

Communication Characteristics of Message-Passing Applications, and

Impact of RDMA on their Performance

by

Reza Zamani

A thesis submitted to the Department of

Electrical and Computer Engineering

 in conformity with the requirements for

the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

June, 2005

Copyright © Reza Zamani, 2005

i

Abstract

With the availability of Symmetric Multiprocessors (SMP) and high-speed

interconnects, clusters of SMPs (CLUMPs) have become the ideal platform for

performance computing. The performance of applications running on clusters mainly

depends on the choice of parallel programming paradigm, workload characteristics of the

applications, and the performance of communication subsystem. This thesis addresses

these issues in details.

It is still open to debate whether pure message-passing or mixed MPI-OpenMP is

the programming of choice for higher performance on SMP clusters. In this thesis we

investigate the performance of the recently released NAS Multi-Zone (NPB-MZ)

benchmarks consisting of BT-MZ, SP-MZ, and LU-MZ, and SMG2000 of the ASCI

Purple benchmark. Our studies show that the applications studied have a better MPI

performance on clusters of small SMPs interconnected by the Myrinet network.

In this thesis, we examine the MPI characteristics of the three applications in the

NPB-MZ suite as well as two applications (SPECseis and SPECenv) in the SPEChpc2002

suite in terms of their point-to-point and collective communications. We also evaluate the

impact of different number of processors as well as different problem sizes on the

communication characteristics of these applications. Overall, our experiments reveal that

the applications studied have diverse communication patterns, and that they are sensitive

to the changes in the system size and the problem size.

This thesis presents an in-depth evaluation of the new Myrinet two-port networks

at the user-level (GM), MPI-level, and at the Aggregate Remote Memory Copy Interface

(ARMCI) level. High-performance interconnects such as Myrinet provide a one-sided

communication model, referred to as Remote Direct Memory Access (RDMA), which is

not utilized in many parallel applications, such as NPB-MZ. We realized that non-

blocking operations perform better than blocking, and two-port communication

outperforms one-port communication. We noticed that for messages larger than 8KB,

ARMCI non-blocking Put has a better performance than MPI Send/Receive operations.

ii

We take on the challenge to utilize these features to convert our two-sided

applications in NPB-MZ to one-sided using the ARMCI. Our results indicate

communication performance improvement of up to 43%, depending on the workload size

and the number of processors involved, can be achieved.

iii

Acknowledgements

I would like to thank continuous support and encouragement of my supervisor Dr.

Ahmad Afsahi throughout this work. Without him, this thesis could not have been

completed. I am grateful to Queen’s University for granting me the opportunity to

complete this work.

I would like to thank my friends at the Parallel Processing Research Laboratory,

Nathan R. Fredrickson, Ying Qian and Fan Gao for their extensive help. I appreciate

support of staff at the Department of Electrical and Computer Engineering.

Finally, I would like to express my love and appreciation to my family and friends

for supporting my endeavours.

iv

Table of Contents

Abstract..i

Acknowledgements .. iii

Table of Contents ..iv

List of Tables ... vii

List of Figures... viii

Glossary ...xi

Chapter 1 Introduction..1

1.1 MOTIVATION ...1

1.2 CONTRIBUTIONS..3

1.3 THESIS OUTLINE..5

Chapter 2 Background ..7

2.1 MESSAGE-PASSING AND SHARED-MEMORY MODEL...7

2.2 PARALLEL PROGRAMMING PARADIGMS ..10

2.2.1 MPI..10
2.2.1.1 Blocking and Non-Blocking Point-to-Point Communication ..11
2.2.1.2 MPI Point-to-point Protocols ..11
2.2.1.3 MPI One-sided Communication..12
2.2.1.4 MPI Collective Communication..13

2.2.2 OpenMP ..14

2.2.3 Mixed MPI-OpenMP (Mixed-Mode) ...15

2.3 APPLICATION CHARACTERISTICS ..16

2.4 HIGH-PERFORMANCE CLUSTERS AND INTERCONNECTS ..18

2.4.1 Myrinet Network..18

2.5 MESSAGING LAYERS ...19

2.5.1 GM Messaging Layer ..20

2.5.2 MPICH-GM...25

v

2.5.3 ARMCI...26

2.6 SUMMARY ...28

Chapter 3 Parallel Applications ...29

3.1 NPB-MZ (MULTI-ZONE) 3.0...29

3.1.1 NAS BT-MZ ...31

3.1.2 NAS SP-MZ ...31

3.1.3 NAS LU-MZ...31

3.2 SPECHPC2002 ..32

3.2.1 SPEChpc2002 – SPECenv...32

3.2.2 SPEChpc2002 – SPECseis ..32

3.2.3 SPEChpc2002 – SPECchem..33

3.3 SMG2000 ...33

3.4 SUMMARY ...33

Chapter 4 Application Characteristics ..35

4.1 EVALUATION PLATFORM...35

4.2 POINT-TO-POINT COMMUNICATIONS ...35

4.2.1 Message Frequency...37

4.2.2 Average Message Size ...38

4.2.3 Message Volume..40

4.2.4 Message Size Cumulative Distribution Function ..41

4.2.5 Message Destinations..43

4.2.6 Destination Distribution..44

4.3 COLLECTIVE COMMUNICATIONS ...45

4.4 LOCALITY CHARACTERISTICS ...46

4.4.1 Message Size Locality ...47

4.4.2 Message Destination Locality ...48

4.4.3 Comparison of Localities ..57

4.5 MIXED-MODE COMMUNICATION CHARACTERISTICS ..57

4.5.1 Message Frequency...59

4.5.2 Average Message Size ...60

vi

4.5.3 Message Volume..61

4.5.4 Comparison of MPI and Mixed-Mode Characteristics.....................................62

4.6 SMG2000 CHARACTERISTICS ...62

4.7 SUMMARY ...63

Chapter 5 Myrinet Performance Evaluation ..66

5.1 GM BASIC PERFORMANCE ..66

5.1.1 GM Send/Receive Performance...68

5.1.2 GM RDMA Performance...70

5.2 MPI OVER GM BASIC PERFORMANCE...72

5.3 ARMCI BASIC PERFORMANCE ...74

5.4 OVERALL PERFORMANCE COMPARISON..77

5.4.1 Observations..80

5.5 SUMMARY ...83

Chapter 6 Application Performance and Impact of RDMA..84

6.1 MIXED-MODE APPLICATION PERFORMANCE...84

6.2 TWO-PORT MYRINET CARD APPLICATION PERFORMANCE......................................87

6.3 ARMCI ONE-SIDED VS. MPI TWO-SIDED ..87

6.3.1 Expected per Message Communication Improvement88

6.3.2 Expected Overall Communication Improvement ..92

6.3.3 NPB-MZ Communication Patterns ...95

6.3.4 Converting MPI Communications to ARMCI ...97

6.3.5 Observed Communication Improvement ...99

6.4 SUMMARY ...104

Chapter 7 Conclusion and Future Work ...106

7.1 FUTURE WORK..109

References ...110

vii

List of Tables
Table 2.1 List of some MPI collective communication operations.14

Table 2.2 ARMCI remote operations description..26

Table 3.1 Overview of application benchmarks. ...29

Table 4.1 Collective communications of NPB-MZ and SPEChpc2002 (16 processes)45

Table 4.2 MPI Characteristics of SMG2000..63

Table 5.1 Timing of Basic GM function calls. ..67

Table 5.2 Latency of MPI, GM, and ARMCI operations in µs (one- and two-port).79

Table 5.3 Performance advantage/disadvantage of ARMCI over MPI (in µs)..................82

Table 6.3 Estimated communication improvement of BT-MZ-C per message.................89

Table 6.1 Estimated communication improvement of BT-MZ-B (2 processes) per

message. ..90

Table 6.2 Estimated communication improvement of BT-MZ-B (4-32 processes) per

message. ..90

Table 6.4 Estimated communication improvement of SP-MZ per message......................91

Table 6.5 Estimated communication improvement of LU-MZ per message.....................91

Table 6.6 Estimated improvement of BT-MZ communication time (ms).93

Table 6.7 Estimated improvement of SP-MZ communication time (ms)..........................93

Table 6.8 Estimated improvement of LU-MZ communication time (ms).........................93

viii

List of Figures

Figure 2.1 Message-passing and shared-memory model data transfer.8

Figure 2.2 MPI eager and rendezvous messaging protocols. ..12

Figure 2.3 Myrinet host and network interface architecture (adapted from [6]).19

Figure 2.4 GM endpoints (ports) (adapted from [18]). ..21

Figure 2.5 Internal GM queues for tokens (adapted from [18]).22

Figure 2.6 GM user token flow (send) (adapted from [18]). ...23

Figure 2.7 GM user token flow (receive) (adapted from [18]). ...24

Figure 2.8 ARMCI client-server architecture (adapted from [9])......................................27

Figure 4.1 Number of messages sent per process. ...37

Figure 4.2 Average message size per send. ...39

Figure 4.3 Comparison of average message sizes of benchmarks.....................................39

Figure 4.4 Total message volume per process ...40

Figure 4.5 Message size CDF of NPB-MZ and SPEChpc2002 applications.42

Figure 4.6 Number of destinations per process..43

Figure 4.7 Destination distribution of process 0 (16 processes).44

Figure 4.8 Message size locality (FIFO heuristic)...51

Figure 4.9 Message size locality (LRU heuristic)..52

Figure 4.10 Message size locality (LFU)...53

Figure 4.11 Message destination locality (FIFO) ..54

Figure 4.12 Message destination locality (LRU) ...55

Figure 4.13 Message destination locality (LFU) ...56

Figure 4.14 Comparison of different locality heuristics (16 processes).58

Figure 4.15 Number of messages sent per process in NPB-MZ (mixed-mode).60

Figure 4.16 Average message size of NPB-MZ applications (mixed-mode).60

Figure 4.17 Message volume of NPB-MZ applications (mixed-mode).............................61

Figure 5.1 GM_Free execution time for different message sizes.68

Figure 5.2 GM memory registration and deregistration cost and bandwidth.68

ix

Figure 5.3 GM Send/Receive latency in unidirectional, bidirectional and both-way

messaging (one/two-port). ..69

Figure 5.4 GM Send/Receive bandwidth in unidirectional, bidirectional, and both-way

messaging (one/two-port). ..70

Figure 5.5 GM Put and Get unidirectional latency..71

Figure 5.6 GM Put and Get unidirectional bandwidth. ...71

Figure 5.7 MPI blocking and non-blocking Send/Receive unidirectional, bidirectional, and

both-way latency (one/two-ports). ..72

Figure 5.8 MPI blocking and non-blocking Send/Receive unidirectional, bidirectional, and

both-way bandwidth (one/two-ports)..73

Figure 5.9 ARMCI blocking Put and Get latency (one/two-port).74

Figure 5.10 ARMCI non-blocking Put and Get latency (one/two-port)............................75

Figure 5.11 ARMCI blocking Put and Get bandwidth (one/two-port)..............................76

Figure 5.12 ARMCI non-blocking Put and Get bandwidth (one/two-port).76

Figure 5.13 Latency and bandwidth comparison of ARMCI blocking and non-blocking

Put and Get. ..77

Figure 5.14 Latency and bandwidth comparison of MPI blocking Send/Receive, GM

Send/Receive, and ARMCI blocking and non-blocking Put (one/two-port).81

Figure 6.1 Speedup of MPI version of NPB-MZ and SMG2000 (two-port).....................85

Figure 6.2 Execution time of NPB-MZ applications on Myrinet network (two-port).......85

Figure 6.3 Execution time of SMG2000 on Myrinet Network (two-port).........................86

Figure 6.4 Expected Messaging Improvement of Blocking and Non-Blocking ARMCI

over MPI for BT-MZ, SP-MZ, and LU-MZ. ..94

Figure 6.5 Example of message exchange among zones in NPB-MZ...............................95

Figure 6.6 Pseudo code for NPB-MZ communication. ...96

Figure 6.8 Pseudo code for ARMCI nonblocking version of NPB-MZ communication. .98

Figure 6.7 Pseudo code for ARMCI blocking version of NPB-MZ communication.99

Figure 6.9 (a) Communication time per process, and (b) average communication time per

process for SP-MZ-C (two-port)...100

Figure 6.10 Messaging Improvement of blocking and non-blocking ARMCI over MPI for

BT-MZ, SP-MZ, and LU-MZ...101

x

Figure 6.11 Messaging Improvement of Blocking and Non-Blocking ARMCI over MPI

for BT-MZ, SP-MZ, and LU-MZ (Minimum process time).103

xi

Glossary

3-D 3-Dimensional

ADI Alternating Direction Implicit

API Application Programming Interface

ARCO Atlantic Richfield Corporation

ARMCI Aggregate Remote Memory Copy Interface

BT Block Tridiagonal

CDF Cumulative Distribution Function

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CLUMP Clusters of Symmetric MultiProcessors

EP Embarrassingly Parallel

FIFO First In First Out

FT Fourier Transform

GAMESS General Atomic and Molecular Electronic Structure System

HPC High Performance Computing

IS Integer Sort

LFU Least Frequently Used

LRU Least Recently Used

LU Lower-Upper Diagonal

MCP Myrinet Control Program

MG MultiGrid

MPI Message Passing Interface

MPMD Multiple-Program Multiple-Data

NIC Network Interface Cards

NPB NAS Parallel Benchmark

NPB-MZ NAS Parallel Benchmark Multi-Zone

P2P Point-to-Point

POSIX Portable Operating System Interface

xii

RDMA Remote Direct Memory Access

RMA Remote Memory Access

SMP Symmetric MultiProcessors

SP Scalar Pentadiagonal

SPEC Standard Performance Evaluation Corporation

SPMD Single-Program Multiple-Data

SSOR Symmetric Successive Over-Relaxation

WRF Weather Research and Forecasting

1

Chapter 1 Introduction

1.1 Motivation

Most supercomputing sites in the world are using clusters since they are cheaper

and more scalable than other high-performance architectures. As of today, more than 58%

of top 500 supercomputers are clusters [48]. Cluster computing provides cost-effective

high-performance computing. With the availability of advanced uniprocessors, symmetric

multiprocessors (SMPs), and high-speed interconnects, clusters of uniprocessors and

clusters of SMPs (CLUMPs) have become the ideal platforms for high-performance

computing, as well as supporting the emerging commercial and networking applications.

