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Abstract

High-Performance Computing (HPC) is the key to tackle computationally intensive prob-

lems such as Deep Learning (DL) and scientific applications. Message Passing Interface

(MPI) is the de facto parallel programming standard that fulfills communication in HPC

systems. MPI collective communication operations involve all processes within a program-

defined group of processes and have been used extensively in parallel applications. Unfor-

tunately, most of the studies attempting to improve the performance of collective operations

are based on the premise that all the processes commence the communication simultane-

ously. However, researchers have shown that imbalanced Process Arrival Pattern (PAP) is

ubiquitous in real environments. Therefore, it is important to propose new algorithms that

improve the performance of collectives by PAP-awareness.

This thesis presents a complete communication characterization of Horovod as one of

the most famous distributed DL frameworks. We provide a thorough study on PAP of the

MPI Allreduce as the most important collective operation used in Horovod and show that

the arrival pattern of MPI processes is indeed imbalanced especially for small messages.

Furthermore, we present various proposals for improving the MPI collective communica-

tion performance in the presence of imbalanced PAPs for different message sizes.

We propose an intra-node PAP-aware shared-memory-aware MPI Allreduce algorithm

for small messages that, based on the arrival time of the processes at each invocation of
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the collective call, dynamically chooses the leader process. The evaluation results show

that our design delivers up to 56% improvement over native algorithms under different

imbalanced PAPs.

We also propose a PAP-aware algorithm capable of dynamically constructing the re-

duction schedule at each invocation of the collective call based on the arrival order of the

processes for intra-node MPI Reduce and MPI Allreduce collectives with large messages,

achieving up to 73%, and 44% improvement over the state-of-the-art algorithms, respec-

tively.

Finally, we evaluate the performance of two state-of-the-art cluster-wide MPI Allreduce

algorithms and introduce a PAP-tolerant cluster-wide allreduce algorithm which imposes

less data dependency among processes given its hierarchical nature compared to flat algo-

rithms. This algorithm delivers up to 58% improvement at the microbenchmark level and

an average improvement of 10% for Horovod DL application over native algorithms.
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Chapter 1

Introduction

Artificial Intelligence (AI) has been evolving from a hot new trend to a seamless enabler of

business transformation. Machine Learning (ML) and Deep Learning (DL) enable AI sys-

tems to learn without being explicitly programmed. As a result, DL applications have been

growing in prominence as a way to automatically characterize objects, trends, and anoma-

lies merely by observing large amounts of data. However, as datasets increase in size and

the DL models in complexity, the computational intensity increases proportionally, result-

ing in significantly long if not unfeasible training times on a single sequential processor

for DL applications. This ever-growing demand in computational power is common in

other scientific and engineering areas such as Genomics, Molecular Sciences, Physics, and

Mechanics, to name a few.

High-Performance Computing (HPC) is the answer to execute such applications in a

sensible amount of time. Parallel computing, as the primary approach exploited in HPC

systems, enhances the performance of computationally intensive applications by dividing

the main problem into smaller sub-problems that can be solved on different processing

units of a parallel computer simultaneously. Cluster computers are the most popular type

of parallel computers, making up 93% of the top 500 supercomputers in the world [7].
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A cluster computer comprises multiple compute nodes, each having several processing

elements. The compute nodes are connected to each other by a high-performance intercon-

nection network. The processing elements compute and then communicate with each other

to exchange the intermediate results and synchronize.

Message Passing Interface (MPI) [3] is the most used parallel programming paradigm

in HPC applications. In this standard, the communication between the processing units is

performed using explicit message transfers. The MPI standard provides different commu-

nication semantics such as one-sided, point-to-point, partitioned point-to-point, and col-

lective operations. Collective communication operations involve more than two processes.

Utilizing collective operations, processes can perform one-to-all, all-to-one, and all-to-all

communications in an optimized yet convenient way. Collective communications have

been used in many parallel applications including DL applications because they offer per-

formance portability and scalability. In some HPC applications, more than eighty percent

of the overall communication time is spent in collective operations [56]. Therefore, the

performance of collective communication operations is critical to the performance of HPC

applications [31].

1.1 Motivation

Optimizing collective operations has been an active area of research for a long time [10,

48, 58, 62, 70, 32, 26]. Studies have shown that optimizing collective operations, specif-

ically MPI Allreduce and MPI Bcast, two most exploited collectives in DL applications

[13], can significantly improve the performance of DL applications such as Horovod [60]

and CNTK [59] distributed DL frameworks [17, 63]. Reduction operations are among the
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most commonly used collective communication operations in HPC applications [56]. Con-

sequently, the researchers have been ever optimizing the performance of these collectives

from different aspects [67, 30, 57, 34, 49, 24, 63].

Unfortunately, however, similar to other collective operations, reduction algorithms

have been optimized only under the premise that all processes start the operation at the

same time. Research conducted on the arrival time of processes at the collective calls has

shown that this is rarely the case and that imbalanced Process Arrival Patterns (PAPs)

are ubiquitous in HPC applications [21, 55, 44]. Thus, the benchmarking methodologies

should consider imbalanced arrival times to depict the accurate picture of real-world algo-

rithm performance. It has been shown that the well-performing algorithms for the balanced

microbenchmarks, which are usually the algorithms of interest in MPI implementations,

perform poorly in imbalanced process arrival patterns [21]. Therefore, it is necessary to

propose new algorithms capable of exploiting process imbalance to deliver high perfor-

mance when there is an asynchrony among the processes at the start of the collective oper-

ation.

1.2 Problem Statement

In this section, we present the research questions we sought to address in this thesis:

1. What are the communication characteristics of Horovod application [60], as one of

the most famous distributed deep learning frameworks? Do Horovod collective com-

munications suffer from imbalanced process arrival patterns similar to traditional

HPC applications? What should be the focus of researchers to enhance the perfor-

mance of Horovod?

2. How can we design an intra-node MPI Allreduce algorithm for small message sizes
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capable of achieving high performance under different process arrival patterns? How

can we dynamically change the leader of the operation based on the arrival order of

the processes at each invocation of the collective call?

3. How can we design intra-node MPI Allreduce and reduce algorithms for large mes-

sage sizes that could exploit the imbalance in the arrival time of the processes to

improve the performance of the collective operation? How can we dynamically con-

struct the reduction schedule at each invocation of the collective call without having

any pre-knowledge of process arrival times?

4. Are hierarchical algorithms for inter-node MPI Allreduce collectives capable of out-

performing their flat counterparts under different process arrival patterns? What al-

gorithms should be utilized when facing applications with balanced or imbalanced

workloads? Based on the communication characterization and process arrival pat-

tern of distributed DL frameworks, what is the best performing algorithm delivering

the highest throughput?

1.3 Contributions

This thesis contributes by studying the PAP behavior of the Horovod application, as one of

the most famous distributed deep learning (DL) frameworks, and then proposes different

PAP-aware designs capable of delivering high-performance under imbalanced PAPs, as

follows:
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1.3.1 Communication Characterization of Horovod

In Chapter 3, we investigate different collective communication characteristics of the Horovod

application in terms of their frequency and contribution to the communication runtime. We

show that the MPI Allreduce plays the most critical role in the performance of Horovod.

We further characterize the communication behavior of the MPI Allreduce operation used

in Horovod by presenting the contribution of different message sizes to the number of calls

and the overall communication runtime of this collective operation. Finally, we examine

the process arrival pattern of the MPI Allreduce operations. We provide evidence that the

MPI processes in Horovod arrive asynchronously at the MPI Allreduce collective calls.

Especially, the MPI Allreduce calls with small message sizes exhibit significantly large

imbalance factors (IFs). The findings highlighted in this chapter will provide the HPC re-

searchers with an understanding of the potential bottlenecks of Horovod and opportunities

to improve its performance.

1.3.2 Intra-node PAP-aware MPI Allreduce for Small Messages

Chapter 4 proposes an intra-node PAP-aware MPI Allreduce algorithm for small messages.

The state-of-the-art algorithms used for small message MPI Allreduce collectives in mod-

ern HPC systems exploit the fast shared memory available on each node of the cluster to

reduce communication latency [53, 8, 28, 61, 65, 33, 38]. The majority of these algo-

rithms have been designed for synchronous Process Arrival Times (PATs) and are not opti-

mized for imbalanced PAPs ubiquitous in many parallel systems. We propose a PAP-aware

shared-memory aware MPI Allreduce algorithm that dynamically chooses the leader of the

operation based on the arrival time of the processes at each invocation of the collective call.
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We implemented our PAP-aware design on top of the shared-memory MPI Allreduce al-

gorithm of MVAPICH. Then, we present the evaluation of our design against the native

algorithms utilized in MVAPICH at the microbenchmark level for MPI Allreduce opera-

tions with messages up to 64KBs on two platforms. The experimental evaluations show

up to 36% and 56% improvement over native algorithms under different imbalanced pro-

cess arrival patterns, with 32 Processes Per Node (PPN), on Beluga and Cedar clusters at

Compute Canada, respectively.

1.3.3 Intra-node PAP-aware MPI Reduce/Allreduce for Large Messages

In Chapter 5, we propose a PAP-aware algorithm capable of exploiting the imbalance in the

process arrivals to improve the performance of intra-node MPI Reduce and MPI Allreduce

collectives with large message sizes. Our proposed algorithm dynamically constructs the

reduction schedule at each invocation of the collective call based on the arrival order of the

processes. It is noteworthy that our design does not need any prior knowledge about the

process arrival times when scheduling the reduction operation. The PAP-aware algorithm

minimizes the time each process spends in the collective call by letting the arriving pro-

cesses contribute their data and leave the collective call as soon as possible. We provide the

performance evaluation of our algorithm using balanced and imbalanced microbenchmarks

with different process arrival patterns on two platforms. For the MPI Reduce operation, the

experimental evaluations show up to 30%, and 73% improvement over the best performing

native algorithms of MVAPICH under different imbalanced process arrival patterns, with

4 and 16 PPN, on Cedar and Helios clusters at Compute Canada, respectively. In addi-

tion, for the MPI Allreduce operation, the experiments show the maximum improvement

of 44% over the best performing native algorithm of MVAPICH under various tested PAPs
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with 4 PPN on Cedar cluster computer.

1.3.4 Cluster-wide PAP-tolerant MPI Allreduce for Large Messages

Chapter 6 investigates a cluster-wide MPI Allreduce algorithm for large messages capable

of delivering high performance under imbalanced workloads. We evaluate the performance

of two famous cluster-wide MPI Allreduce algorithms, flat reduce-scatter followed by all-

gather (RSA) and hierarchical RSA algorithms with balanced and imbalanced microbench-

marks as well as the Horovod application. The microbenchmark experiments show that

the flat algorithm delivers the best performance in balanced PATs. However, when there

are deviations in the arrival pattern of the processes, the flat algorithm suffers from per-

formance degradation. On the other hand, hierarchical algorithms perform better under

imbalanced PAPs than their flat counterparts since they impose less data dependency on

the participating processes. The imbalanced microbenchmark results show that for 64KB

to 64MB messages, the hierarchical algorithm, compared to its flat counterpart, improves

the latency of the MPI Allreduce operation by up to 57%. The application-level evaluation

with Horovod also presents that using the hierarchical algorithm instead of the flat algo-

rithm improves the throughput of Horovod for all the studies we conducted with different

GPU counts by an average of 10%.

1.4 Organization of the Thesis

The rest of this thesis is divided into six chapters. Chapter 2 provides some background

information and lays the groundwork for the following chapters. It starts by discussing

cluster computers as the most common types of parallel computers. It then explains dif-

ferent message-passing semantics and features specified within the MPI standard as the
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de-facto parallel programming paradigm. Next, it explains the PAP and the metrics used

to describe it since our proposals in this thesis are primarily based on this research front in

MPI. Finally, it briefly discusses the Horovod distributed deep learning framework used as

our understudy application. In Chapter 3, we study the communication characterization of

Horovod and present an in-depth process arrival pattern analysis of this parallel application.

Chapter 4 proposes a novel approach for improving intra-node MPI Allreduce collective

operation under imbalanced process arrival patterns for small messages using shared mem-

ory, followed by its performance evaluation. Chapter 5 discusses our PAP-aware algorithm

for improving the performance of intra-node MPI Reduce and MPI Allreduce collectives

for large message sizes and provides the microbenchmark results against some famous

algorithms implemented in MVAPICH. Chapter 6 introduces an inter-node PAP-tolerant

solution for the MPI Allreduce collective call for large message sizes, achieving high per-

formance under imbalanced PAPs, followed by microbenchmark and Horovod application

results. Finally, Chapter 7 concludes the thesis and provides some potential future research

directions.
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Chapter 2

Background

In this chapter, we lay the foundation for the next chapters. We provide some background

information about HPC and its application that are relevant to this thesis. We provide

an overview of some interconnection networks used in HPC systems. Then, we present

MPI and its communication semantics, including collective communication operations. We

discuss some well-known algorithms used in MPI libraries for the implementation of some

collective communications. Furthermore, we discuss the Process Arrival Pattern issue of

collectives and the metrics used to measure it. In the end, we discuss distributed Deep

Learning frameworks as one of the most important applications in the HPC domain, and

for that we specifically introduce Horovod as the application studied in this thesis.

2.1 High-Performance Computing (HPC)

As the complexity of algorithms and the volume of datasets used in scientific and engi-

neering applications increases, the computational intensity grows proportionally, resulting

in significantly long, even impractical, execution time on an ordinary computer. HPC is

the key to execute such applications in a reasonable amount of time. Computational Fluid

Dynamic (CFD) [43], genomics [36], financial risk modeling [71], weather prediction [35],
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as well as emerging applications, such as machine learning [9] and Deep Learning [59, 60]

are just a few examples of computationally intensive HPC application domains. The HPC

community investigates cutting-edge hardware, software, as well as novel techniques to

deliver state-of-the-art computational power required by HPC applications.

Parallel computing is the principal approach to satisfy the ever-growing demands for

computational power. In parallel computing, an application is broken down into a number

of sub-tasks that can be processed independently. Each sub-task is then executed by one

of the many processing units of the system. This way, parallel computers can utilize the

computation power of multiple processors to enhance the performance of applications.

Cluster computers are one of the most common types of parallel computers. At the time

of writing this thesis, cluster computers account for 93% of the top 500 supercomputers in

the world [7]. Figure 2.1 depicts the architecture of a cluster computer, which consists of

multiple compute nodes connected to each other via a high-performance interconnection

network. The computations are executed on the processing elements within the compute

nodes. Whenever a synchronization needs to be performed among the processing elements

or exchange of intermediate results is required, the interconnection network is utilized.

The multi-core processors are the main component of each compute node and may be sup-

plemented by accelerators such as GPUs, which are becoming inevitable parts of modern

cluster computers. GPUs have a huge number of low-power cores compared to multi-core

processors, which is ideal for massively data-parallel applications such as mathematical li-

braries or kernels working with large datasets that utilize simple instructions but for a large

number of invocations.
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Figure 2.1: An example of a typical HPC cluster

Floating-point operations per second (FLOPS) is the metric used by Top500 [7] to mea-

sure the compute power and rank the fastest supercomputers in the world. Currently, Fu-

gaku, Summit, and Sierra are the top three publicly known supercomputers, each having

millions of processors and capable of executing operations at the petascale computing (1015

FLOPS) level. The ever-increasing size and the complexity of current and emerging prob-

lems lead to the demand for even higher computational power. Consequently, the HPC

community aims to achieve exascale computing (1018FLOPS) level in the near future.

HPC systems could only deliver as much computing power to the applications as they

have the potential to, only if software layers would utilize the hardware resources optimally.

One of the most important bottlenecks in achieving maximum performance in HPC systems

is the communication between the processes. As mentioned earlier, in an HPC system, the
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processes are distributed among the compute nodes. When the computation on each process

is finished, a communication mechanism is required to help the processes exchange the

intermediate data or synchronize with each other. However, as the number of processing

elements grows in parallel computers, the communication between them becomes critical

in achieving high performance. Therefore, the HPC community has been ever enhancing

the communication performance of parallel applications. Parallel programming paradigms

such as Shared Memory [19], Partitioned Global Address Space (PGAS) [6], and Message

Passing have been introduced as a software layer to support the communication between the

processes. MPI is the most frequently used parallel programming model in HPC clusters.

In the following sub-section, we further introduce MPI as the main focus of this thesis.

2.1.1 High-Performance Interconnects

Interconnection networks connect the compute nodes on a cluster computer so that they

can communicate with each other. In order for HPC applications to scale appropriately

on multiple machines, low latency and high bandwidth communication between the com-

pute nodes is necessary. Different interconnection networks are used in different cluster

computers. InfiniBand [2], Omni-Path [15], Ethernet and proprietary interconnects are the

most commonly used interconnection networks in HPC. InfiniBand (IB) has become the de-

facto standard architecture used to interconnect servers. This standard uses switched fabric

network topology and delivers decent scalability by providing very low latency and high

throughput. In InfiniBand, all the transmissions start or end at a Channel Adapter (CA).

