling and interrupts, but neither in the traditional sense. Like the interrupt based asynchronous 

message progression proposals, the progression thread in SmartInterrupts is an interrupt thread that 

progresses messages whenever interrupted. However, the interrupts are not generated by the NIC’s 

device driver and not part of the network’s software stack. Instead, the interrupts are triggered by 

polling processes called Helper Processes (HPs) that may be associated with multiple MPI 

processes. This addresses Objective 1 by completely eliminating hardware interrupts and also 

addresses Objective 3(a). To achieve Objective 3(b), a shared buffer was created between each MPI 

process and its associated Helper Process. This shared buffer contains information about the 

incoming control messages related to the rendezvous protocol. In SmartInterrupts’ design, the data 

in this buffer emulates the completion information. Finally, to achieve Objective 2, the interrupt 

generation mechanism was based on MPI’s message matching semantics. This guarantees that an 

interrupt will only be generated when it is helpful. As discussed in Chapter 2, MPI’s message 

matching is performed on two groups of data, the messages that have arrived at an MPI process 

and the communication requests that are queued locally. Information about the former was shared 

with the helper processes when Objective 3(b) was addressed. Information about the latter was 
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shared by creating another shared buffer between the MPI process and its Helper Process. The 

Helper Process matches the contents of these two buffers and triggers an interrupt to the interrupt 

thread upon finding a match. This causes the sleeping interrupt thread to wake up and then 

asynchronously progress the message while its application thread is busy in a computation. 

4.2.1 Choosing the Default Rendezvous Protocol 

Chapter 3 discusses the sender and receiver initiated rendezvous protocols, along with their 

RDMA Read and Write based implementations. The receiver initiated protocols suffer from the 

inability of dealing with certain specifications of the MPI standard. The sender initiated RDMA 

Write based protocol uses an extra control signal and presents no scenario of arrival orders where 

the communication can naturally overlap with the computation. On the other hand, in the sender 

initiated RDMA Read based protocol, an overlap can be expected if the sender arrives ahead of the 

receiver. However, if the sender arrives later than the receiver then the communication gets deferred 

to the MPI_Wait. This means that an external message progression support would only be required 

in the latter scenario. SmartInterrupts is designed around the sender initiated RDMA Read based 

rendezvous protocol, so that it can leverage its natural overlap potential. In scenarios where there 

is a possibility of a natural overlap, SmartInterrupts will not have any detrimental impact on the 

performance. 

4.2.2 Asynchronous Message Progression Mechanism 

Figure 4.1 illustrates the data-movement and signaling involved in SmartInterrupts. When the 

sender arrives at MPI_Isend (C), it sends a modified RTS control message to the receiver. This 

modified control message has two parts. The first part is the original unmodified RTS control 

message that contains the message envelope and the second part is a duplicate of the message 

matching information of the first part. When this modified RTS control message arrives at the 
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receiver, the first part gets copied to the receiver’s communication buffer (F) and the second part 

gets copied to the shared buffer between the receiver and its helper process (D). According to 

Objective 3(b), this is required to make the helper process aware of the incoming RTS. When the 

receiver arrives at the matching MPI_Irecv call (A) and does not find its RTS, then it requests for 

an interrupt from its helper process (B). It does so by adding a request to the other shared buffer 

that was added to accomplish Objective 2. The helper processes continuously poll on the incoming 

RTSs since spawning and try to match them with the interrupt requests submitted to them (B). An 

interrupt is triggered to the receiver’s progression thread if a match is found for its request. In the 

illustrated scenario, the MPI_Irecv’s request is already present in the shared buffer when the RTS 

arrives at the receiver. The helper process eventually finds the matching RTS for the initially 

submitted request and triggers an interrupt to the interrupt thread (E). This causes the interrupt 

thread to wake up and call the progress engine. The progress engine then progresses the message 

by issuing the RMDA Read (G). Since the communications are offloaded to the NIC, the interrupt 

thread can immediately go back to sleep after issuing the communication calls. For the illustrated 

scenario, this leads to a communication/computation overlap between (G) and (H). Since the 

communication is entirely progressed before the call to the MPI_Wait at (J), the receiver does not 
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have to block and can send the FIN control signal instantly, which is also offloaded. On the other 

side, the delay at the sender’s MPI_Wait depends upon when it gets called, as it cannot return until 

it receives the FIN control signal.  In this case, the sender has to wait between (I) and (K), however, 

it could have been wait free if it had issued the call after the arrival of FIN (K). There are three 

important optimizations in the design to make the helper processes more efficient and to eliminate 

any possibility of misfiring interrupts. The details of these optimizations are discussed in Section 

4.3. 

4.2.3 Core Components 

Figure 4.2 illustrates the important components of SmartInterrupts, in which each MPI process 

has one application thread and one interrupt thread for asynchronous message progression. The 

application thread is the main thread which can be safely oversubscribed with the interrupt thread, 

as the latter does not poll periodically and lays dormant until interrupted. While the thread sleeping, 

it is taken off the scheduler’s run queue and it does not consume any CPU cycles in this state. Other 

important entities are the Interrupt Handler kernel module, the Helper Processes and the two 

shared memory regions between the MPI processes and the helper processes.  

As mentioned earlier, the task of interrupt generation is the responsibility of the helper 

processes. As the name suggests, they assist the interrupt threads and in turn assist the MPI 

processes to asynchronously progress messages. However, it is important to note that they only 

trigger the interrupts. They do not call any network related API functions, and calling the progress 

engine is still the responsibility of the asynchronous progression interrupt thread. The interrupts are 

triggered based on the data in the shared buffers, which bridges the MPI process to its helper 

process. The number of helper processes per node can be specified as a command line argument at 

the time of execution. However, it is important to note that a minimum of one per node is required 
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to trigger any interrupt to the progression threads. The helper processes use a busy loop, so for 

maximum performance, each of them needs to run on an individual CPU core. The objective of this 

approach is to use only a small percentage of CPU cores and still provide a decent amount of 

overlap. In modern multi-core and many-core architectures, dedicating just a few cores for 

asynchronous message progression is more beneficial than using all the cores for MPI processes 

with no asynchronous progression at all. 

4.3 Implementation of SmartInterrupts 

4.3.1 Interrupt Handler Kernel Module 

The Interrupt Handler kernel module assists in accomplishing the Design Objective 1 by 

completely eliminating the need for hardware interrupts. It does this by creating a virtual file in the 

proc virtual filesystem and defining the read() and write() functions associated with this file. This 

module creates an array of wait queue elements, one for each MPI process. A wait queue is a list 

of processes, all waiting for a specific event. However, in this kernel module, each wait queue is 

associated with only one process. The state of the interrupt threads is manipulated in the read() and 

 

Fig. 4.2 Core Components of SmartInterrupts 
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write() functions by controlling the wait queues. To go to sleep, an interrupt thread must issue the 

read() system call on this virtual file. Similarly, generating an interrupt to a specific sleeping thread 

requires a call to the write() system call on the virtual file by the helper process. To ensure the 

sleeping and waking of the correct interrupt thread, the local MPI rank is passed as a parameter to 

these functions. 

4.3.2 Shared Buffers 

SmartInterrupts is implemented on MVAPICH2 [56], which supports InfiniBand [36] through 

OFED [59]. Necessary modifications were made to the buffer structures of MVAPICH2 to address 

the different design objectives of SmartInterrupts. Figure 4.3(a) illustrates the different buffers that 

are present in the implementation of SmartInterrupts. In MVAPICH2, the registered memory 

regions used for Send/Receive InfiniBand communications are called Virtual Buffers (VBUF), 

and they are of two types, sending VBUFs and receiving VBUFs. To the existing pool of VBUFs, 

one more is added to each of the types. These are called sending and receiving Interrupt Control 

Buffers (ICB). The receiving ICB is part of a shared memory region between the MPI process and 

its Helper Process. This is the same shared buffer that was used to address the Design Objective 

3(b) and is one of the components that was required for the Design Objective 2. In SmartInterrupts’ 

design, each MPI process has a distinct buffer shared with its helper process. However, in the 

implementation, rather than creating separate shared buffers between each MPI process and its 

helper process, a single shared memory region is created among all MPI processes and the helper 

processes, as shown in Figure 4.3(a).  However, this shared buffer region is strided, with each stride 

allocated to an MPI process for its shared space with its helper process.  Therefore, although ICB 

and IRB may contain information about multiple MPI processes, there is no communication 

between the MPI processes through these shared buffers. 
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As stated before, control messages like RTS are sent eagerly. MVAPICH2 provides two ways 

of sending eager messages, Send/Receive and RDMA Write (Fast Path [42]), but the former suits 
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the design better as it allows storing data in a non-contiguous remote buffer. In vanilla MVAPICH2, 

the eager message is copied to the sending VBUF and a send WR is created with this VBUF as the 

Scatter Gather Element (SGE). Recall, that an SGE points to a memory region on which DMA 

operations like read and write can be carried out (Section 2.4.1). In InfiniBand’s Send/Receive 

semantics, while processing a send WR, the NIC reads from this SGE and transfers the data to the 

destination. In order for this data to be successfully stored somewhere at the destination, a matching 

receive WR must be posted at the destination. This receive WR must specify one or more SGEs on 

which the incoming data may be stored. When the send WR is posted, the data from the sender gets 

ultimately stored at the SGE(s) that are specified in the receive WR. Therefore, at the receiver in 

vanilla MVAPICH2, several receive WRs are posted in advance, with each WR containing the 

address of a single receiving VBUF as the SGE. When the send WR is posted, the eager message 

ends up at one of the receiving VBUFs at the receiver. In SmartInterrupts’ implementation, these 

operations as modified as follows: 

a) At the sender, the eager message is copied to the sending VBUF like before. In addition to 

that, if the eager message is an RTS then the message matching tuple (rank, tag and context 

ID) associated with that message is copied to the sending ICB (Figure 4.3(c)). This message 

matching tuple is referred to as the Interrupt Control Data (ICD). If the eager message 

is not an RTS then it is appropriately indicated in the ICD. Now, in each send WR, two 

SGEs are specified, the first containing the address of the ICD in the sending ICB and the 

second containing the address of the message in sending VBUF. 

b) Similarly, at the receiver, each receive WR is posted with two SGEs instead of one. The 

first SGE points to a memory location in the receive ICB and the second points to one of 

the receiving VBUFs. 

When the send WR is posted, the eager message lands at one of the receiving VBUFs and the ICD 

at the receiving ICB (Figure 4.3(d)). This receiving ICB is shared with one of the helper processes. 
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Consequently, the ICD becomes available to the receiver’s helper process at point (D) in Figure 

4.1. 

In addition to the sending and receiving ICBs, another shared buffer, called the Interrupt 

Request Buffer (IRB) is added between the MPI processes and their helper processes, but this 

buffer is not registered with the HCA. The IRB and the ICB together form the two components 

required for the Design Objective 2. If the receiver arrives at MPI_Irecv and does not find its RTS 

in the Unexpected Message Queue (Section 2.3.1) then it adds a request to the Posted Receive 

Queue, as well as an entry to the IRB at point (B) in Figure 4.1. This entry, called the Interrupt 

Request Data (IRD) is essentially a request to its helper process to trigger an interrupt to its 

interrupt thread. As stated earlier, although ICB and IRB may contain information about multiple 

MPI processes, there is no communication between the MPI processes through these shared buffers. 

4.3.3 Helper Process and Interrupt Thread  

At this juncture, the helper process knows about the RTSs that have arrived, as well as the 

receive requests that are looking for them. Therefore, it has enough information to trigger an 

interrupt and progress the message asynchronously if a match is found between the ICDs and IRDs. 

This sequence of actions is illustrated in Figure 4.1. However, this design is augmented by the 

following optimizations which improve the efficiency of message matching, eliminate the 

triggering of futile interrupts and minimize inter-processor communications.   