Many factors influence the performance of an application running on a cluster.

However, mainly, the performance is dependant on the type of parallel programming

paradigm in use, the communication characteristics of the application, and the

performance of the communication subsystem. This thesis addresses these issues in detail.

Firstly, we consider a number of well-known scientific applications. These

applications have been written in OpenMP [14], MPI [30], and in the mixed MPI-

OpenMP [10, 15] parallel programming paradigms. OpenMP has emerged as the standard

for parallel programming on shared-memory systems. Message Passing Interface (MPI) is

the de facto standard for parallel programming in clusters. Given the availability of

CLUMPs, it is now possible to write applications in mixed-mode. This thesis, investigates

which parallel programming paradigm has a better performance on clusters of small

multiprocessors interconnected by the Myrinet network.

Communication overhead is one of the most important factors affecting the

performance of clusters. The communication characteristics of applications written in

MPI, and mixed-mode, as well as the performance of the communication subsystem

greatly influence this overhead. Message-passing and mixed-mode applications exhibit a

broad range of communication behaviour [54]. Therefore, understanding their behaviour

plays a key role in optimizing their performance as well as in designing better

2

communication subsystems. This thesis addresses the spatial and volume communication

attributes of the applications under study.

As stated above, communication subsystem including the interconnection network

hardware and the communication system software can easily become the bottleneck for

an application running on a cluster. Therefore, high-performance clusters use

contemporary interconnects to achieve performance. Low communication latency and

high communication bandwidth are the two features of these interconnects.

A number of high-performance interconnects are available for cluster computing.

They include Quadrics QsNet [39], QsNet II [1], InfiniBand [29], Myrinet [7], GigaNet

[52], and Sun Fire Link [40]. Myrinet is one of the popular high performance

interconnects for building clusters. Myrinet provides low-latency and high-bandwidth

messaging. As of November 2004, more than 38% of top 500 supercomputers [48] use

Myrinet as their interconnect of choice.

Message-passing applications run on top of a message-passing library, such as

MPI. MPI runs on top of a user-level messaging library which itself runs on top of the

network. GM is the user-level message-passing library for the Myrinet networks. Our

platform uses Myrinet 2-port (E-Card) network interface cards (NICs). This thesis

evaluates the performance of the Myrinet network, at the GM-level under single-port and

two-port modelling. We also present the performance of the MPI on top of GM.

Message-passing communication can be done in two different modes: one-sided

communication and two-sided communication [21]. Initial Message Passing Interface

defined in MPI uses Send and Receive operations. This model is called two-sided

communication. Both sender and receiver are involved in a two-sided communication,

and an implicit synchronization is achieved by performing this operation.

In one-sided communication, one process specifies all communication parameters.

To ensure the completion of communication, synchronization should be done explicitly.

Get and Put operations are the most common one-sided communication operations. In

fact, removing implicit synchronization can enhance the performance of the applications.

Reducing data movements and simplifying programming can be addressed as two other

major advantages of one-sided communication.

3

Aggregate Remote Memory Copy Interface (ARMCI) [3, 35] is a library that

provides general purpose, efficient and widely portable Remote Memory Access (RMA)

operations for contiguous and non-contiguous data transfers. User-level libraries and

applications that use MPI or PVM [46] can be supported by ARMCI. ARMCI can be built

on top of the GM layer. ARMCI Put and Get operations can be easily used in codes

without the hassle of GM one-sided communication.

In this work, we are also interested in evaluating the performance of one-sided

communication in ARMCI. Having known the communication profile of the applications

under study, and the superior performance of ARMCI over MPI for large messages, we

convert our two-sided MPI applications to one-sided using ARMCI.

1.2 Contributions

In this thesis, we study different aspects of application performance on a cluster of

SMPs. We use our own cluster in Parallel Processing Research Laboratory at Queen’s

University. Our evaluation platform consists of eight dual 2.0GHz Intel Xeon MP servers

(Dell PowerEdge 2650s). All nodes are connected to a 16-port Myrinet network through

the Myrinet two-port "E card" (M3F2-PCIXE-2) network interface cards. Each node is

running Red Hat Linux 2.4.24 as its operating system. We use Intel C++/Fortran compiler

version 7.1 for 32-bit applications, as well as GCC compiler version 3.2.2. We use the

mpich-1.2.5..10 library as the message-passing library, and GM version 2.1.0, Myrinet’s

messaging library. This thesis makes the following contributions:

• The first contribution of this thesis is in the collection and analysis of the

communication characteristics of NAS Multi-Zone (NPB-MZ) [49] and

SPEChpc2002 [44] benchmarks. We examine the MPI characteristics of these small

to large-scale scientific applications in terms of their point-to-point and collective

communications. We evaluate the impact of the problem size and the system size on

the communication behaviour of the applications. Locality characteristics of NPB-MZ

and SPEChpc2002 applications are gathered. We have used the First In First Out

(FIFO), Least Recently Used (LRU), and Least Frequently Used (LFU) locality

heuristics to evaluate the locality of message size and message destinations in our

4

applications. It is found that the applications studied have diverse communication

characteristics. Those include very small to very large messages, frequent to

infrequent messages, various distinct message sizes, set of favourite destinations, and

regular versus irregular communication patterns. Some applications are sensitive to

the bandwidth of the interconnect, while others are latency-bound as well. To the best

of our knowledge, this is the first communication characterization of NPB-MZ and

SPEChpc2002.

• The question remains for the research community as to whether pure message-passing

or mixed MPI-OpenMP is the programming of choice for higher performance on SMP

clusters. This thesis contributes by addressing this question. We gather and analyze

the communication characteristics of NPB-MZ and SMG2000 applications in mixed

MPI-OpenMP paradigm, along with their performance evaluation. It is shown that for

different combinations of processes and threads, pure MPI paradigm outperforms the

Mixed MPI-OpenMP paradigm.

• As the third contribution of this work, for the first time, we present an in-depth

evaluation of the new Myrinet two-port networks at the user-level (GM), MPI-level,

and at the ARMCI-level. We measure the performance of GM basic function calls,

such as program initialization, memory allocation, memory deallocation, and program

termination. We evaluate and compare the basic latency performance of GM

Send/Receive, GM RDMA, MPI Send/Receive, and ARMCI RDMA operations for

one- and two-port configuration of the Myrinet network interface card. We realize

that, in general, non-blocking operations perform better than blocking, and the two-

port communications at the GM, MPI, and ARMCI levels (except for the GM/ARMCI

RDMA read) outperform the one-port communications for the bandwidth. We notice

that for messages larger than 8KB, ARMCI non-blocking Put has a better

performance than MPI Send/Receive operations.

• The fourth contribution of this thesis is in improving the communication performance

of applications using ARMCI RDMA operations. We take on the challenge to convert

5

our two-sided application to one-sided using the ARMCI library. Our performance

results indicate that communication performance of NPB-MZ applications improves

between -30% to +43%. We also estimated the performance improvement using the

communication characteristics of NPB-MZ applications and the basic communication

performance of ARMCI and MPI (latency or bandwidth). The expected

communication improvement is up to 5.9%. Using both blocking and non-blocking

ARMCI Put operations improve the communication performance in some cases.

1.3 Thesis Outline

This thesis is presented in seven chapters. In Chapter 2, background of this work

is presented. This chapter introduces the message-passing and shared-memory models,

along with one-sided and two-sided communications. We introduce communication

characteristics of parallel applications, Myrinet network, GM, MPI, and ARMCI.

In Chapter 3, we introduce the different applications that are studied in this thesis.

We describe NPB-MZ benchmark suite, SPEChpc2002 suite, and SMG2000.

In Chapter 4, the communication characteristics of NPB-MZ and SPEChpc2002

applications are studied. We examine point-to-point and collective communication

characteristics of these applications. We present the frequency, volume, distribution,

locality, and other characteristics of message sizes and message destinations. We also

compare the communication characteristics of NPB-MZ in mixed MPI-OpenMP with

MPI.

In Chapter 5, we evaluate the basic performance of the Myrinet network at

different levels. We evaluate the latency/bandwidth performance of the Myrinet network

at MPI-level, GM-level, and ARMCI-level. The performance comparisons suggest the

potential improvements in applications’ performance using ARMCI over MPI.

In Chapter 6, we calculate the expected performance improvement by replacing

MPI two-sided operations in NPB-MZ with ARMCI RDMA operations, as well as

evaluating the runtime performance improvement. Performance evaluation of NPB-MZ

and SMG2000 application under mixed MPI-OpenMP is also presented. We study the

effect of using one or two ports of the Myrinet NIC on the performance of NPB-MZ and

6

SMG2000 applications. Finally, in Chapter 7, we conclude the thesis and present the

potential future work.

7

Chapter 2 Background

Using multiple computational processing units is one of the principles of High

Performance Computing (HPC). Distributing a massive workload among a number of

processors enables us to gain a large computing power. Multiple processor systems are

either directly coupled or connected through an interconnection network. In either type,

communication between processing units becomes a key performance factor. Therefore,

communication patterns of an application running on a cluster along with the performance

characteristics of the interconnection network both become interesting to study.

In this chapter, we introduce the message-passing and shared-memory models as

well as one-sided and two-sided communications. MPI [30] and OpenMP [14] are the de

facto standards for message-passing and shared-memory programming models,

respectively. Mixed MPI-OpenMP programming paradigm is getting a lot of attention

with the prominence of SMP clusters. We also give a short introduction to the

communication characteristics of message-passing applications. We introduce some of

today’s high performance interconnection networks for cluster computing. Specifically,

we introduce the Myrinet. Different messaging libraries may be used on top of an

interconnection network. We describe available message-passing libraries on top of

Myrinet, namely GM, the low-level Myrinet’s messaging library, MPI over GM, and

ARMCI.

2.1 Message-Passing and Shared-Memory Model

Message-passing is a model for interaction between processors within a parallel

system. A message is constructed by software on one processor and is sent through an

interconnection network to another processor. In message-passing model, the data sender

process executes a Send operation and the data receiver process executes a Receive

operation accordingly. Once these Send and Receive operations match each other, data

transfer between processes happens. The memory of the processors in message-passing

model can be shared or distributed. There is no need for a global memory map in a

distributed memory system using message-passing. A schematic of the data transfer

8

between processes in the message-passing model is shown in Figure 2.1. A message-

passing communication that involves both the data sender and data receiver parties is

called a two-sided communication. MPI [30] and PVM [46] are examples of message-

passing models.

Send (data)

Process 0 Process 1

Receive (data)

Tim
e

Data transfer

Data transfer

Message-passing

Receive (data)

Send (data)

Write/Put (data)

[Memory] (data)

Process 0 Process 1

Read/Get (data)

[Memory] (data)

Tim
e

Data transfer

Data transfer

Shared-memory

Figure 2.1 Message-passing and shared-memory model data transfer.

Shared-memory model is another model for interactions between processors

within a parallel system. In a shared-memory system, each processor has direct access to

the memory of every other processor, meaning it can directly load or store any shared

address. Multiprocessor systems may physically share a single global memory among

their processors. Alternatively, logically shared-memory systems can be implemented on

top of distributed memory systems in which each processor has its own local memory.

This implementation is done by converting each non-local memory reference into an

appropriate inter-processor communication. Shared-memory is generally considered

easier to use than message-passing. OpenMP [14] and Pthreads [45] are examples of

shared-memory models.

In shared-memory model, the data sender process executes a Write/Put operation

while the data receiver process does not need to execute any operation. The data will be

written to the memory location according to the Write/Put operation. On the other hand, a

process is able to receive data from other processes by executing Read/Get operation.

Again, the process that provides the data does not need to perform any action. Once the

Read/Get operation is issued, the data will be transferred from the memory of data

9

provider process to the memory of the issuer process. A schematic of the data transfer

between processes in shared-memory model is shown in Figure 2.1. A communication

model that involves either the data sender or the data receiver is called a one-sided

communication.

The message-passing and shared-memory models each have their own advantages

and disadvantages. Developing message-passing parallel applications is more difficult

than the shared-memory applications. Message-passing model has more code overhead

comparing to the shared-memory model. Message-passing parallel applications are easily

portable to different architectures. An application that uses message-passing consists of

several concurrent tasks, each with its own data and local memory, using messages to

communicate with one another. Message-passing requires the programmer to handle

explicitly all parallelism and data distribution. Message-passing programs are inherently

parallel, and unless explicitly coordinated by waiting for messages, all processes execute

independently. Synchronization among the processes occurs explicitly through message-

passing.

Message-passing programs generally take one of two approaches to parallelism:

the multiple-program multiple-data (MPMD) approach (also known as the

manager/worker approach) or the single-program multiple-data (SPMD) approach. With

MPMD, a set of computational worker processes perform work for one or more manager

processes. The MPMD method is generally used when little synchronization is required

between worker processes [16].

The shared-memory style of programming is convenient because the compiler

automatically optimizes computations that can be safely parallelized. The compiler also

allows the user to parallelize (by using high-level directives, pragmas, or Pthreads

functions [45]) manually the computations that the compiler cannot parallelize

automatically. Enabling and disabling many of the compilers’ parallel optimizations is

usually supported in the command-line options of the compiler. However, shared-memory

model requires the programmer to handle the synchronization in some cases. In addition,

although the directives and pragmas allow the user to get better performance from the

programs, their functionality is not directly portable to other vendors’ platforms.

10

2.2 Parallel Programming Paradigms

There are a number of parallel programming paradigms supporting high-

performance computing. MPI, OpenMP, and mixed-mode programming are the most

common parallel programming paradigms in use today. The applications that we study in

this thesis (to be described in Chapter 3) are developed using these parallel programming

paradigms. MPI is the de facto standard for the message-passing model. Shared-memory

model programs have adapted OpenMP as the standard parallel programming paradigm.

The mixed-mode parallel programming paradigm is a combination of message-passing

and shared-memory model programming.