Each processor is connected to the network by a Host Channel Adapter (HCA), and each

peripheral device is connected to the network via a Target Channel Adapter (TCA). As op-

posed to older networks, InfiniBand can bypass the Operating System (OS) for transferring
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the messages. HCAs are able to directly access application memory buffers without calling

into the OS kernel using Direct Memory Access (DMA). This feature of IB ensures low

latency and high application performance. At the time of writing this thesis, InfiniBand,

Ethernet, and Omni-Path are used in 31%, 50.8%, and 9.4% of the top 500 supercomputers

in the world, respectively. The performance share of the aforementioned interconnects are,

however, 40%, 19.6%, and 7.6% in the same order [7]. The remaining share belongs to

proprietary interconnects.

2.2 Message Passing Interface (MPI)

As it can be seen in Figure 2.2, MPI functions as an interface between the high-level ap-

plication layer and the lower-level system layers. It provides the user application with

the abstraction of the underlying network hardware. This standard introduces different

communication semantics such as one-sided, point-to-point, partitioned point-to-point, and

collective operations. We briefly introduce point-to-point, partitioned point-to-point, and

RMA for completeness, as they are not the focus of this thesis. Then, we discuss collective

communications in detail.

Parallel Applications

Application Programming Interface (e.g., MPI)

User-level Libraries and Protocols

Physical Network

Figure 2.2: Layers of abstraction in a parallel system
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2.2.1 Point-to-point Communications

Point-to-point or two-sided communication involves only two processes, namely the source

and the destination processes. Using MPI Send family of calls, the source process initiates

sending a message to the destination process. On the other hand, the destination process

initiates a receive request by calling the MPI Recv family of calls. The message traveling

from the sender process contains the actual data that is to be sent, the datatype of each

element of the data, the number of elements the data is comprised of, the identification

number (tag) of the message, communicator ID which is a handle specifying a group of

processes, and the ranks of the source and destination processes within the defined commu-

nicator ID. The tag, communicator ID, and ranks parameters will be used by the receiving

side to match the sent message. The destination process then stores the received data in

its receive buffer. The point-to-point communications in MPI are available in blocking and

non-blocking fashions. In a blocking send call (MPI Send), the sender process is blocked

until its local send buffer can be used again. The blocking receive operation (MPI Recv)

blocks the caller process until the expected message arrives. The non-blocking send op-

eration (MPI Isend) initiates the send operation and returns before the message is copied

out of the send buffer. The non-blocking receive operation (MPI Irecv) initiates the receive

operation and returns once the receive request is posted. Therefore, these two calls do not

guarantee the completion of the corresponding calls. A send/receive request is completed

by MPI Wait family of calls. Using non-blocking communication usually leads to bet-

ter performance by providing the opportunity to overlap communication and computation.

There are numerous studies in the literature on improving the performance of point-to-point

communications [63, 68, 47, 69, 27].
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2.2.2 Partitioned Point-to-point Communications

Prior to the introduction of the MPI-4.0 standard [3], MPI provided all multi-threaded func-

tionality through an interface that was designed primarily for single-threaded operations.

To address the requirements of multi-threaded communication, a unique interface, parti-

tioned point-to-point, has been introduced in the MPI-4.0 standard. Partitioned point-to-

point communication is ”partitioned” because it provides a threaded interface for message

passing that allows multiple parallel contributions of data to be made from potentially mul-

tiple threads or tasks to a single communication operation. With partitioned point-to-point

primitives, while the HPC application provides partial contributions using multiple threads

or tasks, the MPI library can transfer parts of the data buffer to the destination buffer.

This way, utilizing partitioned communications in multi-threaded applications potentially

improves the performance with overlapping buffer completion with its transfer.

2.2.3 One-sided Communications

One-sided communication, also called Remote Memory Access (RMA), allows a process

to access the address space of another process without any explicit participation by the

remote process. In RMA communication, each process exposes a part of its memory to

other processes so that they can directly read from or write to the exposed memory on the

remote process without the need to synchronize with it. The remote process is called the

target process, and the exposed buffer on it is called a window. The process that performs

the one-sided operation on the target process’s window is called the origin process. Us-

ing MPI Get and MPI Put calls, the origin process reads/writes data from/to the window

allocated on the remote process. The RMA communication is especially advantageous in

applications with dynamic, unstructured computations, where the communication patterns
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change throughout the computation.

2.2.4 Collective Communications

Collective communication operations involve multiple processes on the system. With these

operations, processes are able to perform one-to-many, many-to-one, and many-to-many

communications in an optimized, yet convenient way. Examples of one-to-many collective

communications within the MPI standard are broadcast and scatter. In an MPI broadcast

operation (MPI Bcast), a process sends the same data to all other processes in the commu-

nicator, while in MPI scatter operation (MPI Scatter), one process sends different chunks of

data to different processes. Gather and reduce are two examples of many-to-one collective

operations defined within the MPI standard. Using MPI gather operation (MPI Gather),

one process gathers data from different processes in the communicator. MPI reduce opera-

tion (MPI Reduce) is similar to MPI gather, except that a reduction operation is performed

on the data supplied by the contributing processes. Alltoall, allgather, reduce-scatter, and

allreduce collective operations are some examples of many-to-many collective communica-

tions. In an MPI alltoall operation (MPI Alltoall), also called complete exchange operation,

all processes scatter and gather data to and from every other process in the communicator.

MPI Allgather operation is a variation of MPI gather where each process gathers data from

all the processes within the communicator. MPI reduce-scatter is a variant of MPI reduce

where the result of the reduce operation is scattered to all the members in the group of par-

ticipating processes. MPI Allreduce operation is another variation of MPI reduce where all

the processes within the communicator receive the result.

MPI Allreduce and MPI Reduce are among the most commonly used collective com-

munication operations in HPC applications [56, 18, 14]. Therefore, various algorithms
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and techniques have been proposed by researchers to improve the performance of these

operations for different specifications such as topologies, network interconnects, hardware

technologies, number of processes, and message sizes [67, 30, 57, 34, 49, 25].

Flat algorithms aim to improve the performance of collectives by increasing the band-

width utilization. The design of these algorithms is based on the flat communication model.

This model assumes that the communication between any pair of processes occurs at the

same cost. Ring, Recursive Doubling, Binomial-Tree, and Rabenseifner’s algorithms, are

some examples of flat algorithms.

The Ring algorithm for allreduce, shown in Figure 2.3, uses the nearest-neighbor com-

munication pattern and is composed of computation and distribution phases. In this algo-

rithm, the data on each process is divided into p chunks. At each round of the computation

phase each process sends a chunk of its data to its right neighbor (the chunk index is de-

termined based on the round number and the process’s rank). Then, it receives a chunk of

data from its left neighbor, and performs a reduction operation on the received data before

forwarding it to the right neighbor in the next round. After p − 1 rounds of computation

phase, each process has exactly one chunk fully reduced. Then, the distribution phase be-

gins. In p − 1 rounds of this phase, each reduced chunk is gathered by all the processes

with the same fashion (each process receives a reduced chunk from its left neighbor and

forwards it to its right neighbor), so the final result will be available on all the participating

processes [64].
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Figure 2.3: Ring algorithm for Allreduce with four processes (Solid arrows represent the
computation phase, while the dotted arrows illustrate the distribution phase. The reduction
operation is not shown.)

In the first step of the Recursive Doubling (RD) algorithm for allreduce, the processes

with a distance one apart exchange their data. The distance between the communicating

processes is doubled in each algorithm’s step. Each step also involves a local reduction

by the corresponding processes. For a power-of-two number of processes, the algorithm

continues for log2 p steps, where p is the number of processes [64]. Figure 2.4 illustrates

how the recursive doubling algorithm works.
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Figure 2.4: Recursive Doubling algorithm for Allreduce with eight processes (The reduc-
tion operation is not shown.)

Figure 2.5 demonstrates the Binomial-Tree algorithm for reduce. This algorithm is sim-

ilar to the recursive doubling algorithm, except that in binomial tree algorithm, after each

step, half of the processes finish their contribution to the operation and become inactive.

This algorithm consists of ⌈log2 p⌉ steps. At the end of the last step, the root process holds

the result of the reduce operation [4]. The binomial tree allreduce operation, can be im-

plemented by the aforementioned reduce operation followed by a broadcast operation. The

Rabenseifner’s algorithm for allreduce, also called Reduce-Scatter Allgather (RSA) algo-

rithm, is a combination of a reduce-scatter followed by an allgather operation. The reduce-

scatter operation in RSA is implemented with the recursive doubling algorithm (Figure

2.4). The allgather operation, however, uses the Recursive Halving algorithm presented in

Figure 2.6. The Rabenseifner’s algorithm for reduce, performs the same Reduce-Scatter

algorithm as RSA. However, instead of an allgather operation it uses a gather to the root

operation implemented with the binomial tree algorithm [57].
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Figure 2.5: Binomial-Tree algorithm for Allreduce with eight processes (The reduction
operation is not shown.)
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Figure 2.6: Recursive Halving algorithm for Allreduce with eight processes (The reduction
operation is not shown.)

Hierarchical algorithms, on the other hand, aim to scale and perform better by mini-

mizing the data transfers through the slower communication channels and instead utilizing



2.2. MESSAGE PASSING INTERFACE (MPI) 21

faster communication channels available on a multicore cluster. The hierarchical algo-

rithms usually perform in several stages. In these algorithms, the process communicator

splits into sub-communicators, each having a local root (leader) process. Processes within

a sub-communicator communicate through the faster communication channels, such as

shared memory, and inter sub-communicator communications are executed through the

slower channels, such as network interconnects [70]. The performance of existing hier-

archical algorithms for several MPI implementations has been evaluated and optimized

for various routines on platforms with different architectures and hardware supports in

[72, 29, 70, 30].

Collective communications have been extensively used by a large number of MPI appli-

cations because of their ease-of-use, and potential performance and scalability. The perfor-

mance of collective operations has a pivotal effect on the performance of MPI applications.

Hence, researchers have conducted numerous investigations in order to improve the perfor-

mance of MPI collective communications over the years [16, 64, 42, 32, 22, 66, 37]. Most

of these works along with the existing algorithms for MPI collective operations have been

designed and evaluated under an impractical premise that all the processes arrive at the

collective call simultaneously and participate in the execution of the operation at the same

time. While this assumption is correct for microbenchmark analysis, as shown in [21], even

in programs with perfectly balanced workloads the processes arrive at the collective site at

notably different times. The imbalance in the arrival time of processes is believed to be

the consequence of various system features, including but not limited to operating system

noise, cache misses, hardware interrupts, branch mispredictions, and stall CPU cycles. The

arrival pattern of processes can significantly affect the performance of collective commu-

nication operations in that it determines the time each process can start its contribution to
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the operation. Therefore, it is remarkably important to evaluate the performance of exist-

ing collective communication operations under different arrival patterns of MPI processes

and propose new algorithms to deliver high throughput for a broad range of process arrival

patterns. There has been a limited number of works in the literature studying the impact

of arrival pattern of processes on the performance of different collective operations and

only a few of them have proposed new algorithms which perform efficiently when there

is an asynchrony among the processes at the start of the collective operation execution

[21, 44, 45, 46, 55, 52, 39, 40].

2.3 Process Arrival Pattern

In this section, we introduce the metrics used in the literature to describe the arrival pat-

tern of processes in the applications. Considering the fact that each process involved in a

collective operation arrives at the operation at a different time, the process arrival pattern

of the collective call can be presented by the set of unique times each process arrives at

the collective site. With a given world size of n processes P0, P1, ..., Pn−1, the PAP can be

presented by the tuple (a0, a1, ..., an−1) as illustrated in Figure 2.7. The PAP is considered

to be balanced if all the processes arrive at the collective site simultaneously, and is imbal-

anced otherwise. The imbalance in the PAP can be described by average-case imbalance

time and worst-case imbalance time metrics that were originally defined in [21].
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Figure 2.7: Process arrival pattern parameters

The worst-case imbalance time (Ω), defined in Equation (2.1), denotes the difference

in time between the earliest arriving process and the last process entering the collective.

Average-case imbalance time (∆), on the other hand, is the average time difference between

the arrival time of each process and the average of arrival times. The average of arrival times

(ā), and the average-case imbalance time have been illustrated in Equation (2.2 (a)) and

Equation (2.3), respectively.
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Ω = maxi{ai} −mini{ai} (2.1)

ā =
a0 + a1 + ...+ an−1

n
(2.2 (a))

∆i = |ai − ā| (2.2 (b))

∆̄ =
∆0 +∆1 + ...+∆n−1

n
(2.3)

Average-case imbalance factor and worst-case imbalance factor are two other metrics that

are very useful for characterizing the imbalanced PAPs. Let α be the time it takes to com-

municate a message (the size of this message is equal to the size of the message in the

collective operation). The average-case imbalance factor ∆̄
α

, and worst-case imbalance

factor Ω
α

are defined as the average-case imbalance time and worst-case imbalance time

normalized by the time α.

2.4 Deep Learning Frameworks

Deep Learning frameworks are designed to support the execution and design of different

types of Deep Neural Networks (DNN). The Distributed Deep Learning Frameworks make

the distributed training of the DL models possible. These frameworks exploit the inherent

parallelism of the DNNs to make the training task distributed. With the utilization of these

frameworks, an existing single-node training can be scaled up to run on hundreds of GPUs

on multiple cluster nodes. There are three techniques used by the Deep Learning frame-

works for distributed training, model parallelism, data parallelism, and hybrid parallelism.
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In the model parallelism technique, different parts of a single DL model are imple-

mented on different computational units within a distributed cluster. Hence, the computa-

tions regarding each part of the model are assigned to different machines. This distributed

training method is advantageous for very large DL models where the whole model cannot

be implemented on a single machine within the cluster. The data parallel technique, on the

other hand, implements a complete copy of the model on each machine and distributes the

training dataset between the worker machines. This way, each worker gets a different subset

of the training dataset referred to as a batch. When the computation of each batch has fin-

ished, the results (calculated gradients) from each worker need to be exchanged somehow.

Hybrid parallelism combines the model and data parallel techniques. In this method both

the model and data are partitioned and distributed to different machines within a distributed

cluster.

Distributed Deep Learning frameworks usually implement the gradient exchange step

with a Parameter Server (PS) or the All-reduce collective method. In the PS method, a sin-

gle machine, the parameter server, is responsible for periodically gathering the gradients

computed by the other machines, updating the parameters needed for the next iterations of

the training, and broadcasting the most up-to-date parameters to the workers. One down-

side of this method is that the other workers do not contribute much toward updating the

parameters globally. Hence, the parameter server may suffer from overutilization. The All-

reduce collective method, on the other hand, involves all the workers exchanging gradients

and calculating the updated parameters distributedly.
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2.4.1 Horovod

Horovod [60] is an open-source and free distributed Deep Learning training framework for

TensorFlow, PyTorch, Keras, and MXNet used by most of the researchers. This framework

developed by Uber makes the distributed Deep Learning fast and easy to use and delivers

high performance and scalability for different DL models. Using the Horovod framework,

a single-GPU training can be scaled to train across many GPUs in parallel with minimum

modifications in the training script. Uber’s Horovod exploits the MPI model and its con-

cepts such as size, rank, local rank, allreduce, allgather and, broadcast to make the training

distributed. The developers in Uber utilized the MPI model in that it delivers high perfor-

mance and requires fewer code changes than other solutions, such as the parameter server

model. Horovod also offers a unique feature called Tensor Fusion. Tensors are data buffers

that the reduction operations are performed on them. The Tensor Fusion feature enables

communication and computation overlap. Using this feature, as the tensors are computed

on each machine, the data will be gathered into the Fusion Buffer. Then, when the Fu-

sion Buffer is full, or the desired time-out threshold, set by environment variables, is met,

the MPI Allreduce collective is performed. This method, the batch allreduce operation,

is especially beneficial when the number of small message allreduce operations is signif-

icant. Horovod can also be used with other collective communications libraries such as

NCCL [5, 11], Gloo, MLSL, and DDL. In addition, it can be executed both on CPU and

GPU platforms. In this study, we concentrate on using Horovod on GPU platforms with

MPI collective communication library. Figure 2.8 presents the complete software stack for

distributed DL training using Horovod.



2.4. DEEP LEARNING FRAMEWORKS 27

Synthetic Data, ImageNet, CIFAR-10, etcData

ResNet50, VGG16, DenseNet, GoogLeNet, etcDL Models

TensorFlow, PyTorch, MXNet, KerasDL Framework

Horovod
Distributed 

Trainer

PMPI Application Level Profiling

MPI, NCCL, Gloo, DDL, MLSLCommunication 
Library

Figure 2.8: Software stack for Horovod DL training
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Chapter 3

Communication Characterization of a Distributed Deep

Learning Framework (HOROVOD)

Parallel applications involve several processes exchanging messages. The communication

characterization of these MPI processes is essential in that it can be crucial to the perfor-

mance of the parallel applications running on clusters. This chapter investigates charac-

teristics of collective communications in Horovod as one of the most famous distributed

Deep Learning frameworks. We first present some related works in the literature. Then,

we introduce the experimental setup, including hardware/software platforms used in our

experimentations. We study the frequency and run-time contribution of different collective

operations in Horovod. Then, we introduce the most critical collective and further inves-

tigate the frequency of message ranges/sizes, their contribution to the collective’s overall

run-time, and its Process Arrival Pattern.