Optimization 1: Improving the Efficiency of Message Matching in Helper Processes  

The helper processes continuously poll on their ICBs to look for RTSs. If the progress engine 

is already active in an MPI process then it will most likely progress the pending messages of that 

process. In such a case, polling for its ICDs at the same time by the helper process serves no 

purpose, leads to wastage of CPU cycles and delays the message matching of other MPI processes 

that are associated with the helper process. Therefore, in addition to storing the IRDs, a region in 
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the IRB also contains information about the progress engine semaphore. If the progress engine lock 

is held by the main thread, then that information is available to the process’s helper process as well. 

This information enables the helper processes to avoid performing message matching for the MPI 

processes in which the progress engine is active and focus on other MPI processes whose lock has 

not been acquired. This is one of the three optimizations that was mentioned in Section 4.2.2. This 

speeds up the message matching process for the MPI processes where the progress engine is not 

active. 

Optimization 2: Eliminating Futile Interrupts  

Upon finding an RTS, message matching is performed on the IRDs. If a match is found, then 

an interrupt may be triggered to the interrupt thread of the appropriate MPI process. However, it is 

possible that the MPI process acquires the progress engine lock during the message matching 

process. As mentioned earlier, if the progress engine is already active in the main thread, then it 

will most likely progress the message too. Generating an interrupt in this case would not only be 

futile but also incur several unnecessary overheads. To avoid this, the status of the MPI process’ 

progress engine lock is examined before triggering the interrupt, and the interrupt thread is only 

awakened if the lock has not been already acquired. This information about the lock was made 

available through Optimization 1. This second optimization is an important aspect of the design as 

the lack of it can significantly hamper the performance. There is a possible scenario in which the 

progress engine in the main thread might be almost at the end of its call, with no chance of the 

message being progressed by the main thread in that call. From the helper process’s perspective, 

the progress engine’s lock would be acquired, so it would not trigger an interrupt immediately. In 

this situation, the opportunity for interrupt generation is not lost but slightly delayed. 
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Optimization 3: Minimizing Latency due to Inter-Processor Communications 

Due to the inter-process communication between the MPI processes and helper processes, 

careful consideration is required about the locality of the shared buffers and the relative position of 

an MPI process with respect to its helper process. As mentioned in Chapter 2, modern compute 

nodes may have several NUMA nodes upon which the processes are running. A NUMA node 

consists of a CPU and one or more memory modules that are local to it. Data transfers across 

NUMA nodes are facilitated by the inter-socket interconnect, and such transfers are slower than 

accessing the local memory. In fact, in modern processors, the CPU cores may share their caches 

with each other which further decreases data access latencies. Therefore, to maximize the 

performance of SmartInterrupts, the MPI processes and their helper processes are mapped to the 

CPU cores of the same NUMA node if possible. This ensures that message matching information 

is available to the helper processes as soon as they arrive, so that there is minimum delay in the 

generation of interrupts. This mapping of the processes to the CPU cores is done with the help of a 

software package called Portable Hardware Locality or hwloc [13]. 

Performance Improvement in Other Scenarios 

The previous sections emphasize on the usage of SmartInterrupts in the scenario where the 

receiver arrives ahead of the sender. Regardless of the MPI implementation, the proposed approach 

would be useful in this scenario. But depending on the implementation and the application, 

SmartInterrupts may also be useful in the other scenario where the sender arrives first. As discussed 

in Section 2.3.1, an eager message like RTS does not land directly into the UMQ but instead into 

an intermediate communication buffer. It is the job of the progress engine to move this stray RTS 

from the intermediate buffer to the UMQ if the receiver has not issued the matching receive call 

yet. In certain MPI implementations, an MPI_Irecv call internally calls the progress engine first. In 

such a case, there will be a natural communication/computation overlap and SmartInterrupts’ 
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support will not be required. Its support will also not be required if the RTS has already arrived and 

the receiver explicitly calls the progress engine before issuing the MPI_Irecv call. However, if there 

is no implicit or explicit call to the progress engine then the proposed approach would be able to 

improve the overlap, even in the scenario where the sender arrives first. 

With the proposed design and the added optimizations, there is no possibility of incorrectly 

triggering interrupts. Also, it does not lead to the wastage of half of the CPU cores. Consequently, 

it addresses most of the shortcomings of the polling and interrupt based approaches discussed in 

the Section 3.1.2. But there are still some unavoidable overheads which are inherent to an interrupt 

based system; like, the cost to generate an interrupt and the cost of a context-switch. Also, the 

interrupt thread gets oversubscribed with the main thread when it awakens. However, this 

oversubscription lasts for a very short duration, as the interrupt thread has to only post the WRs for 

RDMA Reads and not wait until the transfers are over. One might also be concerned about the 

overhead added by the extra information (ICD) that is sent along with each eager message, but the 

experimental evaluation shows that it is negligible. The details are discussed in Section 4.5. 

4.4 Design Alternatives 

Design Alternative 1: Using Hardware Interrupts 

Alternative design approaches were considered but were not followed through due to some 

inherent drawbacks. In one such approach, there was no concept of a helper process and it did not 

involve polling at the userspace. The idea behind this approach was to use InfiniBand’s event based 

completion notification and to intercept the HCA’s interrupts at the kernel. This approach also 

relied on the usage of shared buffers, but between the HCA’s device drivers and the MPI processes. 

Information about the interrupt requests and incoming control messages would be made available 

to the drivers through these buffers. Also, this approach required the network APIs to be used in a 
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way such that a hardware interrupt is generated whenever a control message arrives at the receiver. 

A hardware interrupt activates the interrupt handling part of the device drivers. That code would 

then examine the contents of the shared buffers and match the interrupt requests to the control 

messages that have recently arrived. The interrupt would be allowed to pass to the userspace in case 

of a match, otherwise, kept buried at the kernel.  

It is evident from the description that this approach would have required a modification of the 

HCA’s device drivers. Supercomputing facilities are generally made available through agencies 

that promote research, however, access to these machines is very limited and it is very unlikely to 

get a permission for driver modification, as it may cause adverse affects on the applications of other 

users. Despite this limitation, this idea was explored for some time but it resulted in the discovery 

of two more issues, soft-lockups and race conditions. Long computations at the kernel can lead to 

soft-lockups which inhibit the timely execution of other important operating system activities, 

rendering the machine unstable. An interrupt thread based on pthreads cannot be terminated by its 

process if it is asleep. Also, in this approach, interrupts can only be triggered through a 

communication from another node. So, for a successful termination of the application, it is 

imperative that all interrupt receiving blocking calls are matched by an appropriate communication. 

This is easy to handle if each MPI process has exactly one application thread. However, if there are 

multiple threads per process, each having the ability to issue the blocking interrupt call, then only 

one of the threads will be awakened if several of them issue the blocking call together, causing a 

race condition where a few of the threads may block forever. 

Design Alternative 2: Using the Immediate Data Field in the WR Data Structure    

The approach proposed in this thesis adds extra information to each eager message. This 

information consists of the message matching tuple of rank, tag and context ID, which is contained 

in an SGE of eight bytes. The next section will show that this addition has no effect on the 

performance, however, an approach was considered to avoid this. In InfiniBand, there is a special 
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field in the work request’s data structure called Immediate Data (imm_data). It is different from 

the RDMA payload because it does not get stored into the remote application buffer, but instead 

gets stored as work completion data. If it is confined to the size limit, this field can be set to any 

arbitrary value and can be sent along with the payload. However, the size of this field is limited to 

32 bits in hardware, which is not sufficient to store the entire message matching tuple, which by 

default is 64 bits and can be even larger for large clusters. 

4.5 Performance Evaluation and Analysis 

This section evaluates the performance, overheads and scalability of SmartInterrupts for 

point-to-point communication. To thoroughly evaluate the design, the implementation was used as 

a middleware to test several two-sided micro-benchmarks, one collective micro-benchmark and 

one scientific application. The same micro-benchmarks and application were then executed on 

other available solutions, and the results were analyzed. 

4.5.1 Description of Hardware and Software 

The cluster used to execute the micro-benchmarks and application consists of 32 nodes, all 

connected to a single Switch-IB SB7700 switch. Each node is equipped with two 10-core Intel 

Xeon CPUs (E5-2680) running at 2.8GHz, 64GB DDR3 memory and a Mellanox [52] ConnextX-

4 HCA. The software environment consisted of the Red Hat Enterprise Linux 7 OS with kernel 

version 2.6.32-431, Mellanox OFED 3.4-1 and MVAPICH2-2.2a. 

4.5.2 Two-Sided Micro-Benchmarks 

The performance of point-to-point micro-benchmarks was evaluated using two nodes of the 

cluster described above. The evaluation was based on the parameters of latency overhead, 

communication/computation overlap, asynchronous message progression, scalability and memory 
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footprint. The design of the micro-benchmarks was inspired by the ideas suggested in [65]. The 

evaluation of the proposed design requires several pairs of senders and receivers communicating in 

parallel. This is because SmartInterrupts is a node-wide asynchronous message progression 

proposal and its performance can be best evaluated when each helper process is assisting multiple 

MPI processes on the same node. One of the nodes is designated as the sending node and the other 

as the receiving node. Each MPI process (MP) in the sending node communicates exclusively with 

one MPI process in the receiving node. This pair-wise communication scheme is illustrated in 

Figure 4.4. Before the start of each communication, the senders and receivers are synchronized so 

that all the MPI_Isends are posted together and all the MPI_Irecvs are posted together. Also, since 

the design is aimed at receiver side overlap, all the timing measurements are performed at the 

processes in the receiving node. 

Figure 4.5 shows the generalized sender and receiver algorithms that were used to analyze the 

overhead, overlap, progression and scalability. In all the point-to-point micro-benchmarks, 10,000 

iterations of these algorithms were used and the first 200 iterations were discarded to account for 

cache warm-up. In both the algorithms, the sender and receiver start each iteration with a call to 

MPI_Barrier. This ensures that the following lines are executed at almost the same time. Line 2 at 

the sender is there to simulate the scenario where the receiver arrives ahead of the sender and misses 
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its RTS. This is the scenario where SmartInterrupts would be most helpful. However, this delay 

does not exist in the latency overhead micro-benchmark. The reason behind this can be found in 

the next section. After the delay, the sender issues the MPI_Isend call and blocks at MPI_Wait until 

it receives the FIN control signal from the receiver. At the receiver, the timing measurement starts 

after the MPI_Barrier. Then, the MPI_Irecv is issued followed by a simulated computation at Line 

4. The major difference between the individual micro-benchmarks is the implementation of this 

Line 4 in the receiver’s pseudo-code and the processing of the results. Finally, the MPI_Wait for 

the MPI_Irecv is issued and the timing measurement is stopped. 

 The results of SmartInterrupts are compared to that of MVAPICH2’s polling based 

asynchronous progression and with its default, no asynchronous progression setting. These are 

respectively referred to in this chapter as MVAPICH-Async and MVAPICH. The results are not 

compared with OpenMPI because at the time of writing, it had no support for asynchronous 

progression. On the machines that were used, the default eager threshold of MVAPICH2 is 16KB 

and all of the micro-benchmarks were executed with messages sizes of 16KB-1MB. The micro-

benchmarks were experimented with several different configurations of MPI processes and helper 

processes on each node, however, this chapter will limit the results to two configurations for the 

ease of comparing between the significant results. The first with 9 MPI processes and 1 helper 

process per node (9-1) and the second with 18 MPI processes and 2 helper processes per node (18-

2). This is to be able to compare the performance of SmartInterrupts with both non-oversubscribed 

SENDER: 

1. MPI_Barrier(MPI_COMM_WORLD) 
2. Small constant delay to 

assure that the receiver 

arrives first 

3. MPI_Isend to the appropriate 
receiver 

4. MPI_Wait 

 

RECEIVER: 
1. MPI_Barrier(MPI_COMM_WORLD) 
2. Measure Start Time 
3. MPI_Irecv from the appropriate 

sender 

4. Variable synthetic work 

according to the micro-

benchmark 

5. MPI_Wait 
6. Measure Stop Time 

 

Fig. 4.5. Template for Two-Sided Micro-Benchmark Design 
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and oversubscribed scenarios of MVAPICH-Async. Note, that the interrupt threads in 

SmartInterrupts remain oversubscribed with the main thread even if there are spare cores available. 

