
High-performance Communication in MPI through
Message Matching and Neighborhood Collective Design

by

Seyedeh Mahdieh Ghazimirsaeed

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

March 2019

Copyright © Seyedeh Mahdieh Ghazimirsaeed, 2019

Abstract

Message Passing Interface (MPI) is the de facto standard for communication in High Per-

formance Computing (HPC). MPI Processes compute on their local data while extensively

communicating with each other. Communication is therefore the major bottleneck for per-

formance. This dissertation presents several proposals for improving the communication

performance in MPI.

Message matching is in the critical path of communications in MPI. Therefore, it has

to be optimized given the scalability requirements of the HPC applications. We propose

clustering-based message matching mechanisms as well as a partner/non-partner message

queue design that consider the behavior of the applications to categorize the communicating

peers into some groups, and assign dedicated queues to each group. The experimental eval-

uations show that the proposed approaches improve the queue search time and application

runtime by up to 28x and 5x, respectively.

We also propose a unified message matching mechanism that improves the message

queue search time by distinguishing messages coming from point-to-point and collective

communications. For collective elements, it dynamically profiles the impact of each collec-

tive call on message queues and uses this information to adapt the queue data structure. For

point-to-point elements, it uses partner/non-partner queue design. The evaluation results

show that we can improve the queue search time and application runtime by up to 80x and

5.5x, respectively.

Furthermore, we consider the vectorization capabilities of used in new HPC systems

i

many-core processors/coprocessors to improve the message matching performance. The

evaluation results show that we can improve the queue search time and application runtime

by up to 4.5x and 2.92x, respectively.

Finally, we propose a collaborative communication mechanism based on common neigh-

borhoods that might exist among groups of k processes. Such common neighborhoods are

used to decrease the number of communication stages through message combining. We

consider two design alternatives: topology-agnostic and topology-aware. The former ig-

nores the physical topology of the system and the mapping of processes, whereas the latter

takes them into account to further optimize the communication pattern. Our experimental

results show that we can gain up to 8x and 5.2x improvement for various process topologies

and a sparse matrix-matrix multiplication kernel, respectively.

ii

Acknowledgments

I would like to thank my supervisor, Prof Ahmad Afsahi, for his priceless guidance and

support throughout my PhD research studies. Prof. Afsahi’s enthusiasm for high quality

research helps me realize how enjoyable research could truly be. I would also like to thank

Dr. Ryan Grant from Sandia National Laboratories for his endless support and insightful

guidances. It was an honor to collaborate with him and his colleagues, Dr. Matthew G.

F. Dosanjh from Sandia National Laboratories and Dr. Patrick G. Bridges from University

of New Mexico. Thanks to my PhD Supervisory Committee for their valuable feedback

regarding the research conducted in this dissertation.

I would like to acknowledge the Natural Science and Engineering Research Council

of Canada (NSERC), the school of graduate studies at Queen’s University as well as the

Electrical and Computer Engineering (ECE) Department of Queen’s University for their

financial support. I would also like to thank Compute Canada for access to their large-scale

resources such as GPC, Niagra in SciNet, and Graham in SHARCNET. Special thanks to

Dr. Scott Northrup and Dr. Grigory Shamov for their technical support.

Many thanks to all my current and former colleagues at Parallel Processing Research

Laboratory, Dr. Judicael Zounmevo, Dr. Iman Faraji, Dr. Hessam Mirsadeghi, Kashual

Kumar, Mac Fregeau, Pedram Alizadeh, Leila Habibpour and Yiltan Temucin. Additional

thanks to Hessam for his collaboration and his unconditional help whenever I needed.

Thanks to Judicael, Iman, Kaushal and Mac for the constructive discussions. I would also

like to thank Pedram, Leila and Yiltan for bringing more joy to the lab by their presence.

iii

Finally, I would like to thank my family for all their love and support. My gratitude

goes to my parents, Fatemeh and Mostafa, who mean the world to me. To my brother,

Mojtaba, and his lovely family, Arezo and Hannah. I thank him for always being my role

model in life. My thanks also go to my sister, Samaneh, and her beloved daughter, Silvana.

I thank her for the infinite care and support. I would also like to thank her husband, Dr.

Marzband, for all his guidances. Last but not least, my thanks go to my understanding

boyfriend, Mohammadreza, for all his care, love and patience.

iv

Contents

Abstract i

Acknowledgments iii

Contents v

List of Tables ix

List of Figures x

Glossary xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Contributions . 5
1.4 Organization of the Dissertation . 8

2 Background 10
2.1 Multi-core and Many-core Processors . 11

2.1.1 Intel Xeon Phi . 11
2.2 Message Passing Interface (MPI) . 13

2.2.1 Groups and Communicators . 14
2.2.2 Point-to-Point Communications . 15
2.2.3 Collective Communications . 15
2.2.4 One-sided Communications . 18
2.2.5 MPI Message Queues . 18
2.2.6 MPI Topology Interface . 20
2.2.7 Neigborhood Collective Communications 22

2.3 InfiniBand: A High Performance Interconnect 24

3 Clustering-based Message Matching Mechanism 26
3.1 Related Work . 27
3.2 Motivation . 29
3.3 The Proposed Clustering-based Message Matching Design 32

v

3.3.1 Heuristic-based Clustering Algorithm 36
3.4 Performance Results and Analysis . 37

3.4.1 Experimental Platform . 37
3.4.2 Message Queue Traversals . 38
3.4.3 Queue Search Time . 42
3.4.4 Application Runtime . 44

3.5 Summary . 48

4 Partner/Non-partner Message Queue Data Structure 49
4.1 Motivation . 50
4.2 The Proposed Partner/Non-partner Message Queue Design 53

4.2.1 Metrics for Selecting Partner Processes 53
4.2.2 The Static Approach . 54
4.2.3 The Dynamic Approach . 57

4.3 Complexity Analysis . 62
4.3.1 Runtime Complexity . 62
4.3.2 Memory Overhead Complexity . 67

4.4 Performance Results and Analysis . 69
4.4.1 Selecting the Partners . 69
4.4.2 Queue Search Time . 70
4.4.3 Application Execution Time . 74
4.4.4 Number of Levels and Partners . 75
4.4.5 Overhead of Extracting Partners . 76

4.5 Related Work . 77
4.6 Summary . 79

5 A Unified, Dedicated Message Matching Engine for MPI
Communications 81

5.1 Motivation and Related Work . 82
5.2 The Proposed Unified Message Queue Design 84

5.2.1 The COL Message Queue Design for Collective Elements 85
5.2.2 The Unified Queue Allocation Mechanism for Collective and Point-

to-Point Elements . 88
5.2.3 The Unified Search Mechanism for Collective and Point-to-Point El-

ements . 90
5.3 Experimental Results and Analysis . 92

5.3.1 Experimental Platform . 92
5.3.2 Microbenchmark Results . 93
5.3.3 Application Queue Search Time . 95
5.3.4 Number of Dedicated Queues for the Applications in COL+PNP Ap-

proach . 101
5.3.5 Application Execution Time with COL+PNP and CPL+LL approaches105
5.3.6 Runtime Overhead of the Message Queue Design 106

vi

5.4 Summary . 106

6 Message Queue Matching Improvement on Modern Archi-
tectures 108

6.1 Motivation and Related Work . 109
6.2 Techniques to Improve MPI Message Matching 111

6.2.1 Linked List of Arrays Queue Data Structure 112
6.2.2 Linked List of Vectors Queue Data Structure 115

6.3 Complexity Analysis . 117
6.3.1 Runtime Complexity . 117
6.3.2 Memory Overhead Complexity . 118

6.4 Performance Results and Analysis . 119
6.4.1 Experimental Platform . 119
6.4.2 The Size of Array in each Linked List Element 120
6.4.3 Microbenchmark Results . 122
6.4.4 Application Results . 126

6.5 Summary . 128

7 MPI Neighborhood Collective Optimization 130
7.1 Related Work . 132
7.2 Preliminaries . 133

7.2.1 Common Neighbors and Friend Groups 133
7.2.2 Number of communications . 134
7.2.3 Main Steps of the Design . 135

7.3 Communication Pattern Design . 136
7.3.1 The Collaborative Mechanism . 136
7.3.2 Building the Friendship Matrix . 140
7.3.3 Mutual Grouping of the Processes 142
7.3.4 Complexities . 147

7.4 The Proposed Communication Schedule Design 148
7.5 Design Parameters Selection . 150

7.5.1 Topology-agnostic Approach . 150
7.5.2 Topology-aware Approach . 151

7.6 Experimental Results and Analysis . 152
7.6.1 Moore Neighborhoods . 153
7.6.2 Random Sparse Graph . 160
7.6.3 Application Results and Analysis . 166

7.7 Summary . 168

8 Conclusions and Future Work 170
8.1 Conclusion . 170
8.2 Future Work . 174

References 180

vii

1 Appendix: K-means Clustering . 194

viii

List of Tables

3.1 Different combination of groups of processes assigned to each queue 31

3.2 Maximum number of (UMQ/PRQ) queue searches in the applications . . . 46

4.1 List of parameters and their definitions . 63

5.1 List of parameters used for collective queue allocation and search mechanism 89

5.2 Overhead/search time ratio in COL+PNP 106

7.1 The list of parameters . 137

ix

List of Figures

2.1 An example of an HPC cluster . 11

2.2 Intel Xeon Phi Knight Corner coprocessor silicon (redrawn from [65]) 13

2.3 Software stack in a parallel system . 14

2.4 A few examples of algorithms for different collective operations 17

2.5 Linked list data structure in MPICH/MVAPICH 20

2.6 Open MPI message queue data structure . 21

2.7 An example of process topology with the status of buffers for neighbor all-

gather and neighbor alltoall operations from the viewpoint of process P7 . . 24

3.1 Average UMQ search time for the reverse search on Cluster A 30

3.2 Average UMQ search time for the reverse search on Cluster A 32

3.3 The first phase of gathering information and clustering in the proposed mes-

sage matching mechanism . 34

3.4 Clustering-based message queue structure 35

3.5 Average number of traversals for AMG2006 in different approaches on Cluster

A with 1k processes . 40

3.6 Average number of traversals for LAMMPS in different approaches on Cluster

A with 240 processes . 41

3.7 Average PRQ and UMQ search time in the AMG2006 application on Cluster A 42

3.8 Average PRQ and UMQ search time in the LAMMPS application on Cluster A 44

x

3.9 PRQ and UMQ search time for process 0 in the FDS application with K-

means and heuristic algorithms on Cluster A 45

3.10 PRQ and UMQ search time for process 0 in the FDS application with K-

means algorithm on Cluster A . 46

3.11 Application runtime in AMG2006, LAMMPS and FDS applications on Clus-

ter A . 47

4.1 Number of elements sent to UMQ/PRQ from different processes in the AMG2006

and LAMMPS applications on Cluster A . 52

4.2 Static partner/non-partner message queue design 55

4.3 Dynamic partner/non-partner message queue design 59

4.4 Selected partners using the average metric in AMG2006 and LAMMPS with

threshold = 100 in the Dynamic approach on Cluster A 71

4.5 PRQ and UMQ search time speedup of partner/non-partner design over

linked list in AMG2006, LAMMPS and FDS applications on Cluster A . . . 72

4.6 FDS application runtime speedup over linked list with unbounded memory

on Cluster A . 75

4.7 FDS application runtime speedup over linked list with bounded memory and

using average as the partner extraction metric on Cluster A 75

4.8 Number of levels in FDS application on Cluster A 76

4.9 Number of extracted partners in FDS application for different number of

processes and t = 100 on Cluster A . 76

4.10 Partner extraction overhead/search time ratio on Cluster A 77

5.1 Average number of elements in the queues from collective and point-to-point

communications across all processes in different applications (512 processes)

in Cluster A . 84

5.2 The proposed unified message matching mechanism 85

xi

5.3 Proposed message matching mechanism for collective elements 87

5.4 Latency improvement in MPI_Gather, MPI_Allreduce and MPI_Iallgather,

for k=1 on Cluster A . 94

5.5 Average UMQ and PRQ search time speedup for collective elements with

COL+LL approach and different k values in Radix, Nbody, MiniAMR and

FDS in Cluster A . 96

5.6 Average UMQ and PRQ search time speedup for collective, point-to-point

and total elements with COL+PNP and COL+LL approaches and k = 16 in

Radix, Nbody, MiniAMR and FDS in Cluster B 99

5.7 Number of dedicated UMQs and PRQs for collective operations with COL+PNP

approach and k = 16 in Radix, Nbody, MiniAMR and FDS in Cluster B . . 103

5.8 FDS runtime speedup over MVAPICH in Cluster B 105

6.1 Queue search time in different data structures (MVAPICH2 and OPEN MPI)

and hardwares (Intel Xeon as host, and Xeon Phi KNC) on cluster C 110

6.2 Linked list of arrays queue data structure 112

6.3 Managing the holes and incoming messages in the linked list of arrays queue

data structure . 114

6.4 Managing the holes and incoming messages in the linked list of vectors queue

data structure with vec_size 16 . 116

6.5 Packing data structures into 64 byte cache lines 120

6.6 Different match order in microbenchmark tests 121

6.7 Queue Search Time in forward search, middle search and backward search

with Xeon Phi KNC coprocessor on Cluster C 123

6.8 Queue search time with 50% wildcard receive in backward search with Xeon

Phi KNC coprocessors on Cluster C . 125

xii

6.9 Queue Search Time in forward search, middle search and backward search

with Xeon processor on Cluster B . 126

6.10 PRQ and UMQ search time speedup of linked list of arrays approach over

linked list in AMG2006 and FDS on Cluster B 127

6.11 FDS application runtime on Cluster B . 128

7.1 An example of process topology graph: processes cn1, cn2, ..., cnm are com-

mon neighbors of processes P1, P2, ..., Pk 134

7.2 Matrices used in the distributed message combining mechanism 140

7.3 An example of generating a row of matrix T from matrix A 142

7.4 A sample Moore neighborhood with d = 2 and r = 1, 2. The neighbors are

shown in green for node P . 154

7.5 Number of hyperedges for Moore neighborhood for 4K processes on Cluster

D. Missing bars represent a zero value . 155

7.6 MPI_Ineighbor_allgather speedup for Moore neighborhood for 4K processes-

4 byte message size on Cluster D . 157

7.7 MPI_Ineighbor_allgather speedup for Moore neighborhood with d=2, r=4

for different message sizes and 4K processes on Cluster D 159

7.8 The overhead of Algorithm 1 for Moore neighborhood with 4K processes on

Cluster D . 160

7.9 Number of hyperedges in Random sparse graph with topology-aware design

and 1K processes on Cluster B. Missing bars represent a zero value 162

7.10 MPI_Ineighbor_allgather speedup in Random sparse graph with topology-

aware design and 1K processes- 4 bytes message size on Cluster B 163

7.11 Neighbor allgather speedup for Random Sparse Graph with topology-aware

design for different message sizes and 1K processes on Cluster B 164

xiii

7.12 The overhead of Algorithm 1 for random sparse graph with topology-aware

design for 1K processes on Cluster B . 165

7.13 An example of building the process topology graph for the SpMM kernel

based on the non-zero elements of the input matrix A 167

7.14 The speedup of SpMM for various input matrices with neighborhood collec-

tives over ordinary collectives on Cluster B 168

7.15 The speedup of SpMM for various input matrices with optimized topology-

aware neighborhood collectives over the default neighborhood collectives on

Cluster B . 169

xiv

Glossary

API Application Programming interface.

AVX Advanced Vector Extensions.

CA Channel Adapter.

CFD Computational Fluid Dynamic.

FDS Fire Dynamic Simulator.

FLOPS FLoating-point Operations Per Second.

GDDR Graphics Double Data Rate.

GPC General Purpose Cluster.

HCA Host Channel Adapters.

HPC High-Performance Computing.

IBA InfiniBand Architecture.

IMIC Intel Many Integrated Core.

JCAHPC Joint Center for Advanced High Performance Computing.

KNC Knights Corner.

xv

KNL Knights Landing.

MCDRAM Multi-Channel Dynamic Random Access Memory.

MIC Many Integrated Core.

MPI Message Passing Interface.

MPP Massively Parallel Processors.

MPSS MIC Platform Software Stack.

NERSC National Energy Research Scientific Computing Center.

NIC Network Interface Card.

NUMA Non-Uniform Memory Access.

OS Operating System.

PCIe Peripheral Component Interconnect express.

PGAS Partitioned Global Address Space.

PQ Profiling Queue.

PRQ Posted Receive Queue.

QE Queue Element.

RDMA Remote Direct Memory Address.

RMA Remote Memory Access.

SE Searching Element.

xvi

SMP Symmetric Multi-Processor.

SpMM Sparse Matrix-Matrix Multiplication.

TD Tag Directory.

UMQ Unexpected Message Queue.

VPU Vector Processing Units.

xvii

1

Chapter 1

Introduction

High Performance Computing (HPC) is the key in tackling the problems in different appli-

cation domains such as Fire Dynamic Simulation in chemistry [89], Computational Fluid

Dynamic (CFD) [92] and thermodynamics in physics [78], N-Body simulations in cosmology

[103, 22, 57] and deep learning applications [38, 21]. These are just a few representative

examples of HPC application domains. These applications require an enormous computa-

tional capability that significantly exceeds what is provided by ordinary computers. The

HPC community investigates novel hardware and software computing architectures and

techniques to provide high-end computing power to scientific domain and engineering.

The key approach to satisfy the ever increasing demands for more computational power

in HPC systems is parallel processing. In parallel processing, an application is decomposed

into a number of tasks that can be executed simultaneously. Each task is assigned to a

process/thread which is in turn executed by one of many processing elements. To enable

the parallel execution of an application’s tasks, HPC systems are designed with an ever-

increasing number of processors to provide substantial computing power. Such increases

in computational power has brought HPC to the petascale era with systems capable of

performing operations at the rate of 1015 FLoating-point Operations Per Second (FLOPS).

Currently, Summit, Sierra and Sunway TaihuLight are the top publicly known supercom-

puters in the world [18], each having millions of processors. However, this computational

1.1. MOTIVATION 2

power is still not sufficient for the size and complexity of the current challenges and emerging

problems. Therefore, the HPC community has been aiming to move towards the exascale

era (1018 FLOPS) by expanding the computational boundaries even further.

To take advantage of hardware resources in HPC systems, the software layers should de-

liver as much performance to the applications as the system has to offer. This is challenging

since the HPC systems are deployed at large scales and in a variety of complex ways.

One of the most important bottlenecks in achieving high performance in HPC systems

is the communication between processing elements. The processes in an HPC system are

distributed and they require a collaborative mechanism to exchange data or intermediate

results with each other. As the number of processing elements in HPC systems increases,

the speed gap between communication and computation is widening, making the commu-

nication the performance bottleneck. As a result, enhancing communication performance

is highly crucial for the performance of parallel applications. In order to support explicit

communication between the processes, the Message Passing Interface (MPI) [8] program-

ming model is mostly used in high-performance applications. There are other programming

paradigms available such as OpenMP [17] and Partitioned Global Address Space (PGAS)

[15], however, the main focus of this dissertation is on MPI since it is the implementation

vehicle of massive amount of existing HPC applications and is widely supported on existing

supercomputers.

1.1 Motivation

Delay in any single peer-to-peer communication can propagate to subsequent communica-

tions and computations, impacting all other processes of a job. This harmful effect of latency

propagation becomes more of an issue at large scale where a large number of processes are

involved. One of the main sources of delay in MPI communication is message queue op-

erations. Message queues are in the critical path of MPI communications and thus, the

1.1. MOTIVATION 3

performance of message queue operations can have significant impact on the performance

of applications. They are used in MPI libraries to cope with the unavoidable out-of-sync

communications between the processes. It is impossible for a process to instantly consume

all the messages sent by other processes running on the same or remote nodes. Therefore,

the messages must be queued at the receiving side.

The usage of message queues is not specific to MPI; it is a well-known mechanism to deal

with the limited resources, such as memory buffers, that are required for message reception

and processing [26]. Message queues are featured as the most critical data structure in

MPI because of its frequent usage [23, 70]. In other words, message queue operations

determine the performance of communication-intensive HPC applications. Underwood and

Brightwell [110] show that message queue operations can account for up to 60% of the

communication latency. On the other hand, MPI message queues are growing proportionally

because of two main reasons. The first reason lies in the behavior of HPC applications that

are increasing in scale [30, 31, 33, 70]. The second reason is the growing number of CPU

cores and consequently processes in the new parallel computing systems with many-core

processors and coprocessors. Considering the scale of the current and emerging applications

and systems, it is crucial to design novel message queue data structures and improve the

message matching performance so that each process can communicate with other processes

in an efficient way. This efficiency is defined not only based on the speed of operation, but

also in terms of memory footprint of the new message queue data structures. In essence,

the new message queue design should account for the amount of memory resource that

each CPU core can afford to reserve for an exponentially growing number of CPU cores in

modern parallel computing systems.

Although various message matching mechanisms have been proposed by researchers

[116, 46, 27, 71], there is still a high demand to come up with new designs considering

the properties of the emerging HPC systems with their multi-core and many-core proces-

sors/coprocessors, and also the scalability requirements of the HPC applications. In fact,

1.2. PROBLEM STATEMENT 4

we require new message matching mechanisms that consider the application behavior as

well as the features available in hardware architectures to efficiently improve the speed of

operation and memory requirements of the HPC applications on the target system.

Another source of latency in MPI is the global communications among the parallel

processes of an application. With the increasing scale of supercomputers, new parallel algo-

rithms are required at the application level that can scale with the increase in the number

of cores. These algorithms try to limit communications to a sparse neighborhood of each

process. Therefore, they inherently incur less latency and provide more scalability. In or-

der to support such algorithms, MPI-3.0 [8] recently introduced the neighborhood collective

communications support on top of the process topology interface of the standard. Neighbor-

hood collectives provide another opportunity to enhance the communication performance

by exploiting the virtual topology of the processes. Virtual topology represents the way

MPI processes communicate.

1.2 Problem Statement

In this dissertation, we seek to address the following questions:

• How the clustering approaches can be used to improve the message queue operations

in MPI? How can we design a heuristic-based clustering algorithm to improve mes-

sage matching performance? What is the impact of the heuristic-based algorithm as

compared to K-means clustering on message queue performance?

• How can we define the term partnership between peer processes and how can we use

it to improve the performance of message queue operations? How can we design an

asymmetric message queue subsystem that more communication resources or faster

communication paths are assigned to partner processes?

• What is the impact of different types of communications on MPI message matching?

1.3. CONTRIBUTIONS 5

How can we improve message matching performance by designing a message matching

mechanism that considers the type of communications?

• What is the performance of message queue operations on the new HPC architectures

with their multi-core and many-core processors/coprocessors? How can we take ad-

vantage of the features available in such new HPC systems to improve the message

matching performance?

• How can we improve the performance of sparse neighborhood collective communica-

tions in MPI? How to extract information from a distributed process topology and

use it to design an efficient communication schedule for MPI neighborhood commu-

nication?

1.3 Contributions

This dissertation presents several proposals to improve message-passing performance and

scalability in MPI and applications that use them. It contributes by addressing challenges

in MPI that impact the performance of MPI communication. These challenges include MPI

message queue operations and sparse neighborhood communications.

1. Clustering-based Message Queue Data Structure

In Chapter 3, we propose an MPI message matching mechanism that considers the

behavior of the applications to categorize the communicating peers into some groups and

assign a dedicated message queue to each group [48]. Grouping the processes is done

based on the number of queue elements each communicating process adds to the message

queue at runtime. The proposed approach provides an opportunity to parallelize the search

operation for different processes based on the application’s message queue characteristic.

For grouping the processes, two different algorithms are used: K-means clustering and a

heuristic algorithm. The evaluation results show that the proposed algorithm can reduce the

1.3. CONTRIBUTIONS 6

number of traversals significantly. It can also improve the queue search time and application

runtime by up to 2.2x and 1.33x, respectively.

2. Partner/Non-partner Message Queue Data Structure

In Chapter 4, we propose a new message matching mechanism for MPI that can speed

up the search operation by allocating dedicated queues for processes with high frequency of

communications [52]. One way to reduce the queue search time is to design an asymmetric

message queue subsystem where faster communication paths would be allocated to busier

processes. Processes in MPI applications typically communicate more with a subset of other

processes. These processes are called partners. The information about partner processes

such as their dedicated queue number is saved in a hash table.

Two types of design are proposed: static and dynamic. While the Static approach works

based on the information from a profiling stage, the Dynamic approach utilizes the message

queue characteristics at runtime. The experimental evaluations show up to 5x speedup for

the FDS application [89] which is highly affected by the message matching performance. It

is also shown that the proposed design can provide as high as 25x reduction in queue search

time for long list traversals without degrading the performance for short list traversals.

3. A Unified, Dedicated Message Matching Engine for MPI Communications

Chapter 5 considers the type of communication to improve the queue search time. MPI

provides support for different types of communications such as point-to-point and collective

communication. Point-to-point communication represents the basic communication mecha-

nism in MPI that allows sending and receiving messages between two individual processes.

On the other hand, collective communications provide an abstraction for communications

among a group of processes rather than just two. The incoming messages to the message

queues could be due to a point-to-point or collective communication operations. In this

chapter, we propose a communication optimization that dynamically profiles the impact of

1.3. CONTRIBUTIONS 7

different types of communications on message matching performance and uses this informa-

tion to allocate dedicated message matching resources to both point-to-point and collective

communications [50, 49]. We demonstrate that our dynamic MPI communication optimiza-

tions accelerate the collective and point-to-point queue search time up to 80x and 71x,

respectively.

4. Message Matching Improvement on Modern Architectures

Chapter 6 addresses performance of MPI message queues on many-core systems. Unfor-

tunately, the performance of current MPI libraries on these systems is significantly worse

than on traditional systems. Many-core processors and coprocessors such as Intel Xeon Phi

[65, 66] are used in supercomputers because of their energy efficiency and massive paral-

lelism. However, well-known MPI libraries are designed for traditional heavy-weight cores

with large amount of serial compute power. Recent studies have shown that system message

rates that were previously bottlenecked by networking overheads are now instead limited by

compute core performance on many-core systems [25]. It is therefore vital to optimize mes-

sage matching performance for emerging many-core systems to enable scalability in future

machines.

To this aim, we propose techniques to take advantage of vectorization capabilities on

modern processor architectures to enhance message matching performance [40]. First, we

explore spatial locality by combining multiple entries into a single linked list element. We

also expand on this idea by rearranging data into AVX vectors [83] to take advantage of

Intel Xeon Phi intrinsic functions. The experimental results show that these techniques

are effective with both Intel Xeon Phi and traditional Intel Xeon processors and we can

gain up to 4.5x and 2.92x performance for applications with extreme message matching

requirements, respectively.

5. MPI Neighborhood Collective Optimization

1.4. ORGANIZATION OF THE DISSERTATION 8

In Chapter 7, we propose an algorithm to improve the performance of neighborhood

collectives in MPI by designing efficient communication schedules. More specifically, we

propose a distributed algorithm that can be used to extract message-combining commu-

nication patterns and schedules for neighborhood collectives [51]. We show that part of

the problem falls within the scope of maximum matching in weighted hypergraphs, where

we seek to find a mutual pairing of the processes that have neighbors in common. We

consider two design alternatives: topology-agnostic and topology-aware. The former ig-

nores the physical topology of the system and the mapping of processes, whereas the latter

takes them both into account to further optimize the communication pattern. The physical

topology represents the connections between the cores, chips, and nodes in the hardware.

Our experimental results show that we can gain up to 8x reduction in the communication

latency of neighborhood communication, and around 5x speedup for a sparse matrix-matrix

multiplication kernel.

1.4 Organization of the Dissertation

As discussed earlier, the proposals in this dissertation are on two main research fronts in

MPI: message matching and sparse neighborhood communication. Chapter 2 provides some

background information related to these research fronts. It discusses MPI and its specific

features that are used in these proposals. It also briefly discusses parallel computers and

HPC network technologies. In Chapter 3, we propose message queue mechanisms based on

clustering algorithms to improve MPI message matching. Chapter 4 proposes partner/non-

partner message queue data structure to further improve the performance. In Chapter 5, we

look at the message matching issue from a different perspective and propose a new message

matching mechanism based on the type of communication. Chapter 6 addresses improving

the performance of MPI message queues considering the hardware/software features of the

new many-core processors and coprocessors. Chapter 7 discusses our proposed approach

1.4. ORGANIZATION OF THE DISSERTATION 9

for designing optimized communication schedules for MPI neighborhood collective commu-

nications. Finally, Chapter 8 concludes this dissertation and outlines some future research

directions.

10

Chapter 2

Background

Parallel computers utilize the processing power of multiple processors/computing nodes and

coordinate their computational efforts to deal with the limitations of the sequential com-

puters that cannot provide the computing power required by most applications. In other

words, they divide the computational tasks among multiple processors to enhance perfor-

mance. One of the main classes of parallel computers is cluster computers. As shown in

Figure 2.1, a cluster consists of compute nodes that are connected to each other through

a high-performance interconnect. The nodes in a cluster can have either a symmetric

multiprocessor (SMP) or Non-Uniform Memory Access (NUMA) configuration. An SMP

provides symmetric access to the shared memory for all nodes. However, NUMA provides

non-uniform memory access to the local and remote parts of the memory. Another impor-

tant class of parallel computers is Massively Parallel Processors (MPP). In MPPs, process-

ing units are tightly interconnected together usually with a custom-designed interconnect.

MPPs are more expensive than clusters due to their custom and proprietary design.

Clusters are more popular than other parallel architectures since they provide high avail-

ability and performance-cost ratio. Moreover, they are flexible in configuration and support

a wide range of available software. At the time of writing this document, 86.4% of the top

500 supercomputers in the world are clusters [18]. Clusters can be either homogeneous with

just the main processors, or heterogeneous that include the coprocessors (such as Intel Xeon

2.1. MULTI-CORE AND MANY-CORE PROCESSORS 11

H
ig

h
-S

p
ee

d
 I

n
te

rc
o
n

n
ec

ti
o
n
 N

et
w

o
rk

N
o

d
e

N
o

d
e

N
o

d
e

Network Interface Card

Main Memory

CPU core

L1/L2

CPU core

L1/L2

CPU core CPU core

L3 Shared Cache

CPU core

L1/L2

CPU core

CPU core CPU core

L3 Shared Cache
CPU Socket

.

.

.

L1/L2

L1/L2L1/L2 L1/L2 L1/L2

Figure 2.1: An example of an HPC cluster

Phi [65, 66]) or accelerators (such as GPUs) along with the processors.

2.1 Multi-core and Many-core Processors

Nowadays, it is end of the “era of higher processor speeds”, and microprocessor industry is

finding the way to the “era of higher processor parallelism”. This way, higher parallelism is

provided in computer design which leads to a better performance for applications. To this

aim, multi-core and many-core processors/coprocessors are designed and utilized in HPC

systems. Multi-core processors contain a few simple, independent cores. On the other hand,

many-core processors/coprocessors such as Intel Xeon Phi have a large number of cores.

Figure 2.1 shows a simplified architecture of an HPC cluster with multi-core processors.

2.1.1 Intel Xeon Phi

Intel Xeon Phi [65, 66] is a many-core processor/coprocessor with Many Integrated Core

(MIC) architecture that is known for its high computing capacity, low power consumption,

x86 instruction set support and ability to work as accelerators for conventional processors.

2.1. MULTI-CORE AND MANY-CORE PROCESSORS 12

It is used in some of the world’s largest supercomputers including Cori [1] at the National

Energy Research Scientific Computing Center (NERSC) and Oakforest-PACS [12] at Joint

Center for Advanced High Performance Computing (JCAHPC).

There are two main generations of Xeon Phi: Knights Corner (KNC) [65] and Knights

Landing (KNL) [66]. The Intel Xeon Phi KNC coprocessors can connect to the main proces-

sor by a PCI Express (PCIe) [34] bus. They can also communicate with each other using the

PCIe peer-to-peer interconnect or other networks such as InfiniBand [4] or Ethernet directly.

There is a virtualized TCP/IP stack implemented over the PCIe bus that gives the oppor-

tunity to the users to access the coprocessor as a network node. Intel distributed a MIC

Platform Software Stack (MPSS) [6], which consists of an embedded Linux, a minimally

modified GCC, and driver software. In this Linux environment, different programming

models such as MPI and OpenMP are supported.

Figure 2.2 shows the main components of the Intel Xeon Phi KNC coprocessor including

cores, caches, memory controllers, PCIe client logic, and a very high bandwidth, bidirec-

tional ring interconnect. Each private L2 cache is dedicated to one core and can be accessible

from other cores through global distributed Tag Directory (TD). The cores can access the

PCIe bus through PCIe client logic. Moreover, the GDDR Memory Controller provides an

interface to the GDDR on the coprocessor. KNC has up to 61 CPU cores.

The next-generation Intel Xeon Phi (KNL) provides greater enhancement compared to

KNC. KNL is built with up to 72 CPU cores and is shown to deliver 3 times the performance

of KNC chip. The basic KNL component is called a tile. Each tile consists of two cores along

with two Vector Processing Units (VPUs). The cores in a tile share 1MB of L2 cache. The

tiles are linked to each other over a 2D mesh which provides the cache coherency between

the L2 caches on the die.

One interesting thing about KNL is that it is designed to self-boot the operating system

as a native processor. Another difference between the KNC Xeon Phi generation and the

KNL generation is the use of Intel Advanced Vector Extensions (AVX). Intel AVX is a set

2.2. MESSAGE PASSING INTERFACE (MPI) 13

Core

L2

Core

L2

Core

L2

L2

TD TD

TDTDTD

TD
Memory

controller

Memory

controller

Memory

controller

Memory

controller

PCIe

Client

Logic

Core

L2

Core

L2

Core

Figure 2.2: Intel Xeon Phi Knight Corner coprocessor silicon (redrawn from [65])

of instructions for doing the same operation on multiple data points simultaneously. KNL

supports AVX-512 instructions [100] (e.g., Intel AVX intrinsics) which makes it binary

compatible with Intel Xeon processor instructions. However, KNC does not support AVX

and has its own instruction set known as Intel Many Integrated Core (IMIC).

2.2 Message Passing Interface (MPI)

The MPI forum [8] has introduced MPI as a standard that improves execution of parallel

applications by exchanging data. In other words, MPI extends languages like C, C++

and Fortran and it is known as one of the most commonly-used programming paradigms in

HPC. As can be seen in Figure 2.3, MPI decouples parallel applications from the underlying

communication layers. It can be used in both distributed-memory and shared-memory

architectures.

It should be noted that MPI is not a library implementation; it only specifies the fea-

tures the library should have to provide scalability, portability and efficiency. MPICH [10],

MVAPICH [11] and Open MPI [14] are example of some open source implementations of

2.2. MESSAGE PASSING INTERFACE (MPI) 14

Applications

Middleware libraries (e.g., MPI)

User-level and kernel-level libraries and protocols

Network interface card drivers

Figure 2.3: Software stack in a parallel system

MPI. MPICH is a reference implementation of MPI from Argonne National Laboratory that

is used as source code for other implementations like MVAPICH, maintained by Ohio State

University. The difference between MVAPICH and MPICH is that MVAPICH is optimized

over high speed interconnection networks like InfiniBand [4] and iWARP [16]. Another

open source implementation of MPI used by many Top500 supercomputers is Open MPI.

Intel MPI [5], IBM Spectrum MPI [3] and Cray MPI [53] are examples of commercial

implementations of MPI.

In order to execute a job in MPI, processes should be able to communicate with each

other. In other words, the data should move from address space of one process to the

address space of another process. In the following sections, we review the key concepts

related to communications in MPI.

2.2.1 Groups and Communicators

The concept of groups and communicators in MPI is used to define the scope and context

of all communications. A group is an ordered number of processes, each associated with a

unique rank which is an integer number between zero and N−1 (N is the number of ranks).

When a program initializes, the system assigns the rank number to each process. Commu-

nicators use groups to represent the participants in each communication. The standard

defines a predefined communicator MPI_COMM_WORLD that includes all the processes

of an application. The standard provides various Application Programming interface (APIs)

2.2. MESSAGE PASSING INTERFACE (MPI) 15

that can be used to duplicate a communicator or create sub-communicators. Each process

can be a member of more than one communicator, having a separate rank with respect to

each.

2.2.2 Point-to-Point Communications

There are different types of communications supported in MPI. Point-to-point or two-sided

communication is the basic communication mechanism in which both sender and receiver

take part in the communication. It is guaranteed by the MPI standard that the messages

are received in the order they are sent. The sender has a buffer that holds the message

and an envelop containing information that will be used by the receiver side. The receiver

uses the information in the envelop to select the specified message and stores it into its

receiver buffer. Researchers have proposed different approaches to improve point-to-point

communication performance [73, 95, 117, 113, 99, 55].