2.2.1 MPI

MPI is the standard library for message-passing. MPI is defined by the MPI

Forum, which is a group of parallel computer vendors, library writers, and parallel

application specialists. Vendors such as IBM, Intel, TMC, Meiko, Cray, Convex, and

Ncube, as well as library writers such as PVM, p4, Zipcode, TCGMSG, Chameleon,

Express, and Linda participated in the MPI Forum for designing MPI [28]. MPI is

designed for parallel computers, clusters, and heterogeneous networks. MPI model was

designed because vendor systems were not portable. In addition, available portable

systems by research community were incomplete, and did not have the most efficient

performance. They were also not supported by vendors.

MPI provides point-to-point message-passing, one-sided communication, and

collective (global) operations. A point-to-point communication transfers a message

between only two processes. A Send/Receive pair is needed for point-to-point message-

passing. Collective communication is coordinated among a group of processes.

Operations such as gathering data from one or more processes and sharing them among

all participating processes, or distributing data from one or more processes to a specific

group of processes (scatter) are examples of collective communication operations.

Broadcasting data from one process to all other participating processes is another

example of collective communication.

11

2.2.1.1 Blocking and Non-Blocking Point-to-Point Communication

Point-to-point communication is categorized as blocking or non-blocking

operations. A blocking communication call means that the program execution will be

suspended until the message buffer is safe to use. The common message-passing library

standards, such as MPI, specify that a blocking Send or Receive does not return until the

send buffer is safe to reuse (e.g. for MPI_Send), or the receive buffer is ready to use (e.g.

for MPI_Recv). Using blocking communication makes the program more synchronized as

blocking Send and Receive operations have to wait for each other to complete. However,

blocking operations will not allow the user to overlap computation with communication

while the program is waiting for the return of a blocking operation.

A non-blocking communication call returns immediately after the call is initiated

and does not wait to be certain that the communication buffer is safe to use. The

programmer must make sure that the send buffer has been copied out before reusing it, or

that the receive buffer is full before using it. For the case of MPI, the non-blocking

MPI_Isend and MPI_Irecv are distinguished by the letter I, for immediate return. The

syntax and argument list are the same as the blocking versions except for an additional

argument, a request handler, which can later be used to wait for, or check on, the

completion of the call.

The computation can proceed immediately after a non-blocking communication

call without waiting for the call to complete, which improves the program performance.

Because the call returns immediately, non-blocking calls allow both communications and

computations to proceed concurrently. For the case of MPI library, this is done using the

MPI functions MPI_Test and MPI_Wait with the request handler returned from the non-

blocking Send and Receive.

2.2.1.2 MPI Point-to-point Protocols

Most of the MPI implementations employ a two-level protocol for point-to-point

messages. MPI uses eager method for sending short messages, while it uses a rendezvous

mechanism for sending long messages. Eager mechanism improves the latency of

messaging while rendezvous mechanism provides a better bandwidth. In the eager

mechanism, data is eagerly sent along with the MPI envelope information (context, tag,

12

etc.). This minimizes the interaction of the send operation with the receiver. In a

rendezvous implementation, the sender must first send a request and receive an

acknowledgment before the data can be transferred. This is to make sure enough buffer

space is available for large messages at the receiver side. For large messages, the

overhead of the protocol exchange with the receiver is amortized by the transfer of the

data [8]. Figure 2.2 illustrates the eager and rendezvous protocols.

Rendezvous

Write data

Ready?

Acknowledgement

Sender Receiver

Eager

Sender Receiver

Write data

Tim
e

Tim
e

Figure 2.2 MPI eager and rendezvous messaging protocols.

2.2.1.3 MPI One-sided Communication

One-sided communication is supported in the MPI-2 [30]. Remote Memory

Access (RMA) extends the communication mechanisms of MPI by allowing one process

to specify all communication parameters, both for the sending side and for the receiving

side. RMA is a one-sided communication operation. Using one-sided communication

model facilitates the coding of some applications with dynamically changing data access

patterns where the data distribution is fixed or slowly changing.

Two-sided communication (Send/Receive) requires matching operations by

sender and receiver. In order to issue the matching operations, an application needs to

distribute the transfer parameters. This may require all processes to participate in a time

consuming global computation, or to periodically poll for potential communication

13

requests to receive and act upon. RMA communication mechanisms avoid the need for

global computations or explicit polling.

MPI-2 provides three one-sided communication calls: MPI_Put (remote write),

MPI_Get (remote read) and MPI_Accumulate (remote update). MPI-2 also provides a

larger number of synchronization calls that support different synchronization styles.

Using RMA functions enables implementers to take advantage of fast communication

mechanisms provided by various platforms, such as coherent or non-coherent shared

memory, DMA engines, hardware-supported Put/Get operations, communication

coprocessors, and others.

RMA communications are categorized in two groups: active target

communication, and passive target communication. In active target communication, data

is moved from the memory of one process to the memory of another, and both are

explicitly involved in the communication. This communication pattern is similar to

message passing, except that all the data transfer arguments are provided by one process,

and the second process only participates in the synchronization.

In passive target communication, data is moved from the memory of one process

to the memory of another, and only the origin process is explicitly involved in the

transfer. Thus, two origin processes may communicate by accessing the same location in

a target window. The process that owns the target window may be distinct from the two

communicating processes, in which case it does not participate explicitly in the

communication. This communication paradigm is closest to a shared memory model,

where shared data can be accessed by all processes, regardless of its location [30].

2.2.1.4 MPI Collective Communication

A collective communication operation is defined as a communication that

involves a group of processes. Collective operations can be categorized into three classes:

Data movement, synchronization, and collective computation. Non-blocking collective

operations are not supported in MPI. Some of the collective functions supported in MPI

are listed in Table 2.1.

MPI_Bcast broadcasts from one member to all members of a group. MPI_Gather

gathers data from all group members to one member. MPI_Scatter scatters data from one

14

member to all members of a group. MPI_Allgather is a variation on Gather where all

members of the group receive the result. MPI_Alltoall scatters/gathers data from all

members to all members of a group (also called complete exchange). MPI_Barrier is a

collective operation that blocks until all the associated processes arrive at the barrier. In

fact, MPI_Barrier synchronizes all the group members. MPI_Reduce gets the combined

value of the received messages using the operation passed to the function. MPI_Scan

computes the scan (partial reduction) of data on a collection of processes. Note that, it is

possible to have collective operations in a user-defined subset of all processes.

Table 2.1 List of some MPI collective communication operations.

MPI Function Type

MPI_Allgather Data movement

MPI_Alltoall Data movement

MPI_Bcast Data movement

MPI_Gather Data movement

MPI_Scatter Data movement

MPI_Barrier Synchronization

MPI_Reduce Collective computation

MPI_Scan Collective computation

2.2.2 OpenMP

OpenMP [14] has emerged as the standard for parallel programming on shared-

memory systems. Incremental development of OpenMP codes from the serial version of

applications makes it one of the popular parallel programming paradigms. OpenMP is a

set of compiler directives and runtime library routines that extend Fortran, C, and C++ to

express shared-memory parallelism. OpenMP was designed to exploit certain

characteristics of shared-memory architectures (such as directly accessing memory

throughout the system with no explicit address mapping) [14]. The OpenMP application-

programming interface (API) defines parallel regions and work sharing constructs among

15

threads. OpenMP is an explicit programming model, offering the programmer full control

over parallelization.

A shared-memory process may consist of multiple threads. OpenMP is based upon

the existence of multiple threads in the shared-memory programming paradigm. OpenMP

uses the fork-join model of parallel execution. All OpenMP programs start as a single

process, namely the master thread. The master thread executes sequentially until the first

parallel region construct is encountered. When the master thread encounters the parallel

region then it creates a team of parallel threads. This is known as Fork operation. The

statements in the program that are enclosed by the parallel region construct are then

executed in parallel among the various team threads. When the team threads complete the

statements in the parallel region construct, they synchronize and terminate, leaving only

the master thread. This operation is known as Join operation. A sample OpenMP C code

is given bellow (adapted from [37]):

Sequential code …….

/* Fork happens here */

#pragma omp parallel private(var1, var2) shared(var3)

 {

 Parallel section executed by all threads

 .

 .

 .

 At the end of the parallel region, All threads

 join master thread and disband

 }

/* Join happens here */

Sequential code …….

2.2.3 Mixed MPI-OpenMP (Mixed-Mode)

Availability of clusters of symmetric multiprocessors has motivated the use of

mixed-mode parallel programming. In fact, it is possible to exploit parallelism using a

combination of MPI and OpenMP programming paradigms. Prominence of clusters

encourages programmers to use MPI in the applications. Using MPI enables the

16

application to be portable and scalable. On the other hand, incremental code development

and capability of parallelizing loops easily makes OpenMP desirable for shared-memory

programming in an SMP machine. Therefore, clusters of SMPs are suitable platforms for

MPI-OpenMP programming, running OpenMP within an SMP node, while running MPI

across the nodes.

The mixed MPI-OpenMP programming style is one of the most popular mixed-

mode programming paradigms. It provides the application developer a vast flexibility in

terms of parallelism and performance tuning. Spreading different combinations of

processes and threads over the system nodes enables one to achieve the best performance

on an SMP cluster. However, it is still open to debate if pure-MPI or MPI-OpenMP

provides the best performance. Some researchers have improved the performance of their

applications using mixed-mode paradigm, while this is has not been beneficial for others

[15, 10, 42].

2.3 Application Characteristics

Message-passing parallel applications involve a number of processes, where each

process may exchange information with the other processes. Message-passing behaviour

in parallel applications is important, as it can be crucial to the performance of the

applications running on clusters. Application’s message-passing characteristics can be

studied in terms of its point-to-point communications, collective communications, and

locality characteristics. Unless the communications of processes vary by the message

arrival time, the MPI characteristics of applications are independent of the experimental

platform. This is usually true for the message-passing scientific applications.

Point-to-point communication is the simplest type of communication in message-

passing programs. Most of the time, Send and Receive operations (either blocking or non-

blocking) constitutes the point-to-point communication. Although it looks easy to

communicate with Send and Receive functions, their characteristics play a key role in the

performance of applications.

Communication properties of message-passing parallel applications can be

categorized by the temporal, volume, and spatial attributes of the communications. The

temporal attribute of communications characterizes the rate of message generations, and

17

the rate of computations in the applications. The volume of communications is

characterized by the number of messages, and the distribution of message sizes in the

applications. The spatial attribute of communications is characterized by the distribution

of message destinations. Collective communication is widely used in message-passing

applications. Collective communications can be characterized by the type of the collective

operation, its frequency, and the payload.

Many message-passing applications follow a repetitive communication pattern.

For example, there can be repetition patterns in message size, message destination, or

even among send and receive events. Repetitive communication patterns in message-

passing applications can be studied using locality heuristics. Locality metrics are useful in

message-property prediction schemes for communication latency hiding. Three main

locality schemes are widely used, especially in memory replacement policies. These are

First In First Out (FIFO), Least Recently Used (LRU), and Least Frequently Used (LFU).

Several researchers have studied some aspects of message-passing characteristics

of applications [2, 12, 13, 22, 25, 51, 53]. Vetter and Mueller [51] presented the MPI

point-to-point and collective communications as well as floating-point characteristics of

some applications in the ASCI Purple suite, and the SAMRAI application. Kim and Lilja

[25] quantified the characteristics of some kernels and applications in MPI and PVM as

well as their execution times. They also introduced the concept of locality for

Send/Receive communication calls using the LRU heuristics. Afsahi and Dimopoulos

extended the notion of communication locality to the message destinations, and message

reception calls using the LRU, LFU and FIFO policies [2]. They then devised different

message predictors. Wong and his colleagues [53] studied the NPB benchmarks.

Chodnekar and his associates [12] considered the inter-arrival time of messages, and

message volume in message-passing and shared-memory applications. Karlsson and

Brorsson [22] compared the communication patterns of some applications in SPLASH

and NPB benchmarks under MPI and ThreadMark. Cypher and his colleagues [13]

studied some application benchmarks that use explicit communication.

18

2.4 High-Performance Clusters and Interconnects

The biggest computing challenges are tackled and solved through high

performance computing (HPC). Automotive crash test simulations, human genome

mapping, meteorological modeling, nuclear blast simulations and many other nowadays’

research areas benefit from high performance computing. High performance clusters

provide high performance computing at a low-cost.

Interconnection networks enable cluster nodes to communicate with each other.

Different interconnection networks may be used for cluster computing. Quadrics QsNet

[39], QsNet II [1], InfiniBand [29], Myrinet [7], GigaNet [52], and Sun Fire Link [40] are

examples of common interconnects for clusters. Myricom’s Myrinet is one of the most

popular high performance interconnects used for building clusters [48].

2.4.1 Myrinet Network

Myrinet [7] is a high performance packet communication and switching

technology that has become commonplace for connecting clusters of workstations and

servers. Clusters in today’s computing world are gaining more and more popularity as

they can provide high performance computing with lower costs. Myrinet provides high

performance, low-latency and high data-rate communication between host processes as

well as high availability when faults occur by detecting and isolating them and providing

alternative communication paths.

Myrinet supports full-duplex 2+2 Gigabit/second data-rate links, switch ports and

interface ports. Error control and flow control is performed on every link. Scalability of

the switch networks is up to tens of thousands of hosts. One of the key factors of Myrinet

network is offloading the protocol processing from the host processor. Host interfaces

execute a firmware to offload protocol processing from the host computer. By bypassing

the operating system, the firmware interacts directly with host processes and it interacts

directly with the network to send, receive, and buffer packets. Bypassing operating

system offers a low-latency communication and therefore achieving higher performance.

Architecture of a node in a Myrinet cluster [6] is shown in Figure 2.3. Each node

of the cluster is connected to the network with a Myrinet network interface card. The

interface card is connected to host’s I/O bus. Each interface card consists of a processor

19

and some fast local memory. The data and control program is stored in its memory. The

network interface processor is a fast RISC processor executing the Myrinet control

program. There are versatile DMA controllers on the interface to support zero-copy APIs.