It is noteworthy that the collective communication behavior of the Horovod exhibited

similar characteristics independent of the platforms we used in our experiments. There-

fore, the information presented in this chapter will provide the HPC users, programmers,

and Deep Learning scientists with a better understanding of Horovod and opportunities to
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improve its performance.

3.1 Related Work

Awan et al. [12] provide a performance analysis of of a relatively new HPC application

area, distributed Deep Learning, on different CPU (Intel Skylake, AMD EPYC, and IBM

POWER9) and GPU (Volta V100) platforms with variuos underlying high-performance

interconnects (InfiniBand, Omni-Path, PCIe Gen3, and NVLink). The authors use the

Horovod distributed DL framework with TensorFlow for their study and use different DL

models such as ResNet-50/101 and Inception-v3/4. They also present some communication

characterization results for MPI/NCCL allreduce collective operation such as message size,

number of calls for each message size, and the latency for each call. Their study shows that

the allreduce suffers from severe performance inconsistency for non-power-of-two message

sizes for both CPU and GPU trainings on all interconnects when Tensor Fusion is enabled.

Ben-Nun and Hoefler [13] provide a comprehensive survey on DNNs and techniques for

accelerating their training. They first describe the theoretical aspect of DL models and

then introduce approaches for their parallelization. Next, the authors model and analyze

the different types of concurrency in DNNs such as Data Parallelism, Model Parallelism,

Pipelining, and Hybrid Parallelism. They also discuss different techniques for distributed

training of the Deep Learning models such as Parameter Server (PS) and Decentralized

methods. The study concludes with some potential directions for optimized parallelism in

Deep Learning.

It should be noted that the current literature misses a systematic communication charac-

terization study of DL frameworks. Furthermore, to the best of our knowledge, our work in

this chapter is the first study investigating the Process Arrival Pattern of the MPI collectives
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in such applications.

3.2 Experimental Results and Analysis

3.2.1 Experimental Setup

Our studies were conducted on three clusters. The configuration of these clusters along

with the software platform are described below.

Beluga GPU Cluster

Beluga is a general-purpose cluster at Compute Canada, hosted at the Ecole De Technologie

Superieure University in Montreal. This cluster consists of 172 nodes, each node having

two Intel Gold 6148 Skylake for a total of 40 cores running at 2.4 GHz and 186 GB of

memory. Each node also contains four NVIDIA Tesla V100 SXM2 16 GB GPUs connected

via NVLink. The Network Interconnect is Mellanox Infiniband EDR with the maximum

bandwidth of 100 Gb/s.

Cedar CPU and GPU Clusters

Cedar is a heterogeneous cluster at Compute Canada, located at the Simon Fraser Univer-

sity in Vancouver. Cedar has 192 nodes, each having two Intel Silver 4216 Cascade Lake

for a total of 186 GB of memory and 32 CPU cores, running at 2.1 GHz. Each node also has

four NVIDIA Tesla V100 32G HBM2 GPUs connected via NVLink. An Intel Omni-Path

interconnect with the maximum bandwidth of 100 Gb/s connects together all the nodes of

this cluster.
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Helios GPU Cluster

Helios is a general-purpose supercomputer at Compute Canada, hosted at the Laval Uni-

versity. This cluster is equipped with eight nodes, each consisting of eight K80 GPUs and

two Intel Xeon Ivy Bridge E5-2697 v2 for a total of 256 GB of memory and 24 CPU cores

running at 2.7 GHz.

Software Platform and Data Collection

For all the platforms we used the CUDA-aware implementation of MVAPICH2-2.3 with

CUDA 10.0.130. We compiled Horovod-0.18.0 to use TensorFlow-1.13.0. For all the tests

we utilized the synthetic benchmarks within Horovod which provide the throughput of

the image classification task by the number of images processed per second (Images/Sec).

These benchmarks remove the overhead of I/O by using synthetic data, leading to more

accurate measurements of MPI communication time in our study. The benchmark runs

for 10 iterations and uses 10 batches of size 32 as default. As the default configuration

suggests for all the tests we assigned one process per GPU and distributed the available

CPU cores evenly among processes. We developed a custom MPI profiler to study the

characteristics of MPI collective communications, especially their process arrival patterns.

Our profiler uses the PMPI interface [3] to obtain the data from the application layer such

as the collective operation, the message size, count, type, process arrival times and the time

spent in each MPI collective. The times were measured using the MPI Wtime. Also, for

accurately measuring the times on different processes on different machines, we called the

MPI Barrier after the MPI Init routine and normalized all the processes’ reported times

by their exit time of the MPI Barrier. Doing so, we could synchronize the clocks globally

between the processes of the cluster, with an inaccuracy equal to the latency of sending a
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few small messages, which is based on the premise that all the processes exit the barrier

operation at the same time. The profiler stores all the gathered data in the memory during

the execution of the application, and gets the processes to print them into log files for post-

processing purposes, just after the MPI Finalize is called.

3.2.2 Distribution of Collective Communication Calls

In this section, the distribution of MPI collective communication calls per process in Horovod

is presented on three different platforms. In Figure 3.1 it can be seen that, on the Bel-

uga cluster, the allreduce operation accounts for the majority of the collective calls in the

Horovod by 84%, 93%, and 79% for ResNet50, VGG16, and DenseNet DL models, re-

spectively. The second important collective operation in terms of frequency is the broad-

cast operation which makes up 11%, 4%, and 17% for ResNet50, VGG16, and DenseNet

DL models, respectively. Allgather, Gather, and Gatherv are another collective operations

used by Horovod which only accounts for up to 5% of the collective calls for the aforemen-

tioned DL models. Since the frequency of collectives in Horovod is similar for different DL

models, we provide the results only for the ResNet50 model for the remaining platforms.

Figure 3.2 shows that for the ResNet50 model, the allreduce operation accounts for

75% and 96% of the number of collective calls on Cedar and Helios, respectively. Similar

to the results from Beluga, broadcast is the second important operation which makes up

17% and 3% of the collectives, and allgather, gather, and gatherv operations account for

the remaining 8% and 1% of the collective calls on Cedar and Helios clusters, respectively.

We investigated the source code of Horovod and observed that the allgather operations

have been used to collect values of sparse tensors. Broadcast operations have been utilized

to enforce consistent initialization of the model along with the distribution of training/test
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dataset on all workers. Allreduce operations, on the other hand, are responsible for averag-

ing the gradients among all workers and distributing the results back to them at the end of

each iteration. Since the number of iterations for training a DL model with a dataset is usu-

ally a large number in the charcterization results we observe that the allreduce operations

are the dominant collective used in Horovod. It should be noted that Horovod is strong in

terms of scaling delivering up to 76% scalability for the ResNet50 model on 256 GPUs on

Cedar.
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Figure 3.1: Distribution of MPI collective calls for Horovod + TensorFlow with different
DL models using 64 GPUs evenly distributed among 16 nodes on Beluga
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Figure 3.2: Distribution of MPI collective calls for Horovod + TensorFlow for ResNet50
on Cedar (256 GPUs, 64 nodes) and Helios (16 GPUs, single node) clusters
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3.2.3 Run-time Contribution

In this sub-section, the contribution of the MPI collectives to the communication run-time

on three different platforms for Horovod is investigated . Figure 3.3 shows that the allre-

duce operation dominates the communication run-time of Horovod by 95%, 96%, and 97%

for ResNet50, VGG16, and DenseNet DL models, respectively, on the Beluga cluster. The

broadcast operation, although important in terms of number of calls, does not play a key

role in the run-time and only accounts for up to 5% of the communication run-time. All-

gather, gather, and gatherv collective operations have the least effect on the run-time and

only make up less than 1% of the communication run-time. Like the previous sub-section,

since the contribution of different collective operations to the communication run-time for

different DL models is similar, we only provide the results for the ResNet50 model for the

remaining platforms.
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Figure 3.3: Contribution of MPI collective calls to the communication run-time for
Horovod + TensorFlow with different DL models using 64 GPUs evenly distributed among
16 nodes on Beluga

In Figure 3.4 it can be seen that for the ResNet50 model, the allreduce operation ac-

counts for 96% and 98% of the communication run-time on Cedar and Helios platforms,
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respectively. Similar to the results from Beluga, broadcast is the second important collec-

tive with contributing up to 4% to the communication run-time. Similarly, allgather, gather,

and gatherv operations make up less than 1% of the communication run-time on both Cedar

and Helios clusters.

We have observed that the allreduce operation is the most significant collective opera-

tion used by Horovod both in terms of its frequency and communication run-time contri-

butions. Hence, in the following sub-sections we further study the characterization of this

collective.
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Figure 3.4: Contribution of MPI collective calls to the communication run-time for
Horovod + TensorFlow for ResNet50 on Cedar (256 GPUs, 64 nodes) and Helios (16
GPUs, single node) clusters

3.2.4 MPI Allreduce Characterization

We start by studying the distribution of allreduce calls among different message sizes.

Then, we present their contribution to the MPI Allreduce communication run-time. In the

end, we investigate the Process Arrival Pattern of the allreduce calls for different message

sizes.
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Distribution of Allreduce Calls among Different Message Sizes

Our profiling results show that Horovod uses allreduce with messages in the 4B-64MB

range for all of the DL models and on all the clusters we used for this study. We split this

message range into three sub-ranges of small, medium, and large message sizes for better

understanding the impact of different message sizes on the allreduce communication time

and calls. The small, medium, and large message sub-ranges would be 0-1KB, 1KB-1MB,

and 1MB-64MB, respectively.

In Figure 3.5 it can be seen that, on the Beluga cluster, the allreduce calls with small

message sizes account for the majority of all the allreduce calls by 93%, 88%, and 96%

for ResNet50, VGG16, and DenseNet DL models, respectively. Medium message sizes are

the least important allreduce calls in that they only account for up to 4% of the allreduce

calls for VGG16, and less than 1% for the ReNet50, and DenseNet models. The second

important message size sub-range in terms of number of calls is the large message allreduce

which makes up 7%, 8%, and 4% of all the allreduce calls in Horovod for ResNet50,

VGG16, and DenseNet DL models, respectively.
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Figure 3.5: Distribution of Allreduce collective calls among different message size sub-
ranges for Horovod + TensorFlow with different DL models using 64 GPUs evenly dis-
tributed among 16 nodes on Beluga
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Since the distribution of allreduce calls among different message sizes for different DL

models is similar, for the remaining platforms, we provide the results only for the ResNet50

model.

Figure 3.6 shows that for the ResNet50 model, the small message allreduce operation

accounts for 89% and 95% of all the Horovod allreduce calls on Cedar and Helios clusters,

respectively. Similar to the results from Beluga, medium and large message allreduce calls

are of a less importance in terms of their frequency on Cedar and Helios. On Cedar they

only account for 1% and 10% of all allreduce calls, respectively. On Helios, 3% and 2% of

all allreduce calls are dedicated to medium and large messages, respectively.
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Figure 3.6: Distribution of Allreduce collective calls among different message size sub-
ranges for Horovod + TensorFlow for ResNet50 on Cedar (256 GPUs, 64 nodes) and Helios
(16 GPUs, single node) clusters

The investigation of the source code of Horovod along with analyzing the characteri-

zation results suggest that Horovod uses allreduce operations for two purposes. Eight-byte

messages have been used as part of the implementation of the Tensor Fusion feature. These

allreduce calls are used for synchronization between the workers in order to determine

which tensors are ready to be reduced and which workers are involved in the reduction
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operation. The large message allreduce operations, however, are used to average dense ten-

sors and disperse them to all workers. This explains the massive amount of small message

allreduce calls and the notable contribution of the large message allreduce operations to the

application run-time.

Contribution of Different Message Sizes to the Allreduce Communication Time

Here, we present the contribution of different message sizes to the allreduce communica-

tion time. Figure 3.7 shows that, on Beluga, the allreduce calls with small message sizes

dominate the allreduce communication time by 78% and 92% for ResNet50 and DenseNet

DL models, respectively. Furthermore, for these two models, the second important mes-

sage size sub-range is the large message allreduce, making up 22% and 8% of the allreduce

communication time in the previously given order. Unlike ResNet50 and DenseNet DL

models, for the VGG16 model the large message sizes dominate the allreduce communica-

tion time by 63% while the small message sizes account for 36% of application’s allreduce

time. On the other hand, allreduce with medium sized messages are the least important in

that they contribute less than 1% to the allreduce run-time for all the DL models we studied.

Similarly, Figure 3.8 suggests that for ResNet50, the small message allreduce accounts

for 65% and 80% of the allreduce time on Cedar and Helios platforms, respectively. The

allreduce with large messages have the next significant impact on the allreduce time by

making up 35% and 19% on Cedar and Helios clusters, respectively. Again, the medium

message allreduce calls do not have any notable contribution to the communication time.

Our investigation into the allreduce operation revealed that small and large messages

are responsible for all the allreduce communication time in Horovod. In addition, it was

showed that for ResNet50 and DenseNet DL models, small message allreduce outweighs
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its large massage counterpart, while for the VGG16 large message allreduce has a more

significant impact on the Horovod run-time.
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Figure 3.7: Contribution of different message sizes to the application’s Allreduce commu-
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Process Arrival Pattern

In this section, we investigate the PAP of allreduce collectives. We first study the cluster-

wide and then we present the node-wide PAP metrics.

1. Cluster-wide Study

In this part, we measure the PAP parameters by considering all the processes on all nodes

separately. Table 3.1 presents the worst case and average case imbalance factors, aver-

aged among the invocations, for allreduce operations used by Horovod for the training of

ResNet50, VGG16, and DenseNet Deep Learning models with the synthetic data on Bel-

uga. The first row of results shows the value of aforementioned parameters for all the

allreduce operations, while the next rows present the same information for small, medium,

and large messages. As it can be seen, both the average worst-case and average-case imbal-

ance factors are relatively very large numbers which suggests that the process arrival pattern

is noticeably imbalanced for all the DL models studied. In addition, it can be noted that

this imbalanced PAP is significantly larger for the allreduce operations with small message

sizes. In other words, the PAP for the allreduce operations with medium/large messages

are generally less imbalanced than those with small messages. This is due to the fact that

for larger messages the one-way point-to-point communication latency (α) is higher; on

the other hand, the maximum/average imbalance time is quite similar for different mes-

sage sizes which leads to a smaller imbalance factors for collective operations with large

message sizes. Similar conclusion can be made by the data presented in Table 3.2 which

demonstrates the average of worst/average imbalance factors for the ResNet50 on Cedar

and Helios clusters.

Figure 3.9 to Figure 3.11 depict the maximum and average imbalance factors for the
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Table 3.1: The average worst-case (Ω/α) and average-case (∆̄/α) imbalance factors for
Allreduce collective operation of Horovod + TensorFlow with different DL models using
64 GPUs evenly distributed among 16 nodes on Beluga

Message Range Imbalance Factor

ResNet50 VGG16 DenseNet

Worst Average Worst Average Worst Average

All Message Sizes 25328.46 3949.91 14459.75 2303.45 43159.49 8058.54
Small Messages 27175.09 4237.89 15994.99 2523.75 44962.60 8395.21
Medium Messages 153.19 18.04 8614.97 1871.28 266.36 47.12
Large Messages 1.91 0.29 0.88 0.15 5.22 1.11

Table 3.2: The average worst-case (Ω/α) and average-case (∆̄/α) imbalance factors for
Allreduce collective operation of Horovod + TensorFlow with ResNet50 DL model on
Cedar (256 GPUs evenly distributed among 64 nodes) and Helios (16 GPUs on a single
node)

Message Range Imbalance Factor
ResNet50 Cedar Helios

Worst Average Worst Average
All Message Sizes 33631.77 5516.57 14003.95 2611.91
Small Messages 37767.87 6194.69 14716.65 2744.46
Medium Messages 327.21 94.41 394.02 85.83
Large Messages 5.85 1.07 6.49 1.51

invocations of allreduce in Horovod for ResNet50, VGG16, and DenseNet DL models,

respectively, on Beluga. Figure 3.12 and Figure 3.13 present the same information for

the ResNet50 model on Cedar and Helios platforms. Each of the above figures shows the

imbalance factors for all the message sizes along with the small, medium, large messages.

For the ResNet50 model on Beluga, since there were not any allreduce calls in the medium

message sub-range, we did not include it in the corresponding figure.

The figures mentioned above reveal that the PAP characteristics of Horovod remain

similar on different platforms. Specifically, we notice that for allreduce operations with
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Figure 3.9: The maximum/average imbalance factors for invocations of Allreduce made by
Horovod for ResNet50 using 64 GPUs evenly distributed among 16 nodes on Beluga

small-sized messages, almost all of the calls have a very large worst/average imbalance

factors. However, for medium/large allreduce calls, most of the invocations have very small

worst/average imbalance factors, and only a few have slightly larger imbalance factors.