In MPI, the point-to-point communication can be either blocking or non-blocking. In

blocking send operation, the calling process is blocked until its communication buffer can

be used again. The blocking receiver blocks the receiver until the receive operation is

completed. On the other hand, the non-blocking send operation returns as soon as the

data is copied into the communication buffer, and non-blocking receive returns as soon as

the receive request is posted. The advantage of non-blocking communication is that they

provide the opportunity to overlap communication and computation. However, they require

polling or waiting mechanisms to verify the completion of the message transfer.

2.2.3 Collective Communications

In collective communication, the messages can be exchanged among a group of processes

rather than just two of them. Collective communications provide this opportunity for

the processes to perform one-to-many and many-to-many communications in a convenient,

portable, and optimized way. Some examples of collective communications include barrier,

2.2. MESSAGE PASSING INTERFACE (MPI) 16

broadcast, allgather, alltoall and allreduce. The barrier operation enables explicit synchro-

nization across the processes, whereas other operations enable a certain type of collective

data exchange among the processes. MPI allgather is a many-to-many collective communi-

cation where each process gathers data from every other process in the communicator. In

other words, each process has a message that has to be sent to every other process.

Collective communications are extensively used by the MPI applications. Therefore,

the performance of collective operations can significantly impact the performance of MPI

applications. Consequently, there have been numerous research to improve the performance

of collective communications in MPI [44, 90, 64, 20, 43, 76, 80, 105].

There are two different approaches to design collective communications: unicast-based

algorithms and hardware-based implementations. In the unicast-based algorithms, MPI

collectives are implemented as a series of point-to-point communications. On the other

hand, hardware-based implementations exploit special hardware supports such as hardware

multicast. In the unicast-based collective algorithms, the communication is scheduled over

a sequence of stages. The union of these stages makes the desired collective operation. At

each stage, a permutation of source-destination processes communicate with each other. The

internal communication pattern of each collective operation depends on the permutation

used in each stage by the collective algorithm. Note that a single collective operation

might have different collective communication algorithms which results in different internal

communication patterns.

There are various algorithms in literature for designing each collective operations. The

MPI libraries usually use a combination of such algorithms and choose one of them based

on some parameters such as message size and communicator size. The Fan-in/fan-out,

binomial tree and ring algorithms are some examples of such algorithms. These algorithms

are shown in Figure 2.4. In the ring algorithm [105], the data is sent around a virtual

ring of processes as can be seen in Figure 2.4(a). In each step, process i sends its data

to process i + 1 and receives a new data from process i − 1. The ring algorithm is used

2.2. MESSAGE PASSING INTERFACE (MPI) 17

0

1

2

3 4

5

6

7

(a) Ring

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1

2

2

3

3

3

3

(b) Binomial Tree

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fan in Fan out
(c) Fan-in/fan-out

Figure 2.4: A few examples of algorithms for different collective operations

in MPI collective operations such as MPI_Allgather. Figure 2.4(b) shows the steps of the

binomial tree algorithm [105]. In the first step, the data is sent from the root process to

process root + n/2, in which n is the total number of processes. In the second step, both

this and the root processes act as new roots in their own subtrees. The same procedure is

done in subsequent steps of the algorithm, recursively. The binomial tree algorithm can be

used in various collective operations such as MPI_Bcast, MPI_Gather, and MPI_Reduce.

Figure 2.4(c) shows the fan-in/fan-out algorithms. In the fan-in algorithm [54], a single

process receives data from all other processes. It is used for collective operations such as

MPI_reduce and MPI_gather. In the fan-out algorithm, all processes read from a single

2.2. MESSAGE PASSING INTERFACE (MPI) 18

process. This algorithm can be used in collective operations such as MPI_Scatter and

MPI_Bcast. The combined fan-in/fan-out algorithm can be used in collective operations

such as MPI_Allreduce.

Some research studies [105, 96] discuss a comprehensive set of algorithms for various

MPI collective operations (such as broadcast, allgather, alltoall, etc.). These algorithms

are the basis for many other tuned collective communication algorithms proposed in the

literature [69, 80, 87, 44, 90, 64].

2.2.4 One-sided Communications

In one-sided communication, also called Remote Memory Access (RMA), one process (ori-

gin) sends/ receives data to/from the address space of another process (target) without

explicit participation of the remote process. In other words, the process can directly read or

write from/into an exposed memory window of the other side. In one-sided communication,

all the required communication parameters for both sending and receiving sides are pro-

vided at the origin process. We do not use one-sided communications in this dissertation.

Therefore, we do not discuss it further.

2.2.5 MPI Message Queues

The MPI libraries typically maintain two queues, a Posted Receive Queue (PRQ) and an

Unexpected Message Queue (UMQ) to deal with unavoidable out-of-sync communication in

MPI. When a new message arrives, the PRQ must be traversed to locate the corresponding

receive queue item, if any. If no matching is found, a Queue Element (QE) is enqueued

in the UMQ. Similarly, when a receive call is made, the UMQ must be traversed to check

if the requested message has already (unexpectedly) arrived. If no matching is found, a

new QE is posted in the PRQ. Message queues are in the critical path of communication

in MPI, and its search time affects the performance of applications that perform extensive

communications.

2.2. MESSAGE PASSING INTERFACE (MPI) 19

In MPI message queues, the search is done based on the tuple <context_id, rank,

tag>. Context_id is an integer value representing the communicator. The rank represents

the source process rank in a PRQ request, and the receive process rank in an UMQ re-

quest. Tag is also an integer value that specifies the message id. The receiver can provide

MPI_ANY_SOURCE or MPI_ANY_TAG instead of providing a specific source rank or

tag. This is called wildcard communication and it means that the queue element can be

matched with any sender process in the same communicator or any tag.

MPI implementations use different data structures to support message queue operations.

MPICH and MVAPICH both use the linked list data structure depicted in Figure 2.5. Based

on this data structure, these libraries provide a straightforward implementation of the MPI

message queue that searches linearly for the key tuple in O(nq) in which nq is the number

of elements in the queue. When nq is small, the linear search is acceptable. However, at

large-scale, traversing a long queue is computationally intensive and requires a large number

of pointer operations (e.g., access and dereferencing). The advantage of the linked list data

structure is that the QEs are saved in the order of their arrival, and this conforms with the

MPI point-to-point ordering semantic.

In order to manage MPI_ANY_SOURCE and MPI_ANY_TAG in MPICH/MVAPICH,

Besides tag, rank and context_id, three other elements called mask_tag, mask_rank and

mask_context_id are also saved in PRQ. Whenever a wildcard receive operation is called,

the UMQ is searched. If the element is not there, it is saved in PRQ. The corresponding

mask bits of the wildcard element is also set to zero. For example, if the wildcard operation

was MPI_ANY_TAG, mask_tag would be set to zero and if it was MPI_ANY_SOURCE,

mask_rank would be set to zero. Otherwise, if there was no wildcard operation, the mask

bits are all set to 1. At the time of searching the PRQ, the searching element and the queue

elements are masked. This way, we can skip searching the tag or the rank if the queue

element was MPI_ANY_TAG or MPI_ANY_SOURCE, respectively.

Figure 2.6 shows message queue data structure in Open MPI. As can be seen in this

2.2. MESSAGE PASSING INTERFACE (MPI) 20

QE0 (context_id,

source, tag) n
u

ll. . .
QE1 (context_id,

source, tag)
QEn-1 (context_id,

source, tag)

Figure 2.5: Linked list data structure in MPICH/MVAPICH

figure, Open MPI makes the search hierarchical by considering context_id as the first level

and source as the second level. Each context_id, associated with a communicator of size

n, has an array of size n representing the source ranks. Within each source rank, there is a

linked list of tags. In this approach, requests bearing rank i are positioned in the ith element

of the array. The advantage of Open MPI message queue data structure is that its queue

search time is faster than the linked list data structure. However, contrary to the linked

list, it has a large memory footprint as it requires an array of size n for each communicator

of size n. Moreover, fragmenting the queues based on the communicator has limited benefit

in practice since there are not many applications that use multiple communicators (it might

not be the case in future though).

Due to the message queue traversal overhead in the MPI applications that generate long

message queues, using a suitable matching algorithm is of great importance. In Chapters 3-6

of this dissertation, we propose new message queue mechanisms to improve the performance

of message queue operations. The proposed designs consider the properties of the new HPC

systems as well as the features of the HPC applications.

2.2.6 MPI Topology Interface

MPI provides this opportunity to define a logical topology for the processes of an appli-

cation. This information, which is referred to as process topology or virtual topology in

MPI, is attached as an additional and optional attribute to a corresponding communicator.

Virtual topology provides this opportunity to have a convenient naming mechanism for the

set of processes in a communicator. Moreover, it can be used to gain information about

the communication pattern of the processes. This information can be leveraged in many

2.2. MESSAGE PASSING INTERFACE (MPI) 21

Context_id1 Context_id2 Context_id3 Context_id4 n
u

ll

Source 1 Source 2 Source 3 ... Source n

Tag1

ptr

Tag 2

ptr

n= Size of
communicator

Tag1

ptr

Tag 2

null

Tag 3

null

Tag 1

null

... Tag1

ptr

Tag 2

null

Figure 2.6: Open MPI message queue data structure

different ways to improve the performance. For example, the virtual topology information

can be used to conduct topology-aware mapping optimization [91].

Process topologies is described using two main interfaces: (1) the graph interface, and

(2) the Cartesian interface. In the graph interface, each process is represented as a ver-

tex of the graph and the communication relationship among the processes is described as

the edges. The MPI-1.0 standard (released in 1994) defines a general graph constructor,

MPI_Graph_create(), that can be used to build a directed and unweighted topology graph.

As discussed in [23, 29, 107], this interface is not scalable so it cannot be used in practice.

To deal with this issue, the MPI-2.2 standard (released in 2009) provides a more scalable

and informative topology interface which is defined as distributed graph topology functions.

In this interface, each process describes only a fraction of the whole communication graph.

In other words, the graph topology is distributed between the processes. It also provides

this opportunity to assign relative weights to the communication edges. Moreover, an addi-

tional info argument can be passed to the interface. This argument provides the user with

more control over further optimizations related to process topologies.

2.2. MESSAGE PASSING INTERFACE (MPI) 22

Two distributed graph constructors are defined in MPI-2.2: MPI_Dist_graph_ cre-

ate_adjacent() and MPI_Dist_graph_create(). In MPI_Dist_graph_create_ adjacent(),

each process only specifies its own outgoing and incoming neighbors. On the other hand,

MPI_Dist_graph_create() can specify an arbitrary set of edges that may or may not be

its own neighbors. The advantage of the adjacent specification is that the neighborhood

information is already available locally at each process, while in the non-adjacent specifica-

tion, processes should communicate with each other to extract neighborhood information.

On the other hand, the disadvantage of the adjacent specification is that it supplies each

edge twice; once by each of its endpoints.

Although the graph topology functions can be used to describe any virtual process

topology, the Cartesian interface provides easier and more efficient way to describe cer-

tain process topologies such as n-dimensional grid-based mesh/torus topologies that can

be entirely defined by the number of dimensions and the number of processes along each

dimension. Accordingly, MPI provides a number of functions that allow for creation and

manipulation of Cartesian topologies. For example, the function MPI_Cart_create() cre-

ates a new communicator with a Cartesian topology of a desired number of dimensions.

The drawback of the Cartesian topology is that it only specifies communications among

immediate neighbor processes. For example, it cannot be used to describe communications

between diagonal neighbors. Also, it does not support weighted edges.

2.2.7 Neigborhood Collective Communications

Neighborhood collectives are introduced in the MPI-3.0 standard (released in 2012) to add

communication functions to the process topologies. They are similar to conventional collec-

tive communications in a sense that they provide an abstraction for communications among

a group of processes. However, the problem with conventional collectives is that they are

not inherently scalable. That is because of the global nature of their communications that

encompasses all the processes in a communicator. This concern becomes an issue at the

2.2. MESSAGE PASSING INTERFACE (MPI) 23

exascale level where some collectives (e.g., all-to-all) are too costly to be practical.

To address these issues, neighborhood collectives can be used. In neighborhood col-

lectives, each process only communicates with the processes that are defined as one of its

outgoing/incoming neighbors. The neighbors are specified using the communication pat-

tern derived from the topology graph of the processes. Thus, unlike conventional collectives,

neighborhood collectives allow users to define their own communication patterns through

the process topology interface of MPI. In this sense, neighborhood collectives vastly extend

the concept of collective communications in MPI and represent one of the most advanced

features of the standard. Moreover, neighborhood collectives are more scalable since they

restrict communications to a local neighborhood of each process. Another advantage of

neighborhood collectives is that they support sparse communication patters [61] used in

many applications such as Nek5000 [45], Qbox [56] and octopus [35]. Although point-to-

point operations can be used to implement sparse collective communications, the advantage

of neighborhood collectives is that they use the information provided by virtual topology to

implement such communication pattern more efficiently. Other advantages of using neigh-

borhood collectives include performance portability and higher levels of readability and

maintainability of the application code.

Currently, two main neighborhood collective operations are defined in the standard:

MPI_Neighbor_allgather() and MPI_Neighbor_alltoall(). In a neighbor allgather opera-

tion, each process sends its data to each of its outgoing neighbors designated by the process

topology graph, and receives the data from each of its incoming neighbors. The neighbor

alltoall operation has the same communication pattern. The difference is that in neigh-

bor allgather the same message is sent to all outgoing neighbors of a process, whereas in

neighbor alltoall, a different message is sent to each outgoing neighbor of a process. Figure

2.7 shows an example of process topology with status of buffers for neighbor allgather and

neighbor alltoall operations from the viewpoint of process P7.

Variations of neighborhood collective operations include MPI_Neighbor_allgatherv(),

2.3. INFINIBAND: A HIGH PERFORMANCE INTERCONNECT 24

4

5

6

Send
buffer

0

1

2

3

R
ec

e
iv

e
 b

uf
fe

r

0

1

2

3

P7

(a) Neighbor Allgather

4

5

6

Send
buffer

0

1

2

3

R
ec

e
iv

e
 b

uf
fe

r

0

1

2

3

P7

4

5

6

(b) Neighbor Alltoall

Figure 2.7: An example of process topology with the status of buffers for neighbor allgather
and neighbor alltoall operations from the viewpoint of process P7

MPI_ Neighbor_alltoallv() and MPI_Neighbor_alltoallw(). MPI_Neighbor_allgatherv(),

MPI_ Neighbor_alltoallv() extend the functionality of MPI_Neighbor_allgather() and

MPI_ Neighbor_alltoall() by allowing a varying count of data from each process. MPI_

Neighbor_alltoallw() allows different datatypes, counts and displacement for each partner.

2.3 InfiniBand: A High Performance Interconnect

InfiniBand (IB) [4] and Gigabit/10Gigabit Ethernet are two main cluster interconnection

network technologies in HPC domain. At the time of writing this document, InfiniBand

is being used in around 27% of top500 supercomputers in the world. Gigabit/10Gigabit

Ethernet are other popular interconnects that have 50.4% share. However, the performance

share of InfiniBand is 36.1% compared to 20.7% of Gigabit/10Gigabit Ethernet.

InfiniBand Architecture (IBA) was developed in 1999 by a group of around 180 compa-

nies called InfiniBand Trade Association (IBTA). They successfully standardized InfiniBand

in October 2000. InfiniBand provides high performance, low latency and efficient commu-

nication technology. Unlike traditional networks, InfiniBand does not require Operating

System (OS) for transferring the messages. In a traditional network, the TCP/IP protocol

stack and the Network Interface Card (NIC) are owned by the operating system. Therefore,

applications rely on the OS for message transfer. However, InfiniBand transfers the message

2.3. INFINIBAND: A HIGH PERFORMANCE INTERCONNECT 25

on its own without going through the OS. Switches, routers, Channel Adapters (CAs), cable

and connectors are the main components of InfiniBand. CAs can be either Host Channel

Adapters (HCA) that connect the host node to IB network or Target Channel Adapters that

connect external I/O devices to IB networks. IBA defines two communication semantics:

channel semantic and memory semantic. In the channel semantic, both sender and receiver

take part in communication. However, in the memory semantic, also called Remote Direct

Memory Address (RDMA), only the node that initiates the communication is responsible

for data communication, and it reads/writes from/to the virtual address of the remote peer.

26

Chapter 3

Clustering-based Message Matching Mechanism

Message queues are in the critical path of communication in MPI, and its search time affects

the performance of applications that perform extensive communications. Due to the message

queue traversal overhead in the MPI applications that generate long message queues, using

a suitable matching algorithm is of great importance. AMG2006 [114], LAMMPS molecular

dynamics simulator [97] and Fire Dynamic Simulator (FDS) [89] are some examples of the

applications that generate long message queues.

Although there are various message matching designs used in MPI implementations or

proposed in literature [116, 46, 27, 71], non of them takes advantage of clustering mecha-

nisms to improve message queue operations. In this chapter, we propose a mechanism that

considers the impact of communication by source/receive processes on message queue length,

and uses this information to cluster the processes into different groups [48]. Processes are

clustered based on the number of queue elements they add to the PRQ or UMQ. We then

allocate a dedicated linked list to each cluster. We study the benefit of the clustering-based

approach with two different clustering algorithms. The first algorithm is based on K-means

clustering [102] while the second one is a heuristic designed to uniformly assign processes

to the clusters based on the number of queue elements they add to the queues.

The advantage of the proposed approach is twofold. First, it will reduce the average

number of queue traversals due to the use of multiple queues instead of a single queue.

3.1. RELATED WORK 27

Secondly, we can further improve the queue search operation by using a proper clustering

algorithm in a way that the average number of traversals for each cluster is minimized.

In our study with three real applications, LAMMPS, AMG2006 and FDS, on a large-scale

cluster, we show that the proposed approach decreases the average queue traversals as well

as the queue search time and ultimately improving the application performance.

The rest of this chapter is organized as follows: Section 3.1 presents the related work

and distinguishes our work from them. Section 3.2 discusses the motivation behind this

work. Section 3.3 describes our message queue approach. The experimental results and

analysis are presented in Section 3.4. Finally, we conclude the chapter in Section 3.5.

3.1 Related Work

Several works have studied the impact of the message queue features on the performance

of different MPI applications [70, 30, 32, 33]. Keller and Graham [70] show that the char-

acteristics of UMQ, such as the size of UMQ, the required time for searching the UMQ

and the length of time such messages spend in these queues, have considerable impact on

scalability of MPI applications (GTC, LSMS and S3D). Researches in [30, 32, 33] focus

on evaluating the latency and message queue length of some applications. A more recent

work [79] proposes a validated simulation-based approach to examine how the performance

of several important HPC workloads is affected by the time required for matching. It also

provides some guidance on the design and development of MPI message queues.

There have been various works on improving the message queue operations in MPI [116,

46, 27, 71]. The main idea behind most of these approaches is to improve the queue search

time by reducing the number of queue traversals. This can be done by taking advantage

of multidimensional queues [116], hash tables [46] or parallelizing the search operation [71].

Zounmevo and Afsahi [116] proposed a 4-dimensional data structure to decompose ranks

into multiple dimensions. The aim of this data structure is to skip searching a large portion

3.1. RELATED WORK 28

of the data structure for which the search is guaranteed to yield no result. The disadvantage

of this work is that it has some overhead for short list traversals. Moreover, it does not

consider the application’s characteristics in the design.

Flajslik, et al. [46] use a hash function to assign each matching element to a specific

queue. The hash function is based on a full set of matching criteria (context_id, rank and

tag). This data structure consists of multiple bins with a linked list within each bin. The

number of bins and the hash function can be set at configuration time. The evaluation re-

sults show that by increasing the number of bins, the number of traversals and consequently

the queue search time would be reduced for long list traversals. The disadvantage of this

work is that it does not consider the application characteristics and it has some overhead

for short list traversals.

In [27], the authors propose a message matching design that dynamically selects between

one of the existing approaches: a defaultt linked list, a bin-based design [46] and a rank-

based design in which each source process has its own dedicated message queue. This work

starts running the application with the default linked list design. During the application

runtime, the number of traversals for each process is measured. If the number of traversals

is more than a threshold, they switch to the bin-based design. They can also switch to the

rank-based design if it is specified by the user at configuration time. The disadvantage of

this work is that it does not consider the application characteristics to allocate the elements

to the queues. The clustering-based approach differs from this work in that it profiles

the communication traffic between each individual peers and takes advantage of clustering

mechanism to improve message matching performance.

Other researches investigate MPI matching list improvement in hardware [71, 111, 26].

Klenk, et al. [71] propose a new message queue design to take advantage of the availability

of large number of threads on GPUs. This message matching algorithm searches the queue

in two phases (scan and reduce) and provides 10 to 80 times improvement in matching rate.

The disadvantage of this work is that it cannot handle more than 1024 elements in the

3.2. MOTIVATION 29

queue. Underwood, et al. [111] accelerate the processing of UMQ and PRQ by offloading

the MPI message matching to specialized hardware. By increasing the scale of the current

systems, offloading the MPI message matching is gaining attention once again to drive down

the MPI messaging latency. The Portals networking API [26] enables such offloads. Several

current low-level networking APIs also provide interfaces that include support for message

matching [7, 13] to enable the use of specialized hardware and software techniques.

Our work improves the message matching operations in MPI by reducing the number

of queue search traversals. To do this, it takes advantage of multiple queues along with

clustering. The difference between the proposed work in this chapter and other approaches

is that our approach clusters the queue elements wisely, based on the number of queue

elements each source adds to the message queues. This way, we can achieve high message

matching performance by allocating a small number of queues rather that allocating a large

number of queues.

3.2 Motivation

Placing all incoming unexpected messages into the same UMQ, or all early posted receives

into the same PRQ, will result in long message queues and traversals when looking for a

matching element. Previous research [46] has shown that increasing the number of message

queues will potentially increase the performance. This is also used in Open MPI as an

extreme case, where there is a dedicated UMQ allocated for each potential source process.

The work in [46] naively places incoming messages and posted receives into message queues

based on a hashing function without considering the application characteristics. In this

chapter, we also use multiple queues to speed up the operation, however we extend our

intuition a step further by considering the behavior of the applications in managing parallel

message queues in MPI.

Through microbenchmarking, we provide the evidence that increasing the number of

3.2. MOTIVATION 30

0

10

20

30

40

50

128 256 512

Ti
m

e
(µ

s)

Number of Processes

Average queue search time

one queue two queues

(a) M=10

0

50

100

150

200

250

128 256 512

Ti
m

e
(µ

s)

Number of Processes

Average queue search time

one queue two queues

(b) M=50

Figure 3.1: Average UMQ search time for the reverse search on Cluster A

message queues and clustering groups of processes together and assigning them a dedicated

message queue based on their communication intensity will increase the message queue

performance. In our reverse search microbenchmark, processes P1 to Pn−1 (n is the total

number of processes) first send m data each to process P0. Then, the elements are dequeued

from the bottom of the queue by P0. We measure the time P0 spends in searching each

one of the elements in the queue coming from the other processes and report the average

queue search time across all incoming messages. We double the number of message queues

to two and compare its performance for the reverse search against the default MVAPICH2

implementation that uses a single UMQ. In the two-queue case, we place half of the incoming

messages at the end of the queue in the second queue. Our objective in this test is to confirm

that increasing the number of message queues indeed improves the performance.

Figure 3.1 shows the results for the reverse search that has been conducted on Cluster A

described in Section 3.4.1. As can be seen in the figure, by doubling the number of queues,

we can decrease the average queue search time. This improvement is more significant when

the number of pending messages per process is larger.

In our second microbenchmark, we revise our previous microbenchmark in a way that

the processes P 1 to P n-1 are now grouped into four groups, P s, Pm, P l and P vl where

each process within a group sends a small (2 messages), medium (10 messages), large (50

3.2. MOTIVATION 31

Table 3.1: Different combination of groups of processes assigned to each
queue

Clustering1 Queue 1: P s & Pm Queue 2: P l & P vl
Clustering2 Queue 1: P s & P l Queue 2: Pm & P vl
Clustering3 Queue 1: P s & P vl Queue 2: Pm & P l
Clustering4 Queue 1: P s & Pm & P l Queue 2: P vl
Clustering5 Queue 1: Pm & P l & P vl Queue 2: P s
Clustering6 Queue 1: P s & Pm & P vl Queue 2: P l
Clustering7 Queue 1: P s & P l & P vl Queue 2: Pm

messages), or very large (100 messages) number of messages to process P 0, respectively.

We then forward a combination of these messages, such as those from the small and large

groups, to one of the two queues for P 0. The remaining (e.g., medium and very large)

messages will be sent to the other queue. Table 3.1 shows the different combination of

groups of processes that are assigned to each of the two queues for P 0.

Our objective in this experiment is to understand the impact of clustering on multiple

message queues and compare its performance against a single queue as well as a four-queue

case where the messages from each group are sent to a distinct queue. Figure 3.2 compares

the average UMQ search time for our microbenchmark with different clustering of processes

shown in Table 3.1 with a single-queue case and a 4-queue case, respectively.

Two conclusions can be derived from these results. First, as shown in the previous

microbenchmark results in Figure 3.1, increasing the number of queues improves the queue

search time. The second and more important observation from this experiment is that

the way we assign the queues to processes has a considerable impact on the queue search

time. In other words, if we assign the processes to queues appropriately (Clustering 3 and

4), the two-queue case can be as good as the case with four queues. However, assigning

the processes to queues incorrectly would negate the impact of increasing the number of

message queues and may make it as worse as the case with a single queue (Clustering 5).

3.3. THE PROPOSED CLUSTERING-BASED MESSAGE MATCHING
DESIGN 32

0

10

20

30

40

64 128

Ti
m

e
(µ

s)

Number of Processes

Average Queue Search Time

1 Queue 2 Queues (clustering 1) 2 Queues (clustering 2)

2 Queues (clustering 3) 2 Queues (clustering 4) 2 Queues (clustering 5)

2 Queues (clustering 6) 2 Queues (clustering 7) 4 Queues

Figure 3.2: Average UMQ search time for the reverse search on Cluster A

3.3 The Proposed Clustering-based Message Matching Design

The motivational results showed that adding a second message queue can reduce the queue

search time significantly. In addition, it became possible to reduce the queue search time

further by clustering the processes into different groups based on their communication

frequency and allocating a dedicated message queue to each group. Motivated by these

results, we propose a new message matching structure in MPI with multiple queues in order

to support message passing more efficiently based on the communication characteristics of

the MPI applications at runtime. The overall process is as follows:

(a) Run the MPI application once to gather information about the number of elements

processes add to the queue at runtime.

(b) Use this information to perform a cluster analysis of the MPI application processes.

Here, we use two different clustering algorithms: K-means clustering algorithm [102]

and a heuristic algorithm.

(c) Redesign the MPI library to have a dedicated queue for each cluster of processes.

3.3. THE PROPOSED CLUSTERING-BASED MESSAGE MATCHING
DESIGN 33

(d) Use the clustering information obtained in Step (b) to enqueue the incoming messages

or receive calls from the MPI application to their dedicated MPI message queues in

the next run.

Figure 3.3 shows the first phase of gathering information and clustering in the clustering-

based message queue mechanism for the unexpected message queue. As the figure shows,

we first derive the message queue feature matrix representing the total number of messages

coming to the queues for peer processes. In this matrix, each row, representing a process

i, has an array of size n, where n is the number of processes. The element Ai,j indicates

the total number of messages that was added to the queue from the source process j to

the destination process i. This array is then used to classify the processes into groups or

clusters. Any clustering algorithm can be used here for the classification. We discuss two

different algorithms. The first algorithm is K-means clustering algorithm That is discussed

in Appendix I. We used the Euclidean distance between the data points and the clustering

points in K-means clustering. The second algorithm uses a heuristic-based algorithm dis-

cussed in Section 3.3.1. The output of the clustering phase is a clustering identifier matrix

file with elements indicating the cluster number for source-destination pairs.

Figure 3.4 shows how the clustering information gathered in the first phase is used to

build the message queues in future runs. The clustering identifier matrix is given as an

input to the message queue identifier. Each destination process i in the clustering identifier

matrix has an array of size n. For the peer destination process i, the element Bi,j indicates

the cluster in which the source rank j belongs to. In this design, each cluster represents

one of the queues. When a message arrives (or a receive call is issued), the message queue

identifier retrieves the cluster number from the clustering identifier matrix and enqueues

it into the corresponding queue, if it cannot be matched with posted receives in PRQ (or

unexpected messages in the UMQ).

The new MPI message matching design provides two main advantages. First, leveraging

3.3. THE PROPOSED CLUSTERING-BASED MESSAGE MATCHING
DESIGN 34

Application

message

queue profiler

0
1
.
.
.

n-1

Source Processes

0 1 . . . n-1

D
e
st

in
at

io
n
 P

ro
ce

ss
es

Message queue feature matrix

Application

Aij= Total number

of messages coming

to the queues from

source process j to

destination process i

Clustering identifier matrix

Clustering

Bij= the cluster

number in which

the pair processes

(source process j,

destination process

i) belongs to

Source Processes

0 1 . . . n-1

0

1

.

.

.

n-1D
e
st

in
at

io
n
 P

ro
ce

ss
es

Figure 3.3: The first phase of gathering information and clustering in the proposed message
matching mechanism

multiple queues can reduce the number of traversals and consequently, the queue search

time. Secondly, clustering the processes based on the queue behavior of the application and

assigning a dedicated message queue to each cluster provides the opportunity to search the

queues faster and consequently reduce the queue search time and application runtime.

Note that the MPI_ANY_TAG wildcard is automatically supported in the proposed

message queue structure, as elements from a source is stored in the same linked list in the

order of their arrival. To deal with MPI_ANY_SOURCE wildcard communication, a se-

quence number is added to each queue element. Requests bearing MPI_ANY_SOURCE are

3.3. THE PROPOSED CLUSTERING-BASED MESSAGE MATCHING
DESIGN 35

Incoming message

from source j to

process i

Message queue

identifier

QE0

.

.

.

Queue 0

Queue 1

Queue K-1

Assign the

element to queue

number k

. . .

Source Processes

0 1 . . . n-1

0

1

.

.

.

n-1

D
es

ti
n
at

io
n
 P

ro
ce

ss
es

QE1 QEq-1
nu
ll

. . .QE1 QEp-1
nu
ll

QE0

. . .QE1 QEr-1
nu
ll

QE0

Clustering identifier matrix

Bij= the cluster

number in which

the pair processes

(source process j,

destination process

i) belongs to

Figure 3.4: Clustering-based message queue structure

allocated to a separate PRQ called PRQ_ANY. When searching rank j in the posted receive

queue is required, both the posted receive queue k corresponding to rank j (derived from the

K-means clustering or heuristic-based algorithm) and the PRQ_ANY queue are searched.

If there are multiple matches, the element whose sequence number is smaller is chosen as

the matching element. Similarly, when searching UMQ with MPI_ANY_SOURCE, all

the queues k (0 ≤ k < K) will be searched, and the element with the smallest sequence

number will be selected as the matching element. Note that the user can provide a hint

to the runtime library to disable the search mechanism for MPI_ANY_SOURCE if the

application does not use any wildcard communication.

3.3. THE PROPOSED CLUSTERING-BASED MESSAGE MATCHING
DESIGN 36

3.3.1 Heuristic-based Clustering Algorithm

The problem with K-means clustering is that the queue elements from different processes

are not uniformly distributed in the clusters. This makes some queues to be overloaded

while others do not have much elements. Moreover, K-means clustering does not recognize

the number of clusters k. Therefore, we propose a heuristic-based clustering algorithm to

deal with these issues. This algorithm assigns average+SD1 queue elements to each cluster.

The term average makes the heuristic-based design to assign at least an average number of

elements to each cluster. We also add standard deviation to the average to avoid allocating

a dedicated queue for a significant number of processes whose number of queue elements is

more than average. We should note that in a normal distribution, 50% of data points are

greater than average and only 16% of data points are greater than average+ SD.

The heuristic-based algorithm is presented in Algorithm 3.1. In this algorithm, first we

calculate the average and standard deviation for each row of message queue identifier matrix

(Lines 1 and 2). Then, we sort the input array in Line 3. By sorting the elements, we can

assure that each cluster has the maximum possible number of processes. In Lines 6 to 12

of the algorithm, we start from the first process in the sorted array and add the processes

into the first cluster until the total sum of all messages from these processes is less than

average+SD. If it becomes greater than this value, the number of clusters is incremented

and a new set of processes is added to the second cluster. This trend is continued until

all processes are allocated to the clusters. This way, on average we have average + SD

elements in each cluster.

The advantage of the heuristic algorithm is that it assigns the processes to the clusters in

a way that the communication frequency is almost the same in all clusters. Moreover, this

algorithm assures that the total number of queue elements in each cluster will not exceed

average + SD. Another advantage of this algorithm compared to the K-means algorithm
1Standard Deviation

3.4. PERFORMANCE RESULTS AND ANALYSIS 37

is that it identifies the number of clusters based on the input array without any hint from

the user. We should note that the overhead of the clustering algorithm (either K-means

clustering or heuristic-based algorithm) occurs only once in the first run.

Algorithm 3.1: Heuristic algorithm for clustering the processes
Input : Total number of elements sent to UMQ/PRQ from each process

Num-of-QE0...P, Number of processes P
Output: An array containing the cluster number for peer process i and j

cluster-num0...P, Number of clusters total-cluster-QE
1 E=average of Num-of-QE0...P;
2 SD=standard deviation of Num-of-QE0...P;
3 Sort Num-of-QE0...P;
4 k=0;
5 total-cluster-QE=0;
6 for i ∈ 1...P do
7 cluster-numi=k;
8 total-cluster-QE+ =Num-of-QEi
9 if total-cluster-QE > (E + SD) then

10 k++;
11 total-cluster-QE=0;
12 end
13 end

3.4 Performance Results and Analysis

This section studies the performance of the proposed clustering-based message queue struc-

ture against MVAPICH2 default queue data structure. We present the results for average

number of queue traversals, average queue search time, as well as the execution time for

three applications. We should note that we run the applications under the same condition

(same workload and number of processes) in the first and subsequent runs.

3.4.1 Experimental Platform

The experimental study is done on the General Purpose Cluster (GPC) at the SciNet HPC

Consortium of Compute Canada. GPC consists of 3780 nodes, for a total of 30240 cores.

3.4. PERFORMANCE RESULTS AND ANALYSIS 38

Each node has two quad-core Intel Xeon sockets operating at 2.53GHz, and a 16GB memory.

We have used the QDR InfiniBand network of the GPC cluster. The MPI implementation

is MVAPICH2-2.0. We refer to GPC as Cluster A in this dissertation.

The applications that we use for the experiments are AMG2006 [114], LAMMPS [97]

and FDS [89]. We consider these three applications due to their different message queue

behavior. For example, FDS has long list traversals especially at process 0. On the other

hand, AMG2006 and LAMMPS are well-designed applications that have short and medium

message queue traversals. We present the results for these three applications to show the

efficiency of the proposed approach for well-crafted applications with short and medium

traversals as well as applications with considerably large number of traversals.

AMG2006 is a parallel algebraic multi-grid solver for linear systems arising from prob-

lems on unstructured grids. It uses data decomposition to parallelize the code in MPI.

LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/

Molecular Massively Parallel Simulator. It has potentials for solid-state materials (metals,

semiconductors), soft matter (biomolecules, polymers) and coarse-grained or mesoscopic

systems. It can be used to model atoms or, more generically, as a parallel particle simula-

tor at the atomic, meso, or continuum scale. We run rhodopsin protein benchmark in our

experiments. This benchmark uses particle-mesh method to calculate long range forces [98].

FDS is a computational fluid dynamics model of fire-driven fluid flow. It solves numerically

a form of the Navier-Stokes equations appropriate for low-speed, thermally-driven flow with

an emphasis on smoke and heat transport from fires.

3.4.2 Message Queue Traversals

We measure the average number of traversals to find the desired element in UMQ for

AMG2006 and LAMMPS applications. Figure 3.5 and Figure 3.6 show the average number

of traversals for different sources for each process in a heat map in the proposed approach

and the default MVAPICH implementation for the AMG2006 and LAMMPS, respectively.

3.4. PERFORMANCE RESULTS AND ANALYSIS 39

The horizontal axis shows the source processes and the vertical axis shows the destination

processes. The red data points depict high number of traversals while the green and yellow

data points show medium and low number of traversals, respectively. The experiments were

done on Cluster A.

Figure 3.5 shows the average number of traversals for UMQ in AMG2006 application

in default MVAPICH implementation (Figure 3.5(a)), the clustering-based approach with

K-means algorithm when k=32 (Figure 3.5(b)) and the clustering-based approach with

heuristic-based algorithm (Figure 3.5(c)) for 1024 processes. It is obvious from the figures

that both algorithms in the clustering-based approach can reduce the number of traversals

considerably, effectively reducing the queue search time of the application. Comparing

Figure 3.5(b) with Figure 3.5(c), we can observe that the number of traversals in heuristic

algorithm is less than that of K-means algorithm.