The network interface used in this study is M3F2-PCIXE-2 E-card Myrinet/PCI-X

interface. The E-card has a programmable Lanai-2Xp RISC processor which operates at

333MHz and 2 MB of local memory. The E-card connects to the host with 64-bit

133MHz PCI-X interface. Each port of the interface provides 2+2 Gbps data rate. The E-

card provides two ports and therefore supporting data transfer rate of 4+4 Gbps.

Host CPU

Cache
Host Memory

Host bus

I/O bus

Bridge

Network
Interface

To-from
host

NI Memory

CPU

Send

Receive

DMA
Engines

Network

Figure 2.3 Myrinet host and network interface architecture (adapted from [6]).

2.5 Messaging Layers

Myrinet was developed based on packet-switching technology. The packets are

wormhole-routed through a network consisting of switching elements and network

20

interface cards (NIC). GM [18] is a messaging library that runs on top Myrinet network.

MPICH [19] is a portable implementation of MPI, developed by Argonne National

Laboratory. MPICH is popular and highly portable. MPICH-GM [32] is a "port" of

MPICH on top of GM (ch_gm) developed and supported by Myricom. We explain GM

and MPICH-GM in the following.

2.5.1 GM Messaging Layer

GM [18] is a commercial open source user-level networking protocol from

Myricom. It runs on top of Myrinet network. Multiple user processes can share a network

interface card simultaneously as GM provides a protected user-level OS-bypass interface

to the NIC. GM has a low host-CPU overhead. It provides a connectionless

communication model. Communication endpoints in this model are called ports (Figure

2.4). GM provides reliable and ordered delivery between these ports. GM consists of a

driver, a network mapping program, the GM API library, Myrinet Control Program

(MCP), and header files. The GM driver provides system services. The mapping program

is the Myrinet mapper daemon that maps the network.

GM messages can be delivered with two levels of priority. It allows deadlock-free

bounded-memory forwarding. The client software can build a message and send to any

port in the network. GM provides ordered message delivery for messages that have the

same origin port, the same destination port, and the same priority level. Usually GM

applications use only one priority for all the messages so that the order of messages will

be preserved. GM supports both Send/Receive and RDMA operations. The performance

of GM Send/Receive is provided in [20, 41, 55] and performance of RDMA in GM is

provided in [26, 55].

21

Port Port

Port

Process

Process

Port

Process

Host
Host

Reliable
Connection

Figure 2.4 GM endpoints (ports) (adapted from [18]).

For sending and receiving messages, GM should first be initialized by the

gm_init() function; it then should open a port before communication could start. All the

buffers used in message-passing must be allocated by calling GM memory

allocation/registration functions. GM provides gm_dma_malloc() and gm_dma_free()

function calls for memory allocation and also provides gm_register_memory() and

gm_deregister_memory() to pin and unpin memory on operating systems that support

memory registration. The largest message GM can send or receive is limited to 231-1

bytes. However, because send and receive buffers must reside in DMAable memory, the

maximum message size is limited to the amount of DMAable memory the GM driver is

allowed to allocate by the operating system.

Both sends and receives in GM are regulated by implicit tokens. These tokens

represent the space allocated to the client in various internal GM queues. Internal GM

queues for tokens are depicted in Figure 2.5. The client may call certain functions only

when possessing an implicit send or receive token. In calling that function, the client

implicitly relinquishes the token [18].

22

User Virtual Memory

LANai Memory

Client
Software

Receive Event Queue

Receive Buffer Pool

Send Queue

gm_num_send_tokens() slots

gm_num_receive_tokens() slots

gm_num_receive_tokens() +
gm_num_send_tokens() slots

Figure 2.5 Internal GM queues for tokens (adapted from [18]).

A client of a port may send a message only when it possesses a send token for that

port. Different steps of sending a message in GM are described in Figure 2.6. The client

calls a GM API send function, gm_send_with_callback. Calling a send function

relinquishes a send token. Completion of the send operation is notified to the client by

calling a callback function and passing a context pointer to the client. The client provides

a callback function and a context pointer to the send function. When the send operation

completes, GM calls the callback function, passes a pointer to the GM port, a pointer to

the client’s context, and a status code indicating if the send was successful. Calling the

callback function implicitly passes back the send token to the client. The callback

function is only called within a client’s call to gm_unknown(). The event handler

function, gm_unknown, is a function that client must call once it receives an unrecognized

event.

23

User Process Memory

LANai Memory

Send
State

Machine

Sent Packet

Receive Event Queue

Send Queue

gm_send_with_callbacks(...,ptr,len,callback,context)
...
event = gm_receive();

switch(event.receive.type){
...
default:
 gm_unknown(port,event);
}

callback(port,context,status)

[behind the scenes in gm_unknown()]

Figure 2.6 GM user token flow (send) (adapted from [18]).

Receiving messages in GM is token-regulated like sending a message. For

receiving a message the client provides GM a receive buffer. The client may provide a

number of buffers up to the number of receive-tokens that it has. The client provides GM

the receive buffer by calling the function gm_provide_receive_buffer(). Calling this

function implicitly relinquishes a receive-token. The token flow in a receive operation in

GM is depicted in Figure 2.7.

24

Receive
State

Machine

User Virtual Memory

LANai Memory

Receive Buffer Pool

Receive Event Queue

Arriving Packets

gm_provide_receive_buffer()
…
…
…
gm_receive()

Figure 2.7 GM user token flow (receive) (adapted from [18]).

The client software must provide GM with a receive token before it receives a

message of a particular size and priority. The token should match in size and priority with

the message. The buffer in which the received message will be stored is specified by the

token. After providing such a buffer the client software polls for a receive event. Three

different functions maybe used for polling a receive event. The three receive functions

used for polling are gm_receive, gm_blocking_receive, and gm_blocking_receive_nospin.

The gm_receive function is not blocking. If no receive is pending, an event will be set

accordingly. The gm_blocking_receive and gm_blocking_receive_nospin functions block

if necessary. The gm_blocking_receive function polls for receives for one millisecond

before sleeping, while the gm_blocking_receive_nospin function sleeps immediately if no

receive is pending.

GM is a lightweight communication layer and it has certain limitations. Sending

and receiving messages is only possible into DMAable memory. GM does not support

gather and scatter operations. It is not able to register shared memory under Linux. Some

25

of these limitations can be addressed by a heavier layer on top of GM, such as ARMCI

[34].

2.5.2 MPICH-GM

MPICH [19] is a portable implementation of the MPI. MPICH over GM (MPICH-

GM [32]) is implemented by targeting its Channel Interface to the GM messaging layer.

MPICH-GM uses eager protocol for sending small (less than 16K), and control messages

via GM send/receive operations. It uses rendezvous protocol for sending large messages

via GM one-sided Put operation. Note that GM can only send data from registered

memory for DMA transfers. In the eager mode, data is copied into a pre-registered buffer

to eliminate the overhead of pinning memory for small messages at the expense of a

memory copy. To avoid significant overhead in memory copying for long messages, the

application message buffers at the source and destination are pinned, and data are

transmitted from its original location at the user space to its final destination achieving a

zero-copy. In the rendezvous mode, the sender sends a request-to-send to the receiver,

and in response, the receiver sends back a clear-to-send as well as the address of the

receiver buffer. Then, the sender writes directly to the remote buffer using the GM Put

operation.

At the receiving side, if a message arrives before a matching message reception

call has been posted, MPICH-GM copies the data into a buffer, and adds it to the

unexpected queue. When a process calls one of the MPI message reception calls, it first

searches the unexpected queue to see if the message has already been arrived. It copies

the message into the application buffer space if the matching message is found.

Otherwise, a descriptor is posted. It then optionally polls the network device until the

corresponding message arrives. MPICH-GM by default uses the polling method;

however, it provides the ability to change the behaviour. Three modes are supported:

polling, blocking, and hybrid. These modes are supported though the function calls

gm_receive(), gm_blocking_receive(), and gm_blocking_receive_nospin(), respectively.

26

2.5.3 ARMCI

GM is a low-level messaging library. However, it is not portable. MPICH-GM

[32] is a portable library on top of GM. However, it does not support the Remote Memory

Access (RMA) features of MPI-2 (there are reported research works in supporting MPI-2

one-sided communication in MPICH-2 [27, 31]). Aggregate Remote Memory Copy

Interface [3] is a library that provides general purpose, efficient and widely portable RMA

operations for contiguous and non-contiguous data transfers. A list of ARMCI operations

is provided in Table 2.2.

Table 2.2 ARMCI remote operations description.

Operation Description

ARMCI_Put, _PutV, _PutS Contiguous, vector and strided versions of put

ARMCI_Get, _GetV, _GetS Contiguous, vector and strided versions of get

ARMCI_Acc, _AccV, _AccS
Contiguous, vector and strided versions of atomic

accumulate

ARMCI_Fence
Blocks until outstanding operations targeting specified

process complete

ARMCI_AllFence
Blocks until all outstanding operations issued by

calling process complete

ARMCI_Rmw Atomic read-modify-write

ARMCI_Malloc
Memory allocator, returns array of addresses for

memory allocated by all processes

ARMCI_Free Free memory allocated by ARMCI_Malloc

ARMCI_Lock, _Unlock Mutex operations

ARMCI provides data transfer operations including put, get and accumulate. It

also provides synchronization operations such as local and global fence and atomic read-

modify-write. Utility operations such as memory allocation and deallocation and error

handling are supported in ARMCI too. ARMCI only supports communication that targets

remote memory allocated via the provided memory allocator routine, ARMCI_Malloc().

In scientific computing, it is popular to store data in arrays. If the desired data is

stored in different parts of the array or in general if the data is stored in several locations,

27

this type of data is called non-contiguous data. Therefore using ARMCI in scientific

applications helps improving the communication performance. Remote copy APIs that

only support contiguous data transfer, require multiple contiguous data transfers to send

non-contiguous data. ARMCI, however, is optimized for non-contiguous data transfer. It

is meant to be used primarily by library implementers rather than application developers.

Example libraries that ARMCI is targeting include Global Array [36], P++/Overture [5],

and Adlib PCRC run-time system [11]. User-level libraries and applications that use MPI

[19], PVM [46] or TCGMSG [28] can be supported by ARMCI.

Tipparaju and others [47] have used ARMCI to improve the performance of

message-passing applications. They used ARMCI to evaluate effectiveness of the RMA

communication on several popular scientific benchmarks and applications such as NAS

CG and MG. They have achieved 12-49% overall improvement over MPI on 128

processors. CG and MG are kernel applications and are not compute intensive.

Network

Node-1

Node-2

Node-3

User process
Shared Memory
Server Thread

Figure 2.8 ARMCI client-server architecture (adapted from [9]).

ARMCI uses client-server architecture in clusters of workstations using GM [35].

Each node of the cluster has a server thread that handles remote memory operations for

each of the user processes running on the node. When a user process wants to perform a

remote memory operation, it sends a request to the server thread at the node where the

28

remote process is running. Each user process shares a memory region with the server

thread. When the server thread receives a request, it performs the operation on the

memory region for that process [9]. The client-server architecture of ARMCI is depicted

in Figure 2.8.

2.6 Summary

In this chapter, we introduced the status of high performance clusters and

interconnects. Shared-memory and message-passing models were described, as well as

one-sided and two-sided communications. We showed the importance of communication

characterization of parallel applications. This chapter introduced the Myrinet

interconnection network and presented its architecture. We explained user-level

messaging layer of Myrinet (GM), along with MPI built on top of GM. The Aggregate

Remote Memory Copy Interface library, which supports one-sided communication on top

of GM, is introduced in this chapter, as well.

In the next chapter, we introduce the parallel applications studied in this thesis. In

chapter 4, we gather the communication characteristics of our applications. Later on, we

analyze the communication characteristics of the applications and propose using the

ARMCI one-sided communication instead of MPI two-sided communications, to improve

their communication performance.

29

Chapter 3 Parallel Applications

Exploiting parallelism is a natural way to boost performance of applications.

Parallel applications are designed to run on multiprocessor systems. Traditionally,

performance of parallel applications on multiprocessor systems is evaluated by some

well-known scientific or engineering benchmarks. Such benchmarks imitate the execution

of the large applications. In this chapter, we introduce the parallel applications and

benchmarks used in this thesis. They include the NPB-MZ benchmark suite,

SPEChpc2002 benchmark suite, and SMG2000 of ASCI purple suite. For our study, we

have used the most recently released versions of these benchmark applications. An

overview of these sophisticated applications is presented in Table 3.1.

Table 3.1 Overview of application benchmarks.

Application Field Language #Lines

BT-MZ
Computational fluid dynamics; Block-

Tridiagonal systems
Fortran 4700

SP-MZ
Computational fluid dynamics; Scalar

Pentadiagonal systems
Fortran 4200

LU-MZ
Computational fluid dynamics; Lower-Upper

symmetric Gauss-Seidel
Fortran 4600

SPECenv Weather research and forecasting model Fortran and C 180000

SPECseis
Computing time and depth migrations used to

locate gas and oil deposits
Fortran and C 23000

SMG2000 Solver for the linear systems C 27000

3.1 NPB-MZ (Multi-Zone) 3.0

The NAS Parallel Benchmark (NPB) [49] is a set of eight programs designed at

the NASA Ames Research Center to help evaluate the performance of parallel

supercomputers. The NPB benchmarks, which are derived from computational fluid

30

dynamics (CFD) applications, consist of five kernels and three pseudo-applications.

Kernel applications are conjugate gradient (CG), multigrid (MG), 3-D fast-Fourier

Transform (FT), Integer Sort (IS), and Embarrassingly Parallel (EP). Pseudo-

applications are Block Tridiagonal (BT), Scalar Pentadiagonal (SP), and Lower-Upper

Diagonal (LU).