However, as discussed in Section 4.4, the overhead due to this mapping scheme is negligible. 

Latency Overhead 

The latency overhead (Toverhead) is the difference between the message latencies (Tlat) of the 

asynchronous message progression approaches and MVAPICH. In this micro-benchmark, there is 

no delay between the MPI_Irecv and MPI_Wait (Figure 4.5). Also, Line 2 at the sender is absent, 

so the sender and receiver arrive at almost the same time. Triggering interrupts would serve no 

purpose if the MPI_Irecv is immediately followed by the MPI_Wait. Moreover, it would be 

detrimental to the performance due to the overheads associated with interrupts. These algorithms 

help to analyze such overheads by simulating the scenario where SmartInterrupts would not be 

helpful. The averages of the latency values across all the processes is calculated and used for the 

overhead measurement.  

Figure 4.6 compares the overhead of Smart Interrupts with MVAPICH-Async for different 

message sizes. In Figure 4.6(a), the overheads of both implementations are negligible, in the order 

of nanoseconds. The overhead curve for MVAPICH-Async starts leaning to the negative side as 

the message size increases. This is because of OS noise and network contention. The execution 

times of MPI_Isend and MPI_Irecv calls, and the message latency of control signals are 

comparable. Also, since all the MPI processes issue their MPI_Isend at almost the same time, the 

network contention can cause slight perturbations on the arrival of RTSs. Therefore, it is possible 

that an RTS may not arrive at its receiver when the MPI_Irecv call is issued. If it does not, then the 

progression gets deferred to the next call to the progress engine. In MVAPICH, this can only happen 

in the next MPI_Wait call, and there is some latency between the missing of the RTS and the next 
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call to the progress engine. This latency is recovered with MVAPICH-Async as the progress engine 

is always active; therefore, the message can be progressed as soon as the RTS arrives.  

In Figure 4.6(b), SmartInterrupts continues this trend; however, the overhead of MVAPICH-

Async significantly increases. This is because, there are 18 MPI processes on each node which 

causes the oversubscription of main threads and poling threads. In SmartInterrupts, 

oversubscription only happens when the interrupt thread is called into action, which is unlikely in 

this micro-benchmark because of the immediate arrival of MPI_Wait after MPI_Irecv. From the 

results, it can be concluded that SmartInterrupts incurs negligible overheads and does not adversely 

impact the performance. 

Communication/Computation Overlap 

For the measurement of communication/computation overlap, the previously mentioned 

algorithm (Figure 4.5) was modified according to [65]. In the first iteration, the synthetic work 

(Tsyn) across all the receiving processes is kept zero and the message latency (Tlat) is calculated. 

This latency becomes the basis for the synthetic work in the following iterations. Then, for each 

MVAPCH-Async SmartInterrupts

 
 

  
         

        (a) 9 MPI processes per node, 1HP for SmartInterrupts             (b) 18 MPI processes per node, 2HPs for Smart Interrupts 

Fig. 4.6. Two-Sided Latency Overhead Results over MVAPICH 
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iteration, the synthetic work is increased by 10 percent of Tlat until it becomes 1.1 times of Tlat, that 

is: 

0.1Tlat ≤ Tsyn ≤ 1.1Tlat. 

These values are based on empirical observations. To measure the overlap of a particular 

communication on a scale of 0 to 100 percent, the computation, which is derived from the 

communication’s latency, is also varied at the same scale. For all values of Tsyn, the elapsed time 

(Tet) is calculated by each of the receiving processes, along with Tdiff and overlap ratio, where: 

                                             𝑇𝑑𝑖𝑓𝑓 = 1.1𝑇𝑙𝑎𝑡 − 𝑇𝑒𝑡                                                  (4.1) 

                                   𝑂𝑣𝑒𝑟𝑙𝑎𝑝_𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑠𝑦𝑛−(𝑇𝑒𝑡− 𝑇𝑙𝑎𝑡)

𝑇𝑙𝑎𝑡
                                        (4.2)   

When the iterations are over, all the receiving processes send this information to the local process 

zero of the receiving node. The largest iteration for which Tdiff is either positive or zero across all 

processes is used for the calculation of average overlap ratio. 

Figure 4.7 shows the communication/computation overlap for 9, 18 and 17 MPI processes. 

As expected, MVAPICH exhibits negligible overlap in all scenarios. For 9 processes, both the 

asynchronous progression techniques exhibit appreciable overlap but SmartInterrupts performs 

better than MVAPICH-Async, even though the polling threads were not oversubscribed. 

SmartInterrupts achieves close to 100 percent overlap for messages greater than 64KB. For 

messages of sizes 16KB and 32KB, the message latencies are very small, leading to even shorter 

synthetic work. Also, the computation required for their processing is comparable to their 

communication time. These reasons reduce the overlap potential and explain why neither of the 

implementations show any overlap for those messages. For 18 processes, the results of MVAPICH-

Async suffer due to oversubscription but SmartInterrupts shows overlap in the range of 70-75 

percent for messages greater than 32KB. However, this overlap increases to almost 100 percent if 

one of the cores is left spare for the operating system’s processes and the process that handle the  
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Verbs API calls. This is shown in Figure 4.7(c). Note, that for 17 and 18 processes per node, the 

increased number of communicating pairs increases the network load as well. This provides enough 

time to the helper processes, resulting in the improved overlap of 32KB messages. 

Scalability 

Figure 4.8 shows an analysis of the scalability of MVAPICH-Async and SmartInterrupts. As 

observed in the previous results, the overlap of MVAPICH is negligible. Hence, it is not represented 

in this figure. The scalability test is done based on two criteria, message size and the number of 

processes. The graph reports the overlap for each combination of those criteria. As previously 

discussed, the overlap of relatively smaller rendezvous messages is expected to be small. So, the 

message size of 32 KB was chosen to represent them. 256KB messages were chosen to represent 

larger messages. The figure reports the results with 1, 4, 8, 12 and 16 MPI processes per node. For 

 
 

(a) 9 MPI processes per node, 1HP for SmartInterrupts 

 
 

(b) 18 MPI processes per node, 2HP for SmartInterrupts  (c) 17 MPI processes per node, 2HP for SmartInterrupts 
 
 

Fig. 4.7. Communication/Computation Overlap of Point-to-Point Communications 
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12 and 16 MPI processes, it also shows the results with different number of helper processes. It can 

be observed that SmartInterrupts scales well with both the parameters of message size and number 

of processes. Also, in case of 12 and 16 MPI processes, one helper process is enough to achieve 

close to 100 percent overlap for messages of size of 256KB, but for 32KB messages, a minimum 

of two helper processes is required for overlap. 

Asynchronous Message Progression 

With reference to the generalized algorithms in Figure 4.5, the major difference between the 

overlap and asynchronous message progression micro-benchmarks is that in the former, the timing 

at the receiver is ended only after completion of the synthetic work. However, in the latter, the 

timing is stopped as soon as the user data progression is complete, regardless of whether the 

synthetic work is over or not. For this, the synthetic work is based on the message latency of 

MVAPICH; that is, its Tlat. The synthetic work is varied between 1.5 to 3 times of Tlat, with 10% 

increments. At the end of each iteration, the elapsed time is calculated and the average of the 

elapsed times across all receiving MPI processes is reported. In the graphs, if the curve of a 

particular asynchronous progression technique is lower than that of MVAPICH then that is an 
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indication of asynchronous progress. Also, in the ideal scenario the curve is expected to be linear 

and have a slope of zero, as that indicates that the progression time remains constant regardless of 

the synthetic work. Because of the way the asynchronous message progression is interpreted, the 

synthetic work cannot be less than Tlat. Also, synthetic work up to 1.1 times of Tlat was already 

covered with the overlap micro-benchmark. Therefore, for asynchronous message progression, the 

synthetic work was started at 1.5 times of Tlat. The maximum synthetic work is non-critical but 

should be high enough to illustrate the trends.   

Figure 4.9 and Figure 4.10 show the asynchronous progression results of MVAPICH, 

MVAPICH-Async and SmartInterrupts. MVAPICH exhibits linearly increasing curves for all 

message sizes as expected. For 9 processes, the results of MVAPICH-Async and Smart Interrupts 

are identical, except for message sizes of 16KB and 32KB. This is because of continuous polling, 

which causes the serialization of polling requests at the verbs API handler. For 18 processes, 

oversubscription continues to be detrimental to the performance of MVAPICH-Async. Whereas, 

SmartInterrupts’ latencies are lower than that of MVAPICH by about a factor of half. 

Memory Footprint Analysis 

The memory footprint of SmartInterrupts was analyzed by looking at the physical memory 

usage of the processes. This was done by examining the value of the VmRSS field present in the 

status file of each MPI process listed in the proc vitual filesystem. Also, to know how the memory 

usage scales, it was measured by doing incremental changes to the number of MPI processes per 

node. The experiments showed the memory usage of SmartInterrupts to be slightly greater than 

MVAPICH, by a difference of approximately 300KB per process. This difference remained 

constant regardless of the number of processes per node. Also, from empirical analysis, it was 

observed that the additional memory requirement scales according to the number of MPI processes 
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per node and not according to the total number of MPI processes. Therefore, even with fat-nodes, 

the additional memory required would be in the order of a few megabytes, which is quite negligible. 

4.5.3 Collective Micro-Benchmarks 

In several MPI implementations, collectives are implemented using point-to-point 

communications. Therefore, overlap and asynchronous message progression micro-benchmarks 

were designed around non-blocking collectives to see if SmartInterrupts can improve the 

performance of collective communications. It was observed that SmartInterrupts can indeed 
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Fig. 4.9. Asynchronous Message Progression for 9 MPI processes per node, 1 Helper Process for 

SmartInterrupts 
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improve the performance of collectives, but not all of them. The micro-benchmarks were designed 

around non-blocking collectives like MPI_Iscatter, MPI_Igather and MPI_Ialltoall. 

SmartInterrupts performed better for MPI_Ialltoall compared to the other two. 

Figure 4.11 shows the algorithm template that was used to design the collective versions of 

overlap and progression micro-benchmarks. Like their two-sided versions, the major difference 

between the two micro-benchmarks is the implementation of line (4). In the overlap micro-

benchmark for collectives, the synthetic work is varied between 0.1 and 1.1 times of Tlat and the 
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latency measurement is ended only after the end of the synthetic work. The formula used for the 

calculation of overlap is the same as the one used for point-to-point communications, as in Equation 

(4.2). In the asynchronous progression benchmark, the synthetic work is varied between 1.5 to 3 

times of Tlat and the latency measurement is ended as soon as the user data from all the peers is 

available. The rationale behind the amount of synthetic work for both the micro-benchmarks are 

the same as those stated for their two-sided counterparts. For the overlap micro-benchmark, it is 

based on empirical measurements. The progression micro-benchmark’s synthetic work was chosen 

with a view to observe trends. For this, the synthetic work cannot be less than Tlat. The idea is to 

have a synthetic work that is slightly greater than Tlat, which is then incrementally increased until 

a trend is observed.     