We ran the same experiment for the LAMMPS application. Figure 3.6 show the average

number of traversals in default MVAPICH implementation and in our approaches for 240

processes. Note that LAMMPS generates longer queues with 240 processes than 1024

processes. Therefore, we show the results with 240 processes. Comparing Figure 3.6(a)

with Figure 3.6(b) and 3.6(c), it is obvious that the clustering-based approach (with both

K-means and heuristic algorithm) can reduce the number of traversals to less than 10 for

almost all peer processes. This reduction is more significant in heuristic algorithm.

We should note that in the FDS application, process 0 is the only process that has

a significant number of communications; the number of traversals in other processes is

negligible. Using a figure similar to Figures 3.5 and 3.6 to depict the number of traversals

in FDS would not provide much information since the number of traversals in all the rows

except the first row would be very small in both MVAPICH and clustering-based approach.

In other words, in both approaches we would have a figure which is almost yellow except in

the first row. Therefore, we do not show the message queue traversals for FDS. Rather, we

will show the performance gain of the FDS application by presenting its queue search time

3.4. PERFORMANCE RESULTS AND ANALYSIS 40

P0

P1023

P
0

P
10

23

.

.

.

. . .

=0
1 5

>5

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(a) default MVAICH

P0

P1023

P
0

P
10

23

.

.

.

. . .

=0
1 5
>5

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(b) clustering-based (K-means with k = 32)

P0

P1023

P
0

P
10

23

.

.

.

. . .

=0
1 5
>5

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(c) clustering-based (heuristic algorithm)

Figure 3.5: Average number of traversals for AMG2006 in different approaches on Cluster
A with 1k processes

3.4. PERFORMANCE RESULTS AND ANALYSIS 41

P0

P239

P
0 P
23

9

.

.

.

. . .

<10
10 100
>100

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(a) default MVAICH

P0

P239

P
0 P
23

9

.

.

.

. . .

<10
10 100
>100

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(b) clustering-based (K-means with k = 32)

P0

P239

P
0 P
23

9

.

.

.

. . .

<10
10 100
>100

D
e

st
in

at
io

n
 p

ro
ce

ss
es

 Source processes

Average number
of traversals:

(c) clustering-based (heuristic algorithm)

Figure 3.6: Average number of traversals for LAMMPS in different approaches on Cluster
A with 240 processes

3.4. PERFORMANCE RESULTS AND ANALYSIS 42

0

0.5

1

1.5

2

2.5

3

3.5

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

PRQ search time speedup in AMG2006

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(a) PRQ

0

0.5

1

1.5

2

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

UMQ search time speedup in AMG2006

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(b) UMQ

Figure 3.7: Average PRQ and UMQ search time in the AMG2006 application on Cluster A

and application runtime in Section 3.4.3 and Section 3.4.4, respectively.

3.4.3 Queue Search Time

In this section, we compare the PRQ and UMQ search time in linked list data structure

used in MVAPICH with the clustering-based approach for AMG2006, LAMMPS and FDS

applications. Figure 3.7 through Figure 3.10 show the PRQ and UMQ search time speedup

over the linked list for these applications, respectively. We report the results for both

K-means and heuristic algorithms.

Figure 3.7 shows the PRQ and UMQ search time for AMG2006. One observation from

3.4. PERFORMANCE RESULTS AND ANALYSIS 43

this figure is that the improvement in PRQ search time is more significant compared to

UMQ. That is because of the long list traversal of PRQ compared to UMQ. The short

list traversal of UMQ in AMG2006 provides no room for performance improvement and

the speedup is around 1 in almost all cases. For PRQ, the heuristic algorithm provides a

better performance than the K-means algorithm. The reason for this is that in the heuristic

algorithm the processes are assigned to the clusters uniformly based on their communication

frequency, as discussed in Section 3.3.1. We should note that the average number of clusters

derived from the heuristic algorithm is 183 and 236 for 1024 and 2048 processes, respectively.

In regard to the K-means results, the average PRQ search time is decreased when the number

of clusters is increased from 2 to 16. However, increasing the number of clusters further

does not improve the PRQ search time significantly. In other words, the best performance

can be roughly achieved with 16 clusters/queues in the K-means algorithm.

Figure 3.8 shows the PRQ and UMQ search time improvement for the LAMMPS ap-

plication. As can be seen in this figure, the UMQ search time does not have performance

improvement with clustering-based design. This is because of the short list traversals of

UMQ in LAMMPS that does not compensate the overhead of retrieving the queue number

in clustering-based design. On the other hand, PRQ has longer list traversals so its queue

search time improvement is more significant with clustering-based design (up to 2.6x). Here,

the heuristic-based algorithm performs better than the K-means algorithm. The average

number of clusters generated in the heuristic algorithm is 81.

Figure 3.9 shows the PRQ and UMQ search time for FDS. In this application, the

majority of communications is done with process 0. Therefore, we show the PRQ and UMQ

search time for process 0. Clearly, the heuristic-based algorithm performs better than the

K-means algorithm (44x compared to 2x). We enlarge Figure 3.9 in Figure 3.10 to show

the results for different k values in the K-means algorithm. For this algorithm, the best

performance can be achieved when the number of queues is 8 or 16 for PRQ (the speedup is

around 2). For UMQ, the best performance is achieved with k=128 (the speedup is around

3.4. PERFORMANCE RESULTS AND ANALYSIS 44

0

0.5

1

1.5

2

2.5

3

240

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

PRQ search time speedup in LAMMPS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(a) PRQ

0

0.5

1

1.5

240

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

UMQ search time speedup in LAMMPS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(b) UMQ

Figure 3.8: Average PRQ and UMQ search time in the LAMMPS application on Cluster A

2). In the heuristic algorithm, the average number of clusters is 13 and 14 for 1024 and

2048 processes, respectively.

3.4.4 Application Runtime

In this section, we compare the performance of the AMG2006, LAMMPS and FDS appli-

cations in our approach against the linked list data structure in MVAPICH. The results in

Figure 3.11 is in concert with the results shown in Figures 3.7, 3.8 and 3.9. We can observe

that the improvements in queue search time directly translates to application performance.

Figure 3.11 also shows that the heuristic-based algorithm provides a better performance

compared to the K-means algorithm for FDS.

3.4. PERFORMANCE RESULTS AND ANALYSIS 45

0

10

20

30

40

50

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

PRQ search time speedup in FDS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(a) PRQ

0

2

4

6

8

10

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

UMQ search time speedup in FDS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(b) UMQ

Figure 3.9: PRQ and UMQ search time for process 0 in the FDS application with K-means
and heuristic algorithms on Cluster A

As can be seen in Figures 3.11(a) and 3.11(b), for AMG2006 and LAMMPS, the ap-

plication runtime does not have considerable performance improvement (around 1.2x in

AMG2006 and 1x in LAMMPS application). On the other hand, FDS performance is im-

proved by 2.4x. The reason for insignificant performance improvement in LAMMPS and

AMG2006 is the number of times the queues are searched in these applications. Table 3.2

shows the maximum number of times the UMQ and PRQ are searched in FDS, AMG2006

and LAMMPS applications, One can observe the sharp contrast between AMG2006 and

LAMMPS with the FDS application. Reducing the average queue search time in FDS con-

siderably impacts its execution time. However, the improvement is less in AMG2006 and

3.4. PERFORMANCE RESULTS AND ANALYSIS 46

0

0.5

1

1.5

2

2.5

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

PRQ search time speedup in FDS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128)

(a) PRQ

0

0.5

1

1.5

2

2.5

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

UMQ search time speedup in FDS

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128)

(b) UMQ

Figure 3.10: PRQ and UMQ search time for process 0 in the FDS application with K-means
algorithm on Cluster A

Table 3.2: Maximum number of (UMQ/PRQ) queue searches in the applications

Application Number of UMQ searches Number of PRQ searches
LAMMPS 46,673,352 103,613,128
AMG2006 99,929,566 136,665,483
FDS 6,825,587,162 9,706,370,678

LAMMPS, mainly due to much smaller number of queue searches.

3.4. PERFORMANCE RESULTS AND ANALYSIS 47

0

0.5

1

1.5

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

AMG2006 application runtime speedup

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(a) AMG2006 application

0

0.5

1

1.5

240

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

LAMMPS application runtime speedup

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(b) LAMMPS application

0

0.5

1

1.5

2

2.5

3

1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

FDS application runtime speedup

K-means (k=2) K-means (k=4) K-means (k=8) K-means (k=16)

K-means (k=32) K-means (k=64) K-means (k=128) Heuristic

(c) FDS application

Figure 3.11: Application runtime in AMG2006, LAMMPS and FDS applications on Cluster
A

3.5. SUMMARY 48

3.5 Summary

In this chapter, we propose a new message matching algorithm that profiles the message

queue behavior of applications to categorize the processes into some clusters. It will then

assign a dedicated message queue to each cluster. The advantage of this approach is that it

speeds up the search operation by using multiple queues. Moreover, unlike other algorithms

in this area, it considers the message queue behavior of the peer processes to speed up the

search operation. The evaluation results show that the proposed algorithm can reduce the

number of traversals significantly. It can also improve the queue search time and application

runtime by up to 44.2x and 2.4x, respectively. In Chapter 4, we will improve the proposed

design in this chapter by proposing an approach that dynamically captures the application

queue characteristics. Moreover, it will provide similar or better performance than the

proposed design in this chapter without its memory footprint.

49

Chapter 4

Partner/Non-partner Message Queue Data Structure

In Chapter 3, we introduced a new message queue data structure that clusters the processes

based on the number of queue elements they add to the queue, and allocates a dedicated

message queue to each cluster. The clustering-based message queue data structure shows

that clustering the processes based on the message queue behavior of the applications and

assigning a dedicated message queue to each cluster can improve the message matching

performance. However, there are two problems with this design. First, the clustering-based

approach maintains information about clusters for each peer process in an array which

results in large memory footprint at large scale. The second issue with the clustering-based

approach is that it is static, meaning that it requires the application to be executed once

to gather the profiling information before its actual run.

In this chapter, we propose a new MPI message queue design to deal with the is-

sues in clustering-based approach [52]. The new message matching mechanism is based on

partner/non-partner message queue traffic. It decreases the queue search time and at the

same time maintains a scalable memory consumption. To this end, we utilize information

about the dynamics of the message queue characteristics of the application and allocate

dedicated queues for messages coming from certain processes. Consequently, in our design

we build a collection of message queues that belong to two different classes: partners and

non-partners. While each partner queue is used only for messages from a certain partner,

4.1. MOTIVATION 50

the non-partner queue provides a shared container for messages from all non-partner pro-

cesses. This approach solves the memory scalability issue of the clustering-based approach

by maintaining the information of just partner processes in a hash table rather than saving

the information of all processes in an array.

The proposed design in this chapter is dynamic, meaning that it builds the queues grad-

ually based on the application runtime characteristics. Obviously, the Dynamic approach

is more practical for application users compared to the Static approach. However, we also

present a static version of our design to compare its performance against the Dynamic

approach.

The rest of the chapter is organized as follows. Section 4.1 discusses the motivation

behind this work. Section 4.2 describes the Static and Dynamic approaches in the proposed

message queue design. Section 4.3 presents the runtime and memory complexities of our

design and compares them with the linked list and Open MPI data structures, respectively.

The experimental results are presented in Section 4.4. Section 4.5 presents the related work

and distinguishes our work from them. Finally, we conclude the chapter in Section 4.6.

4.1 Motivation

Section 2.2.5 discussed the message queue data structures used in current MPI implemen-

tations such as linked list data structure in MPICH and MVAPICH and array-based data

structure in OpenMPI. A linear linked list search is acceptable for applications that do not

generate long queues. However, for applications with long list traversals, a single linked

list imposes a significant overhead due to its computational complexity [24]. Thus, it is

important to have a message queue design that is fast in terms of traversing/matching and

also scalable in terms of memory consumption.

The array-based data structure in Open MPI highly improves the performance. How-

ever, the problem is that it allocates one queue for each peer process. Such an allocation

4.1. MOTIVATION 51

scheme may not incur high memory overheads at small scales. However, the once-for-all al-

location scheme causes linear degradation of memory consumption at large scale. Moreover,

allocating arrays equal to the size of the communicators will waste high amounts of memory

at large scales as many elements of the array might not be even used at all. The reason

is that most well-crafted MPI applications avoid the fully connected communication pat-

tern in which all processes communicate with all the other processes. Consider AMG2006

and LAMMPS application as an example. Figure 4.1 shows the total number of elements

sent to the queues from different processes in AMG2006 and LAMMPS. In the figure, each

row shows the queue profiling information for one process. Each column corresponds to a

key value that represents a process with a specific rank and context-id derived from Eq.

4.1. In this equation, P is the number of processes and Mapped_context_id is an integer

value derived from mapping the context-id to a small integer range between 0 and the total

number of communicators minus one.

Key = Rank + (P ×Mapped_Context_id) (4.1)

In Figure 4.1, we only show the queue profiling information for a fraction of the keys. The

black and gray data points represent high communicating processes, whereas the white data

points show low communicating processes. It can be seen that many processes send a few or

no messages to the queue of the other processes. This shows the inefficiency of the Open MPI

data structure in terms of allocating unnecessary memory for such processes, which becomes

a huge issue at scale. This observation, along with the unscalable performance of the linked

list, motivates us to design message matching mechanisms that are scalable in terms of

both speed of operation and memory consumption by allocating dedicated message queues

only to processes who have large number of messages in the queues. Our proposed message

queue designs in this chapter outperform the linked list data structure in queue search

time by speeding up the search operation and reducing the number of queue traversals. In

4.1. MOTIVATION 52

Process 0

Process 1023

K
ey

 0

K
ey

 1
0

23

Number of Queue

Elements (QE)

QE >100

10 QE 100

QE <10

(a) AMG2006

Process 0

Process 239

K
ey

 9
5

0

K
ey

 1
6

80

Number of Queue

Elements (QE)

QE >50

0 QE 50

QE =0

(b) LAMMPS

Figure 4.1: Number of elements sent to UMQ/PRQ from different processes in the
AMG2006 and LAMMPS applications on Cluster A

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 53

addition, unlike the approach used in Open MPI, our queue designs avoid wasting memory

by considering the communication pattern and queue behavior of the applications.

4.2 The Proposed Partner/Non-partner Message Queue Design

The core idea of our proposed design is to allocate a dedicated queue for each process that

sends/posts a large-enough number of messages/receives to the UMQ/PRQ. We refer to such

processes/queues as partner processes/queues. We design the partner/non-partner message

queue data structure using two different approaches: a Static approach and a Dynamic

approach. The Dynamic approach is certainly more promising and relevant in practice.

However, the Static approach is practical in cases where an application is expected to be

run many times and each run is considerably affected by message queue traversal overheads.

4.2.1 Metrics for Selecting Partner Processes

For extracting the partner processes, we first count the number of elements each process

sends to the queue. Then, we use this information to calculate an edge point. The edge point

is a threshold parameter for selecting the partner processes. Any process whose number of

elements in the queue is more than the edge point is chosen as the partner. Three different

metrics, average, median, and upper fence outliers, are used to determine the edge point.

The advantage of the average metric in selecting the partners is that it considers every value

in the data. Moreover, its calculation is less intensive compared to the median and upper

fence outliers metrics, since it does not require sorting the elements. However, the problem

with the average metric is that it is sensitive to the extreme values. On the other hand,

median is more robust to the extreme values, and is a better indicator of the dataset.

Eq. 4.2 shows the upper fence formulation, where Q3 and Q1 are the upper and lower

quartiles, respectively, and α is a constant coefficient. Using the upper fence outliers as

the edge point, only the processes who have considerably larger number of elements in the

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 54

queue are chosen as the partners. This would potentially result in extracting fewer partner

processes compared to the average and median metrics, leading to fewer partner queues and

hence improved memory consumption at the expense of less performance improvement.

Upper_Fence = Q3 − α× (Q3 −Q1) (4.2)

4.2.2 The Static Approach

Figure 4.2 illustrates the Static partner/non-partner message queue design. In this ap-

proach, the application is profiled once to gather the total number of QEs each process

sends to the UMQ/PRQ during the entire application runtime. This information is used

to identify the partner processes based on one of the metrics discussed in Section 4.2.1.

Information about the partner processes is then saved in a hash table to be used in the

future runs, where a dedicated message queue is allocated for each partner process. In ad-

dition, a single non-partner queue is allocated for the QEs from all non-partner processes.

A hash table is used for its O(1) search complexity and less memory overhead over other

data structures, as discussed in Section 4.3.2.

Algorithm 4.1 shows the steps involved in extracting the partner processes in the profiling

stage. The metrics discussed in Section 4.2.1 are used to determine the edge point for select-

ing the partners (Line 1). Any process whose number of elements in the queue is greater than

the edge point is considered as a partner and its corresponding < hash_key, hash_value >

pair is added to the hash table (Lines 3 to 10). Eq. 4.1 is used to generate the hash

keys; this ensures that the hash key is unique for all the ranks in different communicators.

As most applications usually use a small number of communicators, the time for mapping

context-id to small integers is negligible.

The hash value is a unique integer for each process, between 0 and np − 1, where np is

the number of partners for each process. Each hash value indicates one partner queue. We

also count the number of selected partners for each process in Line 8.

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 55

Extract partners based on queue

profiling information and save

them in a hash table

First Run

Give the hash

table as the

input of the

second run

QEn-1 n
u

ll

QE0 QE1

QEi-1

null

QE0

QEj-1

null

QE0

QEe-1 n
u

ll

QE0

Second Run

P
ar

tn
er

Q
u
eu

e
 Q

0

P
ar

tn
er

Q
u

eu
e
 Q

1
-1

Non-Partner

Queue

Figure 4.2: Static partner/non-partner message queue design

We should note that any hash function could be used in Algorithm 4.1. However,

considering that in the Static approach the partners are selected once in the profiling stage

and that they do not change during the future runs of the application, there will be no

insertion/deletion to/from the hash table. Therefore, we use a perfect hash function [2]

to eliminate hash collisions. For the sake of completeness, we present the implementation

of the perfect hash function below. The interested reader is referred to [2] for a detailed

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 56

Algorithm 4.1: Partner extraction in partner/non-partner message queue de-
sign

Input : Total number of elements sent to UMQ/PRQ from each process
Num-of-QE0...P, Number of processes P

Output: A hash table containing all partner processes HT , The number of partners
for process p np

1 E = average/median/upper fence outlier of Num-of-QE0...P;
2 np = 0;
3 for i ∈ 1...P do
4 if Num-of-QEi > E then
5 Generate hash_key for process i;
6 Determine hash_value(s);
7 Insert < hash_key, hash_value(s) > to the hash table;
8 np++;
9 end

10 end

description of the perfect hash function. Assuming that the keys are saved in array S, the

algorithm to generate perfect hash function is as follows:

1. Find the parameter m such that (m×m) ≥ max(S). Each key is to be mapped into

a matrix of size m×m.

2. Place each key k in the matrix at location (x, y), where x = k ÷m, y = k mod m.

3. Slide each row of the matrix to the right a number of times so that no column has

more than one entry.

4. Collapse the matrix down into a linear array.

5. The hash function uses m and the displacements from steps 3 to locate k.

When the application runs a second time, the output of the profiling stage (the hash table

and the number of partners for each process np) is used to improve the search operation.

For that, np partner queues and one non-partner queue are created at initialization for each

process. Algorithm 4.2 shows the message matching mechanism in the Static approach that

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 57

is used in the second run. To search for an element in the queue, we first use Eq. 4.1

to generate the search key based on the rank and context-id of the corresponding element

(Line 1). Then, the search key is given as the input of the hash function to derive the hash

table index (Line 2). If the hash key corresponding to the derived hash table index was

equal to the search key, it means that the corresponding process is a partner and hence,

we should search the corresponding (dedicated) partner queue specified by the hash value.

Otherwise, we should search for the desired element in the non-partner queue (Lines 4 to

8).

Algorithm 4.2: The searching mechanism in the Static approach (Second run)
Input : The hash table HT, The partner and non-partner queues, The searching

element (Context-id, rank, tag)
1 Generate the search_key from rank and context_id;
2 hash_table_index = hash_function(search_key);
3 < hash_key, hash_value > ⇐ HTHash_table_index;
4 if hash_key == search_key then
5 Search the partner queue specified by hash_value;
6 else
7 Search the non-partner queue;
8 end

4.2.3 The Dynamic Approach

Unlike the Static approach, the Dynamic approach identifies the partner processes dynam-

ically at runtime, without a need to a profiling stage. As soon as the size of the queue

reaches a specific threshold, t, we identify the partner processes at that level, and allocate a

dedicated message queue to each of them. From this point on, the incoming QEs from the

partner processes are added to their own dedicated queues, whereas the messages from all

the other processes (non-partners) are added to a single, shared non-partner queue. This

procedure is repeated in a multi-level fashion during the application execution time. The

motivation behind this approach is to capture the dynamics of the applications at runtime

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 58

and allocate the partner queues based on the discovery of the new partners in each phase

of the application.

As shown in Figure 4.3, the Dynamic approach consists of multiple levels. Each level

includes a number of partner queues as well as a single non-partner queue. If the length

of the non-partner queue reaches the threshold, t, some new partners are identified and

the non-partner queue itself is divided into a number of new partner queues and a new

non-partner queue.

When searching the queues for non-partner processes, the initial (non-partner) queue

at the Base Level is searched first. Then, all the non-partner queues from Level 0 to Level

L− 1 are searched in sequence. The green arrows in Figure 4.3 show the order in which a

queue element from a non-partner process is searched. The order in which the queues are

searched for partner processes depends on its level of partnership (i.e., the level in which

a process becomes a partner1). For example, if a process becomes a partner at Level 0,

then the initial queue and its dedicated queue are searched, in that order. However, if the

process becomes a partner at Level 1, it might still have some elements in the non-partner

queue at Level 0. Therefore, the order in which the queues are searched for this partner

process will be: 1) the initial queue, 2) the non-partner queue at Level 0, and 3) its own

dedicated queue (red arrows in Figure 4.3).

Similar to the Static approach, we use a hash table to store the partner processes, and

to distinguish them from the non-partner processes at search time. To search the partner

queues, the hash table should also contain the queue number and the level of partnership

for the corresponding partner process. The hash key is derived from Eq. 4.1 and is unique

for each partner process. Each key has two hash values. The first value shows the queue

number of the corresponding partner process, whereas the second hash value shows the

level of partnership for that process. Any hash function can be used for this purpose.

However, we do not use the perfect hash function that was used in the Static approach,
1From this point on, we refer to level of partnership for process p as level-of-partnershipP

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 59

10/11 4/11

QEt-1 n
u
ll

QE0

queue length= threshold

Non-Partner

Queue 0

P
ar

tn
er

 Q
u
eu

e
Q

0

P
ar

tn
er

 Q
u
eu

e
Q

1
-1

Level 0

Level 1

Base LevelQE1

QEi-1

null

QE0

QEj-1

null

QE0

QEt-1 n
u

ll

QE0 QE1

queue length= threshold

QEk-1

null

QE0

QEl-1

null

QE0

P
ar

tn
er

 Q
u
eu

e
Q

1

P
ar

tn
er

 Q
u
eu

e
Q

2
-1 Non-Partner

Queue 1
QEt-1 n

u
ll

QE0 QE1

queue length= threshold

QEu-1

null

QE0

QEv-1

null

QE0

P
ar

tn
er

 Q
u
eu

e
Q

L
-1

P
ar

tn
er

 Q
u
eu

e
Q

L
-1

Non-Partner

Queue L-1
QEe-1 n

u
ll

QE0

Level L-1

Traverse path for a

non-partner process

Traverse path for a

partner process

Figure 4.3: Dynamic partner/non-partner message queue design

as it is designed to search a Static list with no insertions or deletions. The Dynamic

approach though requires some new partners to be inserted into the hash table at each

level. Therefore, we use a round-robin hash table for our purpose. To maintain memory

scalability in the Dynamic approach, an important advantage of our design is that we bound

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 60

the size of the hash table to a sublinear order of the total number of processes. So, new

partners are extracted only if the bound on hash table size is not violated. We restrict the

total number of partner processes to c
√
N , where N denotes the number of processes and

c is an environment variable. The hash table, thus, has
√
N number of entries, where each

entry can have c elements, each for a partner process.

Algorithm 4.3 shows the message matching design in the Dynamic approach for the

UMQ. The same scheme is used when searching the PRQ. When searching the UMQ, the

initial queue is searched first in Line 1. If the element is found, we are done with the search.

Otherwise, we check the level number. If the level number is less than zero, it means that

there are no more queues to search and thus, the element is added to the initial PRQ (Line

37). If the level number is more than 0, it means that there exist some partner and non-

partner queues, so the search is continued. In order to determine the queues that should

be searched at this point, we should find out whether the searching element belongs to a

partner process or not. To do so, we simply generate the search key corresponding to the

searching element using Eq. 4.1 (Line 6). Then, we look into the hash table for the search

key (Lines 7 to 9). The same procedure used in the Static approach is used here to determine

if the search key exists in the hash table. If the search key was in the hash table, it means

that the searching element belongs to a partner process (for example, process p). Therefore,

all of the non-partner queues from Level 0 to the level-of-partnershipp are searched first,

followed by the partner queue dedicated to process p (Lines 10 to 15). Otherwise, the

process is not a partner, so all the non-partner queues from Level 0 to L− 1 are searched,

respectively (Line 23 to 25). If the element is not found in any of these queues, it is added

to the partner queue pqp (if it is a partner), or to the non-partner queue npqL-1 (if it is a

non-partner process) as shown in Lines 19 and 29, respectively. Each time an element is

added to the non-partner queue L− 1, its queue length is compared to the threshold value,

t. If the queue length is greater than the threshold, some new partners are then identified.

We use the same procedure presented in Algorithm 4.1 for selecting the partners (Line 31).

4.2. THE PROPOSED PARTNER/NON-PARTNER MESSAGE QUEUE
DESIGN 61

Algorithm 4.3: Message matching design in the Dynamic approach (Search
UMQ if not found add a new QE to PRQ)

Input : The hash table HT, Number of levels L, The partner queues (pqQ0 ...pqQL-1) and
non-partner queues (npq0...npqL-1), The searching element (Context-id, rank, tag),
The UMQ length QL, the threshold T

Output: The element found or added to the queue QE
1 Search the initial queue;
2 if element found then
3 Return QE;
4 else
5 if L ≥ 0 then
6 Generate the search_key from rank and context_id;
7 hash_table_index = hash_function(search_key);
8 < hash_key, hash_value1, hash_value2 > ⇐ HTHash_table_index;
9 if hash_key == search_key then

10 pqP = hash_value1;
11 level-of-partnershipP = hash_value2;
12 for i ∈ 0...level_of_partnershipP do
13 Search the non-partner queue i;
14 end
15 Search the partner queue pqP;
16 if element found then
17 Return QE;
18 else
19 Generate QE and add it to partner queue pqP;
20 Return QE;
21 end
22 else
23 for i ∈ 0...L− 1 do
24 Search the non partner queue i;
25 end
26 if Element found then
27 Return QE;
28 else
29 Generate QE and add it to npqL-1;
30 if QL > T then
31 Select new partners and add them to the hash table using Algorithm 4.1;
32 end
33 Return QE;
34 end
35 end
36 else
37 Generate QE and add it to initial PRQ;
38 if QL > T then
39 Select partners and add them to the hash table using Algorithm 4.1;
40 end
41 Return QE;
42 end
43 end

4.3. COMPLEXITY ANALYSIS 62

The procedure of identifying the new partners is continued until we are limited by the size

of the hash table.

It should be mentioned that there is a small, fixed cost associated with searching the hash

table in the proposed partner/non-partner message matching architecture. To compensate

for this cost, the queue length threshold parameter, t, should be selected wisely so as to

improve the performance for long list traversals while delivering the same performance as

the linked list data structure for short list queues. In the experimental results, we show

the impact of different queue length thresholds. Note that we use the same mechanism

discussed in Chapter 3 to support the wildcard communications.

4.3 Complexity Analysis

In this section, we present the time and memory complexities of the proposed partner/non-

partner message queue and compare them against the linked list approach used in MVA-

PICH and the array-based approach used in Open MPI.

4.3.1 Runtime Complexity

Message matching consists of three main operations: insertion, deletion and search. In-

sertion has an O(1) complexity in all the three designs (linked list, Open MPI queue data

structure and the proposed partner/non-partner design). For the linked list, this is achieved

by storing the tail of the linked list and inserting the elements at the end of the list. The

same is true for insertion into a specific linked list in the array-based and partner/non-

partner designs. Finding the target linked list in these designs though involves certain

computations, but such computations are actually incurred in a search operation that pre-

cedes each insertion. More specifically, insertion into the UMQ precedes by a search in the

PRQ, and vice versa. The deletion operation will also have an O(1) complexity in all the

three designs since it always happens after the search operation at the position where a

4.3. COMPLEXITY ANALYSIS 63

Table 4.1: List of parameters and their definitions

q total number of elements in the queue
qk number of queue elements with context-id k
qkr number of queue elements with context-id k and rank r
K number of active context-ids at a given process
rk number of ranks in context-id k
L total number of levels
nlkr number of non-partner queue elements with context-id k and rank r at level l
plkr number of partner queue elements with context-id k and rank r at level l
lkr level at which the process with rank r in context-id k becomes a partner
ak the number of any_source queue items associated with the communicator k
R maximum size of the communicators
N total number of processes
P total number of partner processes

queue item is found.

Linked List Message Queue

In order to discuss the search complexity, we will use the parameters defined in Table 4.1.

As discussed in Section 2.2.5, the search complexity for the linked list data structure can

be given by Eq. 4.3 as we need to search through all the elements in the queue.

O (q) (4.3)

In order to compare the search complexity of the linked list data structure with Open

MPI and the proposed partner/non-partner message queue design, we will present the search

complexity based on the number of elements from each rank and context-id. Eq. 4.4 shows

that the total number of elements in the queue is the sum of the number of elements from

all context-ids.

q =

K−1∑
k=0

qk (4.4)

The number of elements in the queue from context-id k can be derived from Eq. 4.5.

4.3. COMPLEXITY ANALYSIS 64

This equation shows that the number of elements in the queue with context-id k is the sum

of the number of elements from all its ranks.

qk =

rk−1∑
r=0

qkr (4.5)

By substituting Eq. 4.5 into Eq. 4.4, we have:

q =

K−1∑
k=0

rk−1∑
r=0

qkr (4.6)

By substituting Eq. 4.6 into Eq. 4.3, the search complexity based on the number of

elements from each rank and context-id will be:

O

(
K−1∑
k=0

rk−1∑
r=0

qkr

)
(4.7)

In the case of MPI_ANY_SOURCE wildcard communication, such elements in the

queue should be traversed as well. Therefore, the time complexity is given by Eq. 4.8.

O

(
K−1∑
k=0

rk−1∑
r=0

(qkr + ak)

)
(4.8)

Open MPI Message Queue

In the array-based design, we first search the linked list of context-ids in O(K), then use the

array to access the dedicated linked list for rank r in O(1) and scan through it in O(qkr).

Thus, its total search complexity is O(K + qkr). For long message queues, the number of

context-ids is negligible compared to the total number of queue elements and the search

complexity can be given by Eq. 4.9.

O(qkr) (4.9)

In the presence of MPI_ANY_SOURCE wildcard communication, the posted receive

4.3. COMPLEXITY ANALYSIS 65

queue keeps such messages in a separate linked list queue, PRQ_ANY queue, as their rank

field cannot be used as an array index. Therefore, we need to traverse the PRQ_ANY

queue for any incoming messages on top of the linked list associated with the rank from the

message envelope. The PRQ traversal complexity in the presence of MPI_ANY_SOURCE

is therefore given by Eq. 4.10.

O (qkr + ak) (4.10)

When an MPI_ANY_SOURCE receive call is posted, all the UMQ elements associated

with all the ranks must be searched. The UMQ traversal complexity in the presence of

MPI_ANY_SOURCE is given by Eq. 4.11.

O

(
rk−1∑
r=0

qkr

)
(4.11)

Partner/Non-partner Message Queue

In the proposed partner/non-partner design, the search operation starts with generating a

hash key for the target element based on its corresponding context-id and rank. To this end,

we first map the context-id to an integer value between 0 and the number of communicators.

Then, the perfect hash function in the Static approach or the round-robin hash function in

the Dynamic approach is used to generate the hash key. The context-id map takes O(K)

in our current design as we need to traverse an array of size K. Using the hash key, we

query the hash table in O(1) to find out whether the target element belongs to a partner

process or not. If the source process is a non-partner process, we will scan each non-partner

queue in increasing order of their level number O
(
K +

L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr

)
. However, if it

is a partner, we first scan the non-partner queues at Levels 0 to lkr. After that, we jump to

the dedicated partner queue of r to proceed with search O
(
K + (

lkr∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr) + plkr

)
.

For long message queues, the number of communicators K is negligible compared to the

4.3. COMPLEXITY ANALYSIS 66

number of queue elements and the search complexity for non-partner and partner process

can be given by Eq. 4.12 and 4.13, respectively. We should note that these equations apply

to both the Static and Dynamic approaches. However, there is only one level in the Static

approach and hence, the summations corresponding to multiple levels in Eq. 4.12 and Eq.

4.13 will drop.

O

(
L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr

)
(4.12)

O

(
(

lkr∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr) + plkr

)
(4.13)

Note that the total number of elements q in the partner/non-partner message queue

design is the sum of the elements for all partner and non-partner processes. In other words:

q =

L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr +

L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

plkr (4.14)

This shows that the partner/non-partner message queue design can reduce the number

of traversals from O (q) in the linked list data structure (Eq. 4.3) to Eq. 4.12 and Eq. 4.13

for non-partner and partner processes, respectively.

In the presence of MPI_ANY_SOURCE wildcard communication, the posted receive

queue, PRQ_ANY, dedicated to such messages should be searched as well. Therefore,

the PRQ traversal complexity for a non-partner and partner process in the presence of

MPI_ANY_SOURCE is given by Eq. 4.15 and Eq. 4.16, respectively.

O

(
l=L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr +

K−1∑
k=0

ak

)
(4.15)

O

(
(

lkr∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr) + plkr +
K−1∑
k=0

ak

)
(4.16)

When an MPI_ANY_SOURCE receive call is posted, all the UMQ elements associated

with all the ranks must be searched. The UMQ traversal complexity in the presence of

4.3. COMPLEXITY ANALYSIS 67

MPI_ANY_SOURCE is given by Eq. 4.17.

O

(
L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

nlkr +

L−1∑
l=0

K−1∑
k=0

rk−1∑
r=0

plkr

)
(4.17)

4.3.2 Memory Overhead Complexity

The total amount of memory required for each message queue data structure consists of two

parts: the memory required to store the message queue elements, and the additional memory

required to maintain the data structure, which we refer to it as the memory overhead of the

data structure. The required memory for message queue elements is the same for all three

designs (linked list, Open MPI queue data structure, and the proposed partner/non-partner

design). Therefore, in this section, we just discuss the memory overhead complexity of the

three designs.

Linked List Message Queue

The linked list message queue design in MVAPICH does not impose any memory overhead

as it only stores message queue elements in a linked list. Therefore, the memory overhead

complexity can be given by Eq. 4.18.

O (1) (4.18)

Open MPI Message Queue

In the Open MPI queue design, the memory overhead consists of two parts: (1) the linked

list of communicators/context-ids, and (2), one array of size R per communicator. Thus,

its memory complexity is given by Eq. 4.19.

O (K ×R) (4.19)

4.3. COMPLEXITY ANALYSIS 68

Note that in case of an application having only a single communicator (MPI_COMM

_WORLD) K = 1, and the total number of processes N is equal to number of ranks R

in MPI_COMM_WORLD. In this case, the memory overhead complexity of Open MPI

queue design is minimized and Eq. 4.19 is equal to O(N).

Partner/Non-partner Message Queue

The partner/non-partner design imposes some memory overhead to store the information

about the partner processes in a hash table. The number of entries in the hash table

is proportional to the number of extracted partners. Therefore, the memory complexity

overhead of the partner/non-partner design will be O(P). Thus, our approach does not

have the fixed and unscalable memory overhead of Open MPI queue data structure.

The number of partner processes depends on the application characteristics. In the worst

case, all the processes will become a partner which results in the same memory consumption

as the Open MPI queue design. However, we bound the number of partners (hash table

entries) in the partner/non-partner design so as to guarantee a better memory scalability

than the Open MPI queue design.

For choosing the cap for the number of queues, we considered the memory consumption

in linked list and Open MPI queue data structure. As discussed in Section 4.3.2, the inked

list data structure has scalable memory consumption and its memory overhead is O(1).

However, it is not scalable in terms of speed of operation. On the other hand, Open MPI

queue data structure is faster than linked list but its memory overhead is at least O(N),

as discussed in this section. In partner/non-partner message queue design, we take an

in-between approach and bound the number of queues for partner processes to c ×
√
N ,

where c denotes a constant factor used to evaluate the impact of increasing the memory cap

on message matching performance. This will result in a memory complexity overhead of

O(c×
√
N). Considering c as a constant parameter, the memory overhead complexity can

be given by Eq. 4.20 for our partner/non-partner design. Bounding the number of partners

4.4. PERFORMANCE RESULTS AND ANALYSIS 69

will provide a trade-off between memory and performance. Extracting more partners will

benefit the execution time due to providing more dedicated queues. However, more partners

will consume more memory in the partners hash table.