Also, we observe that the allreduce PAPs on Cedar are generally more imbalanced than the
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Figure 3.10: The maximum/average imbalance factors for invocations of Allreduce made
by Horovod for VGG16 using 64 GPUs evenly distributed among 16 nodes on Beluga

two other platforms. This is most likely due to the larger number of nodes/processes used

in our tests on Cedar that translates to larger delays between the arrival of the processes.

It should be noted that for each setup, the majority of the invocations have similar

maximum/average imbalance factors, while there are only a few periods of spikes that occur
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Figure 3.11: The maximum/average imbalance factors for invocations of Allreduce made
by Horovod for DenseNet using 64 GPUs evenly distributed among 16 nodes on Beluga

from time to time. In addition, although the imbalance pattern for each of the invocations

seems random, a phased behavior can be noted in the process arrival patterns. In other

words, the process arrival patterns tend to remain in a roughly steady range for a long span
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Figure 3.12: The maximum/average imbalance factors for invocations of Allreduce made
by Horovod for ResNet50 using 256 GPUs evenly distributed among 64 nodes on Cedar

of time before they fluctuate drastically. The aforementioned insights suggest that PAP-

ware algorithms could be designed that practically predict the PAP at each invocation of

the operation by only considering the history of the arrival pattern of the processes.
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Figure 3.13: The maximum/average imbalance factors for invocations of Allreduce made
by Horovod for ResNet50 using 16 GPUs on a single node on Helios

2. Node-wide Study

In this part, we extract the PAP parameters by calculating the worst/average imbalance fac-

tors for the processes residing on each node, without taking into account the processes on

the other nodes, and then computing the average of the results gathered from each of the
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nodes. Table 3.3 and Table 3.4 show that the average of worst/average imbalance factors

on each node are significantly lower than the cluster-wide worst and average imbalance

factors. In other words, processes on the same node arrive at the collective calls with con-

siderably less delay with respect to each other, compared to all the processes on the cluster,

most likely because processes on the same node suffer from similar architecture/software-

related features resulting in the imbalance in the arrival time of processes.

Table 3.3: The average node-wide worst-case and average-case imbalance factors for
Allreduce collective operations of Horovod + TensorFlow with different DL models us-
ing 64 GPUs evenly distributed among 16 nodes on Beluga

Message Range Imbalance Factor
ResNet50 VGG16 DenseNet
Worst Average Worst Average Worst Average

All Message Sizes 4360.88 1654.11 2506.73 912.72 9533.577 3594.40
Small Messages 4678.81 1774.70 2773.58 1010.36 9931.80 3744.55
Medium Messages 23.40 8.35 1479.01 528.84 83.99 30.75
Large Messages 0.45 0.15 0.13 0.04 2.29 0.83

Table 3.4: The average node-wide worst-case and average-case imbalance factors for
Allreduce collective operations of Horovod + TensorFlow with ResNet50 DL model us-
ing 256 GPUs evenly distributed among 64 nodes on Cedar

Message Range Imbalance Factor
Worst Average

All Message Sizes 7747.23 2848.16
Small Messages 8698.83 3197.90
Medium Messages 220.12 92.99
Large Messages 1.84 0.77
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3.2.5 Summary

In this chapter, we studied the characterization of the collective communications in Horovod.

We observed that MPI Allreduce is the dominant collective in terms of frequency and con-

tribution to the application run-time. Investigations on allreduce operations showed that

small and large messages are responsible for the majority of the communication time and

hence play a pivotal role in the application’s run-time. The process arrival study on the

allreduce revealed that small message allreduce collectives suffer from significant imbal-

anced PAPs. In addition, the PAP for large message allreduce is sufficiently imbalanced

to harm the performance of Horovod. In the following chapters, we propose node-wide

PAP-aware allreduce algorithms capable of delivering high-performance in imbalanced

workloads for small and large messages. Then, in Chapter 6 we investigate a cluster-wide

allreduce algorithm for large messages that undermines the negative impacts of imbalanced

PAPs on the performance.
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Chapter 4

Efficient Intra-node PAP-aware MPI Allreduce for Small

Messages

In this chapter we investigate a process arrival pattern aware MPI Allreduce algorithm

for small messages capable of delivering high performance under imbalanced PAPs. We

first discuss the motivation for our proposal. Next, we present the related works in the

literature. Then, we propose our idea and explain our design along with some details

regarding the implementation of our algorithm. At the end, we evaluate the performance of

our process arrival pattern aware algorithm against two high-performance algorithms used

in MVAPICH.

4.1 Motivation

As the communication characterization of Horovod in Chapter 3 showed, the process arrival

time of the MPI processes can be significantly imbalanced in deep learning workloads,

especially for small message MPI Allreduce collectives. This observation directed us to

the following research question:

• How can we design a process arrival pattern aware algorithm for MPI Allreduce with
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small message sizes capable of delivering high-performance under different imbal-

anced PAPs.

We first introduce the native MVAPICH algorithm for small message MPI Allreduce

and then take up the aforementioned challenge and propose a PAP-aware adaptive design

for MPI Allreduce with small message sizes. In MVAPICH, the algorithm of interest for

intra-node MPI Allreduce operation with small message sizes (from 1B-1KB) is a two-

step shared-memory algorithm, as follows: In the first phase of this algorithm, each leader

process (which is the process with the intra-node rank of zero) waits for all the processes

on its node to arrive at the collective call. Once all the processes arrive and copy their data

into the shared memory, the leader process reduces the data within the shared memory. In

the second phase, the leader process sends the reduced data to all processes on the node via

a shared memory broadcast operation.

• Phase 1: Intra-node shared-memory reduce by the leader process of the node

• Phase 2: Intra-node shared-memory broadcast

One major problem with the aforementioned algorithm is that in the first phase it does

not take into account the PAP of the processes. In fact, it performs poorly when some

processes enter the MPI Allreduce operation well after the other processes. This is because,

the leader process will not start the intra-node reduce operation until all the processes have

already entered the collective operation. So, in this case, any progress in the reduction

operation is hindered by the late processes. We addressed this issue by having the leader

process poll on the arrival of processes. This way, the leader can reduce the data of the

processes as soon as they arrive. In other words, the last process will not block the reduce

operation anymore. However, the proposed approach does not provide an opportunity for
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enhancement if the leader process arrives last. This led us to consider PATs in our design,

and choose the leader process dynamically at runtime. This way, we let the early arriving

processes contribute to the progression of the reduce operation without the need to wait for

all the processes to arrive.

4.2 Related Work

Faraj et al. [21] studied the process arrival pattern characteristics of MPI applications such

as FT, LAMMPS, NBODY, and NTUBE on two HPC platforms. The authors introduced

some metrics to measure the imbalance in the PATs, such as average and worst-case imbal-

ance factors described in Section 2.3. They showed that the differences between the PATs at

a collective operation are usually significant, even for applications with perfectly balanced

workloads. Therefore, the imbalance in the process arrival pattern cannot be controlled

by making the workload balanced at the application level. They also presented that the

process arrival pattern has a notable effect on the performance of different collective com-

munication algorithms and hence HPC applications. Finally, they proposed and evaluated

a potential solution for the MPI Alltoall routine, which achieves high performance with

different PAPs. This proposal involves using an automatically tuned collective communi-

cation framework that was first presented by Fagg et al. in [20]. The authors developed a

dynamic adaptive framework, STAR-MPI [23], which contains a set of eight alltoall algo-

rithms. During the application execution for each invocation of the alltoall, one of these

eight algorithms is used and then its performance is measured. This procedure will be exe-

cuted for all the available algorithms for a number of times. Finally, based on the measured

performance an algorithm is selected as the best performing algorithm and will be used
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thereafter. This way, the authors could achieve better performance than the native MPI im-

plementations for different applications on different environments. This method, however,

is only beneficial for applications that run for a large number of iterations. Otherwise, the

overhead of measuring the performance of different algorithms for the alltoall routine at

the runtime results in a poorer overall performance. In addition, the authors assume that

for a certain application on a specific environment the imbalance in the arrival time of the

processes for every invocation of the collective routine exhibits the same behavior whereas

the random nature of the PAPs contradicts this assumption. Furthermore, the authors do not

really propose any PAP-aware algorithm that in any way uses the delays between the arrival

times of the processes toward the progression of the desired collective communication.

Patarasuk and Yaun [46] investigated the performance of different MPI Bcast algo-

rithms such as the flat tree, binomial tree, and linear tree algorithms under different process

arrival patterns and showed that they could not achieve high performance for most of the

PAPs. Therefore, they proposed two PAP-aware algorithms for the broadcast operation

with large message sizes, one for each of the blocking and non-blocking models. In the

aforementioned PAP-aware algorithms, the root sends the data to the processes as they

enter the collective routine. However, if multiple processes arrive at the collective call si-

multaneously, the root initiates a sub-group broadcast among the newly-arrived processes.

The root then assigns a process within the sub-group to forward the data to the rest of

the sub-group processes. This way, serialization at the root could be avoided whenever

some processes enter the broadcast operation at the same time. To inform the root of the

operation of the early-arriving processes, they used additional control messages. Since

the proposed algorithms are meant for broadcasting large messages, the overhead of send-

ing/receiving small control messages is assumed to be negligible. The experiments were
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performed on two different platforms, one with InfiniBand and the other with an Ethernet

interconnection network, to evaluate the performance of the proposed algorithms. It was

shown that the proposed PAP-aware broadcast algorithms could achieve high performance

for large message sizes across different process arrival patterns. The authors in this study

only aim for the broadcast operation and do not provide any PAP-aware algorithms for more

communicationally-intensive collectives such as reduce and MPI Allreduce operations. In

addition, they do not propose any PAP-aware broadcast algorithm for small message sizes.

Furthermore, the proposed algorithm is not built on hierarchical algorithms. It, therefore,

does not take advantage of the fast intra-node shared memory available on modern systems

with hierarchical architectures to reduce the communication latency. Instead, they use the

MPI point-to-point primitives as the means to communicate control messages as well as

data.

Qian and Afsahi [54, 55] proposed RDMA-based PAP-aware algorithms for MPI Allgather

and MPI Alltoall routines for different message sizes on InfiniBand clusters. The PAP-

aware alltoall and allgather designs in this work are based on the direct algorithm proposed

in [53] where each process directly communicates with all the other processes within the

communicator. Instead of sending/receiving additional control messages, the authors used

the RDMA control registers for notifying each process of the arrival of other processes.

By using this notification mechanism, each process could send its data to the already-

arrived processes without incurring any extra communication overhead. They also extended

their work for having a better performance for small messages by making their design also

shared-memory aware. The authors then compared the performance of their proposed de-

signs against the native MVAPICH algorithm and observed an average speedup of 1.44 for

the FT, RADIX, and N-BODY applications. Although the algorithms proposed in this work
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achieve good performance in the presence of imbalance, they are aimed for the systems

supporting Infiniband RDMA. Otherwise, they would require alternative synchronization/-

control mechanisms.

Parsons and Pai [45] used a microbenchmark to study the process imbalance in per-

fectly balanced workloads. They monitored the performance counters, such as hardware

interrupts, cache misses, and stall cycles for each process while executing the microbench-

mark and showed that there is not any direct correlation between an event and the imbal-

ance. Instead, the imbalance is caused by multiple hardware and software components.

The authors then propose imbalance-tolerant large-message reduce, broadcast, and alltoall

algorithms. The reduce and broadcast algorithms use a hierarchical fashion, where the

intra-node communication is performed through shared memory while the inter-node step

exploits the binomial tree algorithm. In the imbalance-tolerant algorithms for reduce and

broadcast, the leader process on each node is selected based on the arrival pattern at each

invocation. This way, the early arriving processes can make progress before the later ones

arrive. For the alltoall algorithm, a method called opportunistic message fragmentation

was used to pre-send the early arriving processes’ data. The authors also utilize multi-

ple sender processes on each node to diminish the delays incurred by late-arriving leader

processes. The performance evaluation of their algorithm on a Cray XE6 cluster exhib-

ited notable speedups over native MPICH’s algorithms. Shared memory is usually used

for intra-node communications with small messages because the shared memory space is

limited on each node, and it provides faster communication compared to the other means

only up to medium messages. Therefore, using the shared memory for large message re-

duce and broadcast operations may lead to severe performance degradation of the proposed

algorithms compared to other non-shared-memory algorithms such as Binomial-Tree and
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the Reduce-Scatter followed by a Gather (RSG) algorithms, especially for messages larger

than 2KB, which has not been presented in their study. Furthermore, in the proposed al-

gorithm for the reduce operation, each process is required to reduce its data into a buffer

protected by lock(s) in the shared memory. This method might lead to long congestions in

the shared memory because the time it takes for each process to execute the reduce opera-

tion before releasing the lock variable is quite long, especially for the aimed message range

(large messages) in this work.

4.3 The Proposed PAP-aware Design for Small Message MPI Allreduce

Our proposed intra-node PAP-aware MPI Allreduce algorithm for small message sizes con-

sists of two steps (reduce + broadcast), similar to MVAPICH’s algorithm explained in 4.1.

However, unlike MVAPICH, in our design for the reduce step, at each invocation of the

MPI Allreduce collective operation, we dynamically assign the earliest arriving process of

each node as the leader process of that node. This leader process is responsible for the exe-

cution of the reduction operation on the data of the processes on the node. Other processes,

on the other hand, only need to copy their data into the shared memory upon their arrival

and set a flag to make the leader process aware that their data in the shared memory is ready

to be reduced. Therefore, the leader process polls on the flags and executes the reduction

operation whenever data is ready to be reduced. With our proposed algorithm, there is no

need to wait for all the processes to arrive to commence the reduce operation anymore.

Furthermore, unlike the MVAPICH’s algorithm, which chooses the leader process on each

node statically (always the process with the intra-node rank zero), we dynamically select

the leader process based on the PAT of the processes. This way, the reduction operation



4.3. THE PROPOSED PAP-AWARE DESIGN FOR SMALL MESSAGE
MPI ALLREDUCE 56

will be started as soon as the first process arrives, and there is no need to wait for the stati-

cally chosen leader to arrive and execute the reduction operation anymore. This feature of

our algorithm is essential, especially when the static leader is the last arriving process. For

the second step (broadcast), we use a shared memory broadcast by the leader process to all

the processes on the node. In this step, the leader process simply writes its data into the

shared memory, and other processes copy that data from the shared memory into their own

address spaces.

Algorithm 4.1 presents the pseudo-code of our proposed design. In order to implement

the synchronizations between processes on each node for assigning the earliest process

as the leader process of that node, we use two variables called Leader Defined Flag and

Is Leader. Leader Defined Flag is a shared variable among the processes residing on the

same node. This flag is protected by lock/unlock so that the first arriving process can be

safely determined to avoid race conditions. Is Leader on the other hand, is a local variable

to each process which demonstrates whether the process has been assigned as the leader

process responsible for the execution of the reduction operation.

In addition to the variables stated above, we use two other shared buffers, namely,

Data Buffer and Data Ready Flags. This way, the processes could share their data and

their availability with the leader process through the shared memory. Data Buffer is the

shared buffer where the processes copy their data into the preallocated segments of it so

that the leader process can execute the reduction operation on them. Data Ready Flags is

the shared buffer filled with flags, each dedicated to one process. These flags demonstrate

whether the data has been successfully copied into the Data Buffer by the corresponding

processes.
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Algorithm 4.1: PAP-aware MPI Allreduce for Small Messages
Input : The data residing in send buffers (sendbuf )
Output: The data residing in receive buffers (recvbuf )
Variables:
Leader Defined Flag: A shared flag protected by lock/unlock to determine the first

arrived (the leader) process.
Data Buffer: A shared buffer populated by processes with their data.
Data Ready Flags: A shared buffer consisting of flags, each dedicated to one process,

demonstrating whether the process’s data in the Data Buffer is ready.
Is Leader: A local variable determining the leader process.

begin
// Check if the leader has not been defined yet.

1 if Leader Defined Flag == 0 then
2 if trylock(&mutex) then
3 if Leader Defined Flag == 0 then
4 Leader Defined Flag = 1; // Leader is defined now.
5 Is Leader = 1; // The process is assigned as the leader.
6 end
7 unlock(&mutex); // Release the lock.
8 end
9 end

10 if Is Leader == 1 then
// Leader polls on Data Ready Flags and does the reductions.

11 while Operation Progression < (local size − 1) do
12 for (i = 0; i < local size; i++) do
13 if Data Ready Flags[i] == 1 then
14 Operation Progression++;
15 Data Ready Flags[i] = 0 ; // Reset the flag.
16 recvbuf += Data Buffer[i]; // Reduce the data.
17 if Operation Progression == (local size − 1) then

// There is no more data to be reduced.
18 Copy(recvbuf, ..., Result,...); // Write result into shared

memory.
19 for (j = 0; j < local size; j ++) do
20 Completion flags[j] = 1; // Set the

Completion flags.
21 end

// Reset the Is Leader, Operation Progression,
and Leader Defined Flag for the next invocation.