In BT, network bandwidth and instruction cache is tested. In SP, memory

bandwidth is tested, while in LU network latency and cache instruction is studied. NAS

Multi-Zone benchmark suite (NPB-MZ) [49] is an extension of the NPB suite that

involves solving the application benchmarks LU-MZ, BT-MZ and SP-MZ on collections

of loosely coupled discretization meshes. NPB-MZ 3.0 was first released in summer

2003. Each of these three applications is described in more detail later in the text.

NPB consists of eight programs. These programs exhibit mostly fine-grain

exploitable parallelism, and are almost all iterative, requiring multiple data exchanges

between processes between iterations. Implementations in MPI, Java, High Performance

Fortran, and OpenMP all take advantage of this fine-grain parallelism. However, many

important scientific problems feature several levels of parallelism, and this property is not

reflected in NPB. To remedy this deficiency, the NPB-MZ versions were created. The

solutions on the meshes are updated independently, but after each time step, they

exchange boundary value information. This strategy, which is common among structured-

mesh production flow solver codes in use at NASA Ames and elsewhere, provides

relatively easily exploitable coarse-grain parallelism between meshes. Since the

individual application benchmarks also allow fine-grain parallelism themselves, this NPB

extension, named NPB Multi-Zone (NPB-MZ), is a good candidate for testing hybrid and

multi-level parallelization tools and strategies (e.g., clusters of multiprocessors).

NPB-MZ benchmarks are serial and parallel implementations of Multi-Zone

benchmarks based on the original single-zone NPB 3.0. They are meant for testing the

effectiveness of multi-level and hybrid parallelization paradigms and tools. The parallel

implementation uses hybrid parallelism: MPI for the coarse-grain parallelism and

OpenMP for the loop-level parallelism.

Problem sizes and verification values are given for benchmark classes S, W, A, B,

C, and D. Problem size S, W, and A are fairly small for evaluating performance of large

31

parallel architecture and are usually used to test the benchmark. Class B, C and D

problem sizes are suitable for measuring the performance of a large scale system. The

larger the problem size is, the better the system performance is evaluated. Class D has the

biggest problem size and class C has a larger problem size than class B. In this thesis, we

have used our applications with the problem size class B, and C. Class D is too big to run

on our cluster.

3.1.1 NAS BT-MZ

Block Tridiagonal (BT) is a simulated CFD application that uses an implicit

algorithm to solve 3-dimensional (3-D) compressible Navier-Stokes equations. The finite

differences solution to the problem is based on an Alternating Direction Implicit (ADI)

approximate factorization that decouples the x, y and z dimensions. The resulting systems

are Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension

[49]. BT-MZ is written in FORTRAN and has around 4700 lines of code.

3.1.2 NAS SP-MZ

Scalar Pentadiagonal (SP) is a simulated CFD application that has a similar

structure to BT. The finite difference solution to the problem is based on a Beam-

Warming approximate factorization that decouples the x, y and z dimensions. The

resulting system has Scalar Pentadiagonal bands of linear equations that are solved

sequentially along each dimension [49]. SP-MZ is written in FORTRAN and has around

4200 lines of code.

3.1.3 NAS LU-MZ

Lower-Upper Diagonal (LU) is a simulated CFD application that uses symmetric

successive over-relaxation (SSOR) method to solve a seven-block-diagonal system

resulting from finite-difference discretization of the Navier-Stokes equations in 3-D by

splitting it into block Lower and Upper triangular systems [49]. LU-MZ is written in

FORTRAN and has around 4600 lines of code.

32

3.2 SPEChpc2002

In December 2002, SPEC (Standard Performance Evaluation Corporation)

organization introduced SPEC HPC2002 suite [44], which improved upon and replaced

the SPEC HPC96 benchmark suite. The benchmarks in the SPEChpc2002 V1.0 suite are

derived from real HPC applications, and measure the overall performance of high-end

computer systems, including the processors, the interconnection networks (shared or

distributed memory), the compilers, the MPI and/or OpenMP parallel library

implementation, and the input/output system. Serial, OpenMP, MPI, and combined MPI-

OpenMP parallelisms are supported. SPEChpc2002 supports shared memory, distributed

memory and cluster architectures.

SPEChpc2002 consists of three different benchmarks: SPECchem, SPECenv, and

SPECseis. Each of the three benchmarks has Small (S) and Medium (M) workload

classes. In this thesis, we have studied SPECseis and SPECenv, both with small and

medium classes. SPECchem and SPECenv support MPI, OpenMP and combined MPI-

OpenMP. SPECseis supports MPI and OpenMP parallelism. SPEC HPC2002 runs on a

UNIX or Linux system (Windows is not yet supported) with minimum 2 GB of memory,

up to 100GB of disk, and a set of compilers.

3.2.1 SPEChpc2002 – SPECenv

SPECenv is based on a weather research and forecasting model called WRF. WRF

is a state-of-the-art non-hydrostatic mesoscale weather model. The SPECenv class M

metric expresses the performance of a computing system in simulating the weather over

the continental United States for a 24 hour period at a 22km resolution using the WRF

Model [44].

3.2.2 SPEChpc2002 – SPECseis

SPECseis represents an industrial application that performs time and depth

migrations used to locate gas and oil deposits and originally developed at Atlantic

Richfield Corporation (ARCO). SPECseis includes more than 23,000 lines of FORTRAN

and C code. Computational codes are written in FORTRAN while file Input/Output, data

partitioning, synchronization primitives and message-passing layer are written in C [44].

33

3.2.3 SPEChpc2002 – SPECchem

SPECchem is based on a quantum chemistry application called GAMESS

(General Atomic and Molecular Electronic Structure System) which is an improved

version of programs that originated in the Department of Energy's National Resource for

Computations in Chemistry. Many of the functions found in GAMESS are duplicated in

commercial packages used in the pharmaceutical and chemical industries for drug design

and bonding analysis. SPECchem includes more than 120,000 lines of FORTRAN and C

code [44].

3.3 SMG2000

SMG2000 is one of the applications in the ASCI compact benchmark suite [4].

SMG2000 is a parallel semi-coarsening multi-grid solver for the linear systems arising

from finite differences, finite volume, or finite element discretizations of the diffusion

equation ∇⋅(D∇ u) + σ u=f on logically rectangular grids. It solves both 2-D and 3-D

problems. For solving problems of radiation diffusion and flow in porous media, such

solver is needed. The parallelism in SMG2000 is achieved by data decomposition.

SMG2000 is a memory-access bound application and memory-access speed has a large

effect on performance.

There is no standard problem size for SMG2000. In fact, the problem size scales

with the number of processes. The problem size of SMG2000 is equal to the input

problem size multiplied by number of processes; hence, as the number of processes

increases, the problem size increases proportionally. In order to run SMG2000 with fixed

problem size, the input value of problem size has to be decreased proportional to the

increase in the number of processes; in other words, the multiplication of input problem

size and number of processes should remain constant.

3.4 Summary

In this chapter, we introduced the different applications and benchmarks that we

have studied in this thesis. We described the NPB-MZ benchmark suite, SPEChpc2002

benchmark suite and SMG2000 application. These popular benchmarks are used to

evaluate the performance of multiprocessor systems.

34

Communication characteristics of parallel applications can be crucial on their

performance. In order to have a better understanding of their performance on our

platform, in chapter 4 we study the message-passing behaviour of these parallel

applications.

35

Chapter 4 Application Characteristics

Message-passing parallel applications involve a number of processes, where each

process may exchange information with the other processes. Message-passing behaviour

of parallel applications is important, as it can be crucial to their performance running on

clusters. In this chapter, we discuss different message-passing behaviour of our

applications introduced in chapter 3. We study the MPI point-to-point communications,

collective communications, and locality characteristics of these applications. We have

written our own profiling code for NPB-MZ and SPEChpc2002 applications, using

wrapper facility of MPI. However, we used Vampir/Vampirtrace too [38] for the MPI

analysis of SMG2000. The information provided in this chapter will provide the HPC

users, programmers and system designers with a better understanding of parallel

applications and their communication characteristics impact on the performance. It is

noteworthy that the MPI characteristics of the applications are independent of the

platform we used in our experiments.

4.1 Evaluation Platform

We recall that our evaluation platform consists of eight dual 2.0GHz Intel Xeon

MP Servers (Dell PowerEdge 2650s). All nodes are connected to a 16-port Myrinet

network through the Myrinet two-port "E card" (M3F2-PCIXE-2) network interface

cards. Each node is running Red Hat Linux 9 with Kernel 2.4.24 as its operating system.

We use Intel C++/Fortran Compiler version 7.1 for 32-bit applications, as well as GCC

compiler version 3.2.2. We have used the mpich-1.2.5..10 library as the message-passing

library, and GM version 2.1.0, Myrinet’s messaging library.

4.2 Point-to-point Communications

Communication properties of message-passing parallel applications can be

categorized by the temporal, volume, and spatial attributes of the communications [12,

25]. The temporal attribute of communications characterizes the rate of message

generations, and the rate of computations in the applications. We do not discuss the

36

temporal attribute in this thesis. The volume of communications is characterized by the

number of messages, and the distribution of message sizes in the applications. The spatial

attribute of communications is characterized by the distribution of message destinations.

Point-to-point (P2P) communication is the simplest type of communication

among processes in a message-passing programming paradigm. Major events in P2P

communication are sends and receives that either of them can be blocking or non-

blocking. We quantify metrics such as number of sends (either blocking or non-blocking),

average message size per message, total message size transferred per process, message

size cumulative distribution function (CDF), number of unique message destinations per

process, and destination distribution of messages of the root process (process zero).

Knowing these metrics assists one in choosing the proper interconnection network for a

cluster. For example, if a program is sending many short messages then latency of

interconnection network becomes very important for the performance of the application.

If the size of the messages is very large then the bandwidth of the network becomes an

issue.

Vetter and Mueller [51] presented the MPI point-to-point and collective

communications as well as floating-point characteristics of some applications in the ASCI

Purple suite, and the SAMRAI application. Kim and Lilja [25] quantified the

characteristics of some kernels and applications in MPI and PVM as well as their

execution times. Wong and his colleagues [53] studied the NPB benchmarks. Chodnekar

and his associates [12] considered the inter-arrival time of messages, and message volume

in message-passing and shared-memory applications. Karlsson and Brorsson [22]

compared the communication patterns of some applications in SPLASH and NPB

benchmarks under MPI and ThreadMark. Cypher and his colleagues [13] studied some

application benchmarks that use explicit communication. In this thesis, we study the new

application benchmarks that have not been studied before. Comparison of message-

passing characteristics of applications under mixed MPI-OpenMP and pure MPI is

another aspect of this chapter that is not addressed by others before.

37

4.2.1 Message Frequency

Message frequency of an application is the simplest P2P metric. In this study, we

count the number of send calls, either blocking or non-blocking, for each process in an

application. Minimum, average and maximum number of send calls is calculated per

process and presented in Figure 4.1. The X-axis in Figure 4.1 shows the class size and the

number of processes for each case. For instance, “B2” and “M4” correspond to class B

running with two processes, and class M running with four processes, respectively.

It is evident that the number of messages sent in the BT-MZ, SP-MZ, and LU-MZ

is decreasing (except for some of the cases where the number of processes is two) with

the increasing number of processes. This trend is consistent for both classes B, and C.

However, contrary to the NPB-MZ benchmarks, the number of messages sent for the

SPECenv and SPECseis applications shows a different trend, where they actually increase

when the number of processes increases. This trend is consistent for both small and

medium workloads.

BT-MZ

0
5000

10000
15000
20000
25000
30000

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

min average max

SP-MZ

0

10000

20000

30000

40000

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

min average max

LU-MZ

0

1000

2000
3000

4000

5000

B2 B4 B8 B16 C2 C4 C8 C16

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

min average max

SPECenv

0

50000

100000

150000

S2 S4 S8 S16 S32 M2 M4 M8 M16 M32

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

min average max

SPECseis

0
1000
2000
3000
4000
5000
6000

S2 S4 S8 S16 M2 M4 M8 M16

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

min average max
Figure 4.1 Number of messages sent per process.

38

An interesting observation is that the processes in the LU-MZ (except for C2) and

SPECseis send equal number of messages to their destinations, where this is not the case

for the other applications. We can see a large difference between the minimum and the

maximum number of messages sent among processes of SPECenv under class M. Among

the five applications, SPECenv has the largest number of messages sent per process. For

instance, with 16 processes, each process in SPECenv sends 90,000 messages on average,

while each process in the SP-MZ, BT-MZ, SPECseis, and LU-MZ sends roughly 13,000,

10,000, 5,000 and 1,000 messages, respectively. This shows that latency of the

interconnection network will affect performance of SPECenv the most, but will affect the

performance of LU-MZ the least.

4.2.2 Average Message Size

In this section, we quantify the average message size of all messages sent in each

application. This will give us an understanding of size of the messages exchanged in the

application and will help us understand the bottlenecks of the system due to the

bandwidth of the interconnection network. It is interesting to know if the message sizes of

an application are regular for different number of processes. We present the average

message sizes of each benchmark in Figure 4.2. Note that the average message size is

presented in Kilobyte (1024 bytes).

One can easily observe that the average message size for the SPEC applications,

for both small and medium workloads, becomes smaller as the number of processes

increases. In contrast, the average message size for the NPB-MZ application benchmarks

increases. BT-MZ and SP-MZ roughly use the same sort of message sizes; between 15KB

to 25KB for the BT-MZ, and between 10KB to 21KB for the SP-MZ. However, LU-MZ

uses larger message sizes, especially for the larger class C with message sizes between

80KB and 100KB.

In order to be able to compare the average message size sent in different

applications, average of message sizes over all different classes and workloads, and

different number of processes for each application is calculated and presented in Figure

4.3. NAS applications, especially for the small class B, use the smallest average message

39

size among the all applications. It means the impact of network bandwidth on these

applications will not be big compared to other applications. An overall observation is that

the SPECenv, SPECseis, and LU-MZ are more bandwidth bound than the other

applications.

BT-MZ

0

5

10

15

20

25

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
pe

r
se

nd
 (K

B
)

SP-MZ

0

5

10

15

20

25

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
pe

r
se

nd
 (K

B
)

LU-MZ

0

20

40

60

80

100

120

B2 B4 B8 B16 C2 C4 C8 C16

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
pe

r
se

nd
 (K

B
)

SPECenv

0
50

100
150
200
250
300
350

S2 S4 S8 S16 S32 M2 M4 M8 M16 M32

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
pe

r
se

nd
 (K

B
)

SPECseis

0

100

200

300

400

500

S2 S4 S8 S16 M2 M4 M8 M16

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
pe

r
se

nd
 (K

B
)

Figure 4.2 Average message size per send.