O
(√

N
)

(4.20)

4.4 Performance Results and Analysis

We evaluate the efficiency of our proposed approach by comparing it against the linked list

data structure used in MVAPICH. The evaluation is done with three MPI applications:

AMG2006, version 1.0 [114], LAMMPS, version 14May16 [97] and FDS, version 6.1.2 [89].

The evaluation was conducted on Cluster A. The specification of these applications as well

as the cluster information are explained in Section 3.4.1.

4.4.1 Selecting the Partners

The first step towards the efficiency of the partner/non-partner message queue design is to

choose the partners efficiently. Choosing a low communicating process as partner would

result in allocating unnecessary queues which degrades the memory consumption. On the

other hand, if a high communicating process is not selected as partner, it would weaken the

efficiency of the partner/non-partner approach. In this section, we provide experimental

results to show that the partners are selected appropriately in our design.

Figure 4.4 shows the selected partners using the average metrics in AMG2006 and

LAMMPS applications, respectively. The processes are selected using the Dynamic ap-

proach with the queue length threshold equal to 100. The black data points are the pro-

cesses that are selected as partners while the white data points are non-partner processes.

Comparing Figure 4.1 with the partners selected in Figure 4.4, it is obvious that most of

the high communicating processes are correctly selected as partners. Note that we have

4.4. PERFORMANCE RESULTS AND ANALYSIS 70

observed almost the same results with other threshold values and metrics.

As discussed in Chapter 3, in the FDS application, process 0 is the only process that

has a significant number of communications. Therefore, we avoid presenting a figure similar

to Figure 4.4 for the FDS application as it would not convey much information due to

containing mostly white data points, except for the first row.

4.4.2 Queue Search Time

In this section, we compare the queue search time of the linked list data structure with the

partner/non-partner message queue design for the FDS, AMG2006 and LAMMPS appli-

cations. Figure 4.5 shows the PRQ and UMQ search time speedup over the linked list for

these applications when the average, median and outliers (with α = 0) metrics are used

for selecting the partners. The results for the Dynamic approach are shown with different

threshold values, t, from 25 to 1600.

The first observation from Figure 4.5 is that in almost all cases the Static approach

provides a better or similar performance compared to the Dynamic approach. This com-

plies with the general intuition that the Static approach should always provide a better

performance due to having a global view of application's message queue characteristics.

However, as shown in the figure, the Dynamic approach can lead to better results in some

cases due to a more aggressive partner extraction. This is because the Dynamic approach

decides about partner extraction with respect to (multiple) short-term queue status. On

the other hand, the Static approach considers the overall communication pattern based on

which fewer processes might appear to be partners in some cases. Another observation

is that all the studied metrics (average, median and outliers) could successfully select the

partners and none of them has a significant advantage over the others.

Figure 4.5(a) and Figure 4.5(b) show the average PRQ and UMQ search time over all

processes for AMG2006, respectively. Figure 4.5(a) shows that we can reach up to 2.32x

speedup in PRQ search time for AMG2006. However, as can be seen in Figure 4.5(b), the

4.4. PERFORMANCE RESULTS AND ANALYSIS 71

Process 0

Process 1023

K
e

y
0

K
e

y
1

0
23

Partners extracted

Partners

Non-partners

(a) AMG2006

Process 0

Process 239

K
e
y

 9
5
0

K
e
y

 1
6
8

0
Partners extracted

Partners

Non-partners

(b) LAMMPS

Figure 4.4: Selected partners using the average metric in AMG2006 and LAMMPS with
threshold = 100 in the Dynamic approach on Cluster A

4.4. PERFORMANCE RESULTS AND ANALYSIS 72

0

0.5

1

1.5

2

2.5

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are selected

PRQ Search Time in AMG2006 (1024 processes)

Average Median outlier (A=0)

(a) PRQ search time speedup in AMG2006

0

0.5

1

1.5

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Thresholds in which partners are extracted

UMQ Search Time in AMG2006 (1024 processes)

Average Median outlier (A=0)

(b) UMQ search time speedup in AMG2006

0

0.5

1

1.5

2

t=25 t=100 t=200 t=400 t=800 t=1600 t=static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

PRQ search time in LAMMPS (240 processes)

Average Median outlier (A=0)

(c) PRQ search time speedup in LAMMPS

0

0.5

1

1.5

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

UMQ search time in LAMMPS (240 processes)

Average Median outlier (A=0)

(d) UMQ search time speedup in LAMMPS

0

5

10

15

20

25

30

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extrected

PRQ Search Time for FDS Application (1024 processes)

Average Median outlier (A=0)

(e) PRQ search time speedup in FDS

0

5

10

15

20

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

UMQ search time for FDS application (1024 processes)

Average Median outlier (A=0)

(f) UMQ search time speedup in FDS

Figure 4.5: PRQ and UMQ search time speedup of partner/non-partner design over linked
list in AMG2006, LAMMPS and FDS applications on Cluster A

4.4. PERFORMANCE RESULTS AND ANALYSIS 73

UMQ speedup is not considerable, and with inappropriate t (t = 25) the speedup would

be even less than 1. The reason for this lies in the short list traversal of the UMQ for

many processes in AMG2006 which does not compensate for the overhead of the hash table

lookup time when t is small. On the other hand, if the queue length, t, is considered very

large, some processes do not build up such a lengthy queue, and so they would not extract

any partners which results in queue search time degradation. For example, as can be seen

in Figure 4.5(a) with t ≥ 400, none of the processes selects any partner and the speedup is

around 1. Figure 4.5(c) and 4.5(d) show almost the same results for LAMMPS. We should

reiterate that LAMMPS generates longer queues with 240 processes than 1024 processes.

Therefore, we show the results with 240 processes.

Figure 4.5(e) and Figure 4.5(f) show the average PRQ/UMQ search time for the FDS

application. In this application, the majority of communications is done with process 0.

Therefore, we show the PRQ and UMQ search time for process 0. It is evident that increas-

ing t from 25 to 100 would result in higher improvement in the PRQ/UMQ search time.

The reason is that larger t values would provide more profiling information for selecting the

partners. However, if t is too large (e.g., t = 1600), only a few partners are selected which

results in less performance improvement.

Figure 4.5 shows that t = 100 can provide reasonably good performance in almost all

cases. We might get a better performance with t > 100, but some applications do not

build up such a lengthy queue (Figure 4.5(c)). On the other hand, smaller t values might

induce overhead for short list traversals (Figure 4.5(d)). Therefore, the value of t should

simply represent the threshold at which a linked list traversal becomes too costly in terms of

message progression. This can be experimentally measured for each application on a given

target system.

4.4. PERFORMANCE RESULTS AND ANALYSIS 74

4.4.3 Application Execution Time

Figure 4.6 compares the FDS execution time using the partner/non-partner message queue

against the linked list for 1024 and 2048 processes and under different metrics and queue

length thresholds. As can be seen, the proposed design can improve the application runtime

by up to 2.4x for 1024 processes and 5x for 2048 processes.

Figure 4.6 shows the execution time speedup when the size of the hash table is un-

bounded, so-called the unbounded memory case. This way, the application can add as

many partners as it can find to the hash table. The problem with having too many part-

ners is that it increases the memory consumption. In worst case, the number of partners

for each process would be equal to the total number of processes in all communicators and

the memory consumption would converge to the Open MPI data structure.

In order to achieve a sublinear memory complexity as discussed in Section 4.2.3 and

Section 4.3.2, we restrict the number of elements in each entry of the hash table to c in the

Dynamic approach. We call this the bounded memory case. Figure 4.7 shows the results

for 1024 and 2048 processes, respectively. Because the different partner extraction metrics

provide almost the same performance improvement in Figure 4.5 and Figure 4.6, we only

show the results for the average metric in Figure 4.7. The results in this figure suggest that

the speedup increases with the increasing values for c, except with a much lesser extent for

the case of t equal to 1600. The reason is that as we use larger values for c, the size of the

hash table increases and that would allow having more partners/queues.

We do not present the runtime results for AMG2006 and LAMMPS because their queue

search time improvements do not translate to a significant improvement in their application

runtime. The reason behind this lies in the number of times the UMQ and PRQ are searched

in these applications. As discussed in Section 3.4.4, there is a sharp contrast between the

number of queue searches for AMG2006 and LAMMPS and that of FDS, which could

translate to application performance only for FDS.

4.4. PERFORMANCE RESULTS AND ANALYSIS 75

0

0.5

1

1.5

2

2.5

t=25 t=100 t=400 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

FDS execution time with unbounded memory (1024
processes)

Average Median outlier (A=0)

(a) 1024 processes

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

t=25 t=100 t=200 t=400 t=800 t=1600 static
approach

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

FDS execution time with unbounded memory (2048
processes)

Average Median outlier (A=0)

(b) 2048 processes

Figure 4.6: FDS application runtime speedup over linked list with unbounded memory on
Cluster A

0

0.5

1

1.5

2

2.5

3

t=25 t=100 t=200 t=400 t=800 t=1600Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

FDS execution time with limited memory (1024
processes)

c=4 c=8 c=16 c=32

(a) 1024 processes

0

1

2

3

4

5

t=25 t=100 t=200 t=400 t=800 t=1600Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Threshold in which partners are extracted

FDS execution time with limited memory (2048
processes)

c=4 c=8 c=16 c=32

(b) 2048 processes

Figure 4.7: FDS application runtime speedup over linked list with bounded memory and
using average as the partner extraction metric on Cluster A

4.4.4 Number of Levels and Partners

As mentioned earlier, the Dynamic approach finds the partner processes in multiple levels,

and that allows capturing the dynamics of the applications. Figure 4.8 presents the number

of levels in the FDS application with 1024 and 2048 processes. The results show that as

we decrease the queue length threshold, t, the queue length reaches the threshold more

frequently, and consequently the number of levels is increased. Another observation is that

reducing c fills out the hash table sooner which results in reducing the number of levels.

Figure 4.9 presents the total number of selected partners for all processes in the FDS

4.4. PERFORMANCE RESULTS AND ANALYSIS 76

0

5

10

15

20

25

30

35

40

45

t=25 t=100 t=200 t=400 t=800 t=1600

le
ve

ls

Threshold in which partners are extracted

Number of levels in FDS (1024 processes)

c=4 c=8 c=16 c=32

(a) 1024 processes

0

10

20

30

40

50

60

t=25 t=100 t=400 t=1600

le
ve

ls

Threshold in which partners are extracted

Number of levels in FDS (2048 processes)

c=4 c=8 c=16 c=32

(b) 2048 processes

Figure 4.8: Number of levels in FDS application on Cluster A

0

200

400

600

800

1000

1200

1400

1600

1024 2048

N
u

m
b

er
 o

f
ex

tr
ac

te
d

 p
ar

tn
er

s

Number of processes

Number of extracted partners in FDS
c=2 c=8 c=16 c=32

Figure 4.9: Number of extracted partners in FDS application for different number of pro-
cesses and t = 100 on Cluster A

application for 1024 and 2048 processes when t = 100. The number of partners depends on

the size of the hash table and the parameter c. As long as the hash table is not full, the

partners are extracted independent of the threshold, t. We have observed similar results

with other t values.

4.4.5 Overhead of Extracting Partners

The partner/non-partner message queue imposes some overhead when partners are ex-

tracted. In the Static approach, the partners are selected in the profiling stage, so there is

4.5. RELATED WORK 77

0

0.002

0.004

0.006

0.008

0.01

t=25 t=100 t=200 t=400 t=800 t=1600

O
ve

rh
ea

d
/s

ea
rc

h
 t

im
e

ra
ti

o

Threshold in which partners are extracted

Overhead/search time ratio in AMG2006
(1024 processes)

Average Median outlier (A=0)

(a) AMG2006

0

0.0005

0.001

0.0015

0.002

t=25 t=100 t=200 t=400 t=800 t=1600O
ve

rh
ea

d
/s

ea
rc

h
 t

im
e

ra
ti

o

Threshold in which partners are extracted

Overhead/search time ratio in LAMMPS
(240 processes)

Average Median outlier (A=0)

(b) LAMMPS

Figure 4.10: Partner extraction overhead/search time ratio on Cluster A

no overhead in the future runs. However, in the Dynamic approach, partners are selected

during the application runtime, and therefore the overhead should be quantified. Figure

4.10 shows the ratio of the average overhead for partner extraction over the average queue

search time across all processes in AMG2006 and LAMMPS. It is clear that the overhead

of extracting partners is negligible compared to the queue search time. For t ≥ 400, the

overhead is close to 0.

We should note that there is also some overhead involved in searching the hash table

in our design. However, as searching the hash table is a part of searching the queue, the

overhead is already included in the queue search results shown in Section 4.4.2.

4.5 Related Work

In Section 3.1, we discussed various research studies on message queue operations in MPI.

In this section, we evaluate some of the state-of-the-art message queue mechanisms with

more details. This way we can highlight the benefits of the partner/non-partner message

queue data structure over them.

Recently, there have been various works on improving message queue operations in MPI

[116, 46, 27, 71]. Most of these approaches try to improve the queue search time by reducing

4.5. RELATED WORK 78

the number of queue traversals. The problem with 4-dimensional data structure [116] is

that it has a small fixed overhead for searching any queue item. If the queue length is

large enough this overhead is negligible. However, in the case of short list traversals this

data structure performs worse than the linked list data structure. In order to mitigate

this problem, the authors used the communicator size as a metric to decide whether to use

the 4-dimensional data structure. However, the communicator size is not always a good

indicator of the average search length. For example, even with a communicator size of two,

the two processes can have a lot of communications with each other which results in long

list traversals.

In regard to bin-based approach [46], one of the issues is that it imposes some overhead

for searching short queues. Another main problem is that we do not know how many bins

should be used for a given application in order to have a good distribution of messages

across all bins. Increasing the number of bins accelerates the search operation for long

list traversals while it keeps the search time of short lists unchanged. Another impact of

increasing the number of bins is that it increments the memory consumption. The optimal

number of bins is totally application dependent and might be different for each process

within an application. Our work differs from this work in that it avoids the unnecessary

memory overhead by determining the suitable number of queues for each process based on

application runtime communication pattern in the message queues. Moreover, our approach

avoids sharing the bins between the processes who have high frequency of communication,

and instead allocates a dedicated bin to each of such processes.

The authors in [27] try to address the overhead issue for short list traversals in the bin-

based approach by proposing a message matching design that dynamically switches to one

of the existing designs: a linked list, a bin-based design [46] and a rank-based design. This

work performs better than the linked list data structure for long list traversals, and better

than the bin-based/rank-based design for short list traversals. However, it suffers from the

issues associated with these data structures. For example, it does not find the number of

4.6. SUMMARY 79

bins/queues for a given application adaptively and dynamically. Switching to the rank-based

design requires a user-configurable parameter, and also allocating a dedicated queue for each

source process, resulting in low memory scalability. The proposed partner/non-partner

message queue design differs from [27] in that it profiles the message queue communication

traffic between each communicating peers and allocates a dedicated message queue only to

the processes with high frequency of communication. Moreover, our approach determines

the appropriate number of queues dynamically during the application runtime and avoids

sharing the queues between high communicating processes.

4.6 Summary

Many parallel applications expose a sparse communication pattern in which each process

has more communications with a certain group of other processes. We take advantage of this

feature to propose a new message matching design that adapts based on the communication

traffic of the applications. To do so, we measure the frequency of the messages sent from

different processes to the queues and use this information to select a list of partners for

each process. Then, we allocate a dedicate message queue for the partner processes. Other

processes share a single non-partner queue.

We design the work using a Static and a Dynamic approach. The Static approach

works based on the information from a profiling stage while the Dynamic approach uses the

runtime information. We show that the Dynamic approach can be as efficient as the Static

approach in terms of execution time. Our proposed approach can successfully decrease the

queue search time for long list traversals while maintaining the performance for short list

traversals. Moreover, it provides better scalability in terms of memory consumption. The

evaluation results show that the queue search time and application runtime are improved by

up to 28x and 5x for applications with extreme message matching requirements, respectively.

So far, we have proposed message matching mechanism that adapts based on application

4.6. SUMMARY 80

characteristics. In Chapter 5, we will improve the message matching performance further

by considering the type of communication (e.g. collective and point-to-point) in our design.

81

Chapter 5

A Unified, Dedicated Message Matching Engine for MPI

Communications

In Chapter 3 and 4, we propose message matching mechanisms that consider the application

behavior to improve the performance of message queue operations. In this chapter, we look

at the message matching misery from a different perspective and we propose a new queue

data structure that considers the type of communication to further improve the performance.

As discussed in Section 2, there are different types of communication supported in MPI

implementations such as point-to-point and collective communications. In point-to-point

operations and also collective operations that run on top of point-to-point communications,

the messages must be matched between the sender and receiver. In previous chapters, we

discussed that modern MPI implementations, such as MPICH, MVAPICH and Open MPI

separate traffic at coarse granularity, either not at all, on a per MPI communicator level

or by communicator and source rank. These solutions can be improved by intelligently

separating traffic into logical fine-grained message streams dynamically during program

execution. More specifically, message queue search time can be improved by distinguishing

messages coming from point-to-point and collective communications and adapting message

queue design accordingly. Collective operations are implemented using different algorithms.

Each of these algorithms can have specific impact on the message queues. We take advantage

of this feature to propose a new message matching mechanism that considers the type of

5.1. MOTIVATION AND RELATED WORK 82

communication to enhance the message matching performance [50, 49]. In this chapter, we

make the following contributions to improve the message matching performance:

• We propose a novel communication optimization that accelerates MPI traffic by dy-

namically profiling the impact of different types of communications on message match-

ing performance and using this information to allocate dedicated message matching

resources to collective and point-to-point communications. We use the partner/non-

partner message queue design [52] (proposed in Chapter 4) for point-to-point com-

munications alongside a proposed collective engine in a unified manner to enhance

both collective and point-to-point message matching performance. Our approach de-

termines the number of dedicated queues dynamically during the application runtime.

• We conduct several experiments to evaluate the impact of the proposed approaches

on the performance gain of the collective and point-to-point elements from different

perspectives. We show the impact of the unified collective and point-to-point message

matching design on queue search time. Moreover, we evaluate the impact of collective

message matching optimization on both collective and point-to-point elements. We

demonstrate that our unified approach accelerates the collective and point-to-point

queue search time by up to 80x and 71x, respectively, and that it achieves a 5.5x

runtime speedup for a full application over MVAPICH.

The rest of this chapter is organized as follows. Section 5.1 discusses the motivation

behind this research and distinguishes this work from the other works in literature. Sec-

tion 5.2 explains the proposed message matching approach. The experimental results are

presented in Section 5.3. Finally, Section 5.4 concludes the chapter.

5.1 Motivation and Related Work

Improving the message matching performance for collective communication operations is

only useful if they have considerable contribution in posting elements to the message queues.

5.1. MOTIVATION AND RELATED WORK 83

In order to understand if improving message matching performance for collective communi-

cations is useful, we profile several applications to understand their matching characteristics.

In this experiment, we count the number of elements that enter the queues from point-to-

point communication. We also count the number of elements that enter the queues from

collective communications. For this, we provide a hint from MPI layer to the device layer

to indicate whether the incoming message is from a point-to-point or collective communi-

cation. We use the experimental platform with Cluster A described in Section 3.4.1 for this

test.

Figure 5.1 shows the application results for Radix [64], Nbody [103, 22], MiniAMR [9]

and FDS [89] with 512 processes. The descriptions of these applications are explained in

Section 5.3.1. As can be seen in Figure 5.1(a), almost all the elements that enter the queues

in Radix are from collective communications. Figure 5.1(b) shows that the majority of the

elements that enter the queues in Nbody are from point-to-point communications but that

it still has a significant number of elements from collective communications (around 11k

and 25k for UMQ and PRQ, respectively). As can be seen in Figure 5.1(c) and 5.1(d),

both point-to-point and collective communications have some contributions to the queue

length of MiniAMR and FDS. In general, Figure 5.1 shows that both collective and point-

to-point communications can have considerable impact on the number of elements posted

to the message queues. On the other hand, the list searches of > 1k have significant impact

on message latency [25]. This shows the importance of improving the message matching

performance for collective and point-to-point communications and motivates us to propose

a unified message queue design for collective and point-to-point operation. For collective

communications, we propose a message queue design that dynamically profiles the impact

of the collective communications on the queues and uses that information to adapt the

message queue data structure for each and every collective communication. We then use

the partner/non-partner message queue design discussed in Chapter 4 for elements coming

from point-to-point communications.

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 84

0

500

1000

1500

2000

UMQ PRQ

A
ve

ra
ge

 n
u

m
b

er
 o

f
el

e
m

en
ts

Radix

collective point-to-point

(a) Radix

0

50000

100000

150000

200000

UMQ PRQ

A
ve

ra
ge

 n
u

m
b

er
 o

f
el

e
m

en
ts

Nbody

collective point-to-point

(b) Nbody

0

1000

2000

3000

4000

5000

6000

UMQ PRQ

A
ve

ra
ge

 n
u

m
b

er
 o

f
el

e
m

en
ts

MiniAMR

collective point-to-point

(c) MiniAMR

0

20000

40000

60000

80000

100000

120000

140000

UMQ PRQ

A
ve

ra
ge

 n
u

m
b

er
 o

f
el

e
m

en
ts

FDS

collective point-to-point

(d) FDS

Figure 5.1: Average number of elements in the queues from collective and point-to-point
communications across all processes in different applications (512 processes) in
Cluster A

Note that the message queue mechanisms that are used in current well-known MPI im-

plementations, such as MPICH, MVAPICH and Open MPI, or are proposed in the literature

[116, 46, 71, 27, 48] do not consider the type of communication for message matching, and

therefore they keep the messages from all types of communication in a single data structure.

5.2 The Proposed Unified Message Queue Design

Figure 5.2 shows the proposed unified message queue design. Whenever a new element

wants to be added to the queue, we check if the element is coming from a point-to-point or

a collective communication. If the element is coming from point-to-point communication,

we use the partner/non-partner message queue data structure which we call it the PNP

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 85

Queue Element

(QE)

If QE belong to a
collective communication

If QE belong to a point-
to-point communication

Use COL

approach

Use PNP

approach

Figure 5.2: The proposed unified message matching mechanism

approach in this chapter. Otherwise, if the element is coming from a collective operation,

we use the proposed message queue design for collective elements which is referred to as

the COL approach. We refer to the unified design as COL+PNP. The PNP approach is

discussed in detail in Chapter 4. We discuss the proposed COL message queue design for

collective elements in Section 5.2.1.

5.2.1 The COL Message Queue Design for Collective Elements

There are many different algorithms (such as ring, binomial tree, fan-in/fan-out, etc.) pro-

posed in literature or in MPI libraries for collective operations. For each collective operation,

the choice of the algorithm depends on parameters such as message size and communicator

size. Each collective communication algorithm has a specific impact on the behavior of mes-

sage queues. We take advantage of this feature to design a message matching mechanism

that adapts itself to the impact of collective communication algorithms on message queues.

Figure 5.3 shows the proposed message queue mechanism for collective communications.

An overview of the design can be summarized as follows:

• There is a runtime profiling stage that determines the number of queues for each

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 86

collective communication operation with their specific parameters (message size and

communicator size). At the profiling stage, all the collective operations share a single

profiling queue (pq).

• The profiling queue, pq, is only used for the first call of each collective operation

with specific parameters. After that, each collective operation generates its own set

of queues.

• The queues allocated to each collective operation could be defined in multiple levels.

At each level, a hashing approach based on the number of queues is used for message

matching.

• A new level is defined if two conditions are met: First, a collective operation is called

with new parameters. Secondly, the required number of queues for this collective is

more than the number of the queues that are already allocated for the collective.

As can be seen in this figure, the profiling queue is used for the first call of each col-

lective operation with specific parameters. The information from profiling queue is used

to determine the number of queues that are deemed sufficient to have the minimum queue

search time for each collective operation. For example, in Figure 5.3, q1 number of queues

are allocated for MPI_Allreduce in the first level.

If the same collective is called with different parameters, we again profile its message

queue behavior to calculate the required number of queues (q2). If q2 was larger than q1,

it means that the queues that are currently allocated in Level 1 are not sufficient for the

new collective operation. Therefore, we define a set of q2 queues in a new level. This

procedure is continued as long as the collective operation is used with the new parameters

or until we are limited by the memory consumption cap. The same procedure is used for

other collective operations including both blocking and non-blocking collectives such as

MPI_Gather, MPI_Iallgather, etc. Note that each collective operation uses specific tags

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 87

Level 1

Level 2

Level l1 Level l2 Level l3

MPI_Gather MPI_Iallgather

q
u
eu

es
 1

q

q
2 q

u
eu

es

q
l1 q

u
eu

es

Profile message queue
behavior for each

collective operation

MPI_Allreduce

Subsequent collective calls

First call of each
collective operation

Profiling queue (pq) for collectives

Other collectives

Level 1

Level 2

Level 1

Level 2

Figure 5.3: Proposed message matching mechanism for collective elements

for message matching. Therefore allocating dedicated queues for each collective operation

automatically creates dedicated channels for individual tags.

For each collective communication operation, we always insert the new queue elements

to the last level. For searching an element that is originated from collective communication,

we always start from the profiling queue and then search the dedicated queues for the

collective operation from the first level to the last level in order. This mechanism assures

that message matching ordering semantics are preserved. We explain the queue allocation

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 88

and the search mechanism in more details in the following sections.

5.2.2 The Unified Queue Allocation Mechanism for Collective and Point-to-

Point Elements

Algorithm 5.1 shows the detailed description of the queue allocation mechanism in the

proposed design. Table 5.1 lists the parameters that are used as inputs and outputs of the

algorithm and provides their definitions.

In the unified algorithm, we first check the type of communication. If it is a point-to-

point communication, we add the element to the partner/non-partner message queue data

structure in Line 2. Otherwise, when a collective communication is executed, we call the

function is_profiled(p) (Line 4). This function determines if the collective operation with

specific message size and communicator size has already been profiled or not. If it has not

been profiled, we profile its message queue behavior and save the profiling information in Pp

(Line 5). We use the average number of queue traversals as the profiling information since

it is the critical factor that determines the cost of message matching [27]. If the collective

operation has already been profiled, we call the function is_q_allocated(p) in Line 7. This

function determines if queues have already been allocated for the collective operation with

this specific message size and communicator size range. If queue is not allocated, we call the

function calcul_num_queues (Pp) in Line 8. This function gets the profiling information

gathered in the previous call of the collective operation and returns the required number of

queues (nq).

In the best-case scenario, the average number of traversals to find an element is one.

For this to happen, the number of queues should be equal to the average number of traver-

sals. However, this may come at the expense of large memory allocation if the number of

traversals is significant. Therefore, we limit the total number of queues allocated for all

collective and point-to-point operations. For choosing the cap for the number of queues, we

considered the memory consumption in MPICH and Open MPI. MPICH provides scalable

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 89

Table 5.1: List of parameters used for collective queue allocation and search mechanism

p Collective operation parameters (the type of collective
operation, its message size and communicator size)

pq The profiling queue for collective operations
T The total number of dedicated queues for all collectives
lc The number of levels for collective operation c
nqc Number of queues for collective c in the last level
n Total number of processes
k Memory consumption cap parameter
qc The set of queues in the last level for collective c
t The type of communication
SE The searching element
QPNP The queue data structure for point-to-point elements
nqcl The number of queues that are allocated for collective

operation c at level l
qcl The set of queues that are allocated for collective operation

c at level l
QE The matched element in the queue

memory consumption but it allocates only one queue for message matching, resulting in

poor search performance for long list traversals. On the other hand, as discussed in Chap-

ter 2, Open MPI is faster than MPICH for long match lists but it has unscalable memory

consumption as it allocates n queues for each process. In our design, we take an in-between

approach and bound the total number of queues that are allocated in the COL and PNP

approaches to k ×
√
n. k is an environment variable to evaluate the impact of increasing

the memory cap on message matching performance.

If the number of queues, nq, plus the total number of queues, T , that are already

allocated, was less than k ×
√
n (Line 9), it means that we are still allowed to allocate the

new queues, and so we will check the second condition in Line 10.

The second condition compares nq with the number of queues that are currently allo-

cated for collective operation c in the last level (nqc). If nq was less than nqc, there is no

need to define a new level and allocate a new set of queues since nqc number of queues is

sufficient for this collective. However, if nq was greater than nqc, the new set of queues

should be allocated in a new level (Line 11). Finally, we update T , lc and nqc in Line 12 to

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 90

Algorithm 5.1: The Unified Queue Allocation Mechanism for Collective and
Point-to-Point Elements

Input: The communication type (t), The collective operation parameters (p), The
queue for profiling collective communications (pq), Total number of the
allocated queues for collective operations (T), Number of levels for collective
operation c (lc), The number of queues that are allocated for collective
operation c in the last level (nqc), Total number of processes (n), The
memory consumption cap parameter (k)

Output: The set of queues generated in the last level of collective operation c (qc)
1 if t==point-to-point then
2 Add the element to QPNP ;
3 else
4 if is_profiled(p)==0 then
5 Pp= profile(pq);
6 else
7 if is_q_allocated(p)==0 then
8 nq=calcul_num_queues(Pp);
9 if nq + T < k ×

√
n then

10 if nq > nqc then
11 Generate queues qc[0 ... nq − 1];
12 T = T + nq;
13 lc ++;
14 nqc = nq;
15 end
16 end
17 end
18 end
19 end

14.

5.2.3 The Unified Search Mechanism for Collective and Point-to-Point Ele-

ments

Algorithm 5.2 shows the search mechanism in the proposed unified message queue design.

A brief description of the inputs and outputs of the algorithm is provided in Table 5.1. The

inputs of this algorithm are as follows: the type of communication (t), whether it is point-

to-point or collective. If the communication was collective, the parameter c determines the

5.2. THE PROPOSED UNIFIED MESSAGE QUEUE DESIGN 91

Algorithm 5.2: The Unified Queue Search Mechanism for Collective and Point-
to-Point Elements

Input: The communication type (t), The collective operation (c), The searching
element (SE), The queue data structure for point-to-point elements
(QPNP), The queue for profiling collective communications (pq), The
number of levels for collective operation c (lc), The number of queues that
are allocated for collective operation c at level l (nqcl), the set of queues that
are allocated for collective operation c at level l (qcl)

Output: The result of the search (QE)
1 if t==point-to-point then
2 QE=Search QPNP for SE;
3 Return QE;
4 else
5 Search pq;
6 for i = 1 to lc
7 do
8 q_num= extract_queue_number(SE, nqci);
9 QE=Search qci[q_num] for SE;

10 end
11 Return QE;
12 end

type of collective operation. The parameters (c and t) are ported from the MPI layer to

the device layer. Other inputs of the algorithm are the searching element (SE) which is

the tuple rank, tag and communicator, the queue data structure for point-to-point elements

(QPNP), the profiling queue for collective operations (pq), the number of levels for collective

operation c (lc), and the number of queues that are allocated for collective operation c at

level l (nqcl). The output of the algorithm is the search result (QE). If the element is not

found, QE will be null.

At the time of searching, we first check the type of the communication in Line 1. If it is

a point-to-point communication, the partner/non-partner queue data structure for point-

to-point elements (QPNP) is searched (Line 2). If the message originated from a collective

operation, we search the profiling queue pq since it might have some elements (Line 5).

Then we search the queues allocated for this collective operation from the first level to the

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 92

last level in order (Lines 6 to 10). Each level consists of a specific number of queues (nqci),

and the queue elements are enqueued using a hashing approach. For searching each level,

first we call the function extract_queue_ number (SE, nqci) which takes the search element

and nqci as input and returns the queue number for the search element. For this, it simply

divides the rank number of the searching element by the number of queues nqci and returns

the remainder as the output.

5.3 Experimental Results and Analysis

In this section, we first describe the experimental setup. We then evaluate the impact of

the proposed COL+PNP approach on the performance of some blocking and non-blocking

collective operations including MPI_ Gather, MPI_Allreduce and MPI_Iallgather in Sec-

tion 5.3.2. In Section 5.3.3, we present and analyze the queue search time speedup of the

proposed COL+PNP message matching approach on four real applications and compare

them against the COL+LL approach. In COL+LL, the COL approach is used for collective

elements and a single linked list queue is used for point-to-point elements. Section 5.3.4

presents the number of dedicated queues in both collective and point-to-point approaches.

Finally, Section 5.3.5 and Section 5.3.6 discuss the application runtime speedup and the

overhead of the proposed COL+PNP approach, respectively.

5.3.1 Experimental Platform

The evaluation was conducted on two clusters. The first cluster is Cluster A in which

its specifications have been discussed in Section 3.4.1. The second cluster is the Graham

cluster from Compute Canada. Graham has 924 nodes, each having 32 Intel E5-2683 V4

CPU cores, running at 2.1GHz. We use 1G memory per core in our experiments. The

network interconnect is EDR Infiniband. We refer to the Graham cluster as Cluster B in

this dissertation. The MPI implementation is MVAPICH2-2.2.

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 93

The applications that we use for the experiments are Radix [64], Nbody [103, 22], Mini-

AMR [9] and FDS [89]. Radix is an efficient and practical algorithm for sorting numerical

keys which is used in different areas such as computer graphics, database systems, and

sparse matrix multiplication. Nbody is a simulation of a dynamical system of particles,

usually under the influence of physical forces, such as gravity. MiniAMR is a 3D stencil

calculation with adaptive mesh refinement. We use MiniAMR’s default mesh refinement

options for the experiments. The FDS specification is presented in Section 3.4.1. All the ap-

plication results are averaged across the entire application runtime. Note that we have used

these applications since they have different message queue behavior in terms of the num-

ber of point-to-point and collective elements in the queue. For example, in Radix, almost

all the elements in the queue are from collectives (Figure 5.1(a)). In Nbody, most of the

elements in the queue are from point-to-point communications (Figure 5.1(b)). Moreover,

these applications span short list traversals (Radix and MiniAMR) to long list traversals

(FDS). This provides us with the opportunity to evaluate our design on applications with

different message queue behavior.

As discussed earlier, we bound the total memory overhead of the COL+PNP approach

to k ×
√
n. We define k = kC + kP , where kC represents the number of allocated queues in

the COL approach, and kP refers to the number of allocated queues in the PNP approach.

This would allow us to evaluate the impact of memory consumption on the performance of

both COL and PNP approaches, individually. Note that in the COL+LL approach, there

is no memory overhead for point-to-point queue elements and k = kC .

5.3.2 Microbenchmark Results

This section evaluates the impact of the proposed COL+PNP approach on the performance

of some collective operations. Figure 5.4(a) shows that for MPI_Gather we can gain up to

1.5x, 2.4x and 5.4x latency reduction for 1024, 2048 and 4096 processes, respectively. In this

collective operation, process 0 gathers data from all the other processes which result in long

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 94

0

1

2

3

4

5

6

1 4 16 64 256 1k 4k 16k 64k 256kSp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Message size (Byte)

MPI_Gather

1024 processes 2048 processes 4096 processes

(a) Latency improvement in MPI_Gather

0
0.2
0.4
0.6
0.8

1
1.2

4 16 64 256 1k 4k 16k 64k 256k

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Message size (Byte)

MPI_Allreduce

1024 processes 2048 processes 4096 processes

(b) Latency improvement in MPI_Allreduce

0

0.5

1

1.5

1 4 16 64 256 1k 4k 16k 64k 256k

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Message size (Byte)

MPI_Iallgather

1024 processes 2048 processes 4096 processes

(c) Latency improvement in MPI_Iallgather

Figure 5.4: Latency improvement in MPI_Gather, MPI_Allreduce and MPI_Iallgather,
for k=1 on Cluster A

message queues for this process. Therefore, the proposed message matching mechanism

generates as many queues as it can to reduce the queue search time for process 0. For

example, the number of PRQs that are generated for 1024, 2048 and 4096 processes is 32

(
√
1024), 45 (

√
2048) and 64 (

√
4096), respectively. In other words, process 0 reaches the

memory consumption cap for the number of queues for these message sizes. Other processes

generate only a few queues (around 1 or 2) as their queue length is small. Figure 5.4(b) and

5.4(c) show that we can gain up to 1.16x and 1.26x latency reduction for MPI_Allreduce

and MPI_Iallgather, respectively. The queues in these collective operations are not as long

as MPI_Gather. Therefore, around 10 to 20 queues will be enough for them to gain this

speedup.

One observation from Figure 5.4 is that the performance improvement decreases with

increasing message size. The reason for this is that as we increase the message size, the

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 95

network’s data transfer speed becomes the bottleneck rather than message matching per-

formance.