SmartInterrupts’ collective communication performance was evaluated on 20 nodes of the 

cluster mentioned previously. The micro-benchmarks were executed with 18 MPI processes and 2 

helper processes on each node. A total of 18 collective operations were performed in parallel and 

each operation comprised of one process per node. Therefore, each collective operation was 

performed among 20 MPI processes and 360 of them were used in total. In both the micro-

benchmarks, the average latency was measured over 1000 iterations and the results of the first 100 

iterations were discarded. Figure 4.12(a) and Figure 4.12(b) respectively show the overlap and 

progression results for the MPI_Ialltoall collective. Figure 4.12(a) shows that SmartInterrupts 

consistently improves the overlap of the MPI_Ialltoall collective compared to MVAPICH and 

MVAPICH-Async. Also, SmartInterrupts shows asynchronous message progression in all cases 

with significantly better results than MVAPICH-Async up to 256KB messages. For messages of  

1. MPI_Barrier(MPI_COMM_WORLD) 
2. Measure Start Time 
3. MPI_Ialltoall/MPI_Iscatter/MPI_Igather/MPI_Ibcast 
4. Variable synthetic work according to the micro-benchmark 
5. MPI_Wait 
6. Measure Stop Time  

 

Fig. 4.11. Template for Collective Micro-Benchmark Design 
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Fig. 4.12. MPI_Ialltoall Overlap and Asynchronous Message Progression Results 
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size below 512KB, MVAPICH-Async suffers overheads due to oversubscription which affects both 

the overlap and the asynchronous message progression. However, the considerably larger synthetic 

delays of 512KB and 1MB messages provide enough time to the polling threads of MVAPICH-

Async to asynchronously progress all the messages in time, even with the presence of 

oversubscription. 

The reason why SmartInterrupts is unable to significantly improve the overlap for 

MPI_Iscatter and MPI_Igather is due to their implementations, which do not provide enough 

decision-making information to the helper processes. The MPI_Iscatter collective is implemented 

using a binomial tree algorithm in MPICH and MVAPICH. This scheme may lead to nodes that 

have both parents and children. These nodes cannot initiate a transfer to their children unless they 

have received their own message from their parents. Once the rendezvous message transfer from 

the parent is complete, another call to the progress engine is required to send the messages to the 

children. SmartInterrupts can successfully assist in asynchronously progressing the parents’ 

messages but currently there is no way of informing the helper processes about the completion of 

the RDMA Read operation. The same limitation exists with other collectives like MPI_Igather and 

MPI_Ibcast. In such cases, the performance will be the same or very slightly better than having no 

progression threads. This can be seen in Figure 4.13(a).  

To show that the scheduling algorithm is indeed the reason for the sub-par performance, 

SmartInterrupts’ performance with the default algorithm was compared against its performance 

with another algorithm that avoids the exchange of aggregate messages. One such algorithm for 

these collectives is a naïve approach in which MPI_Isend and MPI_Irecv calls are used for each 

message in the collective. For example, for the MPI_Igather collective with N MPI processes, this 

would mean calling N-1 MPI_Irecvs at the root process and one MPI_Isend or MPI_Send at the 

rest of the processes. SmartInterrupts exhibits a good amount of overlap with such an algorithm. 

The results are illustrated in Figure 4.13(b). Because of its inferior performance due to 
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oversubscription and because the point of this experiment was to find if SmartInterrupts can 

improve the overlap over the default, no asynchronous message progression case, these figures do 

not show the results of  MVAPICH-Async. 

4.5.4 Application Results 

To evaluate SmartInterrupts in a practical scenario, it was tested by using the Scalar Penta-

diagonal solver (SP), which is one of the applications in the NASA Advanced Supercomputing 

(NAS) Parallel Benchmarks (NPB) [57]. NPB is a set of programs designed to help evaluate the 

performance of parallel supercomputers. The benchmarks are derived from computational fluid 

dynamics (CFD) applications and consist of five kernels and three pseudo-applications. NAS-SP is 

one of the pseudo-applications. It performs a synthetic CFD problem by solving multiple, 

independent systems of non-diagonally dominant, scalar, penta-diagonal equations. The NAS-SP 

application is available with 5 classes of problems, S, A, B, C, D and E. E being the largest problem 

class, requiring the maximum amount of computation resources. Also, this application requires the 

number of MPI processes to be a perfect square. This application uses MPI_Isend and MPI_Irecv 

two-sided calls, and MPI_Bcast and MPI_Reduce collectives. The buffer size specified in the 

collectives are small and they do not use rendezvous messages. On the other hand, the buffer size 
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 Fig. 4.13. MPI_Igather Micro-benchmark Results 
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specified in the two-sided calls is dependent on the number of MPI processes. Hence, the possibility 

of using rendezvous messages. 

SmartInterrupts was experimented with NAS-SP using different problem classes and different 

number of MPI processes, and the results were compared to those of MVAPICH. In all the 

executions, a very small number of CPU cores (not more than 4) were left spare. The reason behind 

this was to simulate a real world scenario where the nodes are packed densely with MPI processes, 

with very few spare cores available. Coincidentally, this also puts maximum stress on the helper 

process and helps to extensively evaluate the performance of SmartInterrupts. Therefore, running 

NAS-SP using MVAPICH-Async was pointless as it was guaranteed to perform worse than the 

other test subjects due to oversubscription. Figure 4.14 compares the application execution results 

of SmartInterrupts and MVAPICH with strong scaling. In strong scaling, the problem size remains 

fixed and the number of processing elements are varied. This figure shows the results for the 

problem class E with 324(182), 400(202) and 484(222) MPI processes, distributed evenly on 21, 

25 and 31 compute nodes respectively. Throughout the experiments with SmartInterrupts, two 

helper processes were used per node. The results show that the proposed approach can indeed make 

a difference in a practical scenario. The most interesting result here is the one with 324 MPI 

 

Fig. 4.14. NAS-SP Results (Class E) 
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processes, in which it shows an improvement of about 19 percent. In fact, SmartInterrupts’ 

execution time in this case is lower than MVAPICH’s and its own execution time with 400 MPI 

processes. However, SmartInterrupts shows very little improvement with 400 and 484 MPI 

processes. This is because the application scales strongly and the size of the rendezvous messages 

is inversely proportional to the number of MPI processes. With 400 and 484 MPI processes, the 

size of the messages drop below the eager threshold, so they end up being transferred eagerly. Eager 

messages get overlapped naturally, therefore, SmartInterrupts’ involvement becomes negligible. 

Hence, the relatively small performance improvement compared to 324 MPI processes. The same 

behavior was observed with Class D as well. 

4.6 Summary 

This chapter presented the design, implementation and performance evaluation of a node-

wide asynchronous message progression technique called SmartInterrupts. Unlike protocol 

improvement methods, SmartInterrupts behavior is completely deterministic, meaning that there is 

no randomness involved. The action will always be preceded by a predetermined set of events. 

Unlike, hardware-based approaches, it does not require specialized hardware and only requires a 

few spare CPU cores. Among host-based approaches, the most common is asynchronous message 

progression, which may be based on polling or interrupts. Their advantages and disadvantages are 

mentioned in this chapter and discussed in depth in Section 3.1.2. SmartInterrupts is a hybrid 

approach that harnesses the strengths of both polling and interrupt based approaches while 

completely avoiding their disadvantages.  

The proposed approach uses the sender initiated RDMA Read based rendezvous protocol to 

leverage its natural overlap potential when the sender arrives first. The progression is performed 

by interrupt threads which are triggered into action by the helper processes when the message 

matching parameters are met. Each MPI process has its own interrupt thread and several of these 
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interrupt threads may be associated with a single helper process. This design was implemented on 

MVAPICH and its performance was evaluated using two-sided and collective micro-benchmarks, 

and the NAS-SP application. The results were compared with those of the default MVAPICH with 

no asynchronous progression and with its polling based asynchronous progression.  

The two-sided micro-benchmarks were designed to test the latency overhead, communication/ 

computation overlap, asynchronous progression, scalability and memory footprint. It was observed 

that the overhead incurred by SmartInterrupts is negligible and that close to 100 percent overlap 

can be achieved for most message sizes that involve a rendezvous protocol. The progression results 

showed significantly lower message latencies compared to synchronous progression and in most 

cases, the latencies remained nearly constant for a particular message size. This approach was found 

to be scalable and cast an insignificant amount of memory footprint. The collective micro-

benchmark was designed to assess the improvement in overlap that can be obtained using 

SmartInterrupts. It was observed that the current implementations of collectives do not expose 

enough decision-making information for SmartInterrupts to act upon. However, it was found to be 

effective for MPI_Ialltoall, and MPI_Igather with a modified algorithm. Finally, it was tested with 

the NAS-SP application to evaluate its performance in a practical scenario, and the results were 

positive. These results emphatically answer the second research question posed in Section 1.2. 

This chapter presented a novel approach called SmartInterrupts for point-to-point 

communications. A similar approach can be used to improve the performance of RMA 

communications as well. The next chapter discusses the design and implementation of the extension 

of SmartInterrupts to one-sided communications.   
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Chapter 5 

Node-Wide Asynchronous Message 

Progression Technique for One-Sided 

Communication 

 

Chapter 4 discusses the design, implementation and performance evaluation of 

SmartInterrupts for point-to-point communications. It is an asynchronous message progression 

technique which utilizes the advantages of polling and interrupt based approaches. This chapter 

describes such an asynchronous progression approach but for one-sided communication1. As a 

reminder, in one-sided communication, the peer that issues the RMA operations such as MPI_Put 

and MPI_Get is called the origin and the peer on which these operations are performed is called 

the target. Unlike two-sided communication, the successful transfer of an RMA message does not 

require a matching call from both the peers. In fact, the target is not required to issue any calls for 

the RMA operations. However, an RMA operation cannot be initiated by an origin until the target 

has opened its exposure epoch. Therefore, synchronizations are performed among the peers so that 

they can become aware of the opening and closing of each other’s epochs. The MPI standard [54] 

                                                      

1 The code to add the shared buffers such as ICB and IRB, and to expose interrupt information through 

them was contributed by Dr. Judicael Zounmevo. Development of the interrupt thread, the helper process 

and the interrupt handler kernel module was done by the author. 
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specifies two types of synchronizations, namely, active target and passive target. Active target 

synchronizations can be further classified into Fence and GATS. Similarly, passive target 

synchronizations can be classified into shared lock epochs and exclusive lock epochs. The details 

of one-sided communication can be found in Section 2.3.3. Chapter 3 discusses the inefficiencies 

associated with one-sided communications and presents a survey of the literature that attempt to 

address these inefficiencies. Specifically, these inefficiencies inhibit the natural communication/ 

computation overlap that is expected from one-sided communication. This chapter investigates the 

third research question posed in Section 1.2 by describing an approach that improves the overlap 

of one-sided communications by using a similar technique as the one discussed in chapter 4. Due 

to the similarity in design and principle, the work proposed in this chapter is also referred to as 

SmartInterrupts. The following sections present the motivation behind the proposed technique, 

followed by its design and implementation, and finally its performance evaluation by means of 

micro-benchmarks and applications. 

5.1 Motivation 

As opposed to two-sided communication, the MPI standard does not define the blocking or 

non-blocking behaviour of RMA synchronizations. Therefore, the MPI implementations are free to 

decide the synchronization behaviours as they see fit. Popular MPI implementations like MPICH 

[55], MVAPICH [56] and OpenMPI [60] provide non-blocking epoch opening calls and blocking 

epoch closing calls. Blocking synchronizations lead to the inefficiency patterns discussed in [33, 

45, 88] and in Section 3.2.1. Non-blocking synchronization calls are imperative to facilitate any 

kind of overlap and several papers propose exactly that [8, 78, 88]. However, overlap can still be 

hampered even with the use of non-blocking RMA synchronizations. For instance, consider Figure 

5.1(a) which shows an example of a GATS epoch. This example uses non-blocking epoch opening,  



 

98 

 

COMPUTATION UNPRODUCTIVE WAIT

(a) GATS Epoch

(b) Fence Epoch

Fig. 5.1. Inefficiencies with Non-blocking RMA Synchronizations
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so the origins open their access epochs, issue the RMA operations and proceed to their 

computations. Although the RMA operation calls have been made, the message transfer cannot 

initiate until the target opens its epoch. But when the exposure epoch opens, the origins are busy in 

their computations so the message transfers cannot happen until the next call to the progress engine.  