Average Message Size per Send

0
20
40
60
80

100
120
140
160

BT-B
BT-C

SP-B
SP-C

LU
-B

LU
-C

Env
-S

Env
-M

Seis
-S

Seis
-M

Application/Class

M
es

sa
ge

 s
iz

e
(K

B
)

Figure 4.3 Comparison of average message sizes of benchmarks

40

4.2.3 Message Volume

It is interesting to know how much traffic each process generates on the

interconnection network. The total message volume that a process sends over the network

is roughly equal to the average message size per send times the number of messages sent

per process. We have quantified and presented the minimum, average and the maximum

number of bytes that each process sends over the network in Figure 4.4.

BT-MZ

0

100

200

300

400

500

600

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B

)

min

average

max

SP-MZ

0
100
200
300
400
500
600
700

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B

)

min

average

max

LU-MZ

0
50

100
150
200
250
300
350

B2 B4 B8 B16 C2 C4 C8 C16

Class/number of processes

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B

)

min
average

max

SPECenv

0

2000

4000

6000

8000

10000

S2 S4 S8 S16 S32 M2 M4 M8 M16 M32

Class/number of processes

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B

)

min
average

max

SPECseis

0
20
40
60
80

100
120
140
160

S2 S4 S8 S16 M2 M4 M8 M16

Class/number of processes

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B

)

min

average

max

Figure 4.4 Total message volume per process

The total message volume sent by each process in the SPEChpc2002 applications

is very different for small and medium classes. However, this is not the case for the

classes B and C in the NPB-MZ. SPECenv, medium class, has the largest message traffic

per process on the network, roughly between 4000MB to 7000MB. However, for the

small class, each process sends roughly 140MB to 230MB. SPECseis has message traffic

of 110MB to 130MB per process on the network for the medium class, and around 8MB

for the small class. For the C class, each process in BT-MZ, SP-MZ, and LU-MZ sends

41

130MB to 440MB, 130MB to 480MB, and 97MB to 232MB, respectively. In all of the

five applications, we can notice that there is a big difference between small/B and

medium/C classes in terms of total message volume per process.

As shown in Figure 4.4, in most cases there is not a big difference among

processes in terms of total number of bytes sent. One can see big differences among some

processes for LU-MZ in C2, SPECenv in M8, M16 and M32, SP-MZ in C4 and C8, and

BT-MZ in C4 and C8. SPECseis seems to be the most regular application in terms of

number of sent bytes per process.

4.2.4 Message Size Cumulative Distribution Function

The cumulative distribution function (CDF) of message sizes provides more detail

about the different message sizes sent in an application. Figure 4.5 presents the CDF of

the message sizes for the applications under different system and problem sizes. Note that

the horizontal axis for the SPECseis is in logarithmic scale. From the graphs, it can be

seen that the BT-MZ and SPECenv use a large number of different message sizes while

the other applications use only a few message sizes. BT-MZ uses up to 21 different

message sizes in class C (16 in class B). The shortest and the longest messages are 5KB,

and 55KB, respectively. SPECenv uses up to 70 different messages sizes in class S (50 in

class M). It uses both short messages (as small as 4 bytes) and very long messages (as

large as 3129KB for the class M). Thus, SPECenv is very much sensitive to both latency

and bandwidth.

The distribution of the size of messages sent by the SP-MZ, and LU-MZ are

bimodal. There are only two different message sizes used in these applications. Message

sizes for these two applications suggest they are very much bandwidth-bound. SPECseis

uses five different message sizes each for both classes. It uses small messages (including

zero-byte messages) as well as very large messages (up to 32768KB). This shows that

SPECseis is more sensitive to the bandwidth than to the latency of the interconnect. It is

easily seen that message size range is very different for all these applications. We

discovered that minimum message sizes for benchmarks are 5KB, 14KB, 29KB, 4 bytes

and zero byte, and maximum message sizes are 55KB, 28KB, 79KB, 3129KB and

32768KB for BT-MZ, SP-MZ, LU-MZ, SPECenv and SPECseis, respectively.

42

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

B2 B4 B8 B16 B32BT-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

C2 C4 C8 C16 C32BT-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20 25

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

B2 B4 B8 B16 B32SP-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20 25 30

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

C2 C4 C8 C16 C32SP-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

B2 B4 B8 B16LU-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60 80 100 120 140

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es
C2 C4 C8 C16LU-MZ

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 200 400 600 800 1000 1200

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

S2 S4 S8 S16 S32SPECenv

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 500 1000 1500 2000 2500 3000 3500

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

M2 M4 M8 M16 M32SPECenv

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

S2 S4 S8 S16SPECseis

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000 100000

Message size (KB)

C
D

F
of

 m
es

sa
ge

 s
iz

es

M2 M4 M8 M16SPECseis

Figure 4.5 Message size CDF of NPB-MZ and SPEChpc2002 applications.

43

4.2.5 Message Destinations

Spatial behaviour is characterized by the distribution of message destinations [25],

[12]. We have studied the number of message destinations for each process in the

applications, as shown in Figure 4.6. From the graphs, the number of message

destinations per process does not change with the workload for the LU-MZ, and SPEC

applications. Processes in the LU-MZ, SP-MZ, and SPECenv (except for some of the

processes) have a few favourite communication partners. This is consistent with previous

results for other applications [25, 51].

However, processes in BT-MZ (especially the C class) and SPECseis

communicate with most of the remaining processes. SPECenv has a very diverse range of

number of destinations. For instance in S32, SPECenv has 8 destinations per process on

average. However, some processes have 30 destinations and some only have 4

destinations. We can see that except for LU-MZ and SPECseis, other benchmarks have

some irregularity in terms of the number of destinations among processes.

BT-MZ

0

5

10

15

20

25

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

N
um

be
r o

f u
ni

qu
e

se
nd

de

st
in

at
io

ns
 p

er
 p

ro
ce

ss

min

average

max

SP-MZ

0
1
2
3
4
5
6
7
8

B2 B4 B8 B16 B32 C2 C4 C8 C16 C32

Class/number of processes

N
um

be
r o

f u
ni

qu
e

se
nd

de

st
in

at
io

ns
 p

er
 p

ro
ce

ss

min

average

max

LU-MZ

0

1

2

3

4

5

B2 B4 B8 B16 C2 C4 C8 C16

Class/number of processes

N
um

be
r o

f u
ni

qu
e

se
nd

de

st
in

at
io

ns
 p

er
 p

ro
ce

ss

min

average

max

SPECenv

0
4
8

12
16
20
24
28
32

S2 S4 S8 S16 S32 M2 M4 M8 M16 M32

Class/number of processes

N
um

be
r o

f u
ni

qu
e

se
nd

de

st
in

at
io

ns
 p

er
 p

ro
ce

ss

min

average

max

SPECseic

0
2
4
6
8

10
12
14
16

S2 S4 S8 S16 M2 M4 M8 M16

Class/number of processes

N
um

be
r o

f u
ni

qu
e

se
nd

de

st
in

at
io

ns
 p

er
 p

ro
ce

ss

min

average

max

Figure 4.6 Number of destinations per process.

44

4.2.6 Destination Distribution

As discussed earlier, not all processes in the applications communicate with all

other processes. Usually, process zero (root process) is responsible for distributing the

data and verifying the results. This makes it a favourite destination for other processes.

However, it is interesting to discover the set of destinations for process zero. Figure 4.7

shows the distribution of message destinations for process zero in the applications

running with 16 processes.

BT-MZ

0

200
400

600

800

1000
1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination process

N
um

be
r

of
 s

en
ds

B
C

SP-MZ

0

1000
2000

3000

4000

5000
6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination process

N
um

be
r

of
 s

en
ds

B
C

LU-MZ

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination process

N
um

be
r

of
 s

en
ds

B
C

SPECenv

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination process

N
um

be
r

of
 s

en
ds

S
M

SPECseis

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination process

N
um

be
r

of
 s

en
ds

S
M

Figure 4.7 Destination distribution of process 0 (16 processes).

Process zero in the SPEC applications, and the BT-MZ (class C) communicates

with all other processes. Process zero in the SPECenv communicates infrequently with all

other processes, and it has its own favourite partners. Interestingly, process zero in the

45

SPECseis has a uniform communication pattern. In all other cases, process zero

communicates with a subset of all other processes. In SP-MZ and LU-MZ, process zero

communicates with two to three other processes and four processes, respectively.

4.3 Collective Communications

Collective communication is widely used in message-passing applications.

Collective communication involves more than two processes. Data distribution and

synchronization is easier to implement using collective communication. Collective

communications can be characterized by the type of the collective operation, frequency of

collective operations, and their payload.

Quantitative study of collective communications in our applications is presented

in Table 4.1. This table presents the type, frequency, and the payload (in bytes) of the

collective operations used in the NPB-MZ and SPEChpc2002 applications. Broadcast,

barrier and reduce are the only collective primitives used in these applications. The

reduce primitive in the SPECenv uses the “sum” operation. NPB-MZ applications use the

“sum”, as well as the “max” operation. SPECenv uses a large number of broadcast

operations with very large payloads. NPB-MZ applications use a few number of

collective operations with small payload, while SPECenv uses a large number of

collective operations with large payloads. SPECseis uses collective operations more

frequently than NPB-MZ applications with larger payload. In contrast to the applications

Vetter [51] has studied, SPECenv has significant collective payload.

Table 4.1 Collective communications of NPB-MZ and SPEChpc2002 (16 processes)

Application Class
Number

of
processes

Number of
Broadcasts and
payload (bytes)

Barrier
Number of

Reduces and
payload (bytes)

BT-MZ B, C 2-32 3 (12) 2 3 (88)
SP-MZ B, C 2-32 3 (12) 2 3 (88)
LU-MZ B, C 2-16 7 (64) 2 4 (96)
SPECenv S 2-32 946 (6631224) - 1 (16)
SPECenv M 2-32 2247(102597148) - 1 (16)
SPECseis S, M 2-16 38 (23312) 20 -

46

4.4 Locality Characteristics

It is interesting to discover if message-passing applications exhibit any repetitive

communication patterns. For example, there might be repetition patterns in message size,

message destination, or even among the send and receive events. Locality metrics are

useful in message-property prediction schemes and communication latency hiding

techniques. Locality is also useful in predicting the buffer requirements ahead of time to

hide the communication latency. It can also be used to set up the communication path in

circuit-switch networks and optical networks [2]. Locality can be defined in different

ways. In general, locality, regardless of its definition, shows the probability of repetition

of a pattern in future based on that definition. It is important to choose a good model of

locality to be able to predict next events easier. As locality is a probability metric, its

value is between zero and one. The sooner the locality gets to value one, the better it can

predict the next events.

Three major locality schemes are widely used, especially in memory replacement

policies. These are First In First Out (FIFO), Least Recently Used (LRU), and Least

Frequently Used (LFU). These models are studied for message sizes and message

destinations of our benchmarks. FIFO, LRU and LFU heuristics all maintain a set of k

(window size) unique message identifier. If the next message event is already in the set

then a hit is counted, otherwise a miss is counted. If a miss occurs, based on the heuristic

the new identifier will be moved to the set.

FIFO is the simplest heuristic. The last n unique identifiers are already in the set

and if the next identifier is already in the set then number of hits will be increased by one;

otherwise, the number of misses will be increased by one. The locality for FIFO is

defined as “hit ratio”; that is the number of hits divided by the total number of hits and

misses. The locality is presented in percentage format. Once a new identifier joins the set,

the first identifier that has joined in k -1 steps ago will be moved out of the set. The

youngest member replaces the oldest member of the set.

LRU and LFU heuristics are similar to FIFO. The replacement scheme in LRU is

such that the member of the set that the new member replaces with is the one that is least

recently used. While applying LRU scheme, if there is a hit then the hit member will be

moved from its place to the top of the set and all the other members will be pushed down.

47

If there is a miss then the last member of the set, which is the least recently used member

will be moved out of the set and the new member will be placed at the top of the set and

all other member will be pushed down. In the LFU heuristic, usage frequency of all the

members is noted and if a miss occurs in the set then the member that has to be moved

out is the one that has the least usage frequency. The new member will replace the least

used member of the set.

Kim and Lilja [25] introduced the concept of locality for Send/Receive

communication calls using the LRU heuristics. Afsahi and Dimopoulos extended the

notion of communication locality to the message destinations, and message reception

calls using the LRU, LFU and FIFO policies [2]. They then devised different message

predictors.

4.4.1 Message Size Locality

As mentioned earlier, FIFO is our simplest locality heuristic. Localities of

message sizes based on FIFO heuristic for the five benchmarks are shown in Figure 4.8.

Each application has been run with different number of processes. For a given number of

processes, message size locality is the average of message size locality for each process.

Message size locality varies as the number of processes in the application changes.

Message size locality shown here is for window sizes 1 to 16. As the window size gets

larger, the probability of a hit becomes larger; therefore, localities increase and get closer

to the value one. It is clear that applications that do not have many different unique

message sizes will reach the maximum value one quickly. In short, number of unique

message sizes and window size has the largest effect on locality. BT-MZ and SPECenv

have many different unique message sizes and therefore their locality curves approach the

value one more smoothly and more slowly than the other applications that have only two

or three different unique message sizes.

We realized from Figure 4.8 that for BT-MZ class B, the more processes you have

the better locality curve you get. This means that locality grows faster and gives a larger

probability of repetition based on FIFO heuristic for larger number of processes. For

example, BT-MZ class B reaches 80% locality with 32 processes with the window size of

four while the same benchmark with two processes only reaches 70% locality with

48

window size of 13. For BT-MZ class C, the difference between locality curves of

different number of processes is less than class B.

The fact that larger number of processes leads to a better locality curve is true for

SPECenv as well (except for number of processes equal to two). With two processes,

surprisingly, SPECenv has a better locality curve than all the other curves for large

number of window sizes. FIFO locality curve of SPECenv class S reaches 100% with

window size of nine and for class M it reaches the value one with window size of eight

while locality of other number of processes does not even get to the value one with

window size of 16. This confirms that SPECenv has a large number of different unique

message sizes and each unique message size is not locally repeated in a small number of

consecutive sends very often.