5.3.3 Application Queue Search Time

In this section, first we discuss the queue search time performance for collective elements

in the COL+LL approach with different memory consumption cap parameter k. This

allows us to evaluate the impact of different k values on the performance. In the COL+LL

approach, the COL approach discussed in Section 5.2.1 is used for queue elements coming

from collective communications and a single linked list queue is used for point-to-point

communications. Then, we discuss the impact of the COL+PNP approach as well as the

COL+LL approach on the performance of point-to-point elements, collective elements and

all the elements in the queue. All the results are compared to the linked list data structure

for Radix, Nbody, MiniAMR and FDS.

COL+LL impact on Collective Queue Search Time

Figure 5.5 presents the queue search time speedup of the COL +LL approach on the queue

search time of the collective elements. It also evaluates the impact of different memory cap

parameter k on the queue search time speedup. The results in Figure 5.5 are conducted on

Cluster A.

Figures 5.5(a) and 5.5(b) show the average UMQ and PRQ search time speedup across

all processes for Radix, respectively. As can be seen in these figures, we can gain up to

1.12x and 1.14x search time speedup for UMQ and PRQ of Radix, respectively. Increasing

k does not impact the queue search time significantly. That is because of the short list

traversals of the queues (around 10 elements) for this application that make a small queue

memory footprint sufficient to get a minor speedup. We observe almost the same behavior

for Nbody in Figure 5.5(c) and 5.5(d).

Figures 5.5(e) and 5.5(f) show the average queue search time speedup for collective

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 96

0

0.2

0.4

0.6

0.8

1

1.2

512 1024 2048Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

UMQ search time speedup in Radix

k=1 k=2 k=4 k=8 k=16

(a) UMQ in Radix

0

0.2

0.4

0.6

0.8

1

1.2

512 1024 2048Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

PRQ search time speedup in Radix

k=1 k=2 k=4 k=8 k=16

(b) PRQ in Radix

0

0.2

0.4

0.6

0.8

1

1.2

256 512 1024Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

UMQ search time speedup in Nbody

k=1 k=2 k=4 k=8 k=16

(c) UMQ in Nbody

0

0.2

0.4

0.6

0.8

1

1.2

256 512 1024

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

PRQ search time speedup in Nbody

k=1 k=2 k=4 k=8 k=16

(d) PRQ in Nbody

0

0.5

1

1.5

2

512 1024 2048

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Number of processes

UMQ search time speedup in MiniAMR

k=1 k=2 k=4 k=8 k=16

(e) UMQ in MiniAMR

0

0.5

1

1.5

512 1024 2048

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

PRQ search time speedup in MiniAMR

k=1 k=2 k=4 k=8 k=16

(f) PRQ in MiniAMR

0

20

40

60

80

100

512 1024 2048Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

UMQ search time speedup in FDS

k=1 k=2 k=4 k=8 k=16

(g) UMQ in FDS

0

20

40

60

80

512 1024 2048Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

PRQ search time speedup in FDS

k=1 k=2 k=4 k=8 k=16

(h) PRQ in FDS

Figure 5.5: Average UMQ and PRQ search time speedup for collective elements with
COL+LL approach and different k values in Radix, Nbody, MiniAMR and
FDS in Cluster A

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 97

communications across all processes in MiniAMR. In this application, we can gain up to

1.45x and 1.4x search time speedup for UMQ and PRQ, respectively. As can be seen in this

figure, by increasing k from 1 to 2 (or doubling the memory consumption), we can improve

the queue search time speedup. However, increasing k further does not have considerable

impact on queue search time. For example, with 512 processes, increasing k from 1 to 2

improves the search time speedup around 40% for both UMQ and PRQ. However, increasing

it further does not improve the search time speedup considerably. This shows that for 512

processes, less than 44 (2 ×
√
512) queues is enough to gain the maximum search time

speedup. We will discuss the number of generated queues for different number of processes

in each application with more details in Section 5.3.4.

Figures 5.5(g) and 5.5(h) present the UMQ and PRQ search time speedup for collective

communications in FDS. For this application, we show the search time speedup for process

0 since this process has the majority of communications. As can be seen in the figures,

we can gain around 80x queue search time speedup for collective queue elements in this

application.

As discussed in previous chapters, in FDS, each process sends a number of messages to

process 0 through MPI_Gather(v). This hotspot behavior places significant stress on the

MPI matching engine. Therefore, FDS results show the potential maximum performance

that can be gained by the proposed message matching mechanism. Moreover, they provide

the opportunity to indirectly compare the performance gain of our approach with other

message matching proposals that use this application [46]. Finally, these results show that

with an MPI implementation that support long message queue traversals, we can provide

the opportunity to the programmer to design less complicated code while maintaining high

performance.

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 98

COL+PNP vs. COL+LL Impact on Collective, Point-to-point and Total Queue

Search Time

Figure 5.6 shows the queue search time speedup of COL+PNP and COL+LL for Radix,

Nbody, MiniAMR and FDS. We present the performance gain for all the elements in the

queue, the point-to-point elements and also collective elements. The experiments in this

section are conducted on Cluster B.

This figure shows the speedup when k = kC = 8. The reason we choose kC = 8 is

that it provides a scalable memory consumption and at the same time it has the maximum

performance gain in almost all cases as shown in Figure 5.5. Also, we choose kP = 8 so as

not to exceed k of 16 which is the maximum memory cap for 512 processes. We include the

results for collective elements here to compare them with the point-to-point and total queue

search time speedup on the same cluster. The threshold for the partner/non-partner design

is θ = 100 since it provides the maximum performance and scalable memory consumption

as discussed in Chapter 4.

Figure 5.6(a) and 5.6(b) show the average UMQ and PRQ search time speedup for

Radix, respectively. As can be seen in these figures, in both COL+LL and COL+PNP,

the speedup for point-to-point elements is close to 1. The reason for this is that, in Radix,

almost all the elements in the queue are coming from collective communications and there is

no point-to-point element in the queue (Figure 5.1(a)). These figures also show that in total

we can gain up to 1.15x and 1.14x search time speedup for all the elements in the queue.

One observation from Figures 5.6(a) and 5.6(b) is that the performance of COL+LL and

COL+PNP approaches is almost similar. In other words, the use of LL or PNP approaches

for point-to-point elements does not affect the performance since there are just a few, if

any, point-ro-point elements in the queue.

Figure 5.6(c) and 5.6(d) show the average UMQ and PRQ search time speedup for

Nbody. In this application, there are a significant number of elements in the queue from

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 99

0
0.2
0.4
0.6
0.8

1
1.2
1.4

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

UMQ search time Speedup in Radix

512 processes 1024 processes 2048 processes

(a) UMQ in Radix

0
0.2
0.4
0.6
0.8

1
1.2
1.4

all elements p2p
elements

collective
elements

all elements p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

PRQ search time speedup in Radix

512 processes 1024 processes 2048 processes

(b) PRQ in Radix

0

0.5

1

1.5

2

2.5

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

UMQ search time speedup in Nbody

512 processes 1024 processes 2048 processes

(c) UMQ in Nbody

0

0.5

1

1.5

2

2.5

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

PRQ search time speedup in Nbody

512 processes 1024 processes 2048 processes

(d) PRQ in Nbody

0

0.5

1

1.5

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL +LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

UMQ search time speedup in MiniAMR

512 processes 1024 processes 2048 processes

(e) UMQ in MiniAMR

0

0.5

1

1.5

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

PRQ search time speedup in MiniAMR

512 processes 1024 processes 2048 processes

(f) PRQ in MiniAMR

0
5

10
15
20
25
30
35

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

UMQ search time speedup in FDS

512 processes 1024 processes 2048 processes

(g) UMQ in FDS

0

20

40

60

80

all
elements

p2p
elements

collective
elements

all
elements

p2p
elements

collective
elements

COL+LL approach COL+PNP approach

Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

PRQ search time speedup in FDS

512 processes 1024 processes 2048 processes

(h) PRQ in FDS

Figure 5.6: Average UMQ and PRQ search time speedup for collective, point-to-point and
total elements with COL+PNP and COL+LL approaches and k = 16 in Radix,
Nbody, MiniAMR and FDS in Cluster B

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 100

point-to-point communication (Figure 5.1(b)). When we separate the queue for collective

elements in the COL+LL approach, the queue length for point-to-point elements is reduced

and its queue search time improves by up to 1.23x and 1.37x in UMQ and PRQ, respec-

tively. The total search time speedup for all elements in UMQ and PRQ is 1.18x and

1.27x, respectively. Using the partner/non-partner message queue design for point-to-point

communication in COL+PNP approach further improves the queue search time. As can

be seen in these figures, in the COL+PNP approach, we can gain up to 2.24x and 2.15x

speedup in UMQ and PRQ search time of point-to-point elements, respectively. Compar-

ing the COL+PNP results with the COL+LL results, we can observe that some part of

the point-to-point speedup is because of separating point-to-point elements from collective

elements. However, the majority of performance gain comes from the partner/non-partner

message queue design.

Figure 5.6(e) and 5.6(f) show the queue search time speedup in MiniAMR. In this

application, there are just a few number of point-to-point elements in the queue (Figure

5.1(c)). Therefore, the speedup for point-to-point elements is around 1 in both COL+LL

and COL+PNP approaches. Consequently, the speedup of the COL+LL approach and

COL+PNP approach is almost the same for collective elements as well as all the elements.

Finally, the COL+PNP results in Figure 5.6(g) and 5.6(h) show that we can gain up

to 4.4x and 73x search time speedup for UMQ and PRQ point-to-point elements in FDS,

respectively. Moreover, the COL+LL results show that by taking out the collective el-

ements from the queue in FDS, the search time of point-to-point elements in UMQ and

PRQ improves by up to 3.34x and 71x, respectively. The total UMQ and PRQ search time

speedup in the COL+LL approach is 27x and 52x, respectively. As discussed in Section

5.3.3, this large performance gain is possible due to the long list traversals in this applica-

tion. Comparing the COL+PNP results with the COL+LL results in Figure 5.6(g), we can

observe that around 3.2x of UMQ speedup is because of separating the the point-to-point

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 101

elements from collectives and the rest of the performance gain is coming from partner/non-

partner message queue design. On the other hand, comparing the COL+PNP results with

the COL+LL results in Figure 5.6(h) shows that most of the performance gain for point-

to-point PRQ messages is because of separating the collective and point-to-point elements.

This shows that in PRQ, a significant number of collective elements should be traversed to

search for a point-to-point message.

Note that the performance gain for all the elements in the queue has a direct relationship

with the performance gain for point-to-point and collective elements. However, whether it

is more due to point-to-point or collective performance depends on the distribution of these

elements in each application. In Radix, almost all the elements in the queue are from

collective communication (Figure 5.1(a)). Therefore, the queue search time speedup for all

elements is roughly similar to the search time speedup for collective elements (Figure 5.6(a)

and 5.6(b)). On the other hand, in Nbody, the number of point-to-point elements in the

queue is more (Figure 5.1(b)). Therefore, the search time speedup for all elements is more

dependent on search time speedup of point-to-point elements (Figure 5.6(c) and 5.6(d)). In

MiniAMR and FDS, both point-to-point and collective elements contribute to the message

queues. However, the contribution of collective elements is more (Figure 5.1(c) and 5.1(d)).

As a result, in these applications, the performance gain for all elements is due to both

point-to-point and collective message matching improvement, but it is mainly because of

the collective speedup (Figure 5.6(e) to 5.6(h)).

5.3.4 Number of Dedicated Queues for the Applications in COL+PNP Ap-

proach

As discussed earlier, the memory consumption in the collective and point-to-point approach

is directly related to the number of allocated queues in these data structures. Therefore, in

this section, we present the number of dedicated queues for the applications studied in this

chapter. The same parameters discussed in Section 5.3.3 are used for the experiments.

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 102

Figure 5.7 shows the number of allocated queues in Radix, Nbody, MiniAMR and FDS

for collective and point-to-point communications with the COL+ PNP approach. In the

following, we discuss the number of dedicated queues for collective and point-to-point com-

munications, respectively.

Number of Dedicated Queues for Collective Communications

Figure 5.7(a) shows the average number of queues across all processes in the Radix ap-

plication. This application uses the collective operations MPI_Iallgather, MPI_Allreduce,

MPI_Reduce and MPI_ Reduce_scatter. Among these collectives, MPI_Iallgather has

the most contributions in generating long list traversals for this application, and around

65% of the queues for collective elements in Figure 5.7(a) are for this operation.

Figure 5.7(b) presents the average number of dedicated queues across all processes for

Nbody. This application has the collective operations MPI_Allgather, MPI_Allreduce,

MPI_Bcast and MPI_Reduce. Among these collectives, MPI_Allgather has the most

contribution in generating long list traversals and thus, most of the dedicated queues for

collective elements in Figure 5.7(b) belong to this collective. Other collectives either do not

generate long message queues or they are called just a few times in the application.

Figure 5.7(c) shows the average number of generated UMQs and PRQs across all pro-

cesses for MiniAMR with different number of processes. This application uses the collec-

tive operations MPI_Allreduce, MPI_Bcast, MPI_Allgather and MPI_Reduce. For this

application, MPI_Allreduce has the most contribution in generating long list traversals.

Therefore, most of the dedicated collective queues in Figure 5.7(c) belong to this operation.

In Figures 5.7(d), we present the number of UMQs and PRQs that are generated in

the FDS application. Here again, we show the results for rank 0 since this process has the

majority of communications (as discussed in Section 5.3.3). This figure show that process 0

of FDS generates as many PRQs as it can for collective communications. For example, when

the number of processes is 1024, 256 collective queues are generated which is the memory cap

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 103

0

5

10

15

20

UMQ PRQ UMQ PRQ

collective communications p2p communications

A
ve

ra
ge

 n
u

m
b

er
 o

f
q

u
eu

es

Average number of queues in Radix

512 processes 1024 processes 2048 processes

(a) Radix

0

50

100

150

200

250

300

UMQ PRQ UMQ PRQ

collective communications p2p communications

A
ve

ra
ge

 n
u

m
b

er
 o

f
q

u
eu

es

Average number of queues in Nbody

256 processes 512 processes 1024 processes

(b) Nbody

0

20

40

60

80

UMQ PRQ UMQ PRQ

collective communications p2p communications

A
ve

ra
ge

 n
u

m
b

er
 o

f
q

u
eu

es

Average number of queues in MiniAMR

512 processes 1024 processes 2048 processes

(c) MiniAMR

0

100

200

300

400

UMQ PRQ UMQ PRQ

collective communications p2p communications

A
ve

ra
ge

 n
u

m
b

er
 o

f
q

u
eu

es

Number of queues for process 0 in FDS

512 processes 1024 processes 2048 processes

(d) FDS

Figure 5.7: Number of dedicated UMQs and PRQs for collective operations with COL+PNP
approach and k = 16 in Radix, Nbody, MiniAMR and FDS in Cluster B

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 104

for the number of queues (8×
√
1024 = 256). Note that FDS uses the collective operations

MPI_Gather, MPI_ Gatherv, MPI_Allgatherv, MPI_ Allreduce and the majority of the

queues that are generated for process 0 belong to MPI_Gatherv.

Comparing Figure 5.7 with Figure 5.1 shows that the number of allocated queues for

collective communications is in concert with the number of collective elements in the queues

for each application. For example, Nbody does not have significant number of collective

elements in both UMQ and PRQ (Figure 5.1(b)), so the number of collective UMQ and

PRQ allocated for this application is around 10 (Figure 5.7(b)). On the other hand, there

are significant number of collective elements in PRQ of MiniAMR (Figure 5.1(c)) and the

number of collective PRQ allocated for this application reaches 72 (Figure 5.7(c)). In

general, Figure 5.7 shows that the applications with longer collective traversal such as

MiniAMR and FDS have a larger number of collective queues compared to Radix and

Nbody with short collective traversal.

Number of Dedicated Queues for Point-to-Point communications

Figure 5.7 shows that the number of generated queues for point-to-point communications in

the COL+PNP approach directly relates to the number of point-to-point queue elements.

For example, there are a few number of point-to-point elements in Radix and MiniAMR

(Figure 5.1). Therefore, the queue length of the original linked list queue does not reach

the threshold, θ, and the number of generated queues is 0. On the other hand, the number

of point-to-point elements in Nbody and FDS is more significant. This causes the queue

length to reach the threshold, θ, more frequently which results in more queues.

Comparing Figure 5.7 with Figure 5.6, we can observe that the number of the allocated

queues in the proposed COL+PNP message matching design is in concert with the queue

search time speedup for both collective and point-to-point communications. One observa-

tion from Figure 5.7 is that in many cases, the number of allocated queues increases with

increasing number of processes. However, it never exceeds the memory consumption cap

5.3. EXPERIMENTAL RESULTS AND ANALYSIS 105

0

1

2

3

4

5

6

512 1024 2048Sp
ee

d
u

p
 o

ve
r

M
V

A
P

IC
H

Number of processes

FDS execution time speedup

COL+LL COL+PNP

Figure 5.8: FDS runtime speedup over MVAPICH in Cluster B

k ×
√
n. The number of dedicated queues is limited to a few queues for applications with

short list traversals, up to the max k ×
√
n for applications with long list traversals. This

shows the scalability of the proposed approach in terms of memory consumption.

5.3.5 Application Execution Time with COL+PNP and CPL+LL approaches

Figure 5.8 shows the FDS runtime in the proposed COL+PNP approach and compares it

against the COL+LL and MVAPICH2 message queue designs. The results show that we can

gain up to 5x runtime speedup with COL+LL. This improvement comes from two factors:

1) message matching speedup for point-to-point elements since they are separated from

collective elements; and 2) message matching speedup for collective elements. In Section

5.3.3, we discussed the impact of each of these factors on total search time improvement. The

orange bar shows that we can gain up to 5.5x runtime speedup with COL+PNP approach.

We can observe that using partner/non-partner message queue design for point-to-point

elements can further improve the performance gain.

The results in this figure follows the results in Figure 5.6(g) and 5.6(h) and also Figure

5.7(d). As more queues are generated (Figure 5.7(d)), the UMQ and PRQ search time

speedup improves (Figure 5.6(g) and 5.6(h)) and consequently, the FDS execution time

5.4. SUMMARY 106

Table 5.2: Overhead/search time ratio in COL+PNP

Applications Number of processes Overhead/search time ratio

Radix
512 0.0359
1024 0.03027
2048 0.0175

Nbody
256 0.1563
512 0.0589
1024 0.0343

MiniAMR
512 0.0192
1024 0.0366
2048 0.0138

FDS
512 0.0027
1024 0.0021
2048 0.0020

speedup increases (Figure 5.8). Note that we do not show the results for Radix, Nbody

and MiniAMR since their queue search time speedup does not translate to considerable

improvement in their application execution time (their runtime speedup is around 1).

5.3.6 Runtime Overhead of the Message Queue Design

The COL approach imposes some runtime overhead for calculating the required number

of queues for each collective and allocating the queues. On the other hand, the PNP

approach has some overhead for extracting the partners. Table 5.2 presents the ratio of

the average runtime overhead of COL+PNP approach across all processes over the average

queue search time across all processes in Radix, Nbody, MiniAMR and FDS for different

number of processes. The results show that for all applications the overhead of the proposed

design is negligible compared to their queue search time.

5.4 Summary

In this chapter, we propose unified COL+PNP message matching mechanism that consid-

ers the type of communication to improve the queue search time performance. For this,

we separate the queue elements based on their type of communication (point-to-point or

5.4. SUMMARY 107

collective). For collective operations, we dynamically profile the impact of each collective

call on message queue traversals and use this information to adapt the message queue

data structure (the COL approach). For the point-to-point queue elements, we use the

partner/non-partner message queue data structure discussed in Chapter 4 (the PNP ap-

proach). The proposed approach can improve the message matching performance while

maintaining a scalable number of queues (memory consumption).

Our experimental evaluation shows that by allocating 194 queues for point-to-point

elements and 416 queues for collective elements, we can gain 5.5x runtime speedup for

2048 processes in applications with long list traversals. For applications with medium list

traversals such as MiniAMR, it allocates the maximum of 74 queues for 2048 processes

to reduce the queue search time of collective communications by 40%. We also compare

the COL+PNP performance gain with COL+LL. In the COL+LL approach, the COL

approach is used for collective communications and a single linked list queue is used for

point-to-point communications. The evaluation results show that the COL+PNP approach

provides similar or better performance compared to COL+LL. However, the performance

gap between these two approaches depends on the number of point-to-point and collective

elements in each application.

In chapter 6, we will look at the message matching issue from a different perspective

and investigate mechanisms to take advantage of hardware features to improve the matching

performance.

108

Chapter 6

Message Queue Matching Improvement on Modern

Architectures

So far, we have proposed mechanisms to improve the message matching performance consid-

ering the communication characteristics of the applications. In this chapter, we investigate

some techniques to take advantage of the properties of the new many-core processors with

the aim of improving the performance of the message queue operations. Note that the ap-

proaches in this chapter are orthogonal with proposed message queue designs in previous

chapters.

Many-core processors and coprocessors such as Intel Xeon Phi [65, 66] are well-known

because of their energy efficiency and massive parallelism. However, the MPI libraries are

designed for traditional heavy-weight cores with large amount of serial compute power.

Therefore, current message matching architectures or the ones proposed in literature are

not efficient on many-core systems and their performance is significantly worse than on

traditional systems. For example, recent studies have shown that system message rates

that were previously bottlenecked by networking overheads are instead limited by compute

core performance on many-core systems [25]. This shows that optimizing message matching

on many-core systems is crucially important to obtain scalability on future machines.

In this chapter, we consider two techniques to take advantage of vectorization capabilities

6.1. MOTIVATION AND RELATED WORK 109

on modern CPU architectures to enhance message matching performance [40, 41] 1. Note

that some of the techniques in this chapter can be applied to both heavyweight cores such

as Intel Xeon processors as well as Xeon Phi lightweight cores.

The rest of this chapter is organized as follows. Section 6.1 discusses the motivation

behind this research and distinguishes it from the other works in literature. Section 6.2

discusses techniques to improve MPI message matching. Section 6.3 presents the complex-

ity analysis. The experimental results are presented in Section 6.4. Finally, Section 6.5

concludes the chapter.

6.1 Motivation and Related Work

In this section, we conduct an experiment to compare the message matching performance

on many-core systems with traditional heavy-weight cores. We consider message queue data

structures that are used in current MPI libraries: Open MPI data structure and linked list

data structures used in MVAPICH.

To this aim, we use a microbenchmark that fills in the UMQ with a specific number of

elements. In this microbenchmark, each process (P1 to PN−1) sends M data to P0 to fill in

its UMQ. Then P1 sends a new data to P0 with a specific tag. We measure the queue search

time for the very last element in the queue that was sent by P1. We use the MPI_Barrier

function to synchronize the ordering of messages sent by different processes and to make

sure that the data sent by P1 is the last element in the queue. Each test is averaged over 5

iterations. The experiments are conducted on Cluster C. The detailed description of Cluster

C and the experimental setup is presented in Section 6.4.1.

Figure 6.1(a) shows the queue search time in different data structures (Open MPI and

MVAPICH2) and hardware (Intel Xeon as host, and Xeon Phi KNC) when M = 10. Since

the difference in queue search time in OpenMPI-Host, MVAPICH-Host and OpenMPI-KNC
1These papers are done collaboratively with Sandia National Laboratories and the University of New

Mexico. The hot caching technique and some of the results in this paper are developed by Dr. Dosanjh so
they are not claimed and presented in this chapter.

6.1. MOTIVATION AND RELATED WORK 110

MVAPICH-KNC

OpenMPI-KNC

MVAPICH-Host

OpenMPI-Host

(a) M=10

OpenMPI-KNCMVAPICH-Host

OpenMPI-Host

(b) M=10 (enlarged of (a))

MVAPICH-KNC

OpenMPI-KNC

MVAPICH-Host

OpenMPI-Host

(c) M=50

MVAPICH-Host

OpenMPI-Host

OpenMPI-KNC

(d) M=50 (enlarged of (c))

OpenMPI-KNC

MVAPICH-KNC MVAPICH-Host

OpenMPI-Host

(e) M=100

MVAPICH-Host

OpenMPI-Host

OpenMPI-KNC

(f) M=100 (enlarged of (e))

Figure 6.1: Queue search time in different data structures (MVAPICH2 and OPEN MPI)
and hardwares (Intel Xeon as host, and Xeon Phi KNC) on cluster C

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 111

is not clear in Figure 6.1(a), they are enlarged in Figure 6.1(b). As can be seen in these

figures, in both MVAPICH and Open MPI data structures, the queue search time in the

KNC is worse than the host. Another observation from these figures is that Open MPI

data structure performs better than linked list data structure and its queue search time

does not change a lot with increasing number of processes. The reason for this lies in

message queue data structure in Open MPI. As discussed in Section 2.2.5, in Open MPI,

each source process has its own queue for the tags; however, MVAPICH2 provides a linear

queue for the entire source processes.

We repeat our tests with M = 50 and M = 100. Figure 6.1(c) to Figure 6.1(f) present

almost the same trend as in Figure 6.1(a) and 6.1(b). However, the queue search time in

these figures is longer since each process is sending more data to process 0 and consequently

the queue length is longer. Based on these figures, we can confirm that the queue search

time in Intel Xeon Phi KNC is worse than the host in both MVAPICH and Open MPI data

structures. In order to improve the queue search time in KNC, in the following we will

experiment with two techniques that are designed to utilize the vectorization capabilities

available in Xeon Phi. It should be noted that none of the message queue mechanisms

that are used in current well-known MPI implementations, such as MPICH, MVAPICH

and Open MPI, or are proposed in the literature [116, 46, 71, 27, 48] take advantage of

vectorization capabilities to improve message matching performance.

6.2 Techniques to Improve MPI Message Matching

In this section, we present two techniques for improving message matching. Section 6.2.1

presents a linked list of arrays matching architecture that attempts to better interact with

the memory subsystem by combining multiple matching elements into a single linked list

element. Section 6.2.2 expands on this idea by rearranging data into AVX vectors.

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 112

N
U

LL

H
e
ad

T
a
il

Array Element

Hole marker

H
e
ad

T
a
il

Array Element

Hole marker H
e
ad

T
a
il

Hole marker

Array Element

Figure 6.2: Linked list of arrays queue data structure

6.2.1 Linked List of Arrays Queue Data Structure

Figure 6.2 shows an overview of the linked list of array queue data structure used in this

chapter. In this data structure, each linked list element contains multiple queue elements in

an array. By using an array for representing the queue, the time for accessing each element

in the queue is reduced and consequently the queue search time is improved. One issue

with linked list of array design is that whenever a searching element is found, it should be

removed from the queue. This makes an empty element or hole in the array. Therefore, we

need a mechanism to keep track of these holes.

In the linked list of arrays design, we deal with this issue by using two pointers called

head and tail pointers for each array as can be seen in Figure 6.2. The head points to the

head of the array and the tail points to the bottom of the array. The elements are always

added to the bottom of the array where the tail points to. This way, we can make sure that

the sequence of the incoming messages is preserved, as required in MPI standard.

Figure 6.2 shows an array called hole_marker in the data structure. This is a boolean

array to keep track of the empty elements. More specifically, it indicates whether the

elements in the array are empty or not. At the beginning, the initial value of the array

hole_marker is zero since the array is empty. As soon as one element is added to the

array, the corresponding element in hole_marker becomes 1. This way, we can recognize

the empty elements in the array. Whenever an element is removed from the array, if the

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 113

element is at the middle of the array, the head and tail pointers do not change; otherwise,

if the removed element is at the end or head of the array, then the head or tail pointer is

updated accordingly. The search starts from the head pointer to the tail pointer.

We refer to the array, the head and tail pointers, hole_marker and the linked list pointer

as a queue block in the rest of this chapter. For example, Figure 6.2 shows three queue blocks

in the data structure. Whenever the tail pointer of the last queue block reaches the end of

the array, a new queue block is allocated for the incoming messages. Moreover, whenever

one queue block becomes empty, it is removed from the linked list and the pointers of the

linked list are updated accordingly.

Figure 6.3 shows how to manage the holes and incoming messages. In this simple

example, assume the size of the array is 9. At first (Figure 6.3(a)), the queue is empty,

the head and tail point to the first location in array and the elements in the hole_marker

array are all zero. Moreover, the pointer to the next element of the linked list is null.

In Figure 6.3(b), six elements are added to the queue. Therefore, the tail pointer and

the corresponding bits in hole_marker are updated accordingly. In Figure 6.3(c), queue

elements 2 and 3 are removed from the array and the corresponding bits in hole_marker

are changed to zero. The head and tail pointer do not change at this stage. However,

as soon as QE1 is removed from the queue in Figure 6.3(d), the head pointer is updated.

When QE5 and QE6 are removed from the bottom of the queue, the tail pointer is updated

(6.3(e)). When the queue block is full, we allocate a new queue block and add it to the

linked list. In Figure 6.3(f), QE7 to QE13 are added to the queue so a new queue block in

generated. In Figure 6.3(g), QE14 to QE22 are added to the queue. Therefore, the number

of queue blocks is increased to 3. Figure 6.3(h) shows the case when all the QEs in an array

are removed and corresponding linked list element is removed from the linked list. In order

to manage the MPI wildcard communication, we use the same approach used in linked list

data structure explained in Section 2.2.5.

The advantage of the linked list of arrays data structure is twofold. First, it has less

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 114

N
U

LL

0 0 0 0 0 0 0 0 0

H
e
ad

T
a
il

(a) The queue is empty

N
U

LL

Q
E1

Q
E2

Q
E3

Q
E4

Q
E5

Q
E6

1 1 1 1 1 1 0 0 0

H
e
ad

T
a
il

(b) QE1 to QE6 are added

N
U

LL

1 0 0 1 1 1 0 0 0

H
e
ad

T
a
il

Q
E1

Q
E4

Q
E5

Q
E6

(c) QE2 and QE3 are removed

N
U

LL

0 0 0 1 1 1 0 0 0

H
e
ad

T
a
il

Q
E4

Q
E5

Q
E6

(d) QE1 is removed

N
U

LL

0 0 0 1 0 0 0 0 0

H
e
ad

T
a
il

Q
E4

(e) QE5 and QE6 are re-
moved

Q
E4

Q
E7

Q
E8

Q
E9

Q
E1

0
Q

E1
1

0 0 0 1 1 1 1 1 1

H
e
ad

T
a
il

Q
E1

2
Q

E1
3

H
e
ad

T
a
il

1 1 0 0 0 0 0

N
U

LL

(f) QE7 to QE13 are added

N
U

LL

Q
E4

Q
E7

Q
E8

Q
E9

Q
E1

0
Q

E1
1

0 0 0 1 1 1 1 1 1

H
e
ad

T
a
il

Q
E1

2
Q

E1
3

Q
E1

4
Q

E1
5

Q
E1

6
Q

E1
7

Q
E1

8
Q

E1
9

Q
E2

0

H
e
ad

T
a
il

1 1 1 1 1 1 1 1 1

Q
E2

1
Q

E2
2

H
e
ad

T
a
il

1 1 0 0 0 0 0 0 0

(g) QE14 to QE20 are added

N
U

LL

Q
E4

Q
E7

Q
E8

Q
E9

Q
E1

0
Q

E1
1

0 0 0 1 1 1 1 1 1

H
e
ad

T
a
il

Q
E2

1
Q

E2
2

H
e
ad

T
a
il

1 1 0 0 0 0 0 0 0

(h) QE12 to QE20 are removed

Figure 6.3: Managing the holes and incoming messages in the linked list of arrays queue
data structure

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 115

memory reference compared to the linked list approach. In the linked list data structure, to

access the next queue element we incur two memory references, one for reading the address

of the next queue element and one for reading the queue element itself. However, in an

array, the queue elements are located in contiguous memory locations so we only have one

memory reference. Moreover, using linked list of arrays increases spatial locality which

results in reducing the access time for searching the queue.

6.2.2 Linked List of Vectors Queue Data Structure

The performance of the linked list of arrays can be further improved by taking advantage

of vector instructions (e.g., Intel AVX intrinsics). We refer to this approach as linked list of

vectors queue design. In this approach, the queue elements are reorganized to be grouped

per field into a vector block. The size of the vector block is architecture-dependent. For

example, Intel Many Integrated Core (IMIC) instructions supported by Knights Corner

Xeon Phi is 512-bit aligned. Therefore, assuming that each vector element is 32 bits integer,

the size of vector block is 16. We refer to size of the vector block as vec_size in the rest of

this chapter.

When using vector instructions, the search can start from any point in the array that

is multiple of vec_size. That is because vector instructions read vec_size elements of the

vector as a block, simultaneously. Figure 6.4 shows the way the holes and incoming messages

are managed in linked list of vectors design when vec_size is 16. This design is very similar

to linked list of arrays queue data structure. However, in this design a new pointer start

pointer is defined to keep track of the starting points in searching the array. Figure 6.4(a)

shows an empty queue. In Figure 6.4(b), 24 elements are added to the queue and the tail

pointer is updated accordingly. In Figure 6.4(c), the first eight elements are removed from

the queue and the head pointer is updated. However, the start pointer remains the same

since there are still some elements in the first vector block. In Figure 6.4(d), QE9 to QE18

are removed from the queue which means that the first vector block is empty now and the

6.2. TECHNIQUES TO IMPROVE MPI MESSAGE MATCHING 116

N
U

LL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H
e
ad

T
a
il

S
ta

rt

0 0 0 0 0 0 0 0 0 0 0 0

(a) The queue is empty

N
U

LL

Q
E1

Q
E2

Q
E3

Q
E5

Q
E6

Q
E7

Q
E8

Q
E9

Q
E1

0
Q

E1
1

Q
E1

2
Q

E1
3

Q
E1

4
Q

E1
5

Q
E1

6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q

E1
7

Q
E1

8
Q

E1
9

Q
E2

0
Q

E2
1

Q
E2

2
Q

E2
3

Q
E2

4

1 1 1 1 1 1 1 1 0 0
T

a
il

S
ta

rt
H

e
ad

(b) 24 elements are added to the queue

N
U

LL

Q
E9

Q
E1

0
Q

E1
1

Q
E1

2
Q

E1
3

Q
E1

4
Q

E1
5

Q
E1

6

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

H
e
ad

T
a
il

S
ta

rt

Q
E1

6
Q

E1
7

Q
E1

8
Q

E1
9

Q
E2

0
Q

E2
1

Q
E2

2
Q

E2
3

Q
E2

4

1 1 1 1 1 1 1 0 0

(c) QE1 to QE8 are removed from the queue

N
U

LL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H
e
ad

T
a
il

S
ta

rt
Q

E1
9

Q
E2

0
Q

E2
1

Q
E2

2
Q

E2
3

Q
E2

4

0 0 1 1 1 1 1 1 0 0

16 elements

(d) QE9 to QE18 are removed from the queue. start pointer
is updated

Figure 6.4: Managing the holes and incoming messages in the linked list of vectors queue
data structure with vec_size 16

6.3. COMPLEXITY ANALYSIS 117

start pointer can point to the start of second block which is element 16 of the vector.

It should be noted that the linked list of vectors design first searches for the tag in the

first vector block. If any match occurs, it searches for the rank and then context_id in the

same block. Otherwise, it searches the next vector block. This trend is continued until the

whole vector is searched or the searching element is found.

There are a couple of caveats to this approach. First, similar to the linked list of arrays

approach, it preforms best on a dense match-list with very few holes. Secondly, vector

instructions are architecture-dependent so they should be tuned for different architectures.

6.3 Complexity Analysis

In this section, we present the runtime complexity, the number of memory references and

memory complexity of the linked list of arrays/vectors data structures and compare it with

the linked list and Open MPI data structures.

6.3.1 Runtime Complexity

Section 4.3.1 discussed the runtime complexity of the linked list and Open MPI data struc-

tures. In this section, we discuss the runtime complexity in the linked list of arrays/vectors

data structure. For this, we use the same parameters defined in Table 4.1. In the linked list

of arrays/vectors data structure, the insertion complexity is O (1) since the items are always

added to the end of the arrays/vectors in the last linked list element where the tail points

to. The deletion complexity is also O (1) as it always happens after the search operation at

the position where the queue item is found.

As discussed earlier, in the linked list of arrays/vectors data structure there might be

some holes in any of the arrays/vectors. The problem with holes is that they must be

traversed as well even though they do not have any queue element. In the best case, there

is no hole in the queue and the traversal complexity is O
(∑K−1

k=0

∑rk−1
r=0 qkr

)
. As shown

6.3. COMPLEXITY ANALYSIS 118

in Table 4.1, qkr is the number of queue elements with context-id k and rank r. In the

worst-case scenario where all the arrays/vectors in the data structure have only two queue

elements at the head and tail of the array and array_size− 2 holes, the search complexity

becomes

O

(
K−1∑
k=0

rk−1∑
r=0

qkr × array_size

)
(6.1)

In this equation, array_size is the size of each array/vector in the linked list of ar-

rays/vectors data structures. In the presence of MPI_ANY_SOURCE wildcard commu-

nication, we need to traverse MPI_ANY_SOURCE elements in the queues as well. Thus,

the complexity becomes

O

(
K−1∑
k=0

rk−1∑
r=0

(qkr + ak)× array_size

)
(6.2)

In this equation, ak is the number of MPI_ANY_SOURCE queue items associated

with the communicator k. By considering the array_size as a constant value, the traversal

complexity becomes O
(∑K−1

k=0

∑rk−1
r=0 qkr

)
, which is equal to the complexity of the linked

list data structure in Eq. 4.7.