22 end
23 end
24 end
25 end
26 else

// Non-leader processes copy their data into Data Buffer.
27 Copy(sendbuf, ..., Data Buffer[local rank],...);
28 Data Ready Flags[local rank] = 1; // Set the data copy flag.
29 while Completion flags[local rank] == 0 do

// Wait for own Completion flag to be set
30 .
31 end
32 Copy(Result, ..., recvbuf,...); // Copy the result into own recvbuf.
33 Completion flags[local rank] = 0 ; // Reset Completion flags.
34 end

end
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Once a process enters the collective operation, it first reads the Leader Defined Flag to

check whether the leader process has been defined. If the leader process has not been

defined yet, it means that the arrived process is among the earliest processes entering

the collective and hence could be assigned as the leader. Therefore, the process tries

to lock the lock variable (mutex). Upon acquiring the lock, the process re-validates the

Leader Defined Flag to ensure that no process has been assigned as the leader so far. Next,

the process assigns itself as the leader process and informs other processes on the node by

setting the Leader Defined Flag and then releases the mutex, as shown in Line 1 to 6 of

Algorithm 4.1.

The processes can now perform the actions assigned to them based on whether they are

the leader process or not. The role of the non-leader processes is to copy their data (residing

in their sendbuf ) into the appropriate segment of Data Buffer in the shared memory and

inform the leader of its availability by setting its dedicated flag in Data Ready Flags (Lines

18 to 20). The leader process, on the other hand, is responsible for performing the reduction

operation on the data. This process polls on the Data Ready Flags. Whenever a data

is ready in the Data Buffer, the leader reduces it into its own recvbuf. This operation

continues as long as there is no more data to be reduced. At this point, the result of the intra-

node reduce step of the hierarchical MPI Allreduce operation is available in the recvbuf of

the leader process of the node (Lines 7 to 13).

The second phase (shared memory broadcast) begins by the leader process copying the

result of the reduce operation from its own recvbuf into the dedicated area in Data Buffer

defined as Result and sets the Completion flags for each of the processes to inform them

that the collective result is ready in the shared memory (Lines 14 to 17). Then, the leader

process resets the appropriate flags, such as Is Leader and Leader Defined Flag for the
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next invocation of the collective. The non-leader processes, on the other hand, poll on

their dedicated Completion flags and once it is set, they copy the MPI Allreduce result

from shared memory into their own recvbuf (Lines 21 to 22). Then, they reset their own

Completion flags for the next MPI Allreduce collective call (Line 23). Figure 4.1 presents

an example execution of the proposed PAP-ware MPI Allreduce algorithm for four pro-

cesses. It should be mentioned that our design is thread-safe, and hence it can be used

in multi-threaded environments. In addition, our algorithm supports single-communicator

allreduce collectives; however, it can be modified to support multi-communicator allreduce

collectives too.
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Figure 4.1: Example run of the proposed small message PAP-aware MPI Allreduce algo-
rithm for four processes
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4.4 Evaluation Results and Analysis

In this section, we evaluate the performance of our proposed design for small message

MPI Allreduce collective against two state-of-the-art algorithms under balanced and im-

balanced PAPs. For the imbalanced PAPs, we deliver the results under different MIFs. The

experimental platform for our tests in this chapter consists of Beluga and Cedar clusters as

defined in Section 3.2.1.

4.4.1 Microbenchmark Studies

Our intra-node shared-memory MPI Allreduce operation is evaluated for message sizes up

to 64KB. For larger message sizes, the shared-memory-aware algorithms in MVAPICH

as well as our algorithm lose to non-shared-memory-aware algorithms by a large margin.

Therefore, we do not present the results past 64KBs. As it was mentioned earlier, the

default intra-node MPI Allreduce algorithm in MVAPICH for messages up to 1KB is the

two-step shared-memory MPI Allreduce algorithm. However, for message sizes from 1KB

to 64KB, MVAPICH switches to a flat recursive doubling MPI Allreduce algorithm, we

call the set of the two aforementioned algorithms (shared-memory algorithm up to 1KB

and the RD algorithm from 1KB to 64KB) Def-MVAPICH in the rest of this chapter. In

order to evaluate the performance of our PAP-aware shared-memory algorithm more fairly,

we also compare its performance against an algorithm that uses the same two-step shared-

memory algorithm of MVAPICH, but for all messages up to 64KB. We call this algorithm,

shmem-MVAPICH algorithm.
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Microbenchmark Results for MPI Allreduce with Balanced PATs

Here, we present the performance comparison of our PAP-aware algorithm referred to as

Small-PAP-aware algorithm against the Def-MVAPICH and shmem-MVAPICH under bal-

anced PATs. We use the OMB suite for this experiment. Listing 4.1 provides the pseudo-

code for this balanced OMB microbenchmark which assures that all the processes start

the MPI Allreduce collective call at the same time by calling the MPI Barrier routine be-

fore the MPI Allreduce call. The OMB microbenchmark runs for 200 iterations for cache

warm-up reasons and then runs for 1000 iterations and then reports the results averaged

over the number of iterations without considering the warm-up iterations.

1 for (i=0; i<ITERATION; i++) {

2 MPI_Barrier(MPI_COMM_WORLD);

3 t_start_balanced = MPI_Wtime();

4 MPI_Allreduce(...);

5 elapsed_time_balanced += MPI_Wtime() - t_start;

6 }

Listing 4.1: OMB pseudo-code for the balanced microbenchmark for the MPI Allreduce

operation

Figure 4.2 and Figure 4.3 present the latency of the three aforementioned algorithms for

the balanced microbenchmark for a single node with 32 processes on Beluga and Cedar,

respectively. First, it can be seen that the Def-MVAPICH and the shmem-MVAPICH al-

gorithms deliver the same performance up to 1KB messages, while from 1KB to 64KB,

the Def-MVAPICH outperforms the shmem-MVAPICH. This is due to the fact that the

Def-MVAPICH, like the shmem-MVAPICH algorithm uses the two-step shared-memory

MPI Allreduce algorithm up to 1KB.
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Figure 4.2: Latency comparison of MPI Allreduce under balanced PATs for the proposed
PAP-aware, Def-MVAPICH, and shmem-MVAPICH algorithms with 32 processes on a
single node on Beluga

In addition, it can be observed that from 1KB to 64KB, where the Def-MVAPICH

uses the flat Recursive Doubling algorithm, it outperforms the two-step shared-memory

MPI Allreduce used by the shmem-MVAPICH algorithm. This suggests that the perfor-

mance of shared-memory drops significantly as the size of the messages grows after 1KB.

Secondly, as shown in the figures, when the PAP is perfectly balanced, the Def-MVAPICH

algorithm delivers slightly better performance than the PAP-aware algorithm up to 1KB.
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Figure 4.3: Latency comparison of MPI Allreduce under balanced PATs for the proposed
PAP-aware, Def-MVAPICH, and shmem-MVAPICH algorithms with 32 processes on a
single node on Cedar

The lower latency of the Def-MVAPICH compared to the PAP-aware algorithm in this

message range is because our algorithm uses control messages to detect the first arriving

process at each invocation of the collective call. When all the processes arrive at the collec-

tive at the same time, this method adds a slight extra overhead to the algorithm’s execution

time. However, for messages larger than 1KB the performance difference between the two

algorithms becomes significant due to the poor performance of shared memory for medium
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messages. We observe an average of 65% and 25% performance degradation compar-

ing the PAP-aware algorithm and the Def-MVAPICH algorithm for messages smaller than

64KB under balanced PAT, on Beluga and Cedar clusters, respectively. The performance

difference between the PAP-aware and the shmem-MVAPICH algorithms, however, is neg-

ligible. Also, in Figure 4.3, it can be noted that moving from 32KB to 64KB messages, the

latency drops. It is because MVAPICH uses the two-step shared-memory MPI Allreduce

algorithm for 32KB messages, and it switches back to the RD algorithm for larger mes-

sages on Cedar, and as it can be observed, the RD algorithm performs much better for

64KB messages.

Microbenchmark Results for MPI Allreduce with Imbalanced PATs

We compare the performance of our PAP-aware algorithm with the Def-MVAPICH and

shmem-MVAPICH under imbalanced PATs. For this purpose, we designed an imbalanced

microbenchmark, provided in listing 4.2, which induces a random computation before the

collective communication for each process. The upper bound for the random computation

in this microbenchmark is determined by the variable Maximum Imbalance Factor.

Figure 4.4 and Figure 4.5 present the latency comparison of our proposed PAP-aware

algorithm against the Def-MVAPICH and the shmem-MVAPICH algorithms for three im-

balanced workloads with MIFs equal to 10, 20, and 50 on Beluga and Cedar, respectively.

We have opted for these values for the MIFs in that at MIF of 10 our algorithm starts to

outperform the other algorithms, at MIF of 20 it delivers the highest improvement, and at

MIF of 50 it shows saturation in the performance improvement. Therefore, these MIFs rep-

resent a proper performance evaluation of our proposal under different imbalanced arrival

patterns. As it can be seen in both figures, for a small MIF of 10, our PAP-aware algorithm
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outperforms both the other algorithms almost for all message sizes. At this MIF, the maxi-

mum improvements over the best performing algorithm are 20% and 22%, on Beluga and

Cedar, respectively.

1 r = MIF * (rand() / RAND_MAX); //MIF would be the upper bound for r.

2 for (i=0; i<ITERATION; i++) {

3 MPI_Barrier(MPI_COMM_WORLD);

4 for (k=0; k<r; k++) {

5 /* computation equal to the latency of a point-to-point

communication time for desired message sizes */

6 }

7 t_start_imbalanced = MPI_Wtime();

8 MPI_Allreduce(...);

9 elapsed_time_imbalanced += MPI_Wtime() - t_start;

10 }

Listing 4.2: Pseudo-code for the imbalanced microbenchmark with controlled random

PAPs for the MPI Allreduce operation

As we increase the MIF to 20, we observe the maximum performance improvement

over the Def-MVAPICH, and the shmem-MVAPICH algorithms by up to 36% and 56%

on Beluga and Cedar, respectively. We further increase the MIF to 50 and observe that

our PAP-aware algorithm outperforms the two other algorithms similar to the MIF of 20.

However, the observed improvement in the latency translates to a lower improvement in

terms of percentage at MIF of 50 because the delay in the arrival time of the processes

is so large that it dominates the latency of the whole collective call. At MIF of 50, we

observed the maximum improvements of 21% and 37% over the best performing algorithm

on Beluga and Cedar, respectively. We observed the same pattern for the MIFs larger than
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50 where the PAP-aware algorithm was able to outperform the two other algorithms for all

the message sizes.

(a) MIF = 10

(b) MIF = 20

(c) MIF = 50

Figure 4.4: Latency comparison of MPI Allreduce under imbalanced PATs with differ-
ent MIFs for the proposed PAP-aware, Def-MVAPICH, and shmem-MVAPICH algorithms
with 32 processes on a single node on Beluga
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(a) MIF = 10

(b) MIF = 20

(c) MIF = 50

Figure 4.5: Latency comparison of MPI Allreduce under imbalanced PATs with differ-
ent MIFs for the proposed PAP-aware, Def-MVAPICH, and shmem-MVAPICH algorithms
with 32 processes on a single node on Cedar
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4.5 Summary

In this chapter, we proposed an intra-node shared-memory PAP-aware algorithm for small

message MPI Allreduce collective. Our design dynamically chooses the leader process

at each invocation of the collective routine based on the PAT to help the early arriving

processes communicate as much as possible before the later processes arrive to improve

the performance of the MPI Allreduce operation in imbalanced PATs. We evaluated our

algorithm against the default algorithm of MVAPICH as well as a shared memory based

algorithm native to MVAPICH with balanced and imbalanced microbenchmarks on two

different platforms. We observed up to 36% and 56% performance improvement on Beluga

and Cedar clusters, respectively. In the next chapter, we investigate a PAP-aware algorithm

for MPI Allreduce operation with large messages.
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Chapter 5

Efficient Intra-node PAP-aware MPI Reduce/Allreduce

for Large Messages

5.1 Motivation

In Chapter 4 we proposed a process arrival pattern aware algorithm for the MPI Allreduce

operation with small message sizes. In this chapter, we take up the challenge of design-

ing a PAP-aware algorithm for the MPI Allreduce collective operation for large messages.

The communication characterization of the Horovod application showed that the PAT of

the MPI processes for MPI Allreduce calls with large message sizes could be sufficiently

imbalanced to affect the performance negatively in deep learning workloads. In addition,

it has been shown in the literature that the typical MPI reduction algorithms, although per-

forming well for balanced workloads, face significant performance issues under imbalanced

PAPs [50, 39, 40, 51, 52]. We propose a PAP-aware reduce operation for large messages,

which takes the PATs into account in each invocation, to allow the early arriving processes

to start the communication. This way, the number of processes waiting for the late-arriving

ones will be minimized. Then, using our proposed PAP-aware reduce algorithm followed

by an MPI Bcast operation, we are able to extend our idea to the MPI Allreduce collective
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operation. In the following sections, we first review the related studies in the literature.

Then, we propose our PAP-aware reduce and allreduce collective operations and explain

the details regarding their design. Finally, we present the performance evaluation of our

designs against a number of well-known MPI Reduce/Allreduce algorithms implemented

in MVAPICH using balanced and imbalanced microbenchmarks.

5.2 Related Work

Proficz [50] proposed two PAP-aware algorithms for the MPI Allreduce operation, namely

Sorted Linear Tree and Pre-Reduced ring algorithms. The author introduced a background

thread for each process responsible for monitoring the progress of the computation phase.

The background thread estimates the remaining computation time for its process and com-

municates this information with other processes on the other nodes. Using the gathered

data, each background thread is able to approximate the PAP for itself and other processes.

The estimated PAP is then used by the proposed algorithms. One problem with this method

is that introducing an extra thread (background thread) would lead to the oversubscription

of the processing cores and, consequently, performance penalties. In addition, having the

background threads to monitor the progress of the computation phase requires manipulat-

ing the source code of applications which might incur performance overheads, especially

when the computation phase time is comparable to the collective communication time, this

overhead would be significantly large.

The Sorted Linear Tree (SLT) algorithm is based on the well-known linear tree algo-

rithm. Using the estimated PAP, the sorted linear tree algorithm sorts the processes based

on their arrival times. Then, the algorithm allows the faster processes to start the communi-

cation before the later ones arrive. It is shown in the paper that the SLT algorithm is capable
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of delivering speedup of up to 1.16 over the standard linear tree algorithm in specific cases.

The Pre-Reduced Ring (PRR) algorithm is an extension of the ring algorithm. Similar to

the SLT algorithm, this algorithm uses the information regarding the estimated PAP to sort

the processes based on their arrival time and assigns new IDs to them. In the PRR algo-

rithm based on the predicted process arrival times, the number of reducing pre-steps to be

performed by the faster processes is calculated. Using the method mentioned above, for

specific cases of PAP, the speedup of up to 1.14 over the regular ring algorithm could be

achieved. The proposed SLT and PRR algorithms delivered 4.2% and 4.0% improvement

compared to a typical ring algorithm for training a convolutional neural network (CNN)

with the CIFAR-10 [1] dataset.

Marendic et al. [39] studied the performance of reduction algorithms under imbalanced

PAPs. Then, they propose two load balancing reduction algorithms, static and dynamic.

The static load balancing reduction algorithm depends on a priori knowledge of PATs of all

the participating processes and is shown to achieve near-optimal latency. This algorithm

is based on the unrealistic assumption that the PATs can be predicted before the call to

the collective operation. The dynamic load balancing reduction algorithm, on the other

hand, does not require a priori information about the PATs. This algorithm is an extension

of the binomial tree algorithm. It assumes atomicity of the reduced data meaning that

the data on each process cannot be split and reduced segment by segment. The authors

used small control messages to signal the PATs between the involved processes so the

early arriving processes can reduce their data and redirect their sub-results to the later

arriving ones. One major problem with this work is that the authors do not consider all

the possible PAPs in their design. In the proposed algorithm the imbalance in the PAP can

only be absorbed if the neighbor processes exhibit similar arrival pattern; otherwise, the
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communication progression will be hindered or at least will not be optimal. Finally, the

performance of the dynamic load balancing algorithm was compared to other algorithms

such as binomial tree and all-to-all reduce algorithms. It was shown that for specific PAPs,

specifically when there is only a single slow process, the proposed algorithm outperforms

the under-study algorithms.