Studying the locality of message sizes of LU-MZ and SP-MZ shows that almost

more that 50% of the time, the next message sent in the application has the same message

size as the previous message. For SPECseis, this percentage is very close to 100% and it

means that most of the time messages with the same size are sent consecutively.

Locality of message sizes for LRU heuristics are shown in Figure 4.9. LRU

heuristic performance is very similar to FIFO heuristic for our benchmarks. For BT-MZ

class B and C, the larger the number of processes, the larger the probability of repetition

patterns. For SPECenv class S and M, number of processes equal to two has the highest

locality in message size and after that, 32, 16, 8 and 4 processes have higher localities,

respectively. Locality of message sizes for LFU heuristics are shown in Figure 4.10. LFU

heuristic performs slightly different from FIFO and LRU. The same trend among

different number of processes exists that applications running with a higher number of

processes have a higher locality (except for a few cases, such as SPECenv with 2

processes).

4.4.2 Message Destination Locality

Each process in a parallel application might have a different style in

communicating with other processes. A process might communicate only with one other

process, a few other processes, or all other processes. Sequence of communication with

other processes might also be different between applications. In this section, we study the

49

message destination locality of MPI Send/ISend primitives in NPB-MZ and

SPEChpc2002 benchmarks. FIFO, LRU and LFU heuristics are once again used for this

study.

FIFO heuristic locality results for message destinations are shown in Figure 4.11.

In general, as the window size increases, there is a better chance for a hit rather than a

miss. The larger number of processes in the application means that there is larger number

of possible destinations and therefore variety of destinations can decrease their locality.

For example, in a two-process application, there are only two possible destinations hence

the locality of destinations for window sizes of larger than one would be equal to one

while locality for a 32-process application is usually less than 5% in our applications in

small window sizes.

Although for large number of processes there are many different possibilities as a

message destination, as mentioned earlier not necessarily each process will communicate

will all the other processes. This will eliminate some of destinations and will decrease the

actual number of destinations for a process; therefore, the locality of message destinations

will grow faster than a regular application in terms of message destinations. For example

for 32 processes in BT-MZ class B, SP-MZ class B, SP-MZ class C, SPECenv class S

and SPECenv class M, message destination locality will be around 100% for window

sizes of larger than 9, 5, 2, 7, and 7, respectively for the FIFO heuristic. This shows that

on average each process communicates only with 10, 6, 3, 8, and 8 other processes,

respectively. We can see that these numbers (except for BT-MZ class B) match very well

with the number of message destinations presented in Figure 4.6. In short, BT-MZ and

SPECseis processes communicate with many other processes, while SP-MZ and LU-MZ

only communicate with a few favourite processes, and SPECenv is somewhere between

these two groups.

Message destination localities using the LRU heuristic are presented in Figure

4.12. Similar to message size results, LRU heuristic results for message destinations are

very similar to FIFO. SP-MZ and LU-MZ have high message destination localities

according to the LRU heuristic, while BT-MZ and SPECseis have low message

destination localities. One can say that SPECenv has a medium locality comparing to

theses two groups.

50

Message destination locality results for LFU heuristic is shown in Figure 4.13.

The same trend in the locality with LFU heuristic can be seen that BT-MZ and SPECseis

have low locality, SPECenv has a medium locality, and SP-MZ and LU-MZ have high

locality in message destination. The LFU results are slightly different from FIFO and

LRU. In the next section, we compare these heuristic to figure out which one could

predict the next identifiers better.

51

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-C-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-C-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16LU-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y
2 4 8 16LU-MZ-C-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-S-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-M-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-S-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-M-FIFO

Figure 4.8 Message size locality (FIFO heuristic)

52

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-C-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-C-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16LU-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y
2 4 8 16LU-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-S-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-M-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-S-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-M-LRU

Figure 4.9 Message size locality (LRU heuristic)

53

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32BT-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SP-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16LU-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y
2 4 8 16LU-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-S-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16 32SPECenv-M-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-S-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

M
es

sa
ge

 s
iz

e
lo

ca
lit

y

2 4 8 16SPECseis-M-LFU

Figure 4.10 Message size locality (LFU)

54

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

D
es

tin
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BT-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

D
es

tin
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BT-MZ-C-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16LU-MZ-B-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)
2 4 8 16LU-MZ-C-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-S-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-M-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseic-S-FIFO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseis-M-FIFO

Figure 4.11 Message destination locality (FIFO)

55

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BT-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BR-MZ-C-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-C-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16LU-MZ-B-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)
2 4 8 16LU-MZ-C-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-S-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-M-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseis-S-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseis-M-LRU

Figure 4.12 Message destination locality (LRU)

56

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BT-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

D
es

tin
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32BT-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SP-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16LU-MZ-B-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

D
es

tin
at

io
n

lo
ca

lit
y

(s
en

d)
2 4 8 16LU-MZ-C-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-S-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16 32SPECenv-M-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseis-S-LFU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

De
st

in
at

io
n

lo
ca

lit
y

(s
en

d)

2 4 8 16SPECseis-M-LFU

Figure 4.13 Message destination locality (LFU)

57

4.4.3 Comparison of Localities

In this section, we compare message destination locality and message size locality

of all five applications under different classes, while running with only 16 processes. We

want to find out which heuristic performs better. The comparison of FIFO, LRU and LFU

heuristics for message destinations and message size locality of applications are shown in

Figure 4.14.

For BT-MZ class B and C, LFU performs better than LRU and FIFO, both in

message size locality and message destination locality. SP-MZ and LU-MZ have a

relatively high locality and all three heuristics perform almost the same both for message

size and message destination locality. The SPECenv message destination locality is

almost the same for all three heuristics, while for message size locality there are small

differences between them. For message size locality, LRU and FIFO perform almost the

same and better than LFU for both classes of SPECenv. The case is completely the

opposite for SPECseis. LFU performs better than LRU and FIFO for message destination

locality and all of them perform similarly for message size locality, as SPECseis does not

use many unique message sizes.

In summary, LRU and FIFO have a very similar performance. LFU for some

applications outperforms LRU and FIFO and sometimes shows a poorer performance. It

can be concluded that dependant on the type of the application, different locality schemes

should be used to get the most out of prediction schemes.

4.5 Mixed-Mode Communication Characteristics

It is possible to exploit parallelism using a combination of different parallel

programming paradigms. Parallel programs that use multiple parallel programming

paradigms concurrently are called mixed-mode programs. Prominence of clusters

encourages programmers to use MPI in the applications. Meanwhile, the relatively easy

programming style in OpenMP and its scalability on shared-memory system makes

OpenMP a desirable parallel programming paradigm for SMP nodes. The mixed MPI-

OpenMP programming style is therefore one of the most promising parallel programming

paradigms for SMP clusters.

58

BT-MZ Destination locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

BT-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SP-MZ Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SP-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

LU-MZ Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

LU-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SPECenv Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECenv Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECseis Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECseis Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

Figure 4.14 Comparison of different locality heuristics (16 processes).

59

NPB-MZ benchmark is a mixed-mode benchmark and it is possible to use both

MPI and OpenMP concurrently. In this section, we look into the communication

characteristics of our mixed-mode applications.

4.5.1 Message Frequency

It is possible to run different combinations of threads and processes in mixed-

mode applications across a cluster. In this section, we present the message frequency

characteristics of NPB-MZ applications for different combinations. For example, some of

the possible combinations of processes and threads that one can run on an eight dual-node

cluster (16 processors) are 1P16T, 2P8T, 4P4T, 8P4T, and 16P1T. For instance, “8P2T”

means that there are eight processes evenly divided among four nodes of the cluster,

where each process has two threads running on its respective node. 1P16T is the pure

OpenMP case, where there are no MPI communications, thus, we do not consider this

case in our figures. 16P1T is the pure MPI case, where there is no OpenMP

parallelization. This case is the one we have studied so far in this chapter. In the

following, we compare the message frequency of different combinations of processes and

threads.

We count the number of send calls, either blocking or non-blocking, for each

process in an application. We calculate the average send calls per process for each

process and thread combination such as 2P8T, 4P4T, 8P4T, and 16P1T. Figure 4.15

shows the message frequency of NPB-MZ in mixed-mode. It is evident that the number

of messages sent in the BT-MZ, SP-MZ, and LU-MZ is decreasing (except for some of

the cases where the number of processes is two) with the increasing number of processes.

This trend is consistent for both classes B, and C. Total number of exchanged messages in

the application is roughly equal to the number of processes times the average number of

messages per process. Although number of sent messages per process is decreasing in this

trend, the total number of messages exchanged in the applications is increasing.

An interesting observation is that, on average, the SP-MZ-C sends equal number

of messages per process when running with 4P4T and 8P2T, where this is not the case for

the other applications and process-thread combinations. Among the three applications,

60

SP-MZ-C and BT-MZ-C have the largest number of messages sent per process,

respectively. SP-MZ-C sends around 24000 messages per process when running with

4P4T and 8P2T. BT-MZ-C sends approximately 21000 messages per process when

running with 2P8T and 4P4T.

0

5000

10000

15000

20000

25000

30000

BT-MZ-B SP-MZ-B LU-MZ-B BT-MZ-C SP-MZ-C LU-MZ-C

Application-Class

Nu
m

be
r

of
 S

en
ds

2P8T 4P4T 8P2T 16P1T

Figure 4.15 Number of messages sent per process in NPB-MZ (mixed-mode).

4.5.2 Average Message Size

In this section, we quantify the average message size of all messages sent in the

NPB-MZ applications for different process/thread combinations. This helps us tune our

applications when there is a bandwidth limitation in our interconnection network. The

average message size of NPB-MZ applications in mixed-mode is presented in Figure

4.16.

0

20

40

60

80

100

120

BT-MZ-B SP-MZ-B LU-MZ-B BT-MZ-C SP-MZ-C LU-MZ-C

Application-Class

Av
er

ag
e

M
es

sa
ge

 S
iz

e
(K

B
)

2P8T 4P4T 8P2T 16P1T

Figure 4.16 Average message size of NPB-MZ applications (mixed-mode).

The average message size for the NPB-MZ application benchmarks do not vary

significantly for different combinations of processes and threads, except for LU-MZ that

has up to 25% average message size increase when running with 16P1T and 8P2T. For

61

the studied process/thread cases, BT-MZ, SP-MZ, and LU-MZ-B have average message

sizes of between 15KB and 40 KB, while LU-MZ-C has average message sizes of

between 80KB and 100KB. An overall observation is that the LU-MZ-C is more

bandwidth bound than the other NPB-MZ applications.

4.5.3 Message Volume

The total message volume that a process sends over the network is roughly equal

to the average message size per send times the number of messages sent per process. We

present the average of number of bytes that each process sends over the network, for

different combinations of processes and threads, in Figure 4.17.

0

100

200

300

400

500

600

BT-MZ-B SP-MZ-B LU-MZ-B BT-MZ-C SP-MZ-C LU-MZ-C

Application-Class

To
ta

l m
es

sa
ge

 v
ol

um
e

pe
r

pr
oc

es
s

(M
B)

2P8T 4P4T 8P2T 16P1T

Figure 4.17 Message volume of NPB-MZ applications (mixed-mode).

The general trend, when increasing the number of processes and decreasing the

number of threads, is that message volume gets smaller. The total message volume sent

by each process in the SP-MZ and BT-MZ-C, when running with 4P4T, is larger than

other studied combinations of processes and threads. For the C class, each process in BT-

MZ, SP-MZ, and LU-MZ sends 130MB to 440MB, 130MB to 480MB, and 97MB to

232MB, respectively. The total amount of exchanged bytes in the application is equal to

the number of processes times the average message volume per process. Although the

average message volume per process is decreasing with more processes than threads, the

total amount of exchanged bytes in the applications is increasing.

62

4.5.4 Comparison of MPI and Mixed-Mode Characteristics

By carefully looking at the results presented in previous sections, we notice that

the basic characteristics data of NPB-MZ is independent of the number of running

threads. By that, we mean that if NPB-MZ applications are running with P processes, then

number of threads, T, does not affect the communication characteristics of the

application, while P is constant. For example, communication characteristics of 4P1T,

4P2T, and 4P4T will be the same. We investigated this, and found out that there is no

MPI communication operations inside the OpenMP parallel regions, thus the OpenMP

loop parallelization will not affect the MPI communication characteristics.

However, if a certain number of parallel entities (either processes, or threads in

each process) is desirable, then different combinations of threads and processes can be

used to run the application in mixed-mode across a cluster. Even by utilizing the same

number parallel entities, different process/thread combinations of NPB-MZ have different

communication characteristics, as we showed in the previous sections. Based on the

application communication characteristics and system latency/bandwidth limitations, one

process/thread combination may be more advantageous than the other combinations. Of

course, it also depends on the availability of the SMP nodes with sufficient number of

processors to support execution of the threads.

4.6 SMG2000 Characteristics

The communication characteristics of SMG2000 have been studied by other

researchers [51]. We have used VAMPIR [38] to extract some basic communication

characteristics of SMG2000 in this work, as shown in Table 4.2. As there is no standard

problem size for SMG20000, we chose 128x64x64 input size for its serial version. If the

input problem size is not changed, the total application problem size is proportional to the

number of processes in the application. Therefore, we have scaled down the input size

proportionally with the number of processes to keep the total problem size constant.

SMG2000 uses short message sizes (smaller than 1KB) compared to NPB-MZ

and SPEChpc2002 applications. As the number of processes increases, the average

message size becomes smaller. SMG2000 sends more messages when running larger

number of processes. SMG2000 uses few collective operations, such as All_reduce,

63

Barrier, All_gather, and All_gatherv. The number of collectives used in SMG2000 does

not change according to the number of process (except for All_reduce with two and four

processes).

Table 4.2 MPI Characteristics of SMG2000.