Since there is no call to the progress engine after the arrival of the exposure epoch opening signals 

and before the MPI_Win_complete calls, this ultimately leads the entire communication to be 

deferred to the MPI_Win_complete calls of the origins, causing unproductive waits at all the peers. 

A similar inefficiency is possible in a fence epoch as well and it is illustrated in Figure 5.1(b) In 

this case, all the communications are deferred to the epoch closing MPI_Win_Fence calls, leading 

to no communication/computation overlap at any of the peers.  

Passive target synchronizations have similar inefficiencies as well. In passive target 

synchronizations, the target is not required to open its epoch. Once the window objects are 

exchanged among the associated targets and origins, the origins are free to perform operations on 

the remote memory of the targets. As mentioned in Section 2.3.3, the passive target synchronization 

entails a lock/unlock mechanism, where a lock can be either acquired exclusively or be shared. The 

target does not issue any calls but acts as the intermediary between the origins and grants them the 

lock to perform RMA operations. It does this implicitly at the middleware when the progress engine 

is active. Figure 5.1(c) illustrates a scenario in an exclusive lock epoch where Origin0 calls the 

locking function ahead of Origin1. The target keeps the progress engine active by calling a blocking 

MPI communication function such as MPI_Wait or MPI_Barrier. Because of its early arrival, 

Origin0 is granted the lock first. So it performs its operation and releases the lock. Origin1 on the 

other hand, is involved in a long computation, so it cannot immediately initiate its RMA operation 

even though the target has already granted it the lock. This not only causes an unproductive wait at 

Origin1 but may also lead to the propagation of this wait to other origins that are waiting for the 

lock. In case of a shared lock epoch, any origin is free to perform operations after calling the 
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MPI_Win_lock function, hence it is unlikely to have communication/computation serializations in 

this case. This is demonstrated through an example in Figure 5.2, where even though Origin1 issues  

the MPI_Win_lock call first and does not call MPI_Win_unlock until much later, Origin0 can still 

issue RMA operations and progress them immediately. Therefore, in shared lock epochs, some 

degree of overlap can generally be expected if an RMA operation call is followed by a computation. 

Casper [73] has the ability to deal with the inefficiencies described above, however, there are 

certain drawbacks associated with it. First, in Casper, the ghost processes perform the RMA 

operations on behalf of the MPI processes. This mandates the creation of a very large shared buffer 

between the MPI processes and their ghost process because the application’s entire RMA data 

needs to be shared. Wasting a lot of CPU cores for the ghost processes is not practical so there may 

be instances where the ghost process is mapped to one NUMA node and its MPI processes are 

mapped to another. This may cause a massive amount of data to be transferred through the inter-

socket interconnect that connects the CPUs, adding an extra layer of latency above the message 

latency of inter-node communications. SmartInterrupts also uses a shared memory between the 

MPI processes and its helper process but the amount of data shared is in the order of bytes, as 

opposed to entire RMA messages in Casper’s case, where the message size is dictated by the 
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application. Another problem with Casper is that it forces the MPI processes to rely on their ghost 

processes, that is, even if an MPI process is free to progress its own RMA communications, it 

cannot do so because all its synchronizations and RMA operations are automatically redirected to 

its ghost process. This is inefficient because it causes a wastage of CPU cycles at the MPI process 

and redirections are obviously slower than having the MPI process call its progress engine itself. 

In SmartInterrupts, the progression thread is not activated if a call to the progress engine is active 

at its MPI process. 

Currently, there is no practical overlap technique that works well for both two-sided and 

one-sided communications. Polling based asynchronous message progression [34] is a solution but 

it suffers from the issues of inefficient resource utilization and oversubscription (Section 3.1.2). 

SmartInterrupts’ effectiveness with two-sided communication has already been discussed in 

Chapter 4. This chapter leverages the principle behind two-sided SmartInterrupts to improve the 

overlap of one-sided communication. At this moment, there are two separate implementations for 

one-sided and two-sided communications. However, it is possible to unify the two designs. 

5.2 Design of SmartInterrupts for One-Sided Communications 

Although the semantics of two-sided and one-sided communications are different, the issues 

that inhibit communication/computation overlap in them are similar in principle. The first such 

issue is the significant time difference between the calling of matching MPI functions. In the 

rendezvous protocols of two-sided communication, this translates to a significant delay in calling 

the matching send or receive function by the sender or receiver respectively. In one-sided 

communication, this is equivalent to a non-timely issuance of a synchronization call. For two-sided 

sided communication, some approaches have been discussed in Chapter 2 to address this issue but 

such approaches are not scalable. In general, this is an application specific issue and apart from 

using non-blocking calls, not much can be done to mitigate the inefficiencies caused by them. 
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The second issue is the delayed acknowledgement of a control signal that fulfills the 

progression criteria of pending messages at the middleware. This delay is caused when the control 

signal arrives while the MPI process is busy in a computation. For instance, in a sender-initiated 

RDMA Read based rendezvous protocol, if the receiver arrives early then the message should 

ideally be progressed immediately when the RTS arrives at the receiver. However, if the RTS 

arrives while the receiver is busy in a computation, then the message progression is delayed until 

the next call to the progress engine. Thus, the opportunity to overlap the communication with the 

computation is lost. As discussed in the previous section, the same issue can happen in one-sided 

communication when the epoch opening signal in Fence or GATS, or the lock granting signal in an 

exclusive lock epoch arrives when the origin is busy. Asynchronous message progression 

approaches work well for this issue because even though the application threads of an MPI process 

might be busy, the progression thread remains vigilant to the incoming control messages and 

immediately acknowledges them when they arrive.  

SmartInterrupts is also an asynchronous message progression technique, whose two-sided 

design and implementation is discussed in Chapter 4. Because of the similarity in the problem 

statement and the solution, it was hypothesized that the design proposed in Chapter 4 could be 

extended to one-sided communication as well. Therefore, to address the overlap inhibiting 

scenarios discussed in the previous section, the design objectives followed for the development of 

one-sided SmartInterrupts are the same as those of two-sided SmartInterrupts. Similar to Chapter 

4, the following design objectives are considered for one-sided communication: 

1) Hardware interrupts are expensive. Therefore, a mechanism is required to minimize or 

eliminate hard-interrupts if possible. 

2) The resource efficiency of interrupt based asynchronous message progression is desired in 

the design, but a mechanism is required to selectively trigger interrupts due to the 

overheads associated with futile software interrupts.  
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3) Polling based asynchronous message progression is more responsive to incoming 

messages; however, it is impractical to waste one CPU core per MPI process for polling 

threads. Therefore, a mechanism is required to: 

a) Associate multiple MPI processes with a single polling thread. 

b) Share information about the incoming control signals of multiple MPI processes 

with the associated polling thread. This information is limited to the address space 

of individual MPI processes. However, the polling thread would likely have its 

own address space or share the address space with one other MPI process.   

The result of these objectives is a design that is very similar in principle to two-sided 

SmartInterrupts. Like the two-sided design, asynchronous message progression in this design is 

performed by an interrupt thread and the interrupts to this thread is generated by a polling process 

known as the helper process. Each of these helper processes may be associated with several MPI 

processes and each MPI process is augmented with its own interrupt thread. The following 

subsections describe the working mechanism of one-sided SmartInterrupts and its core 

components. 

5.2.1 Asynchronous Message Progression Mechanism 

Figure 5.3(a) illustrates the data-movement and signaling with SmartInterrupts in a GATS 

epoch. This figure shows SmartInterrupts’ solution for the issue discussed in the motivation section, 

where the RMA communications end up being deferred due to a busy origin. This approach avoids 

hardware interrupts and relies entirely on software interrupts, therefore it addresses Design 

Objective 1. To address Design Objectives 2 and 3(b), two shared buffers are created between each 

MPI process and its helper process. One of these buffers are manipulated locally by the origin to 

enable and disable the interrupt mechanism, and the other holds the control signal information that 

can be manipulated remotely by the target . These buffers are called Interrupt Request Buffer (IRB) 
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and Interrupt Control Buffer (ICB), respectively. When the origin issues its RMA operation at (B) 

and realizes that the target has not opened the exposure epoch yet, then it queues the RMA 

communication for later and writes to the IRB at (C) to request help from its helper process. This 

essentially enables the interrupt mechanism by informing the helper process that an interrupt should 

be triggered to the asynchronous thread when the exposure epoch opening signal arrives. 

When the target calls the MPI_Win_post function at (E), it informs the origin about the 

opening of the exposure epoch and writes to the ICB at (F). Without an asynchronous mechanism, 

this opening of the exposure epoch would not be acknowledged by the origin until the end of the 

computation. In SmartInterrupts, however, the helper process continuously polls on the data in the 

ICB. When the helper process detects the exposure epoch opening signal, it checks if the origin has 

requested for interrupts. When the two conditions are satisfied, the helper process triggers an 

interrupt at (G) to progress the pending MPI_Put and MPI_Get RMA operations. Figure 5.2(b) 

illustrates a similar solution for the fence epoch.  

Figure 5.3(c) illustrates the behavior of SmartInterrupts in a typical exclusive lock epoch 

scenario. As previously stated, in an exclusive lock epoch, the target is not required to issue RMA 

specific MPI calls but still has to participate implicitly to distribute the locks. Origin1 is busy when 

the lock granting signal arrives at (K). Therefore, in the absence of asynchronous message 

progression support, the MPI_Put operation issued at (I) would not be progressed until the end of 

the computation at (N). However, in SmartInterrupts, the helper process remains informed of the 

arrival of such signals; therefore, it triggers an interrupt at (L) to the origin’s progression thread 

since a request for interrupts was made earlier at (J). This interrupt causes the timely progression 

of the MPI_Put operation at (M) instead of (N). 
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5.2.2 Core Components 

The similarity in the designs of two-sided and one-sided SmartInterrupts leads to the similarity 

of components as well. The core components of this design consist of the progression threads, the 

Interrupt Handler kernel module, the helper processes and two shared buffers (ICB and IRB) 

between each MPI process and its helper process. Each MPI process consists of one application 

thread and one asynchronous progression thread which is oversubscribed with the main application 

thread. In this case, oversubscription incurs negligible performance penalty because the progression 

thread is based on interrupts, which does not poll periodically. 

The Design Objective 1 is achieved by the Interrupt Handler kernel module which enables the 

complete avoidance of hardware interrupts and provides the means to support SmartInterrupts’ 

interrupt mechanism. It creates a virtual file in the proc filesystem and defines the behavior of the 

read() and write() system calls associated with that file. The interrupt threads call this read() 

function to go to sleep and the helper processes call the write() function to awaken the sleeping 

progression threads. It is important to note that the helper processes do not deal with the NIC 

directly and do not issue network API calls. This is the job of the application and progression 

threads.  

Each MPI application can be launched with a user-defined number of helper processes. This 

number can be set as an environment variable before executing the application. However, at least 

one per node is required to expect progression from the interrupt thread. Also, in most cases, one 

helper process should be enough to handle asynchronous progression for the entire node. For 

optimum performance, each helper process needs to be dedicated to a CPU core because of the 

existence of a busy loop. Details of certain components can be found in Section 4.2.1. 
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5.3 Implementation of One-Sided SmartInterrupts 

NewRMA was implemented on MVAPICH2 and it incorporates the designs of [86] and [88]. 

[88] proposes non-blocking epochs to avoid any waiting during epoch opening or closing, whereas, 

[86] proposes a scheduling scheme to improve the overlap of intra-node RMA communications by 

exploiting the residual overlap potential of inter-node communications. Since these approaches 

have already been documented to perform better than the existing implementations, SmartInterrupts 

was implemented on top of NewRMA. 