We should note that despite the fact that search complexity in the linked list of ar-

rays/vectors data structure is the same as linked list, its search operation is much faster.

The reason for this is that this data structure provides the opportunity to utilize the cache

more efficiently and reduce the number of memory references compared to the linked list

data structure.

6.3.2 Memory Overhead Complexity

Section 4.3.2 discussed the memory overhead complexity of the linked list and Open MPI

data structures. Here, we present the memory overhead complexity of the linked list of

arrays/vectors data structure. In this data structure, the memory overhead is equal to the

6.4. PERFORMANCE RESULTS AND ANALYSIS 119

number of holes num_holes. In the worse-case scenario, there are two queue elements in

each array/vector and array_size − 2 holes. Therefore, the memory overhead complexity

will be

O (array_size) (6.3)

By considering the array_size as a constant value, the memory overhead complexity

in the linked list of arrays/vectors data structure becomes O (1).

6.4 Performance Results and Analysis

In this section, we first describe the experimental platform. Then, selecting the size of array

in each linked list element is discussed in Section 6.4.2. Finally, we provide microbenchmark

and application results to show the efficiency of the linked list of arrays/vectors compared

to MVAPICH queue data structure in Section 6.4.3 and Section 6.4.4, respectively.

6.4.1 Experimental Platform

We use two clusters for the experiments in this section. The first cluster has two nodes.

Each node consists of a dual-socket 2.0 GHz 8-core Intel Xeon E5-2650 for a total of 16

cores, a 64 GB of memory, and running CentOS 7.1. Each node features an Intel Xeon Phi

KNC coprocessor (5110P) with 60 cores clocked at 1.053 GHz, and running MPSS 3.4.5

and OFED-3.5-2-MIC. The nodes are interconnected through Mellanox ConnectX-3 FDR

HCAs and switch. We refer to this cluster as Cluster C in the rest of this dissertation. The

second cluster is Cluster B where its specifications have been discussed in Section 5.3.1.

The MPI implementation is MVAPICH2-2.0. For fair comparative analysis, both linked list

of arrays and linked list of vectors data structures are implemented in MVAPICH2.

6.4. PERFORMANCE RESULTS AND ANALYSIS 120

Head and Tail

Tag and Rank

Tag and Rank Mask

Req. Pointer

LL Pointer

8 bytes internal pointers

8 bytes

8 bytes

8 bytes

8 bytes external pointer

24 bytes
match entry #1

64 bytes per linked
list entry

8 bytes

Tag and Rank

Tag and Rank Mask

Req. Pointer

8 bytes
24 bytes

match entry #1

8 bytes

Figure 6.5: Packing data structures into 64 byte cache lines

6.4.2 The Size of Array in each Linked List Element

As discussed in Section 6.3, the size of array in each linked list element, array_size, can

have considerable impact on runtime and memory overhead complexity. The advantage of

increasing array_size is that it reduces the number of memory references and improves

spatial locality. However, the disadvantage of increasing array_size is that it increases the

number of traversals and memory overhead if there are significant number of holes in the

array.

For the purposes of this research, the linked list of arrays technique is tuned to optimize

the efficiency of each memory lookup. To accomplish this, the first logical spatial locality

increase that we have explored aims to fill a cache-line of size 64 bytes (assuming x86

instruction set architecture) as shown in Figure 6.5. Each queue element for PRQ contains

24 bytes of information, 4 bytes for the tag, 2 bytes each for the rank and context id, 8

bytes of bit masks for matching, and an 8 byte pointer to the request. For readability,

Figure 6.5 combines rank, tag and context id into a single 4 byte field. This results in each

PRQ linked list element containing two entries (array_size = 2). UMQ does not require

masks, so it only requires 16 bytes per entry. Therefore, each UMQ linked list element

can contain three entries (array_size = 3) to fill in the cache-line [40]. Note that we use

the array_size of 2 and 3 just for application results. For the microbenchmark results,

6.4. PERFORMANCE RESULTS AND ANALYSIS 121

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

-

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

- -

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

- - -

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

- - - -

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

- - - - - - - - - -

Q
E

1
2

Head Tail

Tail

Tail

Tail

Tail

Tail

Head

Head

Head

Head

Head
(a) Forward search

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

-

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

- -

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

Q
E

2

Q
E

3

Q
E

4

- - -

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

Q
E

2

Q
E

3

Q
E

4

- - - -

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

- - - - - - - - - -

Head Tail

Head

Head

Head

Head

Head

Tail

Tail

Tail

Tail

Tail
(b) Middle search

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

Q
E

1
2

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

Q
E

1
1

-

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

Q
E

1
0

- -

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

Q
E

9

- - -

Q
E

1

Q
E

2

Q
E

3

Q
E

4

Q
E

5

Q
E

6

Q
E

7

Q
E

8

- - - -

Q
E

1

- - - - - - - - - -

Head

Head

Head

Head

Head

Head

Tail

Tail

Tail

Tail

Tail

Tail
(c) Backward search

Figure 6.6: Different match order in microbenchmark tests

we use larger array sizes for each linked list element to better evaluate the impact of the

linked list of array/vector technique on microbenchmark performance. The array_size of

microbenchmark evaluations is discussed in Section 6.4.3.

6.4. PERFORMANCE RESULTS AND ANALYSIS 122

6.4.3 Microbenchmark Results

The microbenchmark program consists of two processes: a sender and a receiver. The

goal is to build a certain length of the queue before the receiver starts searching through

them. Therefore, we fill in the queue with a specific number of elements and see how the

length of the queue affects the queue search time. We dequeue the elements once from the

top of the queue (forward search), once from the middle of the queue (middle search) and

also from the bottom of the queue (reverse search). Figure 6.6 shows how forward search,

middle search and reverse search dequeue the elements from the array/vector in linked list

of arrays/vectors data structure.

The Microbenchmark tests are conducted on Cluster C. We run the microbenchmark

experiments twice. Once the experiments are executed in the native mode on the Intel Xeon

Phi KNC coprocessors and once on Intel Xeon processors.

Microbenchmark Results with Intel Xeon Phi KNC Coprocessor

Figure 6.7 shows the average UMQ search time in linked list, linked list of arrays and linked

list of vectors data structures on native mode on KNC. For the microbenchmark results on

KNC coprocessors, the array length in each linked list element is equal to the size of the L1

cache size. This results in large array size in each linked list element which provides us with

the opportunity to better evaluate the impact of the linked list of array technique on forward

search, middle search and backward search microbenchmarks. The L1 cache size in KNC is

32 KB. Therefore, the size of the array for UMQ and PRQ is set to 2048 (32KB/16) and

1360 (⌈32KB/24⌉), respectively. In the absence of wildcard receive operations, the results

for PRQ are the same as UMQ so they are not reported here.

Figure 6.7(a) shows the queue search time in forward search. In forward search, the

item of interest is always at the top of the queue in the linked list and linked list of arrays

data structures so it can be found in one traversal. However, in linked list of vectors design

6.4. PERFORMANCE RESULTS AND ANALYSIS 123

0

5

10

15

20

25

30

100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in forward search on Xeon Phi

linked list of arrays linked list linked list of vectors

(a) Forward search

0

500

1000

1500

10 100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in middle search on Xeon Phi

linked list of arrays linked list linked list of vectors

(b) Middle search

0
5

10
15
20
25
30
35
40
45
50
55

10 100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in middle search on Xeon Phi
(enlarged)

linked list of arrays linked list of vectors

(c) Middle search (enlarged of (b))

0

500

1000

1500

2000

2500

3000

10 100 1000 2000 4000 6000 8000 10000Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in backward search on
Xeon Phi

linked list of arrays linked list linked list of vectors

(d) Backward search

0

20

40

60

80

100

120

10 100 1000 2000 4000 6000 8000 10000Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in backward search on
Xeon Phi (enlarged)

linked list of arrays linked list of vectors

(e) Backward search (enlarged of (d))

Figure 6.7: Queue Search Time in forward search, middle search and backward search with
Xeon Phi KNC coprocessor on Cluster C

6.4. PERFORMANCE RESULTS AND ANALYSIS 124

the search starts from the start pointer which only gets updated when the first vec_size

elements are removed. This makes the linked list of vectors design to have more traversals.

The linked list of vectors design has also some overhead for loading the vector elements

to intrinsic variables. Due to these reasons, the linked list of vectors design incurs longer

queue search time in forward search as can be seen in Figure 6.7(a). The queue search time

in the other two approaches is less than 6µs.

In regard to the middle search, the number of traversals in linked list of arrays/vectors

is more than linked list data structure. This is because when an element is found at the

middle of the linked list of arrays/vectors data structure, the head and tail pointers are not

updated as can be seen in Figure 6.6(b). This creates holes in the array/vector. On the

other hand, in the linked list data structure as soon as one element is found, it is removed

from the queue. Despite the fact that linked list of arrays/vectors data structure has more

traversals than the linked list data structure as can be seen in Figure 6.7(b), they perform

better than linked list design. As discussed earlier, the reason for this is that accessing

the queue elements in an array is much faster than linked list since it has less memory

references. Moreover, when reading the first element from an array, the rest of the array

elements are loaded into the cache (spatial locality). This decreases the queue search time,

significantly. Figure 6.7(c) compares the queue search time in linked list of arrays with

linked list of vectors data structure. As can be seen in this figure, using vector instructions

can improve the queue search time specially for long list traversals.

Figure 6.7(d) shows the queue search time in reverse search in linked list and linked list

of arrays/vectors. As can be seen in this figure, our approaches improve the queue search

time significantly. Comparing linked list of arrays with linked list of vectors, we should

note that linked list of vectors data structure compares every vec_size elements as a block,

simultaneously. Therefore, even if there is only one element in a block, the whole block is

searched. This makes the linked list of vectors design to incur more traversals.

Figure 6.7(e) compares the queue search time in linked list of arrays with linked list of

6.4. PERFORMANCE RESULTS AND ANALYSIS 125

0

1000

2000

3000

4000

5000

10 100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in backward search on
Xeon Phi with 50% wildcard receive

linked list of arrays linked list linked list of vectors

Figure 6.8: Queue search time with 50% wildcard receive in backward search with Xeon
Phi KNC coprocessors on Cluster C

vectors. As can be seen in this figure, for short list traversals, linked list of arrays performs

better than linked list of vectors due to having fewer number of traversals. However, for

long list traversals, the use of vector instructions compensates the number of traversals and

linked list of vectors performs better than linked list of arrays data structure.

In order to show the applicability of the linked list of arrays/vectors in the presence of

wildcard operation, we run the backward search microbenchmark with 50% wildcard receive

operation (MPI_ANY_TAG). Figure 6.8 shows the results on Xeon Phi KNC. It is obvious

from the figure that linked list of arrays/vectors perform much better than the linked list

data structure even in the presence of wildcard communication.

Microbenchmark Results with Intel Xeon Processor

Figure 6.9 shows the queue search time in linked list and linked list of arrays data structures

on Intel Xeon processor. We use Cluster B for the experiments in this figure. A detailed

description of this cluster is provided in Section 5.3.1. Note that the Xeon processor used in

this study does not support vector instructions. Therefore, the linked list of vector results

are not reported on this processor. Similar to previous section, the results are shown for

6.4. PERFORMANCE RESULTS AND ANALYSIS 126

0

0.1

0.2

100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in forward search on Xeon

linked list of arrays linked list

(a) Forward search

0

5

10

15

20

25

30

35

10 100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in middle search on Xeon

linked list of arrays linked list

(b) Middle search

0

10

20

30

40

50

60

70

10 100 1000 2000 4000 6000 8000 10000

Q
u

eu
e

Se
ar

ch
 T

im
e

(µ
s)

Number of Pending Messages in the Queue

Queue search time in backward search on Xeon

linked list of arrays linked list

(c) Backward search

Figure 6.9: Queue Search Time in forward search, middle search and backward search with
Xeon processor on Cluster B

large array size on UMQ and for different searching orders depicted in Figure 6.6 (forward

search, middle search, and reverse search, respectively). Figure 6.9 shows that the linked

list of arrays data structure can provide significant performance improvement for long list

traversals on Xeon processor while preserving the performance for short lists.

6.4.4 Application Results

This section presents AMG2006 and FDS application results to show the efficiency of the

linked list of arrays data structure compared to linked list. For the experiments, we use

Cluster B. Note that we use array_size discussed in Section 6.4.2 for the experiments in

this section.

Figure 6.10 shows the UMQ and PRQ search time speedup over linked list in AMG2006

6.4. PERFORMANCE RESULTS AND ANALYSIS 127

0

0.5

1

1.5

2

UMQ PRQ

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st
Queue search time in AMG2006

1024 processes 2048 processes 4096 processes

(a) Queue search time speedup in AMG2006

0

1

2

3

4

5

UMQ PRQ

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

Queue search time in FDS

1024 processes 2048 processes 4096 processes

(b) Queue search time speedup in FDS

Figure 6.10: PRQ and UMQ search time speedup of linked list of arrays approach over
linked list in AMG2006 and FDS on Cluster B

and FDS applications, respectively. For AMG2006 , we show the average queue search time

speedup over all processes. However, for FDS, average queue search time for process 0 is

shown. The reason for this (as discussed in Section 3.4.3) is that in this application the

majority of the communications is done with process 0 and other processes do not generate

long message queues.

Figure 6.10(a) shows the average queue search time in AMG2006 application when the

number of processes increases from 1024 to 4096. As can be seen from the figure, we can gain

up to 1.44x and 1.17x speedup over linked list in UMQ and PRQ search time, respectively.

Figure 6.10(b) shows the PRQ and UMQ search time speedup in the FDS application. In

this application, the queue length increases with increasing number of processes. Therefore,

higher improvement is gained as we increase the number of processes. With 4096 processes,

it achieves up to 2.9x and 4.5x for UMQ and PRQ, respectively.

Figure 6.11 shows the FDS application runtime speedup. The results in this figure is in

concert with the results shown in Figure 6.10(b). We can observe that the improvements in

queue search time directly translates to application performance. With 4096 processes, we

can gain around 2.92x performance improvement. We do not present the runtime results

for AMG2006 since its queue search time improvements do not translate to a significant

6.5. SUMMARY 128

0

0.5

1

1.5

2

2.5

3

FDS runtime

Sp
ee

d
u

p
 o

ve
r

lin
ke

d
 li

st

FDS application runtime speedup

1024 processes 2048 processes 4096 processes

Figure 6.11: FDS application runtime on Cluster B

improvement in the application runtime. As discussed in Section 3.4.4, there is a sharp

contrast between the number of queue searches for AMG2006 and that of FDS, which could

translate to application performance only for FDS.

6.5 Summary

MPI message matching is designed in the first place for traditional systems with heavy-

weight cores so it does not perform well on many-core systems with light-weight cores.

In this chapter, we take advantage of two techniques that leverage the hardware features

available on the new parallel computing systems to improve the matching performance on

many-core systems while maintaining or improving the performance on traditional Xeon

processors as well. In the first technique, the message queue design is restructured to linked

list of arrays. By using an array for representing the queue, the time for accessing each

element in the queue is reduced. We further improve the performance by taking advantage

of vector operations such as Intel's AVX intrinsics on KNC for searching the queue.

The evaluation results on three different microbenchmarks show that the proposed ap-

proaches can improve the queue search time on Xeon Phi many-core coprocessor by up

to 35.3x. We also show the queue search time and application runtime improvement by

6.5. SUMMARY 129

up to 4.5x and 2.92x on Xeon processors for applications with extreme message matching

requirements, respectively.

So far, we improve the performance of MPI communication by considering message

queue operations. In Chapter 7, we will consider neighborhood collective operations to

enhance MPI communication performance.

130

Chapter 7

MPI Neighborhood Collective Optimization

In previous chapters, we have proposed mechanisms to improve MPI communication through

efficient message matching operations. In this chapter, we consider this issue from a differ-

ent perspective and propose an efficient collaborative communication mechanism to improve

the performance of neighborhood collective operations.

As discussed in Chapter 2, neighborhood collectives are added to the MPI standard to

address the issues associated with conventional collective communications. In neighborhood

collectives, each process only communicates with certain processes considered its neighbors.

The neighbors are specified using the communication pattern derived from the topology

graph of the processes. MPI libraries can leverage the topology information associated with

neighborhood collectives to derive an optimized communication pattern. However, the well-

known MPI libraries such as MPICH, MVAPICH, and Open MPI perform neighborhood

collectives using a naïve approach, where every process uses nonblocking send/receive op-

erations to send/receive data to/from each of its incoming/outgoing neighbors. In other

words, no specific pattern is used to govern the communications in order to gain better

performance.

In this chapter, we propose an optimized collaborative communication pattern and

schedule to improve the performance of neighborhood collectives [51]. With respect to

131

the process topology, we target the distributed graph topology which provides the high-

est flexibility for describing various topologies. The distributed graph topology is used to

extract useful information for communication optimization. More specifically, this infor-

mation is leveraged to discover and exploit common neighborhoods in the topology with the

aim of optimizing the performance of neighborhood collectives through message combin-

ing. Message combining provides the opportunity to reduce the number of communications

which is especially beneficial for small message sizes, which is our main objective in this

chapter.

The communication schedule provides a detailed description and ordering of the send,

receive, and memory copying operations to implement a given neighborhood collective oper-

ation. The experimental results show that the proposed algorithm improves the performance

of nonblocking neighborhood allgather operation up to 8x times.

The contributions of this chapter are as follows:

• We design a collaborative communication pattern for neighborhood collectives. In this

communication pattern, groups of k processes collaborate with each other to perform

message combining and reduce the number of message transfers. For this, we propose

a distributed maximum matching algorithm for weighted k-uniform hypergraphs.

• We propose a topology-agnostic communication pattern as well as an enhanced topology-

aware communication pattern. In the topology-aware design, the physical topology of

the system is considered in deriving the communication pattern.

The rest of the chapter is organized as follows. Section 7.1 discusses the related work.

Section 7.2 explains the preliminary concepts related to our design. Section 7.3 and 7.4

discuss the proposed communication pattern and communication schedule designs, respec-

tively. Selecting the parameters of the design is discussed in Section 7.5. Section 7.6 presents

the experimental results. Finally, Section 7.7 concludes the chapter.

7.1. RELATED WORK 132

7.1 Related Work

Challenges in designing sparse collective operations in MPI is discussed by Hoefler and Traff

[61]. They propose three operations that formed the basis for neighborhood collectives in

MPI. Ovcharenko et al. [93] introduce a general-purpose package on top of MPI to improve

the performance of sparse communications in some applications. Hoefler et al. [59] evaluate

the applications that can benefit from distributed topology interfaces. They also discuss the

optimization challenges that must be addressed by MPI implementers. Kandalla et al. [68]

design non-blocking neighborhood collective operations by using a network-offload-based

approach, and redesign the BFS algorithm. Kumar et al. [75] optimize applications with

neighborhood collective operations by leveraging the multisend interface of the IBM Deep

Computing Framework (DCMF) [74]. Unlike our design, this approach does not attempt

to derive an optimized communication pattern. Each process still sends a message to each

of its outgoing neighbors directly. Our work is orthogonal to this approach.

A number of optimization principles for neighborhood collectives are discussed by Hoefler

and Schneider [60]. They leverage graph coloring to design a communication schedule that

avoids creation of hotspots at the end nodes. Moreover, they provide an algorithm that

balances communications by offloading them from high-outdegree processes to those having

lower outdegrees. As compared to our work that can be applied to both balanced and

unbalanced topologies, balancing the communication tree is only beneficial for unbalanced

topologies. This is important because many real applications have balanced neighborhood

topologies.

Traff, et al. propose a specification [109] and message combining algorithms [108] for

isomorphic, sparse collectives in which all processes have the same neighborhood structure.

Their work is limited to isomorphic neighborhoods, which are not yet available in MPI. In

contrast, our approach is designed over distributed graph topology interface that defines

neighborhood topologies in the most generic and flexible way.

7.2. PRELIMINARIES 133

Lübbe [86] presents a microbenchmark and an experimental methodology to assess the

performance of neighborhood collectives. This work formulates the performance expecta-

tions of neighborhood collectives as self-consistent performance guidelines and show that

MPI libraries are sensitive to the specification of topological neighbors.

Mirsadeghi et al. [91] propose a message-combining mechanism for distributed graph

topologies. Although this work achieves good performance improvement over the default

approach, it has some limitations. The first limitation is that it uses a basic message

combining strategy that considers only pairs of processes at each round. Moreover, it

does not consider the physical topology and/or mapping of processes. In this dissertation,

we address these limitations by designing a communication pattern in which groups of k

processes collaborate with each other to perform message combining. For this, we propose a

distributed maximum matching algorithm for weighted k-uniform hypergraphs. Moreover,

we further optimize the communication pattern by considering the physical topology of the

system in our design.

7.2 Preliminaries

The core idea of our proposed design is that groups of k processes collaborate with each other

to reduce the number of message transfers among the processes in neighborhood collectives.

This can particularly improve performance for small messages, which is our main objective

in this chapter.

7.2.1 Common Neighbors and Friend Groups

In order to reduce the number of communications in neighborhood collectives, we classify

the processes into groups of size k. The processes in each group collaborate with each other

to perform message combining. The common neighbors of the processes p1, p2, ..., pk are

the set of processes that are an outgoing neighbor of all the processes p1, p2, ..., pk. The

7.2. PRELIMINARIES 134

p2 pk

cn1

p1

na

bn

nd ne

nf

ng

nh

ni

cn2 cn3 cnm

nc

Figure 7.1: An example of process topology graph: processes cn1, cn2, ..., cnm are common
neighbors of processes P1, P2, ..., Pk

processes p1, p2, ..., pk are said to be a friend group if they have a certain number of common

neighbors. The minimum number of common neighbors that a group of k processes should

have to be considered as a friend group is defined as θ. Figure 7.1 shows an example of a

process topology graph. In this figure, processes cn1, cn2, ..., cnm are common neighbors of

processes p1, p2, ..., pk. Assuming m > θ, then processes p1, p2, ..., pk will be a friend group.

We should note that each friend process might also have other outgoing neighbors that are

not common with other members of the group. For example, such outgoing neighbors of

the processes p1, p2 and pk are shown in gray, orange and pink, respectively. The common

neighbors of processes p1, p2, ..., pk are shown in green.

7.2.2 Number of communications

In the collaborative mechanism, each friend process pi is responsible for transferring a

message to m/k of the common neighbors. To this end, the processes p1, p2, ..., pk first have

to communicate with each other to exchange their messages. Then, each process pi makes

a combined message for the subset of common outgoing neighbors that it is responsible

7.2. PRELIMINARIES 135

for. This way, each process pi has a maximum of m/k communications with the common

neighbors plus k − 1 communications for exchanging messages with its friends. Therefore,

the total number of communications for each process pi and a specific k can be given by

Eq. 7.1.

N = (m/k) + k − 1 (7.1)

If m is not divisible by k, one more common neighbor is assigned to (m mod k) number

of friends, as in Eq. 7.2.

Nk =

⌈m/k⌉+ k − 1, if i ≤ (m mod k)

⌊m/k⌋+ k − 1, if i > (m mod k)

(7.2)

In order to get any benefit from message combining, the parameters k and θ should be

selected appropriately. We discuss selecting the parameters in detail in Section 7.5.

7.2.3 Main Steps of the Design

Our proposed design consists of two main steps. In the first step, the communication

pattern is built based on the given topology graph. For this, we find the common neighbors

between a group of k processes and use a collaborative mechanism between these processes

to build the communication pattern. In the second step, we use the derived communication

pattern to build an efficient communication schedule for neighborhood collectives. The first

step of the design depends only on the topology graph. Therefore, it is built only once

for each given process topology graph and can be used multiple times for neighborhood

collective calls. Moreover, the results from the first step can be used for different types of

neighborhood collectives. For example, it can be used to make a communication schedule

for both neighborhood allgather and neighborhood alltoall collectives.

In the rest of this chapter, first we discuss building the communication pattern using

7.3. COMMUNICATION PATTERN DESIGN 136

the given topology graph in Section 7.3 (Step 1). Then, in Section 7.4 we provide an

algorithm to make the communication schedule based on the derived pattern and the desired

neighborhood collective operation (Step 2).

7.3 Communication Pattern Design

In this step, we classify the processes into groups of k friends. Each group performs a

collaborative mechanism to build the communication pattern. For this, we mutually group

the processes based on their common neighbors.

7.3.1 The Collaborative Mechanism

Algorithm 7.1 shows a distributed collaborative mechanism between a group of k friends.

Each process in the topology graph runs this algorithm to make its own part of communica-

tion pattern. For each process such as p, the pattern designates the following: (1) the set of

other processes with which p should build a friend group at each communication stage, (2)

the set of outgoing neighbors to which p should send a message at each stage, and whether

the message will be a combined message or not, and (3) the set of incoming neighbors from

which p expects to receive a message at each stage, and again whether that message will

be a combined message or not. Algorithm 7.1 shows how we build such a pattern. Table

7.1 shows the parameters that are used in Algorithm 7.1 and provides their definition. The

inputs of this algorithm are the set of outgoing and incoming neighbors specified by O and

I, respectively, the friendship threshold θ and the parameter k. The output of the algorithm

is the communication pattern τ .

Line 1 saves process rank in p. Then, we generate a friendship matrix T in Line 2.

Matrix T provides the following information: (1) groups of k − 1 processes that have an

exact same set of outgoing neighbors such as X in common with p, as well as with each

other, and (2) the set of common outgoing neighbors X for each group of k − 1 processes.

7.3. COMMUNICATION PATTERN DESIGN 137

Table 7.1: The list of parameters

p The process rank
O The set of outgoing neighbors of p
I The set of incoming neighbors of p
Oa The set of active outgoing neighbors of p
Ia The set of active incoming neighbors of p
θ The friendship threshold
k The friendship group size
τ The output communication pattern
T The friendship matrix
A The auxiliary array to make matrix T
d The number of rows in matrix A
s The number of message combining steps
C The neighbor information
F A vector of selected friends at each iteration
CN A vector of common neighbors at each iteration
CNoff The common neighbors that are assigned to a friend of p
CNon The common neighbors that are assigned to p

Note that the size of X is greater that θ (|X| > θ). Figure 7.2(b) shows an example of

matrix T . Each column of this matrix corresponds to an outgoing neighbor of p. Each row

of the matrix corresponds to a group of k friends. The (i, j)th element in the matrix is 1 if

the friend group corresponding to row i has an outgoing neighbor corresponding to column

j in common. Otherwise, this element is 0. Note that we have at least θ common neighbors

at each row. The algorithm to generate matrix T is discussed in detail in Section 7.3.2.

Line 3 initializes Oa and Ia, which denote the list of active outgoing and incoming neighbors

of p, respectively. Active neighbors correspond to the neighbors that have not been dealt

with yet. We also initialize s to 0; s corresponds to the number of steps in which message

combining is performed in the design. We also initialize the neighbor information C and

common neighbors CN to null in Line 4. The neighbor information has the information

required for each outgoing neighbor and is a part of its communication pattern. For example,

it shows if the message is sent directly to an outgoing neighbor or it is assigned to one of the

friend processes. It also shows the step in which message transfer to each outgoing neighbor

is handled. The neighbor information is sent to each outgoing neighbor of p to let them

7.3. COMMUNICATION PATTERN DESIGN 138

know about the messages they should expect to receive from p in the resulting pattern.

Lines 5 to 26 present the main loop of the algorithm, where three main tasks are pre-

formed: (1) the processes are classified into groups of k friend processes, (2) the common

neighbors are divided between the friend processes, and (3) the topology information and

the communication pattern is updated. In Line 6, p finds a group of friend processes with

which it has the most number of common neighbors. The number of friend processes in

each group is k and they are specified by F = (f1, f2, ..., fk). This line is explained in more

detail in Section 7.3.3. The friends in vector F are sorted based on their process rank. If

F is found, we use T to extract the set of common neighbors between the friend processes

in F and save it in CN (Line 8). In Line 9, we find the index of p in vector F and save it

as m. In Lines 10 to 17, the common neighbors are distributed among the friend processes

in F . This distribution is done based on process ranks. For this, we divide the common

neighbors into k parts (Line 10). Each part is assigned to one of the processes in F (Lines

11 to 17). For example, the first part is assigned to the process with smallest rank, the

second part is assigned to the process with the second smallest rank and so on. In Line 18,

we update the communication pattern τ using the vector F at step s. In Line 19, we use τ

to extract the neighbor information C for each outgoing neighbor of p.

After distributing the common neighbors among the friend processes, we notify the active

outgoing neighbors as to whether they are assigned to p or not (Line 21). Active outgoing

neighbors receive this information and update their active incoming neighbor matrix Ia

(Line 22). In Line 23, we remove CN from the set of active outgoing neighbors Oa. In Line

24, the friendship matrix T is updated based on the active outgoing and incoming neighbors

(Oa and Ia). If the number of active outgoing neighbors in a row becomes less than θ, the

corresponding row is removed from T . At the end of the loop (Line 25), the step number is

incremented.

Once a process gets out of the loop in Lines 5 to 26 due to T = ∅, it should still issue

receive operations corresponding to its active incoming neighbors. This is needed because

7.3. COMMUNICATION PATTERN DESIGN 139

Algorithm 7.1: Distributed message combining mechanism for a group of k
processes

Input : Set of outgoing neighbors O, set of incoming neighbors I, friendship
threshold θ, the size of each group k

Output: The communication pattern τ
1 p = Self-rank;
2 T = Build-friendship-matrix(O,I,θ, k);
3 Oa = O, Ia = I, s = 0;
4 C= {∅}; CN= {∅};
5 while T ̸= ∅ do
6 F= Choose-friendgroup-for-messagecombining(T , k);
7 if F found then
8 CN=Find-common-neighbors(T , F);
9 m=The index of p in the sorted vector F ;

10 Divide elements in CN into k subsets of equal sizes;
11 for i = 1 to k do
12 if i == m then
13 Keep the ith part of CN ;
14 else
15 Assign the ith part of CN to F [i];
16 end
17 end
18 Update-communication-pattern(τ , F , CNon, CNoff , s);
19 Extract-neighbor-info(C, τ);
20 end
21 Notify each neighbor in Oa if it is assigned to p or not;
22 Receive notifications from neighbors in Ia and update it;
23 Oa = Oa − CN ;
24 Update-friendship-matrix(T,Oa, Ia);
25 s = s+ 1;
26 end
27 while |Ia| > 0 do
28 Receive notifications from neighbors in Ia and update it;
29 end
30 Send neighbor information C to outgoing neighbors O;
31 τ=Update communication pattern based on neighbor information C received from

Incoming neighbors I;

7.3. COMMUNICATION PATTERN DESIGN 140

1, 0, 1, 1, ………….. 1

1, 1, 1, 0, ………….. 0

.

.

.

0, 1, 0, 0, ………….. 1

O
u

tg
o

in
g

n
ei

gh
b

o
r

1

O
u

tg
o

in
g

n
ei

gh
b

o
r

2

O
u

tg
o

in
g

n
ei

gh
b

o
r

o

Friend 1

Friend 2

Friend f

(a) Matrix A

1, 0, 1, 0, ………….. 0

0, 0, 1, 0, ………….. 1

.

.

.

0, 1, 0, 0, ………….. 0

O
u

tg
o

in
g

n
ei

gh
b

o
r

1

O
u

tg
o

in
g

n
ei

gh
b

o
r

2

O
u

tg
o

in
g

n
ei

gh
b

o
r

o

First group of k
friends

Second group of k
friends

Last group of k
friends

(b) Matrix T

Figure 7.2: Matrices used in the distributed message combining mechanism

those neighbors will be sending notifications to this process until they get out of the loop

too. This is done in Lines 27 to 29. In Line 30, each process sends the neighbor information

to its outgoing neighbors. The outgoing neighbors add this information to the second part

of their communication pattern (Line 31). The communication pattern will be used as the

input of the scheduling algorithm which will be discussed in Section 7.4.

7.3.2 Building the Friendship Matrix

Algorithm 7.2 shows how the friendship matrix, T , is created. As discussed in Section 7.3.1,

this matrix has the information about all friend groups of p and their common neighbors,

and it is used to make the communication pattern. The inputs of the algorithm are the

outgoing and incoming neighbors, O and I, the threshold θ and the number of friends in

each group k. The output of the algorithm is the friendship matrix T . In this algorithm, the

Auxiliary matrix A is used for making matrix T . Matrix A has the list of friend processes

of p and the set of common neighbors between process p and each one of its friends. Figure

7.3. COMMUNICATION PATTERN DESIGN 141

7.2(a) shows an example of matrix A. In matrix A, each row l corresponds to one friend

process of p and each column j corresponds to one outgoing neighbor of p. If p and the

friend process corresponding to row l both have the outgoing neighbor corresponding to

column j in common, then A[l][j] is set to 1. Otherwise, it is set to 0.

First, we save process rank in p in Line 1. In Line 2, we initialize matrix A to null.

We also initialize the number of rows, d, of matrix A to zero. In Line 3, we use the

procedure explained in [91] to extract the common neighborhood matrix M . Each row of

M is associated with one of the outgoing neighbors of p, and it lists all incoming neighbors

of the corresponding outgoing neighbor. We use the term f for each incoming neighbor of

outgoing neighbors.

In Lines 4 to 13, we build matrix A by processing the elements in M . Lines 5 to

7 correspond to topology-agnostic approach, whereas Lines 8 to 12 are associated with

topology-aware approach. In the topology-agnostic approach, for all the rows and columns

in M (Line 4), we call the function UpdateA (Line 6). This function (Line 20) finds the

row corresponding to f in A (Line 26) and set the element associated with this row, and

the column j to 1 (Line 27). Note that if there is not such a row, it adds a new row to

A (Line 22) associated with f and initialize the row to zero (Line 23). We use the same

procedure for topology-aware approach in Lines 8 to 12. The only difference is that we add

a row corresponding to process f only when f is on the same node (Line 9). Otherwise, we

do not consider it as a friend.

After matrix A is created, we use it to make matrix T . Figure 7.3 shows an example of

generating a row of matrix T from matrix A. In this example, we assume k = 4 and the

processes f1, f2 and f4 make a group with process p. For generating this row, we select

the rows associated with the friends f1, f2 and f4 in matrix A. We call the corresponding

vectors v1, v2 and v3, respectively. Then we perform a bitwise AND (&) operation among

these vectors to get a resulting vector r, such that r[i] = j1[i]&j2[i]&j3[i]. If r[i] = 1, then

it means that f1, f2, f4 and p all have the ith outgoing neighbor of p in common. The

7.3. COMMUNICATION PATTERN DESIGN 142

…………..

1, 0, 1, 1, ………….. 1

1, 1, 1, 0, 0

0, 1, 1, 0, ………….. 1

Matrix A

 v1

0, 1, 0, 0, ………….. 1

1, 0, 1, 0, ………….. 1

0, 0, 1, 1, ………….. 0

 v2

 v3

…………..1, 0, 1, 1, 1

…………..1, 1, 1, 0, 0

…………..1, 0, 1, 0, 1

&

&

…………..1, 0, 1, 0, 0r

1, 0, 1, 0, ………….. 0

0, 0, 1, 0, ………….. 1

.

.

.

0, 1, 0, 0, ………….. 0

Matrix T

If
 |

r|
 >

 ɵ

Friend 1

Friend 2

Friend 4

Row
corresponding to
group of friends

1, 2 and 4

Figure 7.3: An example of generating a row of matrix T from matrix A

number of elements equal to 1 in vector r shows the number of common neighbors between

the processes f1, f2, f4 and p. If this number is greater than θ, we add row r to matrix T

as can be seen in Figure 7.3. We perform this procedure for all possible combinations of

choosing 3 rows in vector A. Lines 14 to 19 of Algorithm 7.2 shows this procedure for a

group of k processes.

7.3.3 Mutual Grouping of the Processes

In Line 6 of Algorithm 7.1, a group of k friends is selected for message combining. Among

all groups of k processes in matrix T , p should select one group with which it has the highest

number of common neighbors. The advantage of selecting a group with higher number of

common neighbors is that it provides more reduction in the number of communications.