Marendic et al. [40] continued the study of reduction algorithms under imbalanced

PAPs and proposed a new PAP-aware reduce algorithm, called Clairvoyant. The proposed

algorithm, unlike the algorithms presented in [39], can be applied for both atomic and non-

atomic input data. The Clairvoyant algorithm requires pre-knowledge of the entire PATs to

construct an optimized reduction schedule and it does not itself include any solution for the

PAT estimation. The authors assume that the PAPs exhibit a recurring pattern and therefore

predict the PATs statistically using a simple moving average (SMA) approximation. How-

ever, it is impossible to predict the PAP accurately for each invocation of the collective

operation due to the random nature of it. Furthermore, additional communications are re-

quired to exchange the PAT values predicted by the SMA model between the processes that

introduces an extra overhead to the algorithm. Finally, this study proposes a pre-computed

reduction schedules which remains the same for a certain number of collective invocations,

whereas a reduce algorithm changing the communication pattern dynamically based on the

PAP for each invocation could be developed as a better solution. The authors compared

the performance of their proposed algorithm with some typical reduction algorithms such

as the binomial tree, parallel ring, and butterfly algorithms. The results showed that the

Clairvoyant algorithm could take advantage of imbalanced PAPs and outperform the ex-

perimented algorithms. However, the results provide the performance evaluation of the

proposed design only under specific imbalanced PAPs where all the processes except one
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arrive without any delay. Experiments with random imbalanced PAPs could have evaluated

the performance of studied algorithms more accurately.

5.3 The Proposed PAP-aware Designs

5.3.1 The Proposed MPI Reduce for Large Messages

In this section, we introduce our proposed PAP-aware algorithm for large message reduce

operation. In our algorithm, we allow the early arriving processes to start the reduce op-

eration before the later processes arrive and leave the collective call as soon as they make

their contribution to the collective communication operation. This way, in the presence

of imbalanced PAPs, we minimize the time each process spends in the collective site and

therefore, the overall collective communication latency will be decreased.

One principal challenge with all the PAP-aware algorithms is to develop a way to in-

form every other process of the processes that have already arrived at the collective call.

One method for doing this is to exchange point-to-point control messages between the pro-

cesses, as exploited by authors in [46] for MPI Bcast collective operation. Using control

messages introduces an extra overhead and affects the performance of the algorithm nega-

tively. In order to make the overhead of control messages less significant, we constructed a

shared-memory structure between the processes on each node. This way, we could commu-

nicate the necessary synchronization signals between the processes faster than the point-to-

point message exchange method.

Algorithm 5.1 presents the pseudo-code of our proposed PAP-aware large message re-

duce algorithm.
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Algorithm 5.1: PAP-aware MPI Reduce for Large Messages
Input : The data residing in send buffers (sendbuf )
Output: The data residing in the root’s receive buffer (recvbuf )
Variables:
Process Counter: A shared counter protected by lock/unlock to keep the track of the

number of arrived processes.
Sorted Ranks Buffer: A shared buffer filled with ranks of the processes based on their

arrival order.
Arrival Rank: A local variable for storing the value of Process Counter.

begin
1 lock(&mutex); // Acquire the lock.

2 Arrival Rank = Process Counter; // Read Process Counter and

determine your arrival position.

3 Process Counter + = 1; // Increment Process Counter.

4 unlock(&mutex); // Release the shared resource.

5 Sorted Ranks Buffer[Arrival Rank] = MPI Rank; // Write your MPI Rank in

the appropriate segment of Sorted Ranks Buffer based on the

arrival order.

6 if First Process to Arrive then
7 while (Sorted Ranks Buffer[Arrival Rank + 1] = = NULL); // Wait for the

next process to arrive.

8 Send(... , Sorted Ranks Buffer[Arrival Rank + 1] , ...); // Send your data

to the newly arrived process.

9 else if Last Process to Arrive then
10 Receive(... , Sorted Ranks Buffer[Arrival Rank - 1] , ...); // Receive the

Reduced data from the previously arrived process.

11 Reduce the received data with your own data.
12 Send(... , root , ...); // Send the result to the root process.

13 else
14 Receive(... , Sorted Ranks Buffer[Arrival Rank - 1] , ...); // Receive the

Reduced data from the previously arrived process.

15 Reduce the received data with your own data.
16 while (Sorted Ranks Buffer[Arrival Rank + 1] = = NULL); // Wait for the

next process to arrive.

17 Send(... , Sorted Ranks Buffer[Arrival Rank + 1] , ...); // Send your data

to the newly arrived process.

18 end
end
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In this algorithm, we minimize the data dependency between the processes. Whenever

a process arrives, it receives the reduced data from the last process that has already arrived.

After performing its part to the reduce operation, the process passes the updated reduced

data to the next arriving process and leaves the collective call. This way, in any given im-

balanced PAPs and with any number of processes, there would be only one process waiting

for the arrival of one another process at each point in time. In order to implement the

synchronizations between the processes necessary for the execution of our algorithm, we

use two shared-memory variables called Process Counter and Sorted Ranks Buffer. Pro-

cess Counter is a counter shared between the processes on the node. This shared variable

is protected by lock/unlock so the processes can safely access its value even at the presence

of race conditions. Sorted Ranks Buffer, on the other hand, is a shared buffer contain-

ing as many cells as the number of processes on the node. Each cell of this buffer will

be dedicated to a process based on the arrival order of processes. For example, the first

cell of the Sorted Ranks Buffer will be assigned to the earliest arriving process while the

latest arriving process occupies the last cell of Sorted Ranks Buffer. Each process writes

its MPI Rank in its designated cell. Since Sorted Ranks Buffer is shared, each process

will have access to Arrival Rank (determined by the position of the cell) and MPI Rank

(determined by the value of the cell) of all processes on the node.

Once a process arrives at the collective call, it tries to lock the mutex. Upon acquir-

ing the lock, the process reads the Process Counter’s value, recognizes its rank among the

already arrived processes, and stores it into a local variable called Arrival Rank, then incre-

ments the counter and releases the mutex, as shown in Lines 1 to 4 in Algorithm 5.1. Next,

the process writes its MPI Rank in the appropriate cell of Sorted Ranks Buffer, which its

Arrival Rank suggests (Line 5). Now that the process is aware of its arrival rank, it can



5.3. THE PROPOSED PAP-AWARE DESIGNS 76

perform the actions assigned to it based on its arrival time.

For the earliest process, since there is no predecessor process already entered the call,

it only needs to wait for the next process to arrive (through the Sorted Ranks Buffer) to

be able to pass its data to the newly arrived process and leave the collective call (Lines

6 to 8). For the processes who arrive between the first and the last processes, the first

step is to receive the reduced data from their predecessors. The predecessor process can

be recognized through the Sorted Ranks Buffer. Then, they reduce their own data with

the received data and wait for their successor process to arrive. Upon arrival of the next

process, they will send the updated data to it. At this point, they can leave the collective

since they have accomplished their contribution to the operation (Lines 13 to 17).

When the last process arrives and receives the reduced data from the previous process,

it will reduce its own data with the received one. At this moment, the result of the reduce

operation is ready in the receive buffer (recvbuf ) of this process. Finally, the result will

be sent to the root process and the operation will be completed (Lines 9 to 12). Figure

5.1 presents an example execution of the proposed PAP-ware reduction algorithm for four

processes.

5.3.2 The Proposed MPI Allreduce for Large Messages

We design a two-step intra-node PAP-aware allreduce algorithm by using our proposed

PAP-aware reduce, followed by a broadcast collective operation. For the broadcast op-

eration, we utilize two broadcast algorithms used frequently in MPI implementations. A

shared-memory-based algorithm was used for small message sizes up to 64KBs. This al-

gorithm implements the broadcast operation by having each process to copy the data from

shared-memory to its own receive buffer, as explained in Chapter 4. For larger message
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Figure 5.1: Example run of the proposed large message PAP-aware reduce algorithm for
four processes

sizes, on the other hand, the commonly used Binomial-Tree broadcast algorithm of MVA-

PICH was exploited.

5.4 Evaluation Results and Analysis

In this section, we evaluate the performance of our proposed design for large message

reduce and MPI Allreduce collectives against high-performance algorithms used in MVA-

PICH under balanced and imbalanced PAPs. For the imbalanced PAPs, we provide the

results under different MIFs. The experimental platform for our tests in this chapter con-

sists of Cedar and Helios clusters as defined in Section 3.2.1.
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5.4.1 Microbenchmark Studies

MPI Reduce

We begin by comparing the performance of our proposed PAP-aware reduce algorithm

against Binomial-Tree and Reduce-Scatter followed by a Gather (RSG) algorithms in bal-

anced and imbalanced circumstances. These algorithms are two famous algorithms de-

livering state-of-the-art performance for the reduce operation in MPI libraries including

MVAPICH.

Microbenchmark Results with Balanced PATs

We use a similar microbenchmark as in Listing 4.1 to measure the latency of the algorithms.

Figure 5.2 and Figure 5.3 present the performance of the three aforementioned algorithms

when the microbenchmark is perfectly balanced on the Cedar cluster with 4 Processes Per

Node and the Helios platform with 16 PPN, respectively.

As it can be seen in these figures, the PAP-aware algorithm is not as good as the two

other algorithms for most of the message sizes when the microbenchmark is perfectly bal-

anced. When the PAP is balanced, the algorithms with fewer execution steps or with high

level of pipelining provide a better performance. Our proposed algorithm takes n− 1 steps

to execute the reduction operation, while the Binomial-Tree algorithm takes only log2n

steps (n is the number of processes). The fewer number of steps leads to a smaller la-

tency for the Binomial-Tree algorithm. The RSG algorithm, on the other hand, exploits

data segmentation and pipelining and therefore, achieves performance by maximizing the

bandwidth utilization when the PAP is perfectly balanced.
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(a) small to medium messages (b) large to very large messages

Figure 5.2: Latency comparison of MPI Reduce under a balanced microbenchmark for
Binomial-Tree, RSG, and PAP-aware algorithms with 4 processes on a single node on
Cedar

(a) small to medium messages (b) large to very large messages

Figure 5.3: Latency comparison of MPI Reduce under a balanced microbenchmark for
Binomial-Tree, RSG, and PAP-aware algorithms with 16 processes on a single node on
Helios

Microbenchmark Results with Imbalanced PATs

Here, we compare the performance of our PAP-aware reduce algorithm with the Binomial-

Tree and RSG algorithms under imbalanced workloads. We present the results under three

different imbalanced PAPs using a similar imbalanced microbenchmark as in Listing 4.2.

For the imbalanced microbenchmarks’ figures, we present the studied message range in
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four plots for each MIF so that the performance of the algorithms can be distinguished

more easily.

Figure 5.4 and Figure 5.5 present the performance of the PAP-aware, Binomial-Tree,

and RSG algorithms for the reduce operation under imbalanced workloads on Cedar with

4 PPN and Helios with 16 PPN, respectively. On Cedar, we have presented the latency

of the algorithms for three imbalanced workloads with MIFs equal to 10, 20, and 50. We

chose the MIFs in this section for the same reasons explained in Section 4.4.1. As it can

be seen in Figure 5.4, for a small MIF of 10, our PAP-aware algorithm outperforms both

the other algorithms almost for all larger than 32KB messages. This is the MIF which our

algorithm starts to consistently achieve better performance than the two other algorithms

on Cedar with 4 processes. At this MIF, we observed up to 30% performance improve-

ment. For smaller MIFs, the PAP-aware algorithm delivers comparable performance with

other algorithms. As we increase the MIF to 20, we observe the maximum performance

improvement over the Binomial-Tree and RSG algorithms for the messages in the range of

64KB to 64MB. For the messages larger than 64KB, the average improvement over other

algorithms at this MIF is 26%, while the maximum improvement of 28% was observed

for the message size of 512KB. Increasing the MIF to 50, we observe that for really high

delays in the PAP, our PAP-aware algorithm outperforms the two other algorithms for al-

most all the message sizes between 64KBs and 64MBs by almost the same difference in

latency as for MIF of 20. However, the observed improvement in the latency translates to

a lower total speedup for this MIF because the delay in the arrival time of the processes

is so large that it dominates the latency of the whole collective call. At MIF of 50, for

64KB to 64MB messages, the average improvement over the best algorithm is 14%, and

the maximum improvement of 15% was achieved at the message size of 512KB.
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(a) MIF = 10

(b) MIF = 20

(c) MIF = 50

Figure 5.4: Latency comparison of MPI Reduce under imbalanced microbenchmarks for
Binomial-Tree, RSG, and PAP-aware algorithms with 4 processes on a single node on
Cedar
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(a) MIF = 20

(b) MIF =50

(c) MIF = 75

Figure 5.5: Latency comparison of MPI Reduce under imbalanced microbenchmarks for
Binomial-Tree, RSG, and PAP-aware algorithms with 16 processes on a single node on
Helios
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On Helios, we have presented the latency of the algorithms for three imbalanced work-

loads with MIFs equal to 20, 50, and 75. We start with MIF 20 which is larger than the

starting MIF tested on Cedar because with 16 processes per node, the number of steps for

the reduce operation is larger on Helios, and hence our algorithm starts to outperform the

algorithms at higher MIFs.

As it can be seen in Figure 5.5, at MIF of 20, our PAP-aware algorithm outperforms

the other algorithms for message sizes up to 512KBs. As we increase the MIF to 50, our

PAP-aware algorithm outperforms the other algorithms almost for all message sizes within

the 4B to 64MB range. This is the MIF which our algorithm starts to consistently achieve

better performance than the two other algorithms on Helios with 16 processes for all the

message sizes. At this MIF, the average improvement over the best performing algorithm

across all the message sizes is 59%, and the maximum improvement of 70% was observed

at the message size of 256KB. We further increase the MIF to 75 and observed the average

improvement of 63% across all the messages, while the maximum improvement of 73%

was observed for 256KB messages.

When the workload is imbalanced, our PAP-aware algorithm, unlike the two other al-

gorithms, lets the early arriving processes leave the collective as soon as they contribute

to the operation. In fact, in our algorithm, the number of processes waiting for the last

process to arrive is always one, while for the Binomial-Tree and the RSG algorithms, log2n

and n− 1 processes are involved, respectively. Due to this, the time processes spend in the

collective in our design is optimum, leading to the superior performance of our proposed

PAP-aware algorithm over Binomial-Tree and RSG algorithms in the presence of imbal-

anced PAPs. Comparing the results on the two platforms shows that on Helios with 16

PPN the performance improvement is higher compared to the results on Cedar with 4 PPN.
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We believe this is also due to the fact that was mentioned earlier. The increase in the num-

ber of processes, unlike our PAP-aware algorithm translates to the increase in the number

of processes waiting for each other in the Binomial-Tree and RSG algorithms. Therefore,

the performance difference between our proposal and the two other algorithms increases

as the number of processes grow. In addition, on both platforms, for very large MIFs, we

observed the same pattern where our PAP-aware algorithm still outperforms the two other

algorithms for these message sizes. However, the total speedup decreases as we increase

the MIF.

MPI Allreduce

In the following, we present the performance evaluation of our proposed PAP-aware MPI Allreduce

algorithm against three other algorithms in balanced and imbalanced circumstances.

Microbenchmark Results with Balanced PATs

First, we compare the performance of our design with the state-of-the-art algorithms native

to MVAPICH using a perfectly balanced microbenchmark provided in Listing 4.1. The

default intra-node MPI Allreduce algorithm for messages larger than 64KBs is the RSA

algorithm in MVAPICH. This algorithm delivers the best performance among the other

algorithms implemented in MVAPICH according to its tuning table. We call this algorithm

Def-MVAPICH in the rest of this chapter. There are another intra-node MPI Allreduce

algorithms native to MVAPICH for large messages that similar to our PAP-aware design for

MPI Allreduce use a two-step (reduce + broadcast) algorithm. The ”BT+Bcast” algorithm

implements the MPI Allreduce operation by exploiting the Binomial-Tree reduce algorithm

followed by a broadcast operation. The ”RSG+Bcast” algorithm, on the other hand, utilizes
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the RSG algorithm for the reduce operation followed by a broadcast operation. All the

aforementioned two-step algorithms along with our PAP-aware intra-node MPI Allreduce

design, referred to as as ”PAP+Bcast” algorithm, use the same broadcast operation for the

second phase as explained in Section 5.3.2. The phases regarding these algorithms is as

follows:

• Phase 1: Intra-node Reduce into the leader process of the node

• Phase 2: Intra-node broadcast by the leader process

Figure 5.6 presents the performance of the aforementioned algorithms under a balanced

workload with four processes on a single node on Cedar. It can be seen that the native al-

gorithm of MVAPICH (Def-MVAPICH) outperforms all the other tested algorithms. In

addition, it can be observed that the PAP-aware algorithm is not as good as the other algo-

rithms for most of the message sizes when the microbenchmark is perfectly balanced.