5.3.1 Shared Buffers 

Before calling any MPI function, each process of the MPI application must call MPI_Init to 

initialize the MPI execution environment. In NewRMA, the peers signal the opening and closing 

of epochs by performing an RDMA Write to a remote buffer at the peer. During MPI_Init, 

NewRMA exchanges the addresses of the buffer on which the control signals will be written. For 

SmartInterrupts, NewRMA was modified to exchange the address of another 1-byte buffer. This 

buffer is the ICB and it is shared with its helper process. When a target exposes its epoch or wants 

to grant the lock to an origin, it manipulates the ICB by performing an RDMA Write to it. The ICB 

helps to achieve the Design Objective 3(b) by enabling the helper process to know about the 

incoming control signals. The data contained in the ICB is referred to as Interrupt Control Data 

(ICD). The default value of each ICD is zero and the target sets it to a non-zero value to indicate 

the arrival of a control signal. 

Another shared buffer, called Interrupt Request Buffer (IRB) was created to send requests to 

the helper processes. This buffer addresses the Design Objective 2 and provides a mechanism to 

selectively generate interrupts. The IRB is an array of 8-byte elements called Interrupt Request 

Data (IRD), where each IRD represents the interrupt request status of its MPI process. A non-zero 
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IRD indicates that its origin expects interrupts from its helper process. During an RMA operation 

call, if the origin finds the exposure epoch of its target to be closed or if the target has not granted 

the lock to the origin, then it increments the ICD by one. In case of fence and GATS, subsequent 

RMA operations to the same exposure epoch has no effect on the IRD, however, if some other 

exposure epoch is found to be closed, then the IRD is again incremented. Similarly, in case of 

exclusive lock epochs, no changes are made to the IRD if the lock of a particular target is already 

acquired. The reason behind this is that once the origin has acknowledged the opening of the 

exposure epoch or the granting of the lock, any subsequent RMA operation will not require 

SmartInterrupts’ support and can be progressed immediately. Note, that each MPI process has its 

own ICD and IRD. 

5.3.2 Helper Process and Interrupt Thread 

Each helper process consists of a loop which iterates until none of its MPI processes is active 

anymore. Inside this loop, the ICD and IRD of each associated MPI process is matched to generate 

interrupts. A non-zero ICD and IRD for a particular MPI process means that it has requested for 

interrupts and its control signal has arrived. Therefore, an interrupt should be generated if both ICD 

and IRD are non-zero. However, before the interrupt is generated, another important check needs 

to be made. If the progress engine is already active in the MPI process, then it would most likely 

see the opened exposure epoch and progress the pending RMA communications. Triggering an 

interrupt in this case would serve no useful purpose and add unnecessary overheads. Therefore, 

there is another variable that is shared between each MPI process and its helper process. This 

variable contains information about the progress engine semaphore. The interrupt thread is 

awakened if a match is found (non-zero ICD and IRD) and the progress engine lock is available. 

Once the interrupt is triggered, the ICD is reset to make room for a new control signal. This is 

because, once the origin is aware of the opened exposure epoch or granted lock, subsequent RMA 
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operations to the same epoch will always succeed. On the other hand, the IRD is decremented by 

the number of exposure epochs that were found to be open and the number of locks that were 

granted in the last interrupt. 

With this approach, there is one scenario where an interrupt may be wrongly triggered. This 

happens when an MPI process is the origin for multiple targets. Particularly, when the ICD is 

manipulated by a target which is not the same as the one being expected by the origin. In this 

situation, the interrupt would be triggered but the call to the progress engine would be short and the 

interrupt thread would immediately go back to sleep again. This scenario required a careful 

consideration of the trade-offs. The alternative was to create individual ICDs for all the other MPI 

processes and share the remote addresses and keys with each other. This approach would have 

improved the accuracy of interrupt generation but substantially increased the memory usage and 

the initial inter-process communication.   

The amount of shared information in the one-sided implementation of SmartInterrupts is much 

smaller than its two-sided implementation. This is because the size of each ICD in the two-sided 

implementation is 64 bits; whereas, in the one-sided implementation, it is just one bit. Also, MPI 

applications generally tend to use many more point-to-point MPI calls than RMA epochs, so the 

inter-process communication between the MPI process and its helper process is expected to be 

much lower. Because of these reasons, the data locality and the relative mapping of the MPI and 

helper processes is not as important. However, this implementation uses the same mapping scheme 

as the two-sided implementation. The details can be found in Section 4.3. 

5.4 Performance Evaluation and Analysis 

This section presents the performance evaluation of the one-sided implementation of 

SmartInterrupts. The evaluation was performed by using the implementation as a middleware to 
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test several RMA micro-benchmarks and one scientific application. These micro-benchmarks and 

application were then executed on other solutions to assess the effectiveness of the proposed design. 

5.4.1 Fence and GATS Micro-Benchmarks 

Experimental Setup 

The experimental setup for the one-sided micro-benchmarks consists of two nodes of the same 

cluster that was used for the experiments in Chapter 4. The details of its hardware and software can 

be found in Section 4.5.1. SmartInterrupts is designed for inter-node communications, therefore, a 

minimum of two nodes have to be involved. Also, increasing the number of origins per node 

increases the stress on the helper processes. So, to put maximum stress on the helper processes, all 

the origins were confined to a single node. The position of the targets is not critical. Hence, they 

were spawned on the other node. The evaluation was performed on the criteria of latency overhead, 

communication/computation overlap and memory footprint.  

For all micro-benchmarks, two types of communication schemes were tested, pair-wise 

communication and one-to-many communication. In both the communication schemes, all the MPI 

processes of one node were designated as the origins and the MPI processes of the other node were 

designated as the targets. The pair-wise communication scheme is illustrated in Figure 5.4(a). In 

this scheme, each RMA window object is associated with exactly one origin on one node and 

exactly one target on the other node, and that origin communicates exclusively with its target. In 

the one-to-many scheme, each window object is associated with one origin on one node and all the 

targets on the other node. In other words, each origin performs RMA operations on all the targets 

that are associated with its window. So, all the origins communicate with all the targets but no two 

origins share the same window. This scheme is illustrated in Figure 5.4(b).  
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In one-sided communication, it is possible to have as little as one target and one origin 

associated with a window, and it is also possible to have several targets and origins associated with 

a single window that are communicating at the same time. This creates a variability on the behavior 

of SmartInterrupts and the network load. In the pair-wise communication scheme, only a single 

interrupt is triggered per access epoch, whereas, the one-to-many scheme will require several 

interrupts per access epoch. Also, the network load with the one-to-many scheme will be much 

higher than the pair-wise scheme. Therefore, the two communication schemes along with the 

(a) Pair-wise Communication Pattern

Node 0

Node 1

(b) One-to-many Communication Pattern

Target 0

Origin 0

Target 1

Origin n-1

HP 0

HP 0

Target n-1

Node 0

Node 1

Win 0 Win n-1

Fig. 5.4. Communication Patterns Used in One-Sided Micro-Benchmarks 
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different numbers of origins and targets help in the better analysis of SmartInterrupts’ performance 

and overheads. 

To study the effectiveness of the proposed approach, the latency overhead and overlap micro-

benchmarks were designed with both Fence and GATS epochs. Also, both the epochs were tested 

with two different RMA operations, MPI_Put and MPI_Get. Before the start of each epoch, the 

origins and targets were synchronized globally using MPI_Barrier. This is required to ensure that 

all the communication calls are issued together. Not doing so can cause an irregular load on the 

network, leading to unpredictable and therefore, unreliable results. The experiments showed similar 

results for both the targets and the origins. However, this thesis presents the results for the targets 

only. This is because the target cannot close its epoch until all its origins have closed their own 

epochs, causing it to suffer the same unproductive waits as its origins.  

As mentioned earlier, SmartInterrupts’ design was implemented on top of NewRMA [86, 88], 

which has been shown to perform better than the existing MPI implementations like MVAPICH. 

Therefore, the results of NewRMA was used as the baseline to evaluate SmartInterrupts. 

SmartInterrupts’ asynchronous progression performance was tested against polling based 

asynchronous progression, which is supported by NewRMA. For convenience, they are referred to 

in this document as NewRMA, NewRMA-Async and SmartInterrupts. Casper is available to be 

used as an extension over existing MPI implementations, however, it could not be experimentally 

compared with SmartInterrupts because it was found to be incompatible with NewRMA. 

Latency Overhead 

Figure 5.5 shows the algorithms used at the origins and the targets to measure the latency 

overhead. In pair-wise communication, the loop at the origin, between lines 4-6 iterates only once 

because the origin only communicates with one other target. For this and all the following micro-

benchmarks, the algorithms were executed 1000 times. Also, the micro-benchmarks used messages 
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in the range of 16KB to 1MB. The results of the first 100 iterations were discarded to account for 

cache warm-up and the average duration of the next 900 epochs was recorded. The average was 

first recorded locally at each origin and target, followed by a calculation of the global averages for 

all the targets and origins. The values reported here are derived from the global averages. 

Since both the asynchronous approaches, SmartInterrupts and NewRMA-Async, work on top 

of NewRMA, the average epoch durations of NewRMA was chosen as the baseline to measure the 

latency overheads (Toverhead). The latency overhead is the difference between the epoch durations of 

the asynchronous message progression approaches and NewRMA. Figure 5.6 shows the latency 

overheads of SmartInterrupts and NewRMA-Async for different combinations of MPI processes, 

RMA synchronizations and communication schemes. SmartInterrupts shows a negligible amount 

of overhead in all the results. However, the same cannot be said for NewRMA-Async’s 

performance. With 8 MPI processes per node, NewRMA-Async suffers no oversubscription so its 

overhead becomes comparable to SmartInterrupts for larger messages. For smaller messages, its 

overhead is high due to the contention for the progress engine lock between the polling thread and 

the application thread. In Figure 5.6(c), its overhead for 512KB and 1MB messages leans slightly 

to the negative side due the very small and comparable execution times of non-blocking calls and 

the message latency of control signals. It is possible that the control signal may not arrive at the 

origin before the first iteration of line 5. If it does not, then in NewRMA, the progression gets 

delayed to the next call to the progress engine. However, with polling based asynchronous 

ORIGIN: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. Measure Start Time 

3. MPI_Win_fence/MPI_Win_start 

4. Foreach(target in Targets){ 

5.    MPI_Put/MPI_Get 

6. } 

7. MPI_Win_fence/MPI_Win_complete 

8. Measure Stop Time 

TARGET: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. Measure Start Time 

3. MPI_Win_fence/MPI_Win_post 

4. MPI_Win_fence/MPI_Win_wait 

5. Measure Stop Time 

 

Fig. 5.5. Template for One-Sided Latency Overhead Micro-Benchmark 
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progression, the progress engine is always active. Therefore, the message can be progressed as soon 

as the control signal arrives. With 16 MPI processes per node, NewRMA-Async suffers 

oversubscription on at least 12 CPU cores, leading to very large overheads. In SmartInterrupts, 

each interrupt thread is mapped to the same core as its MPI process, but oversubscription only 

happens when the interrupt thread is called into action. This is possible but unlikely in the latency 

overhead micro-benchmarks because both the access and exposure epochs are opened at almost the 

same time. 

Communication/Computation Overlap 

Unlike two-sided communication, one-sided communication necessitates complex 

synchronizations among multiple peers and may involve multiple RMA messages in the same 

epoch. This makes it difficult to quantitatively measure the communication/computation overlap. 

(a) 8 MPI Processes, Fence, MPI_Put Operations, One-to-Many (b) 16 MPI Processes, GATS, MPI_Put Operations, One-to-Many

(c) 32 MPI Processes, GATS, MPI_Get Operations, Pair-wise (d) 36 MPI Processes, Fence, MPI_Put Operations, Pair-wise
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However, as shown in [73, 86], overlap can be well appreciated through qualitative means. The 

algorithm used to evaluate the overlap of SmartInterrupts is shown in Figure 5.7. A small delay is 

added to the target at Line 2. This delay is long enough to ensure that its exposure epoch will not 

open until the origin has entered its synthetic work, and prevents the initiation of any RMA 

communications before the synthetic work. Overlap will be confirmed if the epoch duration is less 

than the sum of the message latencies and the synthetic work. 