In selecting a group of friends, it is important to ensure that the selection is consistent

among all the members of the group. For instance, with k = 3, if p chooses (f1, f2) as its

desired group, then we must make sure that f1 and f2 will also choose (p, f2) and (p, f1)

as their friend groups, respectively. We model this problem as a distributed maximum

weighted matching problem in hypergraphs. The corresponding hypergraph is the friendship

hypergraph H(P,E), where P is the set of all processes and {p1, p2, ..., pk} ∈ E if and only if

p1, p2, ..., pk have at least θ neighbors in common. H is k-uniform because all friend groups

7.3. COMMUNICATION PATTERN DESIGN 143

Algorithm 7.2: Building friendship matrix
Input : Set of outgoing neighbors O, set of incoming neighbors I, friendship

threshold θ, the size of each group k
Output: The friendship matrix T

1 p= Self-rank;
2 A = null, d=0;;
3 M= Generate-common-neighborhood-matrix(O, I);
4 for all f = M [i][j] do
5 if topology-agnostic then
6 Update-A(A, f, j);
7 end
8 if topology-aware then
9 if p and f are on the same node then

10 Update-A(A, f, j);
11 end
12 end
13 end
14 for all combinations of k − 1 rows such as v1, v2, ..., vk−1 in A do
15 r= v1 & v2 &...& vk−1;
16 if |r| > θ then
17 Add row r to matrix T ;
18 end
19 end
20 function Update-A(A, f, j)
21 if no row in A corresponding to f then
22 Add a new row to A associated with f with index d;
23 A[d] = 0;
24 d++;
25 end
26 l= the row corresponding to f in A;
27 A[l][j] = 1;
28 end function

7.3. COMMUNICATION PATTERN DESIGN 144

are of the same size k. The weight of each hyperedge denotes the number of common

neighbors of the group of friend processes that are represented by that hyperedge. Note

that the friendship hypergraph H is a distributed graph that we extract from the process

topology graph. The friendship matrix T discussed in Section 7.3.1 and 7.3.2 represents the

part of H that is local to each process such as p. In other words, it has information about

all the hyperedges of H that p is a member of.

Many papers consider maximum matching problem in hypergraphs [67, 36, 81, 94, 115,

72]. However, they either do not provide a distributed algorithm [67, 36, 81, 94, 115] or they

use assumptions [72] that make their solution not applicable to our case in this chapter.

For example, in [72], the authors assume that the distributed system has a process for each

hyperedge. In mutual grouping problem, this means that each process should be responsible

for one hyperedge of friendship hypergraph. This is problematic since the number of hyper-

edges of the friendship hypergraph can be more than the number of processes. Therefore,

these approaches are not applicable to our work.

The research in [112, 62, 84, 85] propose algorithms for the distributed weighted match-

ing in ordinary graphs. Based on an evaluation study in [63], Hoepman’s algorithm [62] per-

forms better than others. In this section, we propose an algorithm that extends Hoepman’s

algorithm to support hypergraphs. In other words, we propose a distributed maximum

weighted matching algorithm for k-uniform hypergraphs.

Algorithm 7.3 provides a detailed description of the proposed algorithm. The input of

this algorithm is the friendship matrix T and the parameter k. The output of the algorithm

is a group of friends for message combining. This algorithm works based on the information

in two main sets: B and R. These sets are updated in each iteration of the algorithm

according to the messages received from other processes. These messages can be either a

request or drop message. A request from process x to process y means that process x wants

to make a friend group with process y. A drop message means that process x will not

7.3. COMMUNICATION PATTERN DESIGN 145

make a friend group with process y. The set B maintains the hyperedges or friend groups1

that can potentially be the chosen hyperedges in the maximum weighted matching. It also

contains the weight of each hyperedge which is actually the number of common neighbors

for each friend group. At initialization, this set contains all possible hyperedges in matrix

T and their associated weights in Line 2. The set R contains all processes from which a

request has been received, and their selected hyperedges. For example, the element {u, V }

in set R of process p shows that process u requests process p to make a friend group or

hyperedge with the processes listed in vector V . This set is initialized to null in Line 3 of

the algorithm. Among all hyperedges in vector B, we choose a hyperedge with maximum

weight and save the processes of this hyperedge in vector G (Line 4). Then, in Lines 5 to 7,

we send a request including vector G to all processes in G. This way, each process informs

the processes with whom it wants to be friend and lets them know about its selected group

of friends.

Lines 8 to 41 is the main loop of the algorithm. In each iteration of this loop, two main

tasks are performed iteratively: (1) Process p receives a drop or request message from a

process and updates R and B accordingly, and (2) Based on the received request and the

information in R and B, process p sends a drop or request message to other processes. This

trend continues until a group of friend processes is mutually selected by all processes in a

group or until there is no friend group left in the set B. In Line 9, process p receives message

m from process u. If m is a request message, then we add process u and its selected group

of friends V to set R (Lines 10 to 12). Otherwise, if it is a drop message, we remove from

B all groups of friends who have process u as one of their members (Lines 14 to 18). If p

chooses u as one of its friends (Line 19) but it receives a drop message from u (Line 13),

it has to choose a new group of friends from B. In Lines 20 to 21, we check if any friend

group is left in B. If no friend group is left, we return null and exit the loop (Line 21).

Otherwise, we choose a new group of friends (Line 23) and send them a request message
1In the rest of the chapter, we use the terms hyperedge and friend group interchangeably.

7.3. COMMUNICATION PATTERN DESIGN 146

Algorithm 7.3: Distributed and mutual grouping of processes
Input : Neighborhood matrix T , the number of friend processes in each group k
Output: A group of friends for message combining

1 p= Self-rank;
2 B= extract-hyperedges-and their-weight(T);
3 R= ∅;
4 G = find-hyperedge-with-maximum-weight(B);
5 for i = 0 to k do
6 send a request including G to process G[i];
7 end
8 while TRUE do
9 Receive m from u;

10 if m=request that contains friend group V then
11 R = R ∪ {u, V };
12 end
13 if m=drop message then
14 for all Z ∈ B do
15 if u ∈ Z then
16 B = B − {Z};
17 end
18 end
19 if {u ∈ G} then
20 if B = NULL then
21 Return null;
22 end
23 G = find-the-hyperedge-with-maximum- weight(B);
24 for i = 0 to k do
25 send a request including G to process G[i];
26 end
27 end
28 end
29 c = 0;
30 for i = 0 to k do
31 if {{G[i], G} ∈ R} then
32 c++;
33 end
34 end
35 if c == k − 1 then
36 for all w ∈ B − {G} do
37 Send drop message to w;
38 end
39 Return G;
40 end
41 end

7.3. COMMUNICATION PATTERN DESIGN 147

(Lines 24 to 27). In Lines 30 to 34, we check the set R to see if the processes that are

chosen by process p have also selected p with the same group of friends G. In other words,

we count the number of processes in G who meet this condition. If the number of such

processes was k − 1 (Line 35), it means that the friend group selection is mutual between

all the processes in G. Therefore, we send a drop message to all the remaining processes in

B (Lines 36 to 38) and return G as our chosen friend group for message combining (Line

39).

7.3.4 Complexities

The complexity of Algorithm 7.2 can be given by O(∆2 + F k), where ∆ denotes the max-

imum number of neighbors per process (degree of the process topology graph) and F is

the maximum number of friends per process. In topology-aware approach, the worst-case

complexity is O(ρk), where ρ is the number of processes per node. On the other hand, the

worst-case complexity of topology-agnostic approach is O(nk), where n is the number of

processes.

The complexity of Algorithm 7.3 can be given by O(rα), where r is the number of

iterations of the algorithm and α is the number of friend groups. In worst case, the number

of iterations, r, is equal to kα. For a complete friendship graph, we have α =
(
ρ
k

)
and

α =
(
n
k

)
for topology-aware and topology-agnostic approaches, respectively. So, the worst-

case complexity of Algorithm 7.3 is given by O(ρ2k) and O(n2k) for topology-aware and

topology-agnostic approaches, respectively.

The complexity of Algorithm 7.1 is O(F k+trα), where t denotes the number of iterations

of the algorithm. In worst case, the number of iterations, t, is equal to the number of

friend groups α. Assuming a fully connected friendship graph, the worst-case complexity

of Algorithm 7.1 is given by O(ρ3k) and O(n3k) for topology-aware and topology-agnostic

approaches, respectively.

Note that these are worst-case complexities which assume complete process topology

7.4. THE PROPOSED COMMUNICATION SCHEDULE DESIGN 148

and friendship graphs. In practical use cases of neighborhood collectives, these graphs are

expected to have a lower degree than that of a complete graph.

7.4 The Proposed Communication Schedule Design

In Section 7.3, we discussed how to use the underlying process topology graph to design an

optimized communication pattern. This section uses the derived communication pattern

to build a communication schedule for the neighborhood allgather operation. In contrast

to communication pattern that is built only once for each topology graph, communication

schedule should be built each time a neighborhood collective is called. Algorithm 7.4 pro-

vides a detailed description of the proposed communication schedule design. The inputs of

this algorithm are the communication pattern τ which is derived from Algorithm 7.1 and

all the inputs required for a neighborhood collective operation such as send/receive buffers,

send/receive message sizes, send/receive data types and MPI communicator. The output

of the algorithm is the communication schedule ω for neighborhood allgather.

The communication pattern τ consists of multiple steps. Each step corresponds to one

iteration in the main loop of Algorithm 7.1 and has the following information: (1) The

group of friend processes for process p at step s, if any, and (2) the common neighbors

associated with the friend processes in the group. This information is used in the main loop

of Algorithm 7.4 (Lines 2 to 24) to make the communication schedule.

This loop performs two tasks iteratively: (1) The friend processes communicate with

each other to exchange their messages (Lines 3 to 7), and (2) each friend process generates

the combined message and sends it to the common neighbors associated with it (Lines 8 to

19). After the main loop is done, there might be some ongoing neighbors that do not belong

to any group. So, we need to communicate with them directly in a naive way (Lines 25 to

34). More specifically, at each step s of the communication pattern τ , process p checks if

it has a friend group for message combining (Line 3). If yes, it communicates with them

7.4. THE PROPOSED COMMUNICATION SCHEDULE DESIGN 149

Algorithm 7.4: Communication Schedule Design
Input : Communication pattern τ , send/recv buffers, send/recv sizes, send/recv

data types, MPI communicator
Output: Communication schedule ω

1 p= Self-rank;
2 for each step s in τ do
3 if have a goup friend at step s for message combining then
4 for each friend f in G associated with step s do
5 ω ← send its own message to f ;
6 ω ← receive process f ’s message from him;
7 end
8 ω ← call MPI wait;
9 ω ← generate the combined message;

10 for each outgoing neighbor no do
11 if no is assigned to p at step s then
12 ω ← send the combined message to no;
13 end
14 end
15 end
16 for each incoming neighbor ni tagged with s do
17 ω ← receive the combined message from ni;
18 end
19 ω ← call MPI wait;
20 for each incoming neighbor ni tagged with s do
21 ω ← move combined received message to final buffers;
22 end
23 ω ← call MPI wait;
24 end
25 for each remaining outgoing neighbor no do
26 ω ← send direct message to no;
27 end
28 for each remaining incoming neighbor ni do
29 ω ← receive the message from ni;
30 end
31 ω ← call MPI wait;
32 for each remaining incoming neighbor ni do
33 ω ← move the received message to final buffers;
34 end

7.5. DESIGN PARAMETERS SELECTION 150

(Lines 4 to 7). In other words, it sends its own message to its friend processes and receives

the messages from its friends. Then, we add a hint to ω in Line 8 to make sure that all the

processes are done with communicating with their friends. Next, process p generates the

combined message which consists of its own message plus the messages of all of its friends

(Line 9). In Lines 10 to 14, process p sends the combined message to the common neighbors

that are assigned to it at step s.

7.5 Design Parameters Selection

In this section, we discuss selecting parameters k and θ to get the best performance from

message combining mechanism. The drawback of increasing the parameter k is that it

increases the overhead of generating friend groups (Section 7.3.2). This overhead is more

considerable in topology-agnostic approach where the friends can be chosen from all pro-

cesses in the cluster. Another disadvantage of increasing k is that it potentially decreases

the number of common neighbors. On the other hand, increasing k provides the opportunity

to perform message combining between larger group of friend processes. If the friend groups

have a considerable number of common neighbors, this results in reducing the number of

communications. So, there is a trade-off for selecting the parameters. In the following, we

discuss selecting the parameters in topology-agnostic and topology-aware approaches. Note

that in this section, we assume that the number of common neighbors is dividable by the

number of processes in the friend group.

7.5.1 Topology-agnostic Approach

For deriving the parameters in topology-agnostic approach, we assume that a group of n

processes have m common neighbors. In this graph, we can make friend groups of size k in

which k ≤ n. The question is for what value of m it is worth to make a friend group with

maximum number of processes (k = n). As discussed earlier, in topology-agnostic approach,

7.5. DESIGN PARAMETERS SELECTION 151

increasing k increases the overhead of creating friend groups significantly. Therefore, we

should not increase k unless increasing k reduces the number of communications (Nk <

Nk−1). Otherwise, the overhead of increasing k is not compensated. By substituting the

number of communications Nk derived from Eq. 7.1 in above-mentioned inequality, we

have:

(m/k) + k − 1 < (m/(k − 1)) + (k − 1)− 1 (7.3)

Therefore:

m > k × (k − 1) (7.4)

Eq. 7.4 shows that for a friend group of size k, the number of common neighbors m

should be greater than k × (k − 1) to benefit from topology-agnostic approach. Therefore,

we choose θ = k × (k − 1) in all the experiments for topology-agnostic design.

7.5.2 Topology-aware Approach

For selecting parameters in the topology-aware approach, we do not use the same procedure

discussed in 7.5.1 for the topology-agnostic design. This is because of three main reasons:

• As discussed in Section 7.3.2, in topology-aware design, the friends are selected among

intra-node processes. This provides the opportunity to remove some inter-node com-

munications between processes and their outgoing neighbors and replace them with

intra-node communications between friends, effectively providing a better perfor-

mance than the topology-agnostic approach.

• The topology-aware design has less options for selecting friends since it chooses friends

only among processes on the same node. This may make Eq. 7.4 a very hard condition

for this approach, leading to no friend selection.

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 152

• In topology-agnostic design, increasing k increases the overhead of generating friend

groups significantly. Therefore, we use Eq. 7.4 to make sure that we do not increase

k unless we have a sufficient number of common neighbors. In topology-aware de-

sign, the friends are limited to intra-node processes. This alleviates the overhead of

generating friend groups with increasing K.

Therefore, the topology-aware design does not have a significant overhead for a large k,

and its minor overhead is compensated to some extent by replacing some inter-node com-

munications with intra-node communications. Therefore, in the topology-aware approach,

we choose to reduce the number of communications Nk to less than the default approach,

m. In other words, we have:

(m/k) + k − 1 < m (7.5)

Therefore,

m > k (7.6)

Eq. 7.6 shows that the number of common neighbors should be greater than the number

of friend processes k. Therefore, we choose θ = k in all the experiments for topology-aware

design. Note that Eq. 7.4 for topology-agnostic approach also meets the condition in Eq.

7.6.

7.6 Experimental Results and Analysis

This section evaluates the performance of our proposed design on different neighborhood

topologies. The evaluation is done on a microbenchmark that measures the latency of

neighborhood allgather using collaborative communication mechanism and compares it with

the MVAPICH default design. The MPI implementation is MVAPICH2-2.2. We use the

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 153

same microbenchmark used in [91]. This mircobenchmark builds the process topology

graph, calls the function MPI_Ineighbor_allgather 1000 times, and then reports its average

latency.

For the experiments in this chapter, we use two clusters. The first cluster is Niagra

at the SciNet HPC Consortium of Compute Canada. the Niagra cluster consists of 1,500

nodes, for a total of 60,000 cores. Each node has 40 Intel Skylake cores operating at 2.4GHz,

and a 202 GB of memory. It uses Mellanox EDR InfiniBand for the interconnect. We refer

to Niagara as Cluster D in this dissertation. The second cluster is Cluster B in which its

specifications have been presented in Section 5.3.1.

7.6.1 Moore Neighborhoods

The first topology graph that we use to evaluate the efficiency of our design is Moore

neighborhood [106]. Two parameters define Moore neighborhood: dimension (d) and radius

(r). The parameter d shows the number of grid dimensions for organizing the nodes or MPI

processes. The parameter r shows the absolute value of the maximum distance at which

other nodes are considered a neighbor of a given node. For a Moore neighborhood process

topology graph with specific d and r, the number of neighbors of each node is (2r+1)d− 1.

Note that Moore neighborhoods are symmetric which means that each node has the same

incoming and outgoing neighbor. Figure 7.4 shows a sample Moore neighborhood with d=2

and r=1, 2.

The advantage of Moore neighborhoods is that they provide regular type of (balanced)

topologies. Moreover, they can be considered as a generalization of stencil patterns such as

2D 9-point or 3D 27-point. Also, experimenting with different values of d and r provides

us the opportunity to model a wider variety of neighborhood shape and sizes. Moore

neighborhoods have also been used by Mirsadeghi et al. [91], Träff et al. [109], [108] and

also Lübbe [86]. For the Moore neighborhood experiments, we use Cluster D.

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 154

P

(a) d=2, r=1

P

(b) d=2, r=2

Figure 7.4: A sample Moore neighborhood with d = 2 and r = 1, 2. The neighbors are
shown in green for node P

Number of Hyperedges

In this section, we discuss the number of hyperedges that are generated for each process

with different values of d and r in Moore neighborhood. Figure 7.5 shows the results for

different values of k in topology-agnostic and topology-aware designs. In these figures, the

number of hyperedges are averaged across all processes. Note that the hypergraph is built

only based on the topology graph and it is independent of the neighborhood operation

and the size of the messages. One observation from these figures is that the number of

hyperedges increases with the density of the topology graph. For example, for d=2, the

number of hyperedges increases with increasing the neighborhood radius. Moreover, for the

same radius (r = 1), the number of hyperedges increases with increasing the dimensions.

The reason for this is that as we increase the density of the topology graph, the number of

common neighbors between the processes increases. This makes the processes to have more

friend groups which increases the number of hyperedges.

Another observation from Figure 7.5 is that increasing k up to a certain point increases

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 155

1

10

100

1000

10000

100000

1000000

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

N
u

m
b

er
 o

f
h

yp
er

ed
ge

s

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(a) Topology-agnostic

1

10

100

1000

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

N
u

m
b

er
 o

f
h

yp
er

ed
ge

s

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(b) Topology-aware

Figure 7.5: Number of hyperedges for Moore neighborhood for 4K processes on Cluster D.
Missing bars represent a zero value

the number of hyperedges. However, increasing it further reduces the number of hyperedges.

For example, for d = 2, r = 3 increasing k from 2 to 4 increases the number of hyperedges.

However, increasing it further to k = 8 and k = 16 results in no hyperedges. This is because

as we increase k, we can have more combinations of the friend processes in each friend group

which results in more hyperedges. More specifically, increasing k increases the number of

iterations in Line 14 of Algorithm 7.2 which results in more rows in matrix T . On the other

hand, the probability of having sufficient number of common neighbors between processes in

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 156

a friend group of size k decreases as we increase k. In particular, |r| reduces as we increase

k in Line 15 of Algorithm 7.2. Therefore, it would be less probable to meet the condition

in Line 16 and consequently, the number of rows in matrix T reduces which results in fewer

hyperedges.

Comparing Figure 7.5(a) with 7.5(b), we can observe that in many cases the number of

hyperedges in the topology-agnostic design is considerably more than the topology-aware

design. This is because in the topology-agnostic design, the processes can choose their

friends from all the processes in the cluster while in topology-aware design, the friends are

limited to intra-node processes. Although, there are a few cases such as k = 8 and k = 16 for

d=4 that the topology-aware design has more hyperedges. This is because the parameter

θ is smaller in the topology-aware design as has been discussed in Section 7.5. In these

cases, each process has a few common neighbors with the processes on the same node. The

number of these common neighbors is more than θ in the topology-aware design but they

are not sufficient to make friend groups in topology-agnostic design which has larger θ.

The advantage of having a large number of hyperedges is that we have more options to

select the friend groups with maximum number of common neighbors. This would result

in more improvement in performance of neighborhood collective operations. On the other

hand, the disadvantage of having a large number of hyperedges is that it increases the

required memory for saving the friend groups in matrix T . Moreover, it increases the

overhead of message combining mechanism (Algorithm 7.1). We discuss the performance

improvement of neighborhood allgather operation and the overhead of message combining

mechanism in Moore neighborhood in the next sections.

Performance Improvement

Figure 7.6 shows the performance improvement of MPI_Ineighbor_allgather with 4 bytes

message size compared to the default MVAPICH for Moore Neighborhood in topology-

agnostic and topology-aware designs, respectively. These figures show that we can obtain

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 157

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(a) Topology-agnostic

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(b) Topology-aware

Figure 7.6: MPI_Ineighbor_allgather speedup for Moore neighborhood for 4K processes-
4 byte message size on Cluster D

up to around 4x performance improvement in both topology-aware and topology-agnostic

designs. The speedup increases with the density of the topology graph. That is because of

the large number of neighbors in denser graphs which provide more opportunity for per-

formance improvement. In the cases that the processes have a small number of common

neighbors (such as d = 2 , r = 1), we observe a slight performance degradation. The

reason for this is that the message combining approach requires some time for the commu-

nication between friend processes. This is not compensated in topology graphs that have

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 158

a small number of common neighbors. Note that the results in this figure is in concert

with the results in Figure 7.5. As the number of hyperedges increases, more performance

improvement is obtained. This is because with a large number of hyperedges, we have more

options to select friend groups with maximum number of common neighbors which leads

to more speedup. Comparing Figure 7.6(a) and 7.6(b), we can observe that in many cases,

the performance improvement of the topology-aware approach is close to the performance

improvement in the topology-agnostic approach and in some cases (such as k = 2 when

d=4, r=1), it is even better. This shows the efficiency of the topology-aware approach that

provides comparable performance improvement despite the fact that it has significantly less

number of hyperedges compared to the topology agnostic approach (Figure 7.5). This per-

formance gain is because of the fact that the friends are chosen among intra-node processes

which reduces the communication time between the processes in a friend group.

Figure 7.7 shows the speedup for d = 2, r = 4 with different message sizes. This figure

shows that the speedup reduces with increasing the size of the message and it reaches around

1 for message sizes greater than 1KB. This is because the message combining approach does

not benefit the communication pattern in regard to its bandwidth. Therefore, it does not

improve the communication performance of large messages, which are sensitive mainly to

bandwidth characteristics of communication patterns. Note that for a message of size s,

the size of the combined message is k × s.

Another observation from Figure 7.7 is that the performance improvement for k = 8

and k = 16 is around 1. As can be seen in Figure 7.5, when k = 8 and k = 16, the number

of hyperedges for d = 2 and r = 4 is 0. So there is no friend groups for message combining

in these cases which leads to no speedup.

Overhead Analysis

Figure 7.8 shows the overhead of making the communication pattern in Algorithm 7.1.

This overhead is encountered only once for a given topology and it is independent of the

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 159

0

1

2

3

4

5

6

7

8

1 4 16 64 256 1k 4k 16k

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Message size (Byte)

k=2 k=4 k=8 k=16

(a) Topology-agnostic

0

1

2

3

4

5

1 4 16 64 256 1k 4k 16k

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Message size (Byte)

k=2 k=4 k=8 k=16

(b) Topology-aware

Figure 7.7: MPI_Ineighbor_allgather speedup for Moore neighborhood with d=2, r=4 for
different message sizes and 4K processes on Cluster D

neighborhood operation and the message size. Comparing these figures with Figure 7.5, we

can observe that the overhead of making the communication pattern has a direct relationship

with the number of hyperedges. This makes sense since it takes more time to find the best

friend group among a larger number of hyperedges. Figure 7.8(b) shows that in almost all

cases, the overhead of making the communication pattern in topology-aware approach is

less than 1s. This shows the efficiency of the topology-aware approach compared to the

topology-agnostic approach (Figure 7.8(a)).

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 160

0.01

0.1

1

10

100

1000

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

O
ve

rh
ea

d
 (

s)

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(a) Topology-agnostic

0.01

0.1

1

10

d=2, r=1 d=2, r=2 d=2, r=3 d=2, r=4 d=3, r=1 d=3, r=2 d=4, r=1

O
ve

rh
ea

d
 (

s)

Neighborhood Dimension and Radius

k=2 k=4 k=8 k=16

(b) Topology-aware

Figure 7.8: The overhead of Algorithm 1 for Moore neighborhood with 4K processes on
Cluster D

7.6.2 Random Sparse Graph

The second topology graph that we use to evaluate the efficiency of our design is Erdös-

Renyi random sparse graph G(V,E) [42]. In this graph, V corresponds to the set of MPI

processes, and an edge (i, j) ∈ E shows an outgoing neighbor from process i to process

j. In random sparse graph, the outgoing neighbors for each process are created randomly.

The number of outgoing neighbors depends on the density factor δ (0 < δ < 1). A higher δ

means a denser graph. The same graph has also been used in other neighborhood collective

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 161

works such as Hoefler and Schneider [60] and Mirsadeghi et al. [91]. We show the results

with different values of δ to evaluate the collaborative communication mechanism with

neighborhood topologies of different shapes and sizes. We use Cluster B for the experiments

in this section.

Section 7.6.1 shows that in the Moore neighborhood, the topology-aware approach pro-

vides a better or equal speedup as the topology-agnostic approach and at the same time,

it has lower overhead and memory consumption (number of hyperedges). Random sparse

graph has denser communications compared to Moore neighborhood. Therefore, in this

topology graph, the efficiency gap between the topology-aware and topology-agnostic ap-

proaches is even more. More specifically, the overhead and memory consumption of the

topology-agnostic approach make it non-feasible for dense topology graphs such as random

sparse graph. So, in this section, we show the results just for the topology-aware approach.

Note that the dense communication of random sparse graph makes this topology more sen-

sitive to the parameter k. Therefore, in this section, we conduct the experiments with the

more fine-grain k values. This way we could measure the impact of small variations of k

on the performance. Moreover, the performance gain reaches a steady state for k ≥ 6.

Therefore, we show the results up to k = 6.

Number of Hyperedges

Figure 7.9 shows the number of hyperedges in random sparse graph for different k and δ.

As can be seen in this figure, the number of hyperedges increases with increasing δ. This

is because increasing the edge density increases the number of neighbors which provides

the opportunity for the processes to make more friend groups. Another observation from

this figure is that for δ = 0.05, k ≥ 3 results in no hyperedges. That is because of the

small number of communications in δ = 0.05 that results in no or a few common neighbors

between groups of size greater than 3. The same thing happens for k ≥ 6 when δ = 0.2.

For large edge densities (δ ≥ 0.4), increasing k increases the number of hyperedges. That

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 162

1

10

100

1000

10000

100000

1000000

0.05 0.2 0.4 0.6 0.8

N
u

m
b

er
 o

f
h

yp
er

ed
ge

s

Edge Density

k=2 k=3 k=4 k=6

Figure 7.9: Number of hyperedges in Random sparse graph with topology-aware design and
1K processes on Cluster B. Missing bars represent a zero value

is because in dense topology graphs, the number of common neighbors is large enough to

make friend groups of a large size (k = 6). Moreover, as we increase k, we can have more

combinations of the friend processes in each friend group which results in more hyperedges.

Performance Improvement

Figure 7.10 shows the neighborhood allgather speedup for 4 byte message size with different

k and δ. This figure shows that the k value in which provides the highest speedup increases

with increasing the edge density. For example, for δ = 0.05 and δ = 0.2, k = 2 provides the

highest speedup. For δ = 0.4, k = 3 has the highest speedup and for δ = 0.6 and δ = 0.8, the

speedup gained by k = 4 is the highest. To understand the reason behind this, we should

consider the negative and positive impact of increasing k on the performance. The advantage

of increasing k is that it provides the opportunity to perform message combining between

larger group of friend processes. However, it reduces the number of common neighbors in

the hyperedges. Therefore, increasing k is not beneficial unless the topology graph is dense

enough to have sufficient number of common neighbors for large k. For example, when

δ = 0.2, we observe 2.6x performance improvement with k = 2. When we increase k to

3 and 4, the number of common neighbors reduces. With a few common neighbors, the

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 163

0

0.5

1

1.5

2

2.5

3

3.5

4

0.05 0.2 0.4 0.6 0.8

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Edge Density

k=2 k=3 k=4 k=6

Figure 7.10: MPI_Ineighbor_allgather speedup in Random sparse graph with topology-
aware design and 1K processes- 4 bytes message size on Cluster B

overhead of communication between k friend processes is not compensated and the speedup

drops. For k = 6, there is no hyperedge (Figure 7.9) and we do not have any speedup. When

we increase the edge density to δ = 0.4, a group of k = 3 friend processes have sufficient

common neighbors to gain speedup of 2.2x. However, for groups of size k ≥ 4, the number

of common neighbors reduces and the speedup drops. For denser topology graphs (δ = 0.6

and δ = 0.8), groups of k = 4 friend processes can have sufficient common neighbors to

provide the maximum speedup.

Figure 7.11 shows the neighbor allgather speedup for different message sizes and three

different edge densities. Comparing Figure 7.11(a), 7.11(b) and 7.11(c), we can observe

that the speedup increases with increasing δ. That is because as we increase δ the number

of communications increases which provide more room for performance improvement. For

δ = 0.05, the speedup is around 1 for almost all cases. That is because of the small number

of common neighbors in δ = 0.05 that make the default approach good enough in this case.

For δ = 0.6 and δ = 0.8, the speedup reduces with increasing the message size and it reaches

around 1 for message sizes greater than 1KB. This is because of the bandwidth effect of the

larger message sizes.

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 164

0

0.5

1

1.5

2

2.5

3

3.5

1 4 16 64 256 1k 4k 16k

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Message size (Byte)

k=2 k=3 k=4 k=6

(a) δ=0.05

0

0.5

1

1.5

2

2.5

3

3.5

1 4 16 64 256 1k 4k 16k

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Message size (Byte)

k=2 k=3 k=4 k=6

(b) δ=0.6

0

0.5

1

1.5

2

2.5

3

1 4 16 64 256 1k 4k 16k

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Message size (Byte)

k=2 k=3 k=4 k=6

(c) δ=0.8

Figure 7.11: Neighbor allgather speedup for Random Sparse Graph with topology-aware
design for different message sizes and 1K processes on Cluster B

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 165

0.1

1

10

100

1000

10000

0.05 0.2 0.4 0.6 0.8

O
ve

rh
ea

d
 (

s)

Edge Density

k=2 k=3 k=4 k=6

Figure 7.12: The overhead of Algorithm 1 for random sparse graph with topology-aware
design for 1K processes on Cluster B

Overhead Analysis

Figure 7.12 shows the overhead of making the communication pattern for different k and δ.

This overhead happens only once for each topology graph. The results in this figure is in

concert with the results in Figure 7.9. As discussed in Section 7.6.1, the overhead increases

with increasing the number of hyperedges. This is because it takes more time to make the

communication pattern among a larger number of friend groups.

One interesting observation from Figure 7.10 and Figure 7.12 is that the k values that

provide more speedup has considerably less overhead compared to larger k values with less

speedup. For example, when δ = 0.4, k = 3 provides the maximum speedup of 2.26x. In

this case, the overhead of generating the communication pattern is 4 seconds. When we

increase k to 4 or 6, the speedup reduces and at the same time we have more overhead.

This shows that by choosing k appropriately we can gain the maximum speedup with less

overhead and memory consumption (number of hyperedges).

Comparing Figure 7.12 with Figure 7.8(b), we can observe that the overhead of making

the communication pattern in Moore neighborhood is considerably less than random sparse

graph (1s compared to 30s to gain the maximum speedup). This is because Moore has

more structured and localized neighborhood topology compared to random sparse graph.

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 166

Considering the fact that many real applications have structured and localized neighborhood

topologies, this shows the efficiency of the proposed topology-aware design.

7.6.3 Application Results and Analysis

In this section, we use a sparse matrix-matrix multiplication (SpMM) kernel to show the

benefits and practicality of neighborhood collectives and our proposed design to optimize

them. SpMM is an important kernel used in computational linear algebra and big data

analytics [19]. The performance bottleneck of SpMM is the cost of communications that

are performed in each iteration to gather specific rows/columns of the matrices that are

distributed among all processes. We show how MPI neighborhood collectives can help

to reduce the cost of such communications in SpMM. We also show how our proposed

collaborative communication mechanism for neighborhood collectives can further improve

the performance of SpMM.

The SpMM problem can be defined as Aml ×Bln = Cmn, where A is a sparse matrix of

size m× l which should be multiplied by matrix B of size l×n to get the result matrix C of

size m×n. To parallelize the multiplication, we use a row-wise block-striped decomposition

[77] of A and B to evenly distribute the rows of A and B among the set of all processes.

The kernel will then consist of l iterations with a call to MPI_Allgather in each iteration.

With p processes, each process will compute m
p rows of the result matrix C.

The MPI_Allgather used in each iteration of SpMM is used to gather a column of B at

all processes. However, we can take advantage of the sparsity of A to replace the costly global

MPI_Allgather operation with MPI_Neighbor_allgather. This is because every process

needs to gather only those elements of each column of B that have a corresponding non-

zero value in the rows of A that are assigned to that process. Thus, we can use A to define

a process topology over which the MPI_Neighbor_allgather is called in each iteration.

Figure 7.13 provides an example of how this is done for a sparse matrix A of size 4×4. The

0 and 1 elements of the matrix are represented by white and black squares, respectively.

7.6. EXPERIMENTAL RESULTS AND ANALYSIS 167

P
0 P
1

P
2 P
3

P0

P1

P2

P3

(a) Matrix A

P0 P1

P2 P3
(b) Topology grap

Figure 7.13: An example of building the process topology graph for the SpMM kernel based
on the non-zero elements of the input matrix A

As shown by the figure, the rows and columns of matrix A are evenly distributed among

all processes. For the sake of clarity, in this example we use a number of processes that is

equal to the number of rows and columns of A. Hence, process Pj (Pi) will be an incoming

(outgoing) neighbor of process Pi (Pj) in the process topology graph if and only if Aij = 1.

For performance evaluation, we use four matrices from the SuiteSparse Matrix Collec-

tion (formerly the University of Florida Sparse Matrix Collection) [39], namely ‘ash292’,

‘human_gene2’, ‘journals’ and ‘dwt_193’. We choose these matrices to evaluate the impact

of the proposed neighborhood collective optimization on matrices with different densities

and dimensions. In each case, we use the same matrix to provide the input matrices for

SpMM. In other words, we multiply each given matrix by itself. All experiments are con-

ducted on Cluster B as described in Section 5.3.1.

Figure 7.14 shows the achieved performance improvement for SpMM when we use neigh-

borhood collectives instead of ordinary collectives. As shown by the figure, for all input

matrices, we have been able to speed up SpMM by using neighborhood collectives. In par-

ticular, we can see more than 100x speedup for ‘human_gene2’. Moreover, we see higher

speedup for ‘ash292’ and ‘human_gene2’ compared to ‘journals’ and ‘dwt_193’. This is

because ‘ash292’ and ‘human_gene2’ are more sparse than ‘journals’ and ‘dwt_193’, which

7.7. SUMMARY 168

1

10

100

1000

Sp
ee

d
u

p
 o

ve
r

o
rd

in
ar

y
co

lle
ct

iv
es

ash292 human_gene2 journals dwt_193

Figure 7.14: The speedup of SpMM for various input matrices with neighborhood collectives
over ordinary collectives on Cluster B

provides more opportunity to decrease communication costs through neighborhood collec-

tives. Higher sparsity of the input matrix results in fewer processes communicating with

each other in the neighborhood collective.

Figure 7.15 shows how our proposed design for neighborhood collectives further im-

proves the performance of SpMM. The figure shows the achieved speedup over the default

neighborhood collective used in MVAPICH for different values of the friend group size k.

We can see that in almost all cases, we have been able to achieve further speedup by using

our proposed design for neighborhood collectives. The only exception is ‘human_gene2’ for

which we get the same performance as the default neighborhood collective design. This is

because the sparsity of the ‘human_gene2’ matrix is so high that its corresponding process

topology graph does not provide enough common neighbors to take advantage of. How-

ever, for relatively denser matrices such as ‘journals’ and ‘dwt_193’, we can achieve high

speedups.

7.7 Summary

In this chapter, we propose a collaborative communication mechanism between groups of k

processes to improve the performance of MPI neighborhood collectives. We show that part

7.7. SUMMARY 169

0

1

2

3

4

5

6

ash292 human_gene2 journals dwt_193

Sp
ee

d
u

p
 o

ve
r

d
ef

au
lt

Matrices

k=2 k=3 k=4 k=6

Figure 7.15: The speedup of SpMM for various input matrices with optimized topology-
aware neighborhood collectives over the default neighborhood collectives on
Cluster B

of the problem falls within the scope of maximum matching in weighted hypergraphs, where

we seek to find a mutual grouping of the processes that have neighbors in common. For

this, we propose a distributed algorithm that finds the maximum matching in a weighted

hypergraph. We propose two different types of the collaborative communication mecha-

nism: topology-agnostic and topology-aware. The topology-agnostic approach assumes a

flat physical topology for the system. While the topology-aware approach considers the

hierarchical physical topology of the system in the design. The evaluation results shows

that in most cases the performance gain of the topology-aware approach is equal or even

better than the topology-agnostic approach and at the same time, it has considerably less

overhead and memory consumption. We also present the results with different values of k

and show that by choosing k appropriately, we can gain considerable performance speedup

(up to 8x).