Microbenchmark Results with Imbalanced PATs

Here, we compare the performance of our PAP-aware MPI Allreduce algorithm with the

three previously introduced algorithms under three different imbalanced PAPs using the im-

balanced microbenchmark provided in Listing 4.2. In our two-step PAP-aware MPI Allreduce

operation, unlike the PAP-aware reduce operation, we could not release the processes as

soon as they contribute to the reduction operation in that all the processes have to wait

until they are provided with the result of the collective via a broadcast operation. There-

fore, no performance improvement could be gained from the optimal release of processes

in the first step of the MPI Allreduce operation. However, in our algorithm, unlike other

algorithms, when the last process arrives, there is only one reduction left to be done to
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Figure 5.6: Latency comparison of MPI Allreduce under a balanced microbenchmark for
Def-MVAPICH (RSA), ”BT+Bcast”, ”RSG+Bcast”, and ”PAP+Bcast” algorithms with 4
processes on a single node on Cedar

complete the reduce operation. In contrast, the Def-MVAPICH (RSA), ”BT+Bcast”, and

”RSG+Bcast” algorithms have n, log2n, and n reduction operations left, respectively. Fig-

ure 5.7 presents the performance of the PAP-aware algorithm against the studied algorithms

for the MPI Allreduce operation under imbalanced workloads with MIFs equal to 10, 20,

and 50 on Cedar with 4 PPN.
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Figure 5.7: Latency comparison of MPI Allreduce under imbalanced microbenchmarks for
Def-MVAPICH (RSA), ”BT+Bcast”, ”RSG+Bcast”, and ”PAP+Bcast” algorithms with 4
processes on a single node on Cedar
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For a small MIF of 10, our PAP-aware algorithm outperforms all the other algorithms

for all message sizes larger than 4KBs. At this MIF, our algorithm starts to achieve better

performance than the other algorithms consistently. We observe the average improvement

of 18% over the best performing algorithm among the tested algorithms for the message

range of 64KB to 64MB. In addition, the maximum improvement of 41% was observed for

the message size of 1MB.

As we increase the MIF to 20, we observe the average improvement over the best per-

forming experimented algorithm of 20%, while the maximum improvement of 44% was

observed for the message size of 512KB. We further increase the MIF to 50 and observe

the average improvement of 11% and the maximum improvement of 25% for the message

size of 512KB over the best performing tested algorithm. For significantly larger MIFs,

we observe that although our PAP-aware algorithm outperforms all the other experimented

algorithms, the total speedup decreases as we increase the MIF.

On Helios with 16 processes, our proposed intra-node PAP-aware MPI Allreduce op-

eration delivered only comparable performance with respect to the other three algorithms

in imbalanced microbenchmarks. Due to this, we do not present the corresponding re-

sults here. We believe our proposal could not beat the other algorithms by a considerable

margin because, as mentioned earlier, no process can be released only until the end of the

operation. Therefore, in this case, with 16 processes at large MIFs (such as 50), the time

processes spend in the collective due to the induced imbalance in the arrival time dominates

the whole collective operation latency. This suggests that for the MPI Allreduce collective

with large number of PPNs our PAP-aware algorithm should be modified in a way to take

less number of steps (for example, log2n instead of n − 1) to considerably outperform the

studied algorithms.
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5.5 Summary

In this section, we proposed an intra-node PAP-aware algorithm for large message reduce

and MPI Allreduce collectives. Our design for the PAP-aware reduce algorithm dynami-

cally changes the communication pattern between the processes at each invocation of the

collective based on the PAP. This way, we could improve the latency by minimizing the

time each process spends in the collective waiting for other processes arrival which leads

to the decrease in the average time each process spends in the collective routine. Then,

we proposed a PAP-aware MPI Allreduce by adding a broadcast operation after the pro-

posed reduce operation. We evaluated our algorithms against state-of-the-art algorithms

in MVAPICH with imbalanced microbenchmarks on two platforms. The proposed reduce

operation performed 30% and 73% better than the best experimented algorithm, on Cedar

with 4 PPN and Helios with 16 PPN, respectively. The PAP-aware MPI Allreduce op-

eration also achieved up to 44% performance improvement among the tested algorithms

on Cedar with 4 PPN, while on Helios with 16 PPN our MPI Allreduce algorithm could

only deliver comparable performance with respect to the best performing algorithm. In the

next chapter, we investigate a cluster-wide MPI Allreduce algorithm capable of delivering

high-performance under imbalanced workloads for large messages.
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Chapter 6

Efficient Cluster-wide PAP-tolerant MPI Allreduce for

Large Messages

6.1 Motivation

In Chapter 4 and Chapter 5 we proposed algorithms capable of exploiting process imbal-

ance to improve the performance of intra-node MPI Reduce and MPI Allreduce collectives

for small and large message sizes, respectively. In addition, in Chapter 3 we observed that

Horovod as one of the most commonly used distributed DL frameworks suffers from imbal-

anced process arrival patterns especially when we measure the skew metrics cluster-wide.

Therefore, in this chapter we investigate a cluster-wide MPI Allreduce algorithm for large

messages capable of delivering high performance under imbalanced workloads.

In the following, we first present the related work and then we introduce a PAP-tolerant

algorithm (hierarchical RSA) and evaluate its performance against a state-of-the-art cluster-

wide MPI Allreduce algorithm (flat RSA) with balanced and imbalanced microbench-

marks, as well as the Horovod application.
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6.2 Related Work

There are only a few works that are very close to the study conducted in this chapter, such

as the work by Parsons and Pai [45] covered in Chapter 4 which proposed PAP-aware hi-

erarchical algorithms for modern hierarchical systems. Proficz et al. [52] evaluated the

performance of MPI Allreduce for a geographically-distributed environment consisting of

two compute clusters, 900 km apart, interconnected by a 100 Gbps Ethernet-based op-

tical fiber network. The authors studied the performance of a set of six MPI Allreduce

algorithms under balanced and imbalanced process arrival patterns on this testbed. The

set of MPI Allreduce algorithms includes two ring-based, two Binomial-Tree based and

two hierarchical algorithms. For the ring-based algorithms, a PAP-aware ring algorithm

proposed in [50], and an MPICH algorithm [64] were used. A variant of Rabenseifner’s

algorithm [57] performing Binomial-Tree Reduce-Scatter followed by Binomial-Tree All-

gather was chosen as one of the Binomial-Tree based algorithms. A two-step along with

a three-step hierarchical algorithms [30] were also chosen for the experiments. The bal-

anced microbenchmark results showed that the hierarchical algorithms deliver significantly

superior performance compared to the other studied algorithms. Also, the PAP-aware ring

algorithm outperformed its regular counterpart even for the balanced PAP. This is due to

the asymmetric connection and hence uneven communication latency between the nodes,

leading to inevitable skew between the steps of the MPI Allreduce algorithm among the in-

volved processes even in perfectly balanced workloads. Therefore, this study does not pro-

vide a valid comparison between the performance of the experimented algorithms under an

actual balanced workload. For imbalanced microbenchmark, the authors observed almost

the same pattern where the hierarchical algorithms had the lowest latency and that the PAP-

aware ring algorithm outperformed its regular counterpart. Consequently, they suggest that
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in scenarios with imbalanced PAPs the algorithms exploiting hierarchical structures deliver

superior performance. However, this study does not provide a fair comparison between

the performance of hierarchical and flat algorithms under imbalanced workloads in that

they have used hierarchical and flat algorithms with completely different designs, whereas

a more accurate evaluation could be made by comparing the performance of hierarchical

and flat algorithms that both exploit the same design with only different number of stages

(levels of hierarchy). The study also suggests that there is a need to develop and test hi-

erarchical algorithms with PAP-aware support to further increase the performance when

imbalanced PAPs are inevitable.

6.3 A Proposed PAP-tolerant MPI Allreduce

In MVAPICH, the algorithm of interest for MPI Allreduce for medium to large message

sizes (larger than 64KB) is a flat Reduce-Scatter followed by an Allgather (RSA) algorithm

because it delivers the best performance among the other algorithms in MVAPICH accord-

ing to the microbenchmarks used to derive its tuning table. These microbenchmarks only

measure the performance under perfectly balanced workloads when processes arrive at the

collective call with similar PATs. In practical scenarios with real application workloads on

different environments, however, the performance of flat algorithms might be susceptible

to imbalanced PAPs because of the inherent all-to-all data dependency that they introduce

among all the processes which acts like an unnecessary implicit synchronization between

all the processes in the cluster. Hierarchical algorithms, on the other hand, introduce less

data dependency among the processes. For instance, in hierarchical algorithms, the first

phase of the algorithm is usually an intra-node collective operation that only requires syn-

chronization between the processes residing on the same node. Therefore, we anticipate
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that the hierarchical algorithms might be less prone to performance degradation in the pres-

ence of imbalanced PAPs and hence a better algorithm for applications with imbalanced

PAPs. To be able to present a fair comparison between the two algorithms, we compare the

performance of a flat cluster-wide MPI Allreduce algorithm (flat RSA) against its hierar-

chical counterpart (hierarchical RSA) with balanced and imbalanced microbenchmarks as

well as an application (Horovod).

6.4 Evaluation Results and Analysis

6.4.1 Microbenchmark Studies

We measured the performance of the flat RSA algorithm, the default algorithm in MVA-

PICH, against a hierarchical MPI Allreduce algorithm for medium to large message sizes

(larger than 64KB) on 2 to 32 nodes with 4 PPN on Cedar cluster computer. The hierarchi-

cal algorithm for the aforementioned message range consists of three phases as follows:

• Phase 1: Intra-node reduce by the leader process (RSG)

• Phase 2: Inter-node MPI Allreduce among the leader processes (RSA)

• Phase 3: Intra-node broadcast by the leader process

Microbenchmark Results for MPI Allreduce with Balanced PATs

We first study the performance of the two algorithms under a balanced workload. Figure

6.1 through Figure 6.5 compare the performance of the flat RSA algorithm (Def-Mvapich)

and the previously introduced hierarchical algorithm (Hierarchical-RSA) with a perfectly

balanced microbenchmark provided in Listing 4.1.
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Figure 6.1: Balanced microbenchmark performance comparison between Def-Mvapich and
Hierarchical-RSA algorithms for 8 GPUs evenly distributed among 2 nodes on Cedar

Figure 6.2: Balanced microbenchmark performance comparison between Def-Mvapich and
Hierarchical-RSA algorithms for 16 GPUs evenly distributed among 4 nodes on Cedar

Figure 6.3: Balanced microbenchmark performance comparison between Def-Mvapich and
Hierarchical-RSA algorithms for 32 GPUs evenly distributed among 8 nodes on Cedar
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Figure 6.4: Balanced microbenchmark performance comparison between Def-Mvapich and
Hierarchical-RSA algorithms for 64 GPUs evenly distributed among 16 nodes on Cedar

Figure 6.5: Balanced microbenchmark performance comparison between Def-Mvapich and
Hierarchical-RSA algorithms for 128 GPUs evenly distributed among 32 nodes on Cedar

The results show that for all the experiments, the flat RSA algorithm outperforms the

hierarchical algorithm almost for all the message sizes. This demonstrates the reason why

the flat RSA has been chosen as the default algorithm for medium to large message sizes

by MVAPICH.
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Microbenchmark Results for MPI Allreduce with Imbalanced PATs

In this sub-section, we measure the performance of the flat and hierarchical algorithms

under an imbalanced workload. Listing 4.2 provides the pseudo-code for the imbalanced

microbenchmark. The maximum imbalance factor (MIF) in this microbenchmark was cho-

sen in a way to mimic the cluster-wide imbalanced process arrival pattern of Horovod for

large messages which was studied in Chapter 3.

Figure 6.6 to Figure 6.10 present the latency of the flat RSA algorithm (Def-Mvapich)

and the hierarchical algorithm (Hierarchical-RSA) under the imbalanced microbenchmark.

The results show that for all the experiments, the hierarchical algorithm has a smaller la-

tency than the flat RSA algorithm for most of the message sizes between 64KB to 64MB.

In Table 6.1, the average, maximum, and minimum improvement of hierarchical algo-

rithm over the flat algorithm is provided. For the maximum and minimum improvements,

the corresponding message size has been provided. As it can be seen, the average improve-

ment among all the message sizes within the studied message range (64KB to 64MB) is

greater than 20% for all the scenarios. The provided imbalanced microbenchmark results

in this section depict the superior performance of the hierarchical algorithm over the flat al-

gorithm in the presence of imbalanced workloads. We believe this superior performance is

due to the fact that in the hierarchical algorithm the early arriving processes will only need

to wait for other processes on their own node to arrive to start the communication, whereas

in the flat algorithm the communication progression is hampered until all the processes

arrive.
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Figure 6.6: Imbalanced microbenchmark performance comparison between Def-Mvapich
and Hierarchical-RSA algorithms for 8 GPUs evenly distributed among 2 nodes on Cedar

Figure 6.7: Imbalanced microbenchmark performance comparison between Def-Mvapich
and Hierarchical-RSA algorithms for 16 GPUs evenly distributed among 4 nodes on Cedar

Figure 6.8: Imbalanced microbenchmark performance comparison between Def-Mvapich
and Hierarchical-RSA algorithms for 32 GPUs evenly distributed among 8 nodes on Cedar



6.4. EVALUATION RESULTS AND ANALYSIS 98

Figure 6.9: Imbalanced microbenchmark performance comparison between Def-Mvapich
and Hierarchical-RSA algorithms for 64 GPUs evenly distributed among 16 nodes on Cedar

Figure 6.10: Imbalanced microbenchmark performance comparison between Def-Mvapich
and Hierarchical-RSA algorithms for 128 GPUs evenly distributed among 32 nodes on
Cedar

Table 6.1: Performance improvement of Hierarchical-RSA achieved over Def-Mvapich
algorithm up to 128 GPUs on Cedar

GPU Count Improvement

Average Max Message Size Min Message Size

8 20.01% 49.5% 2MB 16.36% 32MB
16 28.97% 54.01% 128KB 8.15% 64MB
32 28.64% 55.81% 256KB 11.15% 64MB
64 26.94% 57.64% 128KB 19.43% 64MB

128 23.17% 56.76% 256KB 22.23% 32MB
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6.4.2 Horovod Application Results

In this sub-section, we measure the performance of the flat RSA algorithm (Def-Mvapich)

and the hierarchical algorithm (Hierarchical-RSA) for Horovod application. For this test

we utilized the synthetic benchmarks within Horovod which provide the throughput of

the image classification task by the number of images processed per second (Images/Sec).

Figure 6.11 exhibits the per-GPU and total Horovod throughput of the flat RSA and the

hierarchical-RSA algorithms for 8 to 128 GPUs. The results show that hierarchical-RSA

outperforms the Def-Mvapich algorithm for all the GPU counts from 8 to 128 by the max-

imum, minimum, and average of 17%, 7%, and 10%, respectively.

As the communication characterization results of Horovod in Chapter 3 showed, the

cluster-wide imbalance-factor is significantly larger than the node-wide imbalance-factor

in Deep Learning frameworks, which suggests that in Horovod, the processes on the same

node arrive at the collective call with much less delay with respect to each other, than

all the processes on the cluster. Consequently, DL applications with the aforementioned

characteristics could benefit from the hierarchical algorithms in that with these algorithms

the early arriving processes on each node will not need to wait long for the processes on

their node to arrive to start the intra-node step, while with flat algorithms, the waiting time

between all the processes cluster-wide to start the operation is much larger. Hence, the

hierarchical algorithm delivers much better performance compared to its flat counterpart

under the inherently imbalanced PAP of Horovod.
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(a) Per-GPU throughput

(b) Total throughput

Figure 6.11: Horovod performance comparison between Def-Mvapich and Hierarchical-
RSA algorithms for 8 to 128 GPUs evenly distributed among 2 to 32 nodes on Cedar

6.5 Summary

In this section, we showed that although the flat RSA algorithm outperforms its hierarchical

counterpart for balanced PAPs, it performs poorly in the presence of imbalanced workloads.

In a nutshell, the hierarchical algorithms deliver a better collective communication progres-

sion in the presence of imbalanced PAPs compared to flat algorithms for two reasons. First,
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with hierarchical algorithms, the processes on each node can proceed with their intra-node

collective operation step without the need to wait for the late processes on the other nodes

to arrive (less data dependency among processes). And second, the waiting time for the

arrival of intra-node processes is significantly smaller than the delay for arrival of all the

processes on the cluster (less waiting time before starting the operation). Therefore, when

the PAP is imbalanced, hierarchical algorithms should be the algorithm of interest because

they deliver higher performance. Exploiting the hierarchical algorithm instead of the flat

algorithm improved the Horovod application results for all the studies we conducted with

different GPU counts by an average of 10%. The observed improvement demonstrated

that the inherently imbalanced PAP of Horovod could benefit from hierarchical algorithms’

PAP-tolerant characteristics.
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Chapter 7

Conclusion and Future Work

The number of processing units in HPC systems is increasing at a face pace. As the num-

ber of processes increases, the communication between them affects the performance of

parallel applications more prominently. MPI is the commonly used parallel programming

standard in the HPC community. The MPI standard introduces different communication se-

mantics, such as collective operations. Collective operations facilitate one-to-many, many-

to-one, and many-to-many inter-process communications in an optimized, scalable, and

yet convenient way. Therefore, they have been extensively used and play a pivotal role in

many MPI applications. Researchers have been improving the performance of MPI col-

lective communication operations from different aspects for a long time. Most of these

studies, however, are based on the premise that all the processes arrive at the collective call

at the same time. Studies have shown that such an assumption is impractical in HPC plat-

forms and that the process arrival pattern, even in MPI applications with perfectly balanced

workloads, is sufficiently imbalanced to affect the performance negatively. In this thesis,

we studied the communication characterization of a famous distributed DL framework,

Horovod, including the investigation of the arrival pattern of the MPI processes. Then, we

proposed two PAP-aware algorithms for intra-node MPI Allreduce operation with small
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and large message sizes. Finally, we investigated a hierarchical PAP-tolerant algorithm for

large message MPI Allreduce operation capable of achieving high performance under im-

balanced workloads. In the following, we will highlight the research contributions made in

this study and present potential future directions.