To qualitatively analyze the overlap, the algorithms described in Figure 5.7 are executed in 

two phases. In the first phase, the target is not delayed, that is, the delay at line 2 is zero so that the 

access and exposure epochs open at the same time. Also, the synthetic work is set to zero and the 

average epoch durations are recorded. This phase essentially measures the minimum epoch duration 

for a particular message size, which is dominated by the message latency. The message latency for 

the largest message in this phase serves as the baseline for the following phase. In the next phase, 

the target is delayed and the synthetic work is set to the epoch duration that was recorded for the 

largest message in phase one. The algorithms are then executed and the average epoch durations 

are recorded. Finally, the recorded results are plotted as curves in a graph. If the curve of an 

approach is below the baseline, then that is an indication of communication/computation overlap. 

An ideal curve is a straight line with a slope of zero and an intercept that is equal to the synthetic 

work. 

ORIGIN: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. Measure Start Time 

3. MPI_Win_fence/MPI_Win_start 

4. Foreach( target in Targets){ 

5.    MPI_Put/MPI_Get 

6. } 

7. Synthetic Work 
8. MPI_Win_fence/MPI_Win_complete 

9. Measure Stop Time 

TARGET: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. Small constant delay to delay 
the opening of the exposure 

epoch 

3. Measure Start Time 

4. MPI_Win_fence/MPI_Win_post 

5. MPI_Win_fence/MPI_Win_wait 

6. Measure Stop Time 

 

Fig. 5.7. Template for Fence & GATS Communication\Computation Overlap Micro-benchmark 
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Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 show the results of the overlap micro-

benchmark with different combinations of communication schemes, MPI processes, RMA epochs 

and RMA operations. The only thing that is constant throughout all the results is the number of 

helper processes. During the experiments, it was found that one helper process was enough to 

achieve the ideal amount of overlap in all scenarios. In fact, the intercepts of SmartInterrupts’ lines 

always remained in the proximity of 0.0001 percent of their ideal values. The results of NewRMA 

are in line with expectations. It does not offer any asynchronous progression, so the 

communications and computations end up being serialized. The results of NewRMA-Async are 

always worse than that of SmartInterrupts. It exhibits decent results for 2, 4 and 8 MPI processes, 

but oversubscription and constant contention for the progress engine lock makes its results 

uncomparable after that. 

5.4.2 Exclusive Lock Micro-Benchmark 

The experimental setup consisted of the same two nodes that are mentioned in Section 5.4.1. 

Also, parameters like the latency overhead and memory footprint are expected to be the same, as 

the same implementation works for both active and passive target synchronizations. However, the 

communication patterns and the micro-benchmark algorithms used for the analysis of fence and 

GATS overlap cannot be used for exclusive lock epochs. Therefore, a different micro-benchmark 

was developed to study the overlap in case of exclusive lock epochs. This micro-benchmark 

requires only three processes, two of which are designated as the origins. The algorithms executed  

by Origin0 and Origin1 are described in Figure 5.12 and the code at the target only consists of an 

MPI_Barrier. This micro-benchmark essentially simulates the scenario illustrated in Figure 5.1(c). 

To analyze the overlap, the algorithms are executed in two phases. In the first phase, Origin0 

is absent, so there is no need to delay Origin1 (line 2). Also, the synthetic work is set to zero and 

the epoch durations are recorded. This step is performed to obtain the communication latencies of 
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(a) 2 MPI Processes, MPI_Put Operations

Fig. 5.8. One-Sided Overlap Results for Fence Epochs with Pair-Wise Communication Pattern and 1 HP

(b) 2 MPI Processes, MPI_Get Operations

(c) 8 MPI Processes, MPI_Put Operations (d) 8 MPI Processes, MPI_Get Operations

(e) 16 MPI Processes, MPI_Put Operations (f) 16 MPI Processes, MPI_Get Operations

(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations
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(a) 2 MPI Processes, MPI_Put Operations

Fig. 5.8. One-Sided Overlap Results for Fence Epochs with Pair-Wise Communication Pattern and 1 HP

(b) 2 MPI Processes, MPI_Get Operations

(c) 8 MPI Processes, MPI_Put Operations (d) 8 MPI Processes, MPI_Get Operations

(e) 16 MPI Processes, MPI_Put Operations (f) 16 MPI Processes, MPI_Get Operations

(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations
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(a) 2 MPI Processes, MPI_Put Operations

Fig. 5.9. One-Sided Overlap Results for GATS Epochs with Pair-Wise Communication Pattern and 1 HP

(b) 2 MPI Processes, MPI_Get Operations

(c) 8 MPI Processes, MPI_Put Operations (d) 8 MPI Processes, MPI_Get Operations

(e) 16 MPI Processes, MPI_Put Operations (f) 16 MPI Processes, MPI_Get Operations

(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations
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(a) 2 MPI Processes, MPI_Put Operations

Fig. 5.9. One-Sided Overlap Results for GATS Epochs with Pair-Wise Communication Pattern and 1 HP
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(a) 4 MPI Processes, MPI_Put Operations

Fig. 5.10. One-Sided Overlap Results for Fence Epochs with One-to-Many Communication Pattern and 1 HP

(b) 4 MPI Processes, MPI_Get Operations
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(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations
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Fig. 5.10. One-Sided Overlap Results for Fence Epochs with One-to-Many Communication Pattern and 1 HP
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(e) 16 MPI Processes, MPI_Put Operations (f) 16 MPI Processes, MPI_Get Operations

(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations

NewRMA-Async SmartInterruptsNewRMA

390

440

490

540

590

640

690

740

790

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

390

440

490

540

590

640

690

740

790

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

1470

1570

1670

1770

1870

1970

2070

2170

2270

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

1470

1570

1670

1770

1870

1970

2070

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

5400

6400

7400

8400

9400

10400

11400

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

5400

6400

7400

8400

9400

10400

11400

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

TE
N

CY
 (

μ
s)

MESSAGE SIZE

29000

34000

39000

44000

49000

54000

59000

64000

69000

74000

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

T
EN

C
Y 

(μ
s)

MESSAGE SIZE

29000

34000

39000

44000

49000

54000

59000

64000

69000

74000

16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
ES

SA
G

E 
LA

TE
N

CY
 (

μ
s)

MESSAGE SIZE

 



 

120 

 

 

(a) 4 MPI Processes, MPI_Put Operations

Fig. 5.11. One-Sided Overlap Results for GATS Epochs with One-to-Many Communication Pattern and 1 HP

(b) 4 MPI Processes, MPI_Get Operations

(c) 8 MPI Processes, MPI_Put Operations (d) 8 MPI Processes, MPI_Get Operations

(e) 16 MPI Processes, MPI_Put Operations (f) 16 MPI Processes, MPI_Get Operations

(g) 36 MPI Processes, MPI_Put Operations (h) 36 MPI Processes, MPI_Get Operations
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Fig. 5.11. One-Sided Overlap Results for GATS Epochs with One-to-Many Communication Pattern and 1 HP
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messages of different size. In the next phase, Origin0 is activated and Origin1’s synthetic work is 

set to the epoch duration that was recorded for the largest message in phase one. These algorithms 

were executed 1000 times and the average epoch durations of the last 900 iterations were recorded 

and graphed. The results are displayed in Figure 5.13. They are very similar to the Fence and GATS 

overlap results and can be interpreted in the same way as described in the overlap micro-benchmark 

section in Section 5.4.1. 

5.4.3 Memory Footprint Analysis 

The memory footprint analysis of SmartInterrupts’ one-sided implementation was performed 

in the same way as described in Section 4.5.1, that is, by inspecting the VmRss field in the status 

ORIGIN0: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. MPI_Win_lock 

3. Small delay to ensure that 

Origin1 enters the synthetic 

work without obtaining the 

lock. 

4. MPI_Win_unlock 

5. Measure Stop Time 

ORIGIN1: 
1. MPI_Barrier(MPI_COMM_WORLD) 

2. Small delay to ensure that 
Origin0 gets the lock first 

3. Measure Start Time 

4. MPI_Win_lock 

5. MPI_Put/MPI_Get 

6. Synthetic Work 
7. MPI_Win_unlock 

8. Measure Stop Time 

 

Fig. 5.12. Template for Exclusive Lock Communication\Computation Overlap Micro-benchmark 

 

Fig. 5.13. Overlap Micro-benchmark Results for Exclusive Lock Epochs with 1 HP 
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file of each MPI process. The number of MPI processes was raised incrementally to understand if 

the memory footprint scales accordingly. SmartInterrupts’ addition to the memory footprint was 

found to be negligible and hovered around 60 KB. Changes in the number of MPI processes had 

no effect on this value. 

5.4.4 Application Results 

SmartInterrupts’ real-world performance was assessed by testing it with the Lower Upper 

(LU) decomposition application [88]. This application factorizes the matrix as the product of a 

lower triangular matrix and an upper triangular matrix. Its most important purpose is to solve large 

systems of linear equations and is used in many scientific and engineering domains, including 

thermodynamics and fluid dynamics. Matrices of various dimensions can be fed to this application, 

with larger matrices obviously requiring more computation resources. 

The application was executed with SmartInterrupts using differently-sized matrices and 

different number of MPI processes. Similar experiments were repeated using NewRMA and the 

results were compared. From the micro-benchmark results, it is evident that NewRMA-Async does 

not lead to any performance improvements, even without oversubscription. Also, a very few CPU 

cores were spared on each node, which would have led to oversubscription. These reasons 

guaranteed the inferior performance of NewRMA-Async. Hence, it was not used in evaluating 

SmartInterrupts’ application performance. Figure 5.14 compares the application execution results 

of SmartInterrupts and NewRMA with strong scaling. For these results, the size of the matrices 

was constant, with dimensions of 32768x32768. The experiments were performed using 425, 544 

and 576 CPU cores, excluding one core per node for the helper process. The experimental cluster 

consisted of 640 CPU cores. A maximum of 576 non-oversubscribed MPI processes could be 

executed on this cluster after accounting for one spare core per node for the OS processes and one 

helper process per node. Similarly, a maximum of 544 CPU cores could be used for MPI processes 
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if two cores per node were left spare for the OS processes with one helper process per node. These 

configurations were executed over 32 nodes. To compare against the performance results of 576 

and 544 MPI processes, the process count of 425 MPI processes was chosen that fully occupied 25 

nodes after accounting for three spare cores per node for the OS and helper processes. The graph 

shows consistently lower execution times for SmartInterrupts, with performance improvements of 

3.1, 5.1 and 4.4 percent for 425, 544 and 576 MPI processes respectively. This suggests that 

SmartInterrupts can indeed make a difference in a real-world scenario. 

5.5 Summary 

This chapter extended the design and implementation of two-sided SmartInterrupts to one-

sided communication. The principal idea behind the two designs is similar, that is, to have a few 

processes that assist in node-wide message progression, where the task of asynchronous 

progression is performed by interrupt threads. Some existing approaches propose non-blocking 

calls for epoch opening and closing. Non-blocking calls facilitate overlap but there are still some 

scenarios in which the communication and computation end up being serialized. For example, in a 

fence epoch, the origin may have pending RMA operations queued at the middleware and be 

involved in a long computation. Meanwhile, if the target opens its epoch, the origin would remain 

 

Fig. 5.14. LU Decomposition Results with 1 Helper Process per Node 
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oblivious about it until the end of its computation, causing no overlap. Asynchronous progression 

techniques have been proposed to address such scenarios, but are associated with their own issues. 

Also, there is no practical solution that works well for both two-sided and one-sided 

communications. SmartInterrupts for one-sided communication is implemented on top of 

NewRMA, in which all epoch opening and closing calls are non-blocking. It does not suffer the 

same drawbacks as other asynchronous progression techniques like polling and Casper, and has 

been shown to work well for one-sided communications. 