170

Chapter 8

Conclusions and Future Work

8.1 Conclusion

Inter-process communication is one of the most important challenges in HPC and its ef-

ficiency significantly affects the performance of parallel applications. This is particularly

important considering the fast pace at which the number of processing elements in HPC

systems is increasing. In this dissertation, we consider different research approaches to im-

prove the performance of communication in MPI and the applications that use them. In

the first research direction, we proposed algorithms and mechanisms to improve the per-

formance of message matching that is in the critical path of communication. For this, we

considered both the behavior of applications and the hardware/software features of parallel

computing systems. In the second research direction, we took advantage of the physical

and virtual topology information to improve the performance of neighborhood collective

communications in HPC. Physical topology represents the connections between the cores,

chips, and nodes in the hardware; while virtual topology represents the way that MPI pro-

cesses communicate. In the remainder of this section, we will highlight the contributions of

the research in this dissertation.

Clustering-based Message Queue Data Structure

In Chapter 3, we proposed a new message matching mechanism that categorizes the

8.1. CONCLUSION 171

processes into groups based on the number of queue elements each process adds to the

message queue at runtime. Then, a dedicated message queue is allocated to each group. We

used two different algorithms for grouping the processes: K-means clustering and a heuristic

algorithm. The proposed message queue mechanism provides two advantages. First, it

parallelizes the search operation by using multiple queues. Moreover, it further speeds up the

search operation by considering the message queue behavior of the peer processes in grouping

the processes and allocating dedicated message queue to each group. The experimental

evaluation showed that the proposed approach can successfully decrease the number of

queue traversals. Moreover, it improves the queue search time and application runtime

by up to 44.2x and 2.4x for the FDS application which has extreme message matching

requirements, respectively.

Partner/Non-partner Message Queue Data Structure

Despite the fact that the clustering-based approach proposed in Chapter 3 improves the

queue search time, it has some limitations. First, it requires a large amount of memory

for maintaining the information about peer processes. Moreover, it is a static approach

meaning that the application should be executed once to gather the profiling information. In

Chapter 4, we proposed a new message queue mechanism based on the notion of partner non-

partner traffic to address the above issues. This approach uses queue profiling information

to categorize the processes into two groups: partners and non-partners. Partners are the

processes that send/post a large number of messages/receives to the queues, while the

non-partner processes only have a few elements in the queues. Each partner process has

its own dedicated message queue, while the non-partner processes share a single queue.

This approach deals with the memory scalability issue of the clustering-based approach by

maintaining the information of just partner processes in a hash table rather than saving the

information of all processes in an array.

We proposed both a static and a dynamic version of our design. The Static approach

8.1. CONCLUSION 172

works based on the information from a profiling stage, while the Dynamic approach utilizes

the message queue characteristics at runtime. The Dynamic approach is more practical

than the Static approach. However, we present a static version of our design to compare

its performance with the Dynamic approach.

The experimental results showed that the proposed partner/non-partner message queue

data structure can reduce the queue search time for long list traversals while maintaining

the performance for short list traversals. More specifically, The evaluation results show

that the queue search time and application runtime are improved by up to 28x and 5x for

applications with long queue traversal, respectively. Moreover, it provides scalable memory

consumption.

A Unified, Dedicated Message Matching Engine for MPI Communications

In Chapter 5, we looked at the message matching issue from a different perspective

and we proposed a new queue data structure that considers the type of communication to

further improve the message matching performance. This approach separates the queue

elements based on their type of communication (point-to-point and collective). For queue

elements that are coming from collective communications, we propose a message matching

mechanism that dynamically profiles the impact of each collective call on message queue

traversals and uses this information to adapt the message queue data structure (the COL

approach). For the point-to-point queue elements, we use the partner/non-partner message

queue data structure proposed in Chapter 4 (the PNP approach). We refer to the unified

design as the COL+PNP approach.

We compare the COL+PNP performance gain with COL+LL. In the COL+LL ap-

proach, the COL approach is used for collective communications and a MVAPICH linked

list queue data structure is used for point-to-point communications. The evaluation re-

sults show that the COL+PNP approach provides similar or better performance compared

to COL+LL. Through experimental evaluations, we show that by allocating 194 queues

8.1. CONCLUSION 173

for point-to-point elements and 416 queues for collective elements, we can gain up to 5.5x

runtime speedup for the FDS application.

Message Matching Improvement on Modern Architectures

Chapter 3 to Chapter 5 proposed mechanisms that work based on the application behav-

ior. In contrast, Chapter 6 considers hardware/software features of the modern architectures

to improve the performance of message queue operations. More specifically, this chapter

proposed two techniques to take advantage of the vectorization capabilities of many-core

processors to enhance the performance. In the first technique, we restructured the message

queue design to linked list of arrays. This provides the opportunity to reduce the number

of memory references compared to the default linked list data structure. Moreover, it uses

special locality by allowing loading of queue elements into the cache. In the second ap-

proach, we consider linked list of vector technique to take advantage of vector operations

such as Intel’s AVX intrinsics to further improve the performance. Finally, we evaluated the

performance gain on Intel Xeon Phi KNC coprocessor as well as Xeon processors. The eval-

uation results on three different microbenchmarks showed that the proposed approaches

can improve the queue search time on Xeon Phi many-core coprocessor by up to 35.3x.

Moreover, we could improve the queue search time and the application runtime by up to

4.5x, 2.72x for applications with long list traversals on the Xeon processors.

MPI Neighborhood Collective Optimization

In Chapter 7, we proposed an algorithm to improve the performance for neighborhood

collective communications in MPI. Neighborhood collectives represent a relatively new type

of communication in MPI that greatly increase the importance and employment of MPI

process topologies. We showed that useful information can be extracted from a given

process topology to optimize the performance of neighborhood collectives. More specifically,

we took advantage of common neighborhoods in the process topology graph to design an

8.2. FUTURE WORK 174

efficient communication pattern. For this, we proposed a distributed maximum matching

algorithm in weighted hypergraph. The derived communication pattern is then used to

build message-combining communication schedules for neighborhood collectives

We proposed a topology-agnostic as well as a topology-aware design. The topology-

agnostic design assumes that the system has a flat physical topology while the topology-

aware design considers the hierarchical physical topology of the system in the design.

Our experimental results with various process topologies showed that we can gain up to

8x reduction in the communication latency of the MPI_Ineighbor_allgather. Our results

also showed up to 230x speedup for a sparse matrix-matrix multiplication kernel when we

replace conventional collectives with neighborhood collectives. We further improve the per-

formance by up to 5.6x by using collaborative communication mechanism for neighborhood

collectives.

8.2 Future Work

Our future research plans revolve around developing designs that can tackle the major com-

munication challenges in MPI. For this, we will consider the behavior of parallel applications

and properties of the new parallel computing systems. In the following, we will discuss the

opportunities to the algorithms, designs and mechanisms proposed in this dissertation.

Clustering-based Message Queue Data Structure

In Chapter 3, we used message queue profiling information to categorize the processes

into some groups. We then assigned a dedicated message queue to each group. The pro-

posed clustering approach in this chapter is more suitable for applications with a static

communication profile and those that do not create additional communicating processes at

runtime. We intend to extend this work to a dynamic clustering approach that could dy-

namically capture the application queue characteristics, use this information for clustering

the processes and manage the message queues accordingly. As another direction for future

8.2. FUTURE WORK 175

work, we would like to test the efficiency of this design with other clustering methods such

as Support Vector Machine (SVM) clustering algorithm [104] and mean-shift clustering [37].

Partner/Non-partner Message Queue Data Structure

In Chapter 4, we took advantage of sparse communication pattern in the MPI applica-

tions to propose a new message matching design that allocates a dedicated message queue

for the processes with high frequency of communications called partner processes. We used

three different metrics for determining the partner processes: average, medium and out-

liers. We would like to evaluate the efficiency of this work on other applications and larger

systems.

A Unified, Dedicated Message Matching Engine for MPI Communications

As another direction for future work, we intend to extend the proposed message queue

design in Chapter 5 to support multi-threaded communications. Most of the traditional

HPC applications use process-level parallelism [58] in which each process possesses a sin-

gle thread. Processes can also be multithreaded in which case they host several threads

and can exhibit parallelism internally. Recently, applications are moving towards fully-

multithreaded runtime [28]. On the other hand, it has been shown that message matching

becomes more of a challenge when using multiple threads [101]. However, most MPI message

matching mechanisms are designed for single-threaded communications. Therefore, propos-

ing a message matching mechanism for multi-threaded communications is of paramount

importance.

Message Matching Improvement on Modern Architectures

In Chapter 6, we explored mechanisms to take advantage of vectorization capabilities of

hardware architectures to improve the performance of MPI message matching. We presented

the results on both Intel Xeon Phi many-core coprocessors and Xeon processors. In the

future, we would like to do a sensitivity analysis to evaluate the impact of increasing the

8.2. FUTURE WORK 176

array_size on performance.

As another direction for future work, we intend to take advantage of the hardware

features of other popular hardware designs in HPC such as GPU (Graphics Processing

Units) to improve message matching mechanism. GPUs, among other coprocessors and

accelerators, have successfully established themselves in HPC clusters because of their high

performance and energy efficiency. These factors are the key requirements of future super-

computers, thus paving the way for GPUs to be continually used in current petaflop and

future exascale systems. GPUs consist of thousands of processing units. The application

dataset is distributed among these processing units to parallelize and accelerate computa-

tion. GPUs are good candidate for offloading and accelerating compute-intensive portions

of HPC applications due to their massive computational capabilities. Thus, we would like

to evaluate the performance of message queue operations on GPUs and explore techniques

that can be leveraged to improve message matching performance, and consequently, the

application runtime. We would also like to investigate taking advantage of scatter/gather

vector addressing instead of memory copying for making the vectors in linked list of vector

data structure.

Note that the linked list of array data structure evaluated in this chapter is orthogonal

to the proposals in Chapters 3 to 5. In other words, we can take advantage of a linked list

of array instead of a linked list for all the allocated queues in Chapters 3 to 5. This will

provide the opportunity to leverage the properties of the applications at the user level and

the hardware features at lower layers at the same time.

MPI Neighborhood Collective Optimization

In Chapter 7, we proposed a collaborative communication mechanism to improve the

performance of neighborhood communications. Neighborhood collectives are a relatively

new feature added to MPI. Therefore, HPC applications are not yet ported. As a future

work, we intend to port current applications so that they can take advantage of the many

8.2. FUTURE WORK 177

benefits of the neighborhood collectives. More specifically, we plan to replace groups of

point-to-point neighbor communications in current applications with appropriate calls to

neighborhood collectives. This way, we would be able to evaluate the efficiency of the

proposed collaborative design on the performance of real applications.

One important factor that has considerable impact on the performance of collaborative

communication mechanism is the selection of the parameters k and θ. The advantage of

increasing k is that it provides the opportunity to perform message combining between larger

group of friend processes. However, the drawback of increasing k is that it enhances the

overhead of generating friend groups in Algorithm 7.2. Moreover, increasing k potentially

decreases the number of common neighbors. Therefore, there is a trade-off for selecting the

parameter k.

In regard to parameter θ, the advantage of increasing it is that it reduces the number

of friend groups for each process which results in less overhead in Algorithm 7.2 and 7.3.

The drawback of increasing θ, however, is that it reduces the opportunities for message

combining. A metric that can be used to guide the appropriate selection of the k and θ

value is the density and structure of the topology graph. For dense topology graph, it might

be better to use a higher value for k and θ. The reason is that a dense topology graph will

result in a dense friendship graph where each node will have the opportunity to make more

friend groups along heavy-weight edges. Therefore, we will have the chance to make friend

groups of larger size (k) with considerable number of common neighbors (θ). In Section 7.3,

we discussed how to choose θ for a given k to gain performance in the topology-agnostic

and topology-aware designs. In the future, we intend to do more theoretical analysis to

dynamically select the best values of k and θ in for a given topology graph.

In addition, we would like to propose an algorithm to improve the overhead of the

proposed collaborative communication mechanism. This includes the overhead of making

the friendship matrix in Algorithm 7.2, the communications in Algorithm 7.3 for mutual

grouping of the processes, and also the memory consumption for saving the friend groups.

8.2. FUTURE WORK 178

For example, one way to reduce the overhead of communication is to take advantage of the

remote memory access (RMA) operations of MPI. This feature provides this opportunity

to avoid a large fraction of the point-to-point communications that are performed between

a process and its friends.

We also would like to evaluate the efficiency of the proposed design on other neigh-

borhood collectives such as neighbor alltoall and neighbor alltoallw. Using the proposed

approach for neighbor alltoallw is more challenging since it requires transferring type infor-

mation among certain processes which potentially requires extra communications. We are

also interested in evaluating performance and overhead of our design when it is used with

other distributed maximum matching algorithms.

Another direction for future work is to take advantage of cummulative combining in the

proposed collaborative communication mechanism. In the current design, each outgoing

neighbor is considered in at most one message-combining round. This is shown in Line 23

of Algorithm 7.1. As can be seen, the offloaded and onloaded common neighbors at each

message-combining iteration are removed from the set of active outgoing neighbors Oa. In

cumulative combining, however, the onloaded neighbors are still considered for the message

combining opportunities in further iterations. More specifically, in cummulative combining,

just the offloaded neighbors are removed from Oa at each iteration. Such a nested combining

will provide the opportunity to further decrease the number of individual communications

that are performed by each process.

One direction for future work is to consider the physical topology of the system to

reduce the number of communications for the processes that are far from each other (e.g.

processes on different nodes). In each node, there is a leader process who is responsible

to get the messages from incoming processes on other nodes and send it to the intra-node

processes. This approach is beneficial for neighborhood allgather since in this neighborhood

collective, the same message is sent to other processes. Moreover, it is beneficial for both

small and large messages. However, it probably benefits large messages more since it reduces

8.2. FUTURE WORK 179

bandwidth for inter-node communications.

Finally, we would like to improve the performance of deep learning frameworks by taking

advantage of neighborhood collectives. For this, the framework should have two features:

first, the communication between the neurons should have the potential to be modeled as

allgather, alltoall or allreduce collective operations. Second, the communication between

the neurons should be sparse. We intend to evaluate the specifications of deep learning

frameworks to see if they can benefit from MPI neighborhood communications.

REFERENCES 180

References

[1] Cori - cray xc40. https://www.top500.org/system/178924. Accessed: October 8, 2018.

[2] Generating perfect hash function. http://www.drdobbs.com/architecture-and-

design/generating-perfect-hash-functions/184404506. Accessed: May 20, 2017.

[3] IBM Spectrum MPI. http://www-03.ibm.com/systems/spectrum-

computing/products/mpi/index.html. Accessed: August 20, 2018.

[4] InfiniBand Trade Association. http://www.infinibandta.org. Accessed: September 16,

2018.

[5] Intel MPI Library. https://software.intel.com/en-us/intel-mpi-library. Accessed: Jan-

uary 28, 2019.

[6] Knights corner: Open source software stack. https://software.intel.com/en-

us/blogs/2012/06/05/knights-corner-open-source-software-stack. Accessed: October

20, 2018.

[7] Mellanox HPC-X™ Software Toolkit. www.mellanox.com/products/hpcx/. Accessed:

December 28, 2018.

[8] Message Passing Interface (MPI-3),. http://www.mpi-forum.org. Accessed September

20, 2018.

[9] Miniamr-a miniapp for adaptive mesh refinement. http://hdl.handle.net/2142/91046.

accessed: February 4, 2019.

REFERENCES 181

[10] MPICH: High-Performance Portable MPI. http://www.mpich.org. Accessed: October

27, 2018.

[11] MVAPICH2. http://www.mpich.org. Accessed: January 24, 2019.

[12] Oakforest-pacs. https://www.top500.org/system/178932. Accessed: October 2, 2018.

[13] Open fabric interfaces (OFI). https://ofiwg.github.io/libfabric/. Accessed: January

12, 2019.

[14] OPEN MPI. https://www.open-mpi.org. Accessed: October 23, 2018.

[15] PGAS Forum,. http://www.pgas.org/ Accessed November 3, 2018.

[16] RDMA Consortium. http://www.rdmaconsortium.org. Accessed:December 12, 2018.

[17] The OpenMP API specification for parallel programming,. https://www.openmp.org/

Accessed January 29, 2019.

[18] TOP500,. https://www.top500.org/. Accessed January 2, 2019.

[19] S. Acer, O. Selvitopi, and C. Aykanat. Improving performance of sparse matrix dense

matrix multiplication on large-scale parallel systems. Parallel Computing, 59:71–96,

2016.

[20] G. Almási, P. Heidelberger, J. Archer, X. Martorell, C. Erway, J. Moreira,

B. Steinmacher-Burow, and Y. Zheng. Optimization of MPI collective communication

on bluegene/l systems. In Proceedings of the 19th annual international conference on

Supercomputing, pages 253–262. ACM, 2005.

[21] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,

J. Casper, B. Catanzaro, Q. Cheng, and G. Chen. Deep speech 2: End-to-end speech

recognition in english and mandarin. In International Conference on Machine Learn-

ing, pages 173–182, 2016.

REFERENCES 182

[22] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Pat-

terson, W. Plishker, J. Shalf, and S. Williams. The landscape of parallel computing

research: A view from berkeley. Technical report, Technical Report UCB/EECS-

2006-183, EECS Department, University of California, Berkeley, 2006.

[23] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk,

R. Thakur, and J. Träff. MPI on millions of cores. Parallel Processing Letters,

21(01):45–60, 2011.

[24] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. Lusk. The importance of non-

data-communication overheads in MPI. International Journal of High Performance

Computing Applications, 24(1):5–15, 2010.

[25] B. W. Barrett, R. Brightwell, R. Grant, S. D. Hammond, and K. S. Hemmert. An

evaluation of MPI message rate on hybrid-core processors. The International Journal

of High Performance Computing Applications, 28(04):415–424, 2014.

[26] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K. Wheeler, K. Underwood,

R. Riesen, A. B. Maccabe, and T. Hudson. The portals 4.1 network programming

interface. Sandia National Laboratories, Tech. Rep. SAND2017-3825, 2017.

[27] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda. Adaptive and

dynamic design for MPI tag matching. In 2016 IEEE International Conference on

Cluster Computing (CLUSTER), pages 1–10. IEEE, 2016.

[28] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant,

T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee. A survey of MPI us-

age in the US exascale computing project. Concurrency and Computation: Practice

and Experience, page e4851, 2017.

REFERENCES 183

[29] G. Berti and J. L. Träff. What MPI could (and cannot) do for mesh-partitioning on

non-homogeneous networks. In European Parallel Virtual Machine/Message Passing

Interface Users’ Group Meeting, pages 293–302. Springer, 2006.

[30] R. Brightwell, S. Goudy, and K. Underwood. A preliminary analysis of the MPI

queue characterisitics of several applications. International Conference on Parallel

Processing, 2005. ICPP 2005., pages 175–183, 2005.

[31] R. Brightwell, S. P. Goudy, A. Rodrigues, and K. D. Underwood. Implications of

application usage characteristics for collective communication offload. International

Journal of High Performance Computing and Networking, 4(3-4):104–116, 2006.

[32] R. Brightwell, K. Pedretti, and K. Ferreira. Instrumentation and analysis of MPI

queue times on the seastar high-performance network. In Proceedings of 17th Inter-

national Conference on Computer Communications and Networks, 2008. ICCCN’08.,

pages 1–7. IEEE, 2008.

[33] R. Brightwell and K. D. Underwood. An analysis of NIC resource usage for offloading

MPI. In Proceedings of 18th International Conference on Parallel and Distributed

Processing Symposium, 2004., page 183a. IEEE, 2004.

[34] R. Budruk, D. Anderson, and T. Shanley. PCI express system architecture. Addison-

Wesley Professional, 2004.

[35] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A.

Marques, E. Gross, and A. Rubio. Octopus: a tool for the application of time-

dependent density functional theory. physica status solidi (b), 243(11):2465–2488,

2006.

[36] Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite programming relaxations

for hypergraph matching. Mathematical programming, 135(1-2):123–148, 2012.

REFERENCES 184

[37] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern

analysis and machine intelligence, 17(8):790–799, 1995.

[38] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew. Deep learning

with COTS HPC systems. In International Conference on Machine Learning, pages

1337–1345, 2013.

[39] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM

Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[40] M. Dosanjh, S. M. Ghazimirsaeed, R. E. Grant, W. Schonbein, M. J. Levenhagen,

P. G. Bridges, and A. Afsahi. The case for semi-permanent cache occupancy: Un-

derstanding the impact of data locality on network processing. In Proceedings of the

47th International Conference on Parallel Processing, pages 73–84. ACM, 2018.

[41] M. Dosanjh, W. Schonbein, R. E. Grant, S. M. Ghazimirsaeed, and A. Afsahi.

Fuzzy matching: Hardware accelerated mpi communication middleware. 19th An-

nual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing

(CCGrid), 2019.

[42] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst.

Hung. Acad. Sci, 5(1):17–60, 1960.

[43] A. Faraj and X. Yuan. Automatic generation and tuning of MPI collective com-

munication routines. In Proceedings of the 19th annual international conference on

Supercomputing, pages 393–402. ACM, 2005.

[44] I. Faraji and A. Afsahi. Design considerations for gpu-aware collective communications

in MPI. Concurrency and Computation: Practice and Experience, 30(17):e4667, 2018.

[45] P Fischer, J Kruse, J Mullen, H Tufo, J Lottes, and S Kerkemeier. Nek5000: Open

source spectral element CFD solver. Argonne National Laboratory, Mathematics and

REFERENCES 185

Computer Science Division, Argonne, IL, see https://nek5000. mcs. anl. gov/index.

php/MainPage, 2008.

[46] M. Flajslik, J. Dinan, and K. D. Underwood. Mitigating MPI message matching

misery. International Conference on High Performance Computing, pages 281–299.

Springer, 2016.

[47] E. W. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretability of

classifications. Biometrics, 21:768–769, 1965.

[48] S. M. Ghazimirsaeed and A. Afsahi. Accelerating MPI message matching by a data

clustering strategy. High Performance Computing Symposium (HPCS), in Lecture

Notes in Computer Science (LNCS), 2017.

[49] S. M. Ghazimirsaeed, R. E. Grant, and A. Afsahi. Dynamic, unified design for ded-

icated message matching engines for collective and point-to-point communications.

In Elsevier International Journal of Parallel Computing (PARCO) (Invited paper -

Under revision), 15 pages, 2019.

[50] S. M. Ghazimirsaeed, R. E. Grant, and A. Afsahi. A dedicated message matching

mechanism for collective communications. In 12th International Workshop on Parallel

Programming Models and Systems Software for High-End Computing (P2S2), pages

26–36, 2018.

[51] S. M. Ghazimirsaeed, S. Mirsadeghi, and A. Afsahi. An efficient collaborative com-

munication mechanism for MPI neighborhood collectives. In Parallel & Distributed

Processing, 2019. IPDPS 2019. IEEE International Symposium on. IEEE, 12 pages,

2019.

[52] S. M. Ghazimirsaeed, S. Mirsadeghi, and A. Afsahi. Communication-aware message

matching in MPI. Concurrency and Computation: Practice and Experience (CCPE)

REFERENCES 186

journal, Presented in the 5th Workshop on Exascale MPI (ExaMPI 2017), 17 pages,

2017.

[53] R. L. Graham, R. Brightwell, B. Barrett, G. Bosilca, and J. Pješivac-Grbović. An

evaluation of open mpi’s matching transport layer on the cray xt. In European Parallel

Virtual Machine/Message Passing Interface Users’ Group Meeting, pages 161–169.

Springer, 2007.

[54] R. L. Graham and G. Shipman. MPI support for multi-core architectures: Optimized

shared memory collectives. In European Parallel Virtual Machine/Message Passing

Interface Users’ Group Meeting, pages 130–140. Springer, 2008.

[55] William Gropp. MPICH2: A new start for MPI implementations. In European Par-

allel Virtual Machine/Message Passing Interface Users’ Group Meeting, pages 7–7.

Springer, 2002.

[56] F. Gygi. Large-scale first-principles molecular dynamics: moving from terascale to

petascale computing. In Journal of Physics: Conference Series, volume 46, pages

268–277. IOP Publishing, 2006.

[57] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel, V. Mo-

rozov, G. Zagaris, and T. Peterka. HACC: Simulating sky surveys on state-of-the-art

supercomputing architectures. New Astronomy, 42:49–65, 2016.

[58] N. Hjelm, M. Dosanjh, R. E. Grant, T. Groves, P. Bridges, and D. Arnold. Improving

MPI multi-threaded RMA communication performance. In Proceedings of the 47th

International Conference on Parallel Processing, pages 58–69. ACM, 2018.

[59] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur, and J. Träff.

The scalable process topology interface of MPI 2.2. Concurrency and Computation:

Practice and Experience, 23(4):293–310, 2011.

REFERENCES 187

[60] T. Hoefler and T. Schneider. Optimization principles for collective neighborhood

communications. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, pages 98–108. IEEE Computer Society

Press, 2012.

[61] T. Hoefler and J. Traff. Sparse collective operations for MPI. In Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8. IEEE,

2009.

[62] J. Hoepman. Simple distributed weighted matchings. arXiv preprint cs/0410047,

2004.

[63] C. U. Ileri and O. Dagdeviren. Performance evaluation of distributed maximum

weighted matching algorithms. In DICTAP, pages 103–108, 2016.

[64] G. Inozemtsev and A. Afsahi. Designing an offloaded nonblocking MPI_Allgather

collective using core-direct. In Cluster Computing (CLUSTER), 2012 IEEE Interna-

tional Conference on, pages 477–485. IEEE, 2012.

[65] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high performance programming.

Newnes, 2013.

[66] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition. Morgan Kaufmann, 2016.

[67] W. Jia, C. Zhang, and J. Chen. An efficient parameterized algorithm for m-set pack-

ing. Journal of Algorithms, 50(1):106–117, 2004.

[68] K. Kandalla, A. Buluç, H. Subramoni, K. Tomko, J. Vienne, L. Oliker, and D. K.

Panda. Can network-offload based non-blocking neighborhood MPI collectives im-

prove communication overheads of irregular graph algorithms? In Cluster Computing

REFERENCES 188

Workshops (CLUSTER WORKSHOPS), 2012 IEEE International Conference on,

pages 222–230. IEEE, 2012.

[69] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda. Designing topology-aware

collective communication algorithms for large scale infiniband clusters: Case studies

with scatter and gather. In Parallel & Distributed Processing, Workshops and Phd

Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8. IEEE, 2010.

[70] R. Keller and R. L. Graham. Characteristics of the unexpected message queue of

MPI applications. In Proceedings of the 17th European MPI users’ group meeting

conference on Recent advances in the message passing interface EuroMPI, pages 179–

188. Springer, 2010.

[71] B. Klenk, H. Fröening, H. Eberle, and L. Dennison. Relaxations for high-performance

message passing on massively parallel SIMT processors. In 2017 IEEE International

on Parallel and Distributed Processing Symposium (IPDPS), pages 855–865. IEEE,

2017.

[72] C. Koufogiannakis and N. E. Young. Distributed algorithms for covering, packing and

maximum weighted matching. Distributed Computing, 24(1):45–63, 2011.

[73] R. Kumar, A. R. Mamidala, M. J. Koop, G. Santhanaraman, and D. K. Panda.

Lock-free asynchronous rendezvous design for MPI point-to-point communication. In

European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting,

pages 185–193. Springer, 2008.

[74] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, M. Block-

some, A. Faraj, J. Parker, and J. Ratterman. The deep computing messaging frame-

work: generalized scalable message passing on the Blue Gene/P supercomputer. In

Proceedings of the 22nd annual international conference on Supercomputing, pages

94–103. ACM, 2008.

REFERENCES 189

[75] S. Kumar, P. Heidelberger, D. Chen, and M. Hines. Optimization of applications

with non-blocking neighborhood collectives via multisends on the Blue Gene/P su-

percomputer. In IPDPS International Parallel and Distributed Processing Symposium.

IPDPS (Conference), pages 1–11, 2010.

[76] S. Kumar, A. Mamidala, P. Heidelberger, D. Chen, and D. Faraj. Optimization of

MPI collective operations on the IBM Blue Gene/Q supercomputer. The International

Journal of High Performance Computing Applications, 28(4):450–464, 2014.

[77] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing:

design and analysis of algorithms. Benjamin/Cummings Redwood City, 1994.

[78] X. Lapillonne, O. Fuhrer, P. Spörri, C. Osuna, A. Walser, A. Arteaga, T. Gysi,

S. Rüdisühli, K. Osterried, and T. Schulthess. Operational numerical weather pre-

diction on a GPU-accelerated cluster supercomputer. In The European Geosciences

Union (EGU) General Assembly Conference Abstracts, volume 18, page 13554, 2016.

[79] S. Levy and K. B. Ferreira. Using simulation to examine the effect of MPI message

matching costs on application performance. In Proceedings of the 25th European MPI

Users’ Group Meeting, pages 16–27. ACM, 2018.

[80] S. Li, T. Hoefler, and M. Snir. NUMA-aware shared-memory collective communication

for MPI. In Proceedings of the 22nd international symposium on High-performance

parallel and distributed computing, pages 85–96. ACM, 2013.

[81] A. Lingas and C. Di. Near approximation of maximum weight matching through

efficient weight reduction. In International Conference on Theory and Applications of

Models of Computation, pages 48–57. Springer, 2011.

[82] S. Lloyd. Least squares quantization in PCM. IEEE transactions on information

theory, 28(2):129–137, 1982.

REFERENCES 190

[83] C. Lomont. Introduction to Intel advanced vector extensions. Intel White Paper,

pages 1–21, 2011.

[84] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching.

In Proceedings of the twentieth annual symposium on Parallelism in algorithms and

architectures, pages 129–136. ACM, 2008.

[85] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching.

Journal of the ACM (JACM), 62(5):38, 2015.

[86] F. D. Lübbe. Micro-benchmarking MPI neighborhood collective operations. In Euro-

pean Conference on Parallel Processing, pages 65–78. Springer, 2017.

[87] T. Ma, T. Herault, G. Bosilca, and J. J. Dongarra. Process distance-aware adap-

tive MPI collective communications. In Cluster Computing (CLUSTER), 2011 IEEE

International Conference on, pages 196–204. IEEE, 2011.

[88] J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[89] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Over-

holt. Fire dynamics simulator, user’s guide. the National Institute of Standards and

Technology (NIST) special publication, 1019:6th Edition, 2013.

[90] S. H. Mirsadeghi and A. Afsahi. Topology-aware rank reordering for MPI collectives.

In Parallel and Distributed Processing Symposium Workshops, 2016 IEEE Interna-

tional, pages 1759–1768. IEEE, 2016.

[91] S. H. Mirsadeghi, J. L. Träff, P. Balaji, and A. Afsahi. Exploiting common neighbor-

hoods to optimize MPI neighborhood collectives. In High Performance Computing

(HiPC), 2017 IEEE 24th International Conference on, pages 348–357. IEEE, 2017.

REFERENCES 191

[92] C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux. Scalable lattice boltzmann

solvers for cuda gpu clusters. Parallel Computing, 39(6-7):259–270, 2013.

[93] A. Ovcharenko, D. Ibanez, F. Delalondre, O. Sahni, K. E. Jansen, C. D. Carothers,

and M. S. Shephard. Neighborhood communication paradigm to increase scalability in

large-scale dynamic scientific applications. Parallel Computing, 38(3):140–156, 2012.

[94] O. Parekh. Iterative packing for demand and hypergraph matching. In International

Conference on Integer Programming and Combinatorial Optimization, pages 349–361.

Springer, 2011.

[95] Simone Pellegrini, Torsten Hoefler, and Thomas Fahringer. On the effects of CPU

caches on MPI point-to-point communications. In 2012 IEEE International Confer-

ence on Cluster Computing, pages 495–503. IEEE, 2012.

[96] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J.

Dongarra. Performance analysis of MPI collective operations. Cluster Computing,

10(2):127–143, 2007.

[97] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of

computational physics, 117(1):1–19, 1995.

[98] S. Plimpton, R. Pollock, and M. Stevens. Particle-mesh ewald and rRESPA for parallel

molecular dynamics simulations. In Proceedings of the Eighth SIAM Conference on

Parallel Processing for Scientific Computing (PPSC), 1997.

[99] M. J. Rashti, R. E. Grant, A. Afsahi, and P. Balaji. iWARP redefined: Scalable con-

nectionless communication over high-speed ethernet. In High Performance Computing

(HiPC), 2010 International Conference on, pages 1–10. IEEE, 2010.

[100] J. Reinders. AVX-512 instructions. Intel Corporation, 2013.

REFERENCES 192

[101] W. Schonbein, M. Dosanjh, R. E. Grant, and P. G. Bridges. Measuring multithreaded

message matching misery. In European Conference on Parallel Processing, pages 480–

491. Springer, 2018.

[102] G. Seber. Multivariate observations, volume 252. John Wiley & Sons, 2009.

[103] H. Shan, J. P. Singh, L. Oliker, and R. Biswas. Message passing and shared address

space parallelism on an SMP cluster. Parallel computing, 29(2):167–186, 2003.

[104] J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural

processing letters, 9(3):293–300, 1999.

[105] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication

operations in MPICH. The International Journal of High Performance Computing

Applications, 19(1):49–66, 2005.

[106] T. Toffoli and N. Margolus. Cellular automata machines: a new environment for

modeling. MIT press, 1987.

[107] J. Traff. Implementing the MPI process topology mechanism. In Supercomputing,

ACM/IEEE 2002 Conference, pages 28–28. IEEE, 2002.

[108] J. Träff, A. Carpen-Amarie, S. Hunold, and A. Rougier. Message-combining

algorithms for isomorphic, sparse collective communication. arXiv preprint

arXiv:1606.07676, 2016.

[109] J. Träff, F. D. Lübbe, A. Rougier, and S. Hunold. Isomorphic, sparse MPI-like col-

lective communication operations for parallel stencil computations. In Proceedings of

the 22nd European MPI Users’ Group Meeting, pages 10–20. ACM, 2015.

[110] K. D. Underwood and R. Brightwell. The impact of MPI queue usage on message

latency. In IEEE International Conference on Parallel Processing, pages 152–160,

2004.

REFERENCES 193

[111] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and R. Brightwell. A

hardware acceleration unit for MPI queue processing. In Proceedings of 19th IEEE

International Conference on Parallel and Distributed Processing Symposium, 2005.,

page 96b. IEEE, 2005.

[112] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In International

Symposium on Distributed Computing, pages 335–348. Springer, 2004.

[113] T. S. Woodall, R. L. Graham, R. H. Castain, D. J. Daniel, M. W. Sukalski, G. E. Fagg,

E. Gabriel, G. Bosilca, T. Angskun, and J. J. Dongarra. TEG: A high-performance,

scalable, multi-network point-to-point communications methodology. In European

Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pages

303–310. Springer, 2004.

[114] U. M. Yang and V. E. Henson. BoomerAMG: a parallel algebraic multigrid solver

and preconditioner. Applied Numerical Mathematics, 41(1):155–177, 2002.

[115] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classi-

fication, and embedding. In Advances in neural information processing systems, pages

1601–1608, 2007.

[116] J. A. Zounmevo and A. Afsahi. A fast and resource-conscious MPI message queue

mechanism for large-scale jobs. Future Generation Computer Systems, 30:265–290,

2014.

[117] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi. Using MPI in high-performance

computing services. In Proceedings of the 20th European MPI Users’ Group Meeting,

pages 43–48. ACM, 2013.

1. APPENDIX: K-MEANS CLUSTERING 194

1 Appendix: K-means Clustering

Clustering is the process of organizing objects into groups in a way that objects in the same

group are similar to each other, and those from different groups are dissimilar. There are

various clustering algorithms for different use cases. Among them, K-means clustering [102]

is one of the most widely used clustering algorithm in literature. In the following, we briefly

discuss how the K-means clustering works. Consider a given data set {x1, , xm}, xi ∈ Rd for

i = 1, · · · ,m that represents a feature d-dimensional space. Suppose we want to divide these

data points in k clusters. To do so, we need to determine two sets of variables: a cluster

center for each cluster, µj, j = 1, · · · , k, and indicator variables (cluster membership), ρlj,

which are defined as follows:

ρlj = 1 if the data point xl belongs to cluster j

ρlj = 0 if the data point xl does not belong to cluster j

where l = 1, ...,m and j = 1, ..., k

The variables µj and ρlj can be determined by solving the optimization problem 1 to

minimize the total distance between the data points and their cluster centers,

min
m∑
l=1

k∑
j=1

ρlj||xl − µj||2 (1)

where the optimization variables are ρlj ∈ {0, 1} and µj. Furthermore, ||xl − µj||2 =∑d
t=1(xlt−µjt)2 is the Euclidean distance between the data points and the clustering points.

Note that it is possible to use other measures of similarity instead of the Euclidean distance.

There are various algorithms to solve this optimization problem [47, 82, 88, 102]. It

should also be mentioned that the number of clusters, k, should be given as an input to the

1. APPENDIX: K-MEANS CLUSTERING 195

algorithm for solving the above optimization problem.