7.1 Conclusion

In Chapter 2, we provided the background regarding the research explored in this study. In

Chapter 3, we presented the communication characterization of the Horovod application.

First, we observed that MPI Allreduce is the most important collective operation used in

the Horovod both in terms of the number of calls and contribution to the runtime. Next, we

investigated the arrival pattern of the processes for allreduce calls in Horovod. We noted

a large asynchrony between the arrival times of the involved processes at each invocation

of the allreduce operations. Especially for allreduce collectives with small messages, the

maximum/average case imbalance factors were huge.

In Chapter 4, we took up the challenge to design an intra-node PAP-aware allreduce

algorithm for small messages. In modern HPC clusters, cutting-edge algorithms designed

for allreduce collective operations with small messages utilize the memory shared between

processes residing on a node for intra-node communication. Unfortunately, however, the

native shared memory algorithms do not take into account the arrival pattern of the pro-

cesses and hence perform poorly under imbalanced PAPs. We implemented our PAP-aware

design on top of the shared memory algorithm utilized in MVAPICH. In our algorithm, at

each invocation of the collective call, we dynamically choose the leader based on the ar-

rival time of the processes. We evaluated our design against the native algorithms utilized

in MVAPICH for allreduce operations with messages up to 64KB on two platforms. For
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MPI Allreduce, at MIF 20, we could achieve the highest average improvements of 20% on

Beluga, and 22% on Cedar, over the native algorithms across all the messages smaller than

64KBs with 32 PPN.

It should be mentioned that our work in Chapter 4 for intra-node PAP-aware allreduce

for small messages outperforms the other algorithms, especially when the intra-node pro-

cess count increases and the message size is larger than 256B. Unfortunately, however, with

the Horovod application, we could not go beyond four processes per node due to its single

process per GPU configuration. In addition, as mentioned in Chapter 3, eight-byte mes-

sages account for the majority of the small message allreduce calls of Horovod. Therefore,

at the Horovod level, our proposal only delivers comparable performance to the other algo-

rithms, while at the microbenchmark level, we could see the full potential of our proposal

in delivering significant improvements.

In Chapter 5, we proposed an algorithm capable of exploiting process imbalance to

improve the performance of intra-node MPI Reduce and MPI Allreduce collectives with

large message sizes. In our proposed algorithm, based on the arrival order of the pro-

cesses at each invocation of the collective call, we allow the early arriving processes to

start the reduce operation, contribute their data and leave the collective call as soon as

possible without waiting for the late arrival processes. Minimizing the time each process

spends in the collective site, our PAP-aware algorithm could improve the latency of the

MPI Reduce and MPI Allreduce operations in the presence of imbalanced PAPs. We eval-

uated the performance of our algorithm using imbalanced microbenchmarks with different

MIFs on two platforms. On Cedar and Helios, with four and sixteen processes per node,

for MPI Reduce, we could achieve the highest average improvement of 26% and 63% over

the Binomial-Tree algorithm across all the messages between 64KB to 64MB at MIF 20



7.1. CONCLUSION 105

and 75, respectively. In addition, for the allreduce operation across all the message sizes

within the range of 64KB to 64MB, we observed the highest average improvement of 20%

over the best experimented algorithm at MIF 20 on Cedar with 4 PPN.

One limitation of PAP-aware algorithms including our design is that their performance

is dependent on the extent of imbalance in the PAP. Therefore, in Chapter 5, although

our proposal for the PAP-aware allreduce algorithm for large message sizes improves the

performance for imbalanced MIFs at the microbenchmark level, it cannot show its impact

on the performance at the application level (Horovod). This is due to the fact that our design

starts to deliver better performance than other algorithms at slightly higher MIFs compared

to the measured MIFs of Horovod for large messages.

Chapter 6 investigated a PAP-tolerant cluster-wide allreduce algorithm capable of de-

livering high performance under imbalanced workloads for large messages. Using mi-

crobenchmarks, we showed that although the flat algorithms deliver the best performance

in perfectly balanced workloads, they suffer from performance degradation when the PAP

is imbalanced. Hierarchical algorithms, on the other hand, outperform their flat counter-

parts under imbalanced workloads due to the less data dependency they impose on the

processes. The imbalanced microbenchmark study showed that the hierarchical algorithm,

compared to its flat counterpart, improves the latency of the allreduce operation by up to

29% on 16 GPUs averaged across all the message sizes within the range of 64KB to 64MB.

Furthermore, we evaluated our study using the Horovod application on 8 to 128 GPUs and

observed the average and maximum throughput improvements of 10% and 17%, respec-

tively.
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7.2 Future Work

Our plans to extend the research conducted in this study revolve around developing al-

gorithms to tackle the challenges in MPI collective communications introduced by imbal-

anced process arrival patterns. Considering the communication characteristics of paral-

lel applications and the cutting-edge hardware/software features exploited in new parallel 

computers, we will investigate the opportunities to enhance the performance of MPI col-

lective operations in imbalanced PAP scenarios. In the following, we will review the op-

portunities to the algorithms and mechanisms proposed in this thesis that could be further 

studied.

7.2.1 Investigating Other MPI Applications

We plan to continue our work in Chapter 3 with studying the communication characteristics 

of other distributed DL frameworks such as ChainerMN [9] and DL applications such as 

CosmoFlow [41] as well as HPC applications. CosmoFlow is built on top of the TensorFlow 

framework and uses Deep Learning on 3D volumes to learn the physics of the universe and 

can be scaled up to run on more than 8,000 CPU nodes. Then, we will utilize our PAP-

aware collective algorithms proposed in Chapters 4, 5, and 6 for those HPC applications 

that suffer from imbalanced PAPs to achieve high performance.
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7.2.2 Extension of Proposed PAP-aware Algorithms to Other Collectives and Pro-

cess Counts

While our focus was on MPI Allreduce and MPI Reduce collectives in this study, our pro-

posals in Chapters 4 to 6 can be extended to other MPI collectives. Especially, MPI Allgather

and MPI Bcast can benefit from our designs with minimal modifications in that they have a

similar communication pattern to allreduce and reduce collectives, respectively. Designing

PAP-aware intra-node and inter-node allgather and broadcast collectives for small and large

message sizes and evaluating their performance under balanced and imbalanced PAPs will

be investigated in the future. Furthermore, as mentioned in Section 5.4.1, we plan to mod-

ify our PAP-aware MPI Allreduce algorithm proposed in Chapter 5 to decrease its number

of steps so that it could outperform the other algorithms by a more significant margin for

allreduce collectives with a large number of PPNs.

7.2.3 Minimizing the Overhead of Control Messages

In our proposed algorithms in Chapters 4 and 5, we used small control messages through

shared memory as a way to exchange synchronization signals and inform every other pro-

cess of the arrival pattern of the already arrived processes. The synchronization messages

introduce an extra overhead to the performance of our designs. One way to minimize the

overhead of signaling is to use Remote Direct Memory Access (RDMA). In RDMA com-

munication, each process can directly access the memory of another process without their

involvement and with bypassing its operating system. This permits high-throughput, low-

latency communication, which can potentially minimize the overhead of control messages

leading to better performance improvements for the designed algorithms.
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7.2.4 Extension of Our Node-wide PAP-aware Algorithms to Cluster-wide

Our PAP-aware algorithms for the intra-node allreduce operation presented in Chapters 4

and 5 were designed using intra-node reduce followed by an intra-node broadcast operation.

It should be noted that these algorithms can be extended for cluster-wide operations with

the addition of an inter-node allreduce step right before the intra-node broadcast operation.

In addition, the inter-node allreduce step can utilize any allreduce algorithm to perform

well in different circumstances since our designs do not burden any limit on the choice of

the inter-node allreduce algorithm. Therefore, we plan to use some well-known non-PAP-

aware allreduce algorithms for the inter-node step and our PAP-aware algorithms for the

intra-node step to design a cluster-wide PAP-aware allreduce algorithm and evaluate the

performance of it using balanced and imbalanced microbenchmarks as well as HPC/DL

applications.

Furthermore, we plan to extend our designs for intra-node PAP-aware algorithms to

inter-node allreduce algorithms for different message sizes. This way, we could design a

truly PAP-aware cluster-wide allreduce algorithm that benefits from PAP-awareness both

in intra- and inter-node steps. However, one main challenge for designing inter-node PAP-

aware collective operations is that no shared memory is available between the processes

residing on different nodes. Therefore, the synchronization and signaling between the pro-

cesses required to extract the arrival pattern cannot be performed through shared memory.

In this case, RDMA can be used as the means of signaling between the processes while

introducing minimum overhead to the performance of the proposed algorithms.
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7.2.5 PAP-aware Collectives for NICs

One way to improve the performance of HPC applications by overlapping communication

and computation is to offload some of the communication/computation tasks from the host

processors to the programmable processing units embedded on the Network Interface Cards

(NICs). To the best of our knowledge, there have not been any studies conducted on the

process arrival pattern of the collective communications performed with the assistance of

processing units on NICs. Therefore, characterizing the arrival pattern of the MPI processes

for different applications in such environments is necessary. With the information derived

from such characterizations we would extend our PAP-aware algorithms or design new

algorithms capable of delivering high-performance in imbalanced workloads by making

the NICs aware of PAP and efficiently exploiting the delays between processes arrival.

7.2.6 Adaptive Algorithm Selection based on MIFs

To make all the proposals in this study in Chapter 4 to Chapter 6 useful in practice, a

mechanism could be developed that detects arrival patterns and, based on different degrees

of imbalanced PAPs, invokes appropriate algorithms. One way to achieve this goal is to

dynamically measure the MIFs at the runtime and switch to the optimal algorithm for a

certain number of collective invocations before assessing the MIFs again. However, this

method might introduce some significant overhead to the application runtime due to its

extra computation. The other alternative is to run the application once in advance and

derive its PAP metrics, and then statistically choose the appropriate algorithms for different

message sizes based on the application’s MIFs.



110

Bibliography

[1] CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/ kriz/cifar.html. Ac-

cessed November 26, 2021.

[2] InfiniBand Trade Association. http://www.infinibandta.org. Accessed November 26,

2021.

[3] Message Passing Interface (MPI 4.0). https://www.mpi-forum.org. Accessed Novem-

ber 26, 2021.

[4] MPICH high-performance portable MPI. https://www.mpi-forum.org. Accessed

November 26, 2021.

[5] Nvidia. NCCL Library. https://github.com/NVIDIA/nccl. Accessed November 26,

2021.

[6] PGAS Forum. http://www.pgas.org. Accessed November 26, 2021.

[7] TOP500. https://www.top500.org. Accessed November 26, 2021.

[8] A. Afsahi and Y. Qian. Remote shared memory over sun fire link interconnect. In

Fifteenth IASTED International Conference on Parallel and Distributed Computing

and Systems (PDCS), volume 1, pp. 381–386, 2003.



BIBLIOGRAPHY 111

[9] T. Akiba, K. Fukuda, and S. Suzuki. ChainerMN: Scalable distributed deep learning

framework. arXiv preprint arXiv:1710.11351, 2017.

[10] Q. Ali, S. P. Midkiff, and V. S. Pai. Efficient high performance collective commu-

nication for the Cell blade. In Proceedings of the 23rd international conference on

Supercomputing (ICS), pp. 193–203, 2009.

[11] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda. Efficient large message

broadcast using NCCL and CUDA-aware MPI for deep learning. In Proceedings of

the 23rd European MPI Users’ Group Meeting (EuroMPI), pp. 15–22, 2016.

[12] A. A. Awan, A. Jain, C.-H. Chu, H. Subramoni, and D. K. Panda. Communication

Profiling and Characterization of Deep-Learning Workloads on Clusters With High-

Performance Interconnects. IEEE Micro, 40(1):35–43, 2019.

[13] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed Deep Learning: An

in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

[14] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant,

T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee. A survey of MPI us-

age in the U.S. exascale computing project. Concurrency and Computation: Practice

and Experience (CCPE), 32(3):e4851, 2020.

[15] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D.

Underwood, and R. C. Zak. Intel® Omni-path architecture: Enabling scalable, high

performance fabrics. In 23rd Annual IEEE Symposium on High-Performance Inter-

connects (HotI), pp. 1–9. IEEE, 2015.



BIBLIOGRAPHY 112

[16] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. Collective communica-

tion: theory, practice, and experience. Concurrency and Computation: Practice and

Experience (CCPE), 19(13):1749–1783, 2007.

[17] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda.

Efficient and scalable multi-source streaming broadcast on GPU clusters for deep

learning. In 2017 46th International Conference on Parallel Processing (ICPP), pp.

161–170. IEEE, 2017.

[18] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran. Characterization of

MPI usage on a production supercomputer. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), pp. 386–400. IEEE,

2018.

[19] J. Diaz, C. Munoz-Caro, and A. Nino. A survey of parallel programming models and

tools in the multi and many-core era. IEEE Transactions on parallel and distributed

systems, 23(8):1369–1386, 2012.

[20] G. E. Fagg, S. S. Vadhiyar, and J. J. Dongarra. ACCT: automatic collective commu-

nications tuning. In European Parallel Virtual Machine/Message Passing Interface

Users’ Group Meeting (EuroPVM/MPI), pp. 354–361. Springer, 2000.

[21] A. Faraj, P. Patarasuk, and X. Yuan. A study of process arrival patterns for MPI

collective operations. International Journal of Parallel Programming, 36(6):543–

570, 2008.



BIBLIOGRAPHY 113

[22] A. Faraj and X. Yuan. Automatic generation and tuning of MPI collective commu-

nication routines. In Proceedings of the 19th annual international conference on

Supercomputing (ICS), pp. 393–402, 2005.

[23] A. Faraj, X. Yuan, and D. Lowenthal. STAR-MPI: self tuned adaptive routines for

MPI collective operations. In Proceedings of the 20th annual international conference

on Supercomputing (ICS), pp. 199–208, 2006.

[24] I. Faraji and A. Afsahi. GPU-aware intranode MPI Allreduce. In Proceedings of the

21st European MPI Users’ Group Meeting (EuroMPI), pp. 45–50, 2014.

[25] I. Faraji and A. Afsahi. Hyper-Q aware intranode MPI collectives on the GPU. In Pro-

ceedings of the First International Workshop on Extreme Scale Programming Models

and Middleware (ESPM2), pp. 47–50, 2015.

[26] I. Faraji and A. Afsahi. Design considerations for GPU-aware collective communi-

cations in MPI. Concurrency and Computation: Practice and Experience (CCPE),

30(17):e4667, 2018.

[27] S. M. Ghazimirsaeed, S. H. Mirsadeghi, and A. Afsahi. Communication-aware mes-

sage matching in MPI. Concurrency and Computation: Practice and Experience

(CCPE), 32(3):e4862, 2020.

[28] R. Graham, M. G. Venkata, J. Ladd, P. Shamis, I. Rabinovitz, V. Filipov, and

G. Shainer. Cheetah: A framework for scalable hierarchical collective operations.

In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting (CCGrid), pp. 73–83. IEEE, 2011.



BIBLIOGRAPHY 114

[29] R. L. Graham and G. Shipman. MPI support for multi-core architectures: Optimized

shared memory collectives. In European Parallel Virtual Machine/Message Passing

Interface Users’ Group Meeting (EuroPVM/MPI), pp. 130–140. Springer, 2008.

[30] K. Hasanov and A. Lastovetsky. Hierarchical redesign of classic MPI reduction algo-

rithms. The Journal of Supercomputing, 73(2):713–725, 2017.

[31] T. Hoefler, T. Schneider, and A. Lumsdaine. Accurately measuring collective op-

erations at massive scale. In 2008 IEEE International Symposium on Parallel and

Distributed Processing (IPDPS), pp. 1–8. IEEE, 2008.

[32] G. Inozemtsev and A. Afsahi. Designing an offloaded nonblocking MPI Allgather

collective using CORE-Direct. In 2012 IEEE International Conference on Cluster

Computing (Cluster), pp. 477–485. IEEE, 2012.

[33] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop, and D. K. Panda. Designing

multi-leader-based allgather algorithms for multi-core clusters. In 2009 IEEE Inter-

national Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–8. IEEE,

2009.

[34] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy, and D. K. Panda.

Designing optimized MPI broadcast and allreduce for Many Integrated Core (MIC)

InfiniBand clusters. In 21st Annual IEEE Symposium on High-Performance Intercon-

nects (HotI), pp. 63–70. IEEE, 2013.

[35] X. Lapillonne, O. Fuhrer, P. Spörri, C. Osuna, A. Walser, A. Arteaga, T. Gysi,



BIBLIOGRAPHY 115
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