In this design, each MPI process is augmented with an interrupt thread that progresses the 

RMA operations in parallel to the application thread. The interrupts to the progression thread are 

generated by the helper processes which receive decision making information from the MPI 

processes. Several helper processes can be spawned and each of them can be associated with 

multiple MPI processes. The number of helper processes per node can be set as an environment 

variable before the execution of the MPI application. Each MPI process shares three types of 

information with its helper process, ICD, IRD and the progress engine status. The ICD is the status 

of the targets’ exposure epoch. If an origin does not find its exposure epoch open, it requests 

interrupts from its helper process through ICD. Each helper process matches the IRDs and ICDs, 

and triggers interrupts to the appropriate progression thread if a match is found and the progress 

engine lock is available. 

The design was evaluated by testing it with micro-benchmarks and the LU decomposition 

application. The results of the tests were compared to those of NewRMA and NewRMA with 

polling based asynchronous progression (NewRMA-Async). Micro-benchmarks were designed to 

analyze the latency overhead, communication/computation overlap and memory footprint of the 

different approaches. The latency overhead and memory footprint of SmartInterrupts was found to 

be negligible. The tests with the overlap micro-benchmark showed consistently better results for 

SmartInterrupts than the other test subjects, and close to the ideal values. To assess the applicability 
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of this approach in a real-world scenario, the LU decomposition application was executed using 

NewRMA and SmartInterrupts. The results were in favor of SmartInterrupts, showing a consistent 

reduction in the application execution times. Consequently, this chapter successfully answers 

the third research question posed in Section 1.2. 
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Chapter 6 

Conclusion and Future Work 

 

High Performance Computing has become commonplace in several scientific, engineering 

and economic domains. HPC applications are time-critical and are executed on large scales; 

therefore, improving the execution times of HPC applications is important. Increasing the 

parallelization of an application generally leads to an increase in communications due to the 

increased need for synchronizations and to exchange intermediate results. One of the ways to 

improve the performance of parallel applications is by overlapping communications with 

computations. This is a latency hiding technique which is made possible by modern NICs that offer 

offload capabilities. MPI is the de-facto standard used in HPC today, and most scientific 

applications are written in MPI. This thesis discusses the inefficiencies associated with the 

rendezvous protocols in point-to-point communications and RMA synchronizations in one-sided 

communications, and proposes an approach to improve the communication/computation overlap in 

MPI applications [47]. 

Chapter 2 laid the foundation for the research explored in this thesis. It presented a discussion 

on HPC and the different messaging semantics of MPI. Chapter 3 highlighted the different 

scenarios that inhibit communication/computation overlaps in MPI communications, and presented 

a literature review on the approaches that aim to address such inefficiencies. Finally, Chapter 4 and 

Chapter 5 presented the design, implementation and performance evaluation of a novel 
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asynchronous message progression technique, SmartInterrupts, for two-sided and one-sided 

communications in MPI. 

6.1 Summary of Findings 

Chapter 4 proposed an asynchronous message progression technique called SmartInterrupts 

to improve the overlap of point-to-point communications. Unlike protocol improvement methods, 

SmartInterrupts behavior is completely deterministic, meaning that there is no randomness 

involved. The action will always be preceded by a predetermined set of events. Unlike, hardware-

based approaches, it does not require specialized hardware and only requires a few spare CPU 

cores. Among host-based approaches, the most common is asynchronous message progression, 

which may be based on polling or interrupts. SmartInterrupts is a hybrid approach that harnesses 

the strengths of both polling and interrupt based approaches while avoiding their disadvantages. 

Two-sided SmartInterrupts uses the sender initiated RDMA Read based rendezvous protocol to 

leverage its natural overlap potential when the sender arrives first. In this approach, the progression 

is performed by interrupt threads which are triggered into action by the helper processes when they 

find a match between the incoming control signals and the queued interrupt requests. Each MPI 

process has its own interrupt thread and several interrupt threads may be associated with a single 

helper process.  

The performance of SmartInterrupts was evaluated using two-sided and collective micro-

benchmarks, as well as the NAS SP application. The results of two-sided micro-benchmarks 

showed that SmartInterrupts incurs negligible overhead and achieves up to 100 percent overlap in 

most scenarios. The design scales well with the number of MPI processes and message size, and 

exhibits consistently lower message latencies compared to other approaches. It adds about 300KB 

per process to the memory footprint, which is not a threat to scalability. Experiments with collective 

micro-benchmarks showed that SmartInterrupts can improve the overlap of MPI_Ialltoall; 
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however, other collectives are not amenable to SmartInterrupts’ design. For such collectives, 

SmartInterrupts does not adversely impact performance. Finally, executing NAS-SP with 

SmartInterrupts showed a performance improvement of up to 19 percent when compared to its 

execution with no progression threads. 

Chapter 5 extended SmartInterrupts’ design to improve the overlap of one-sided 

communications. Similar to its two-sided counterpart, one-sided SmartInterrupts is a node-wide 

asynchronous message progression technique that uses both polling and interrupts. This approach 

enables the asynchronous progression of pending RMA messages when their control signals arrive 

while the origin is busy in computations. Asynchronous progression techniques have been proposed 

to address such scenarios, but are associated with their own issues. Also, there is no practical 

solution that works well for both two-sided and one-sided communications. SmartInterrupts for 

one-sided communication is implemented on top of NewRMA, in which all epoch opening and 

closing calls are non-blocking. It does not suffer the same drawbacks as other asynchronous 

progression techniques like polling and Casper, and has been shown to work well for one-sided 

communications. As with the two-sided design, the interrupts to the progression thread are 

generated by the helper processes which receive decision making information from the MPI 

processes. The helper processes are kept informed about the opening of exposure epochs and the 

granting of locks through shared buffers. When an MPI process does not find its control signal, it 

adds a request to its helper process for interrupts through a shared buffer. An interrupt is triggered 

by the helper process to the progression thread of this MPI process when its control signal arrives, 

provided that the progress engine is not already active in the main thread. Each helper processes 

can be associated with multiple MPI processes and the number of helper processes can be set as an 

environment variable before the execution of the MPI application. 

The design was evaluated using micro-benchmarks and the LU Decomposition application. 

The results of the tests were compared to those of NewRMA and NewRMA with polling based 
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asynchronous progression (NewRMA-Async). The overlap micro-benchmarks with fence, GATS 

and exclusive lock epochs showed consistently much better results for SmartInterrupts than the 

other approaches. From fence and GATS micro-benchmarks it was found that one-sided 

SmartInterrupts contributes negligibly to the overheads and adds to the memory footprint of the 

application by about 60KB per process. To assess the applicability of SmartInterrupts in a practical 

scenario, it was tested with the LU Decomposition application, where it resulted in a modest 

performance improvement over NewRMA. 

6.2 Future Work 

6.2.1 Unifying One-Sided and Two-Sided Designs 

The design of SmartInterrupts was first conceived for point-to-point communications. The 

choice to implement the design on MVAPICH2-2.2 was based on the fact that it was the latest 

version of MVAPICH2 that incorporated the latest revisions of the MPI standard and contained the 

most optimized progress engine. To take advantage of intra-node one-sided communication 

overlaps proposed in [86] and the entirely non-blocking RMA synchronizations proposed in [88], 

which are implemented in NewRMA, one-sided SmartInterrupts was implemented on top of 

NewRMA. However, NewRMA is implemented on top of MVAPICH2-1.9. 

Since the core components and the design principle of point-to-point and one-sided 

SmartInterrupts are similar, it is possible to unify the two designs into a single implementation. 

This unification requires the consideration of the following components: the progress engine, the 

interrupt thread, the Interrupt Handler kernel module, the ICB and IRB shared buffers and the 

helper process. The implementations of the interrupt thread and the kernel module are exactly the 

same in both versions. The ICB and IRB serve the same purpose in both implementations; however, 
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the data in them are of different sizes and are required to be interpreted differently. This can be 

addressed by creating two segments in the shared buffers, one for each type of communication. 

The message matching algorithm used in the polling loop of the helper process is different for 

the two implementations. One way to address this would be to create two polling threads at each 

helper process, where each thread polls dedicatedly for one of the message types. However, this 

solution may lead to suboptimal resource utilization. The other approach could be to serialize the 

two algorithms in a single polling loop. This idea can further be augmented by prioritization 

variables that can be controlled by the user. If an application prefers one of the messaging types 

then the polling for it can be prioritized over the other. The biggest challenge to unification would 

be the integration of the two progress engines. Both designs required the modification of the 

progress engine in different ways. However, the modifications are mutually exclusive and would 

not have any effect on the performance of the other. As mentioned previously, the progress engine 

for the one-sided implementation encompasses the designs of [86] and [88]. The implementation 

of the two-sided and one-sided designs required significant changes to their respective vanilla 

progress engines. However, modifications to the progress engine for two-sided SmartInterrupts 

were comparably fewer. Therefore, the integration of the two progress engines would require the 

porting of the two-sided implementation to the one-sided implementation. But, to take advantage 

of the most updated middleware, the integration of the designs would first require the porting of 

one-sided SmartInterrupts to MVAPICH2-2.2. 

6.2.2 Improving the Performance of SmartInterrupts for Collectives 

As mentioned in the previous section, SmartInterrupts does not improve the overlap of all the 

collectives. The reason for this is the scheduling algorithms that are used at the middleware to 

implement these collectives. These algorithms hinder the timely progression of collective messages 

by not supplying enough interrupt triggering information to the helper processes. During the 
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experimentation, the naïve scheduling algorithm for MPI_Igather was found to perform 

significantly better than the optimized binomial tree algorithm. Therefore, one potential avenue that 

could be explored in the future is to experiment with different scheduling algorithms for the non-

compliant collectives. 

6.2.3 Eliminating Futile Interrupts in One-Sided SmartInterrupts 

As discussed in Section 5.3.2, there is one particular scenario in one-sided SmartInterrupts 

that can lead to the triggering of futile interrupts. This becomes possible when the MPI process is 

the origin for multiple targets. An undesired interrupt may be triggered if an origin has requested 

SmartInterrupts’ support and is expecting a control message from a particular target, and in the 

meantime, some other target sends the control information. The current known solution to this 

problem consists of having a distinct representation in the ICB for the control signal of each MPI 

process. However, this approach is not scalable as it would require the scaling of the ICB from one 

to as much as the number of MPI process. Although the overhead due to this issue is not very 

significant, finding a solution to this could be a potential research work.  

6.2.4 Dynamically Enabling/Disabling the SmartInterrupts Mechanism 

 As was seen in the NAS SP application results in Section 4.5.4, there may be certain scenarios 

where SmartInterrupts does not appreciably improve the performance of an MPI application. 

Although the two-sided and one-sided overhead micro-benchmarks show that SmartInterrupts does 

not affect the application performance adversely, it is unjustified to occupy and utilize the CPU if 

there is no practical outcome from it. Therefore, another future direction to this research could be 

to investigate an approach in which the SmartInterrupts mechanism can be enabled or disabled 

dynamically during runtime. While the interrupt threads are sleeping, they do not utilize the CPU, 

so the entire mechanism can be effectively disabled by forcing the helper processes to either exit 



 

132 

 

or sleep. The helper process is the only element of SmartInterrupts that consumes CPU cycles even 

when it is not contributing positively. Therefore, disabling the helper process would essentially 

eliminate any consumption of CPU cycles by SmartInterrupts. 

6.2.5 Investigating Multi-threaded MPI Applications 

Presently, the thread-safety of the two implementations has not been fully analyzed. 

Therefore, the performance with multi-threaded MPI applications cannot be reliably predicated at 

this moment. One of the known thread-safety issue is the addition of interrupt requests to the IRB. 

The thread-safety of SmartInterrupts will be looked at in the future.  
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