#processes 2 4 8 16

#Send calls 44303 51941 52423 50827

Average message size (KB) 0.92 0.54 0.32 0.32

#All_reduce 15 14 14 14

#Barrier 1 1 1 1

#All_gather 1 1 1 1

#All_gatherv 1 1 1 1

4.7 Summary

In this chapter, we have examined the MPI characteristics of small to large-scale

scientific applications in terms of their point-to-point and collective communications. We

quantified metrics such as message frequency, average message size per message, total

message volume per process, message size cumulative distribution function, number of

unique message destinations per process, and destination distribution of messages of the

root process.

For collective communications, we presented the type, frequency, and the

payload. We also evaluated the impact of the problem size and the system size on the

communication behaviour of the applications. We found that the applications studied

have diverse communication characteristics. Those include very small to very large

messages, frequent to infrequent messages, various distinct message sizes, set of favourite

destinations, and regular versus irregular communication patterns. Some applications are

sensitive to the bandwidth of the interconnect, while others are latency-bound as well.

Our evaluation also revealed that most applications are sensitive to the changes in the

system size and the problem size. We discovered all applications use only a few

collective operations. However, SPEC applications use them frequently with very large

64

payloads. The applications studied have static communication characteristic that do not

change between multiple runs.

Overall, the information provided in this chapter will help system designers,

application developers, and library/middleware designers to better understand the current

and future communication workloads of parallel applications. This study verifies that

message-passing applications communicate intensively. Therefore, they will benefit from

improvements in the interconnect hardware and their features as well as the

communication system software and libraries. Collective communications such as

broadcast, barrier, and reduce are expensive operations. Thus, it is essential to optimize

their implementation in hardware and/or software in the future computer systems.

We have also gathered the locality characteristics of NPB-MZ and SPEChpc2002

applications. We used the FIFO, LFU, and LRU locality heuristics to evaluate the locality

of message size and message destinations in our applications. We found out that LRU and

FIFO have a very similar performance. LFU for some applications outperforms LRU and

FIFO and sometimes shows a poorer performance. We realized that for BT-MZ class B

and C, LFU heuristic performs better than LRU and FIFO heuristics, both in message size

locality and message destination locality. SP-MZ and LU-MZ have a relatively high

locality and all three heuristics (FIFO, LFU, and LRU) perform almost the same both for

message size and message destination locality.

We noticed that all three heuristics have similar results for the SPECenv message

destination locality and message size locality. SP-MZ and LU-MZ show a high locality

for both message size and message destination. SPECseis message size also shows a high

locality, while its message destination locality grows linearly as the window size is

increased. Message destination locality of BT-MZ and SPECenv, as well as the message

size locality of BT-MZ, show a medium locality compared to the other applications.

SPECenv message size locality is low compared to the other applications.

In this chapter, we have also compared the communication characteristic of NPB-

MZ applications in the mixed-mode. We found out that different process/thread

combinations change the communication characteristics of NPB-MZ. We also realized

that MPI communication characteristics of NPB-MZ are independent from the number of

threads.

65

To evaluate the message-passing performance of applications, we will evaluate

the basic performance of our Myrinet network in the next chapter. We evaluate the

performance of GM, MPI over GM, and ARMCI to see how these messaging libraries

really affect the communication performance.

66

Chapter 5 Myrinet Performance Evaluation

Performance of applications running on clusters mainly depends on the

programming paradigm of choice, communication characteristics of the applications, and

most importantly on the performance of the communication subsystem. So far, we have

studied the parallel applications and their communication characteristics. In this chapter,

we assess the performance of the Myrinet interconnect at different layers; that is at the

GM level, MPI level and ARMCI level. We measure the performance of the GM basic

function calls. We evaluate the latency/bandwidth performance of GM Send/Receive, GM

RDMA, MPI Send/Receive, and ARMCI RDMA operations for one- and two-port

configurations of the Myrinet network card interface. This chapter helps in a better

understanding of the impact of communication subsystem on the application

performance.

5.1 GM Basic Performance

GM [18] is a commercial open source user-level networking protocol from

Myricom. GM runs on top of the Myrinet network. Multiple user processes can share a

network interface card (NIC) simultaneously as GM provides a protected user-level

interface to the NIC. GM provides a connectionless communication model.

Communication endpoints in this model are called ports. GM provides reliable and

ordered delivery between these ports.

GM consists of a driver, a network-mapping program, the GM API library,

Myrinet-Interface Control Program (MCP), and header files. The NICs that we used in

this study, two-port “E-card” Myrinet/PCI-X interface, have been introduced recently by

Myricom. They have two ports instead of one as in previous models. It means that each

NIC is equipped with two uplink optical fibres and two downlink optical fibres. Having

two links for each up- or down-link communication avoids large latency and provides a

better bandwidth in case of traffic on one link. The concepts of ports on the NICs and

ports in GM should not be mistaken. Ports in GM are software concepts while ports on

the NIC are physical fibre links. GM depending on its version has eight or more ports

67

where some of them are reserved for internal use. In this chapter, we compare the

performance aspects of the Myrinet networks when the two ports of NIC are operating

versus when only one of them is working. All the measurements in this section are done

using our own code.

In a program that uses GM, some initializations need to be done. GM_Init() has to

be called and a GM port for communication should be opened with GM_Open().

GM_Allow_remote_memory_access() should be called if a program wants to expose and

area of its memory so that other programs can write into that memory, with RDMA calls

such as GM_Put(). GM_Provide_receive_buffer() should be called to provide a buffer in

case of receiving of a message. At the termination point of the program GM_Close() is

used to close the used ports. To allocate and pass buffers to these functions, memory

should be allocated using GM_Malloc(), and should be freed using GM_Free(). The

overhead of these function calls are presented in Table 5.1. The table shows that

terminating a GM program is a very costly operation (GM_Close). Exposing memory to

other GM processes, as well as providing receive buffers are not very time-consuming

operation. Opening GM ports is a time-consuming operation compared to other

initialization operations, such as GM_Init.

Table 5.1 Timing of Basic GM function calls.

GM Function Time (µs)
GM_Init 57.45
GM_Open 1682.81
GM_Allow_remote_memory_access 0.24
GM_Provide_receive_buffer 0.38
GM_Close 20863.90

Figure 5.1 illustrates the execution time of GM_Free for different message sizes.

Freeing the allocated memory in GM is not a costly operation and it takes approximately

one to two microseconds for various message sizes. In both the Send/Receive and RDMA

communication models, communication buffers must be registered/deregistered in the

physical memory using gm_register_memory() and gm_deregister_memory() at both ends

to enable DMA transfer in and out of those regions. Performance of these functions for

different message sizes is presented in Figure 5.2. Up to 64KB message sizes, registration

68

time is shorter than deregistration. In general, registration and deregistration are costly

operations.

gm_free

0

0.5

1

1.5

2

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)
La

te
nc

y
(µ

s)

Figure 5.1 GM_Free execution time for different message sizes.

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

Message size (bytes)

Ti
m

e
(µ

s)

Registeration Deregisteration

;

0
200
400
600
800

1000
1200
1400
1600
1800

1 8 64 512 4K 32K 256K 2M 16M

Message size (bytes)

Ba
nd

w
id

th
 (M

B
/s

)

Registration Deregisteration

Figure 5.2 GM memory registration and deregistration cost and bandwidth.

5.1.1 GM Send/Receive Performance

In the following, we first define the latency and bandwidth. Then we describe our

experimental framework. The message latency and bandwidth are two important metrics

for many parallel and distributed computations. Latency is defined as the time it takes for

a message to travel from the sender process address-space to the receiver process address-

space. Bandwidth is reported as the total number of bytes per unit time delivered during

the time measured. In the unidirectional latency/bandwidth test, the sender transmits a

message repeatedly to the receiver, and then waits for the last message to be

acknowledged. The bidirectional test is the ping-pong test where the sender sends a

message and the receiver upon receiving the message, immediately replies with the same

message size. This is repeated sufficient number of times to eliminate the transient

conditions of the network. In the both-way test, both the sender and receiver send data

69

simultaneously. This test puts more pressure on the communication subsystem, and the

PCI-X bus.

In the two-sided communication model, the data sender process executes a Send

operation and the data receiver process executes a Receive operation accordingly. Once

these Send and Receive operations match, data transfer between processes completes. GM

supports the channel communication model, where it is possible to transfer data using

Send and Receive operations. We measure the unidirectional, bi-directional and both-way

latency/bandwidth with different message sizes for GM send/receive. Figure 5.3 shows

the latency of GM Send/Receive operation for different messaging schemes using one and

two ports of the Myrinet NIC. The short message latency of one- and two-port

configurations are not very different; unidirectional messaging has the smallest latency

and both-way messaging shows the largest latency.

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Unidirectional Bidirectional Both-waytwo-port

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Unidirectional Bidirectional Both-wayone-port

Figure 5.3 GM Send/Receive latency in unidirectional, bidirectional and both-way

messaging (one/two-port).

Figure 5.4 compares the GM Send/Receive bandwidth under three different

messaging schemes (Unidirectional, Bidirectional and Both-way) using one and two ports

of the NIC. Unidirectional GM Send/Receive achieves the maximum bandwidth of 495

MB/s using two ports of the NIC while its bandwidth is 247 MB/s for one port.

Bidirectional GM Send/Receive reaches the bandwidth of 490 MB/s using two ports of

the NIC and 246 MB/s using one port. Both-way messaging has the best bandwidth as

both parties are sending messages at the same time. Using two ports of the NIC, GM

Send/Receive achieves a bandwidth of 766 MB/s and bandwidth of 493 MB/s while using

one port. As expected, the bandwidth performance of NIC with the two ports active is

70

much better than the one port. We believe the bandwidth drop for 4KB messages may be

due to a protocol change in GM or the fact that GM uses 4KB packets for messaging. We

suggest designers of Myrinet to improve this issue in their future systems.

0
100
200
300
400
500
600
700
800
900

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Unidirectional Bidirectional Both-waytwo-port

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B
/s

)

Unidirectional Bidirectional Both-wayone-port

Figure 5.4 GM Send/Receive bandwidth in unidirectional, bidirectional, and both-

way messaging (one/two-port).

5.1.2 GM RDMA Performance

In one-sided communication model, data transfer is done with participation of

only one party, while in two-sided communication model both communication parties

have to participate in transferring data. In one-sided communication model, the data

sender process executes a Write/Put operation and the data receiver process does not need

to execute any operation. The data will be written to the memory location according to the

Write/Put operation. On the other hand, a process is able to receive data from other

processes by executing Read/Get operation. Again, the process that provides the data does

not need to perform any action. Figure 5.5 shows the unidirectional communication

latency comparison of GM put and GM get operations using one and two ports of the

NIC. GM Put and Get operations on one-port configuration have smaller latency than

two-port configuration.

Figure 5.6 shows the bandwidth comparison of GM Put and Get using one- and

two-port configurations. GM Put achieves bandwidth of 493 MB/s and 247 MB/s for two-

and one-port, respectively, while GM Get achieves bandwidth of 137 MB/s and 247 MB/s

for two- and one-port configurations, respectively. GM Put and Get operations have

similar latency and bandwidth using one port of the NIC.

71

In the two-port configuration, the minimum latency of GM Send/Receive, Get, and

Put operations are 4.57, 5.50, and 9.40 microseconds, respectively. For message size of

larger than 512 bytes, latency of GM Send/Receive and Get operations are very close to

each other (except for message size of 4Kbytes). Latency of GM Get operation is larger

than GM Send/Receive and Get operations for all the message sizes of one byte to one

megabyte.

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Put Gettwo-port

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Put Getone-port

Figure 5.5 GM Put and Get unidirectional latency.

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Put Gettwo-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Put Getone-port

Figure 5.6 GM Put and Get unidirectional bandwidth.

In the one-port configuration of the system, the minimum latency of GM

Send/Receive, Get, and Put operations are 4.57, 5.47, and 5.59 microseconds,

respectively. For message sizes of one byte to one megabyte, latency of GM

Send/Receive, Get, and Put operations are very close to each other. According to these

results, we do not suggest using GM Get operation when the system is using two ports of

the Myrinet NIC. GM Get operation in a two-port configuration has a larger latency than

the GM Get operation in a one-port configuration. However, due to promising

performance of both GM Send/Receive and GM Put, we recommend using them in GM

user-level programming for either one- or two-port configured systems.

72

5.2 MPI over GM Basic Performance

Many of the HPC applications use MPI as the message-passing library. Finding

performance of MPI helps us get a better understanding of communication time of the

application. MPI provides point-to-point message-passing and collective operations. One-

sided communication is supported in the MPI-2 [30], but we do not address the

performance of MPI-2 one-sided operations in this thesis (it is not yet available on top of

the Myrinet network). The MPI we used, MPICH-GM, is built on top of the GM layer.

All the measurements in this section are performed using our own MPI codes.

Figure 5.7 shows the latency in sending messages with unidirectional,

bidirectional, and both-way schemes. The short message latency of MPI Send/Receive for

different messaging schemes does not differ a lot between one-port and two-port

configurations. MPI blocking Send/Receive operation has the minimum latency of 5.4 µs

while non-blocking Send/Receive operation has the latency of 6.0 µs. Among different

messaging schemes, bidirectional-messaging using blocking Send/Receive operations,

shows the largest latency (for messages larger than 128 bytes). As it uses blocking

operations and ping-pong synchronization is performed for every message, it is expected

that bidirectional-messaging scheme shows a larger latency than the others. In fact, both-

way non-blocking Send/Receive test shows the smallest latency, because there is no

synchronization between the messages and both communication parties send message

without waiting for the other one. Using non-blocking operations enhances the latency

too.

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Unidirectional-Blocking Unidirectional-Nonblocking
Bidirectional-Blocking Both-way-Nonblockingtwo-port

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Unidirectional-Blocking Unidirectional-Nonblocking
Bidirectional-Blocking Both-way-Nonblockingone-port

Figure 5.7 MPI blocking and non-blocking Send/Receive unidirectional,

bidirectional, and both-way latency (one/two-ports).

73

Figure 5.8 shows the bandwidth under unidirectional, bidirectional, and both-way

messaging schemes using one- and two-port configurations. In the two-port configuration,

the system reaches the bandwidth of 445 MB/s, 479 MB/s, 443 MB/s, and 742 MB/s for

unidirectional blocking, unidirectional non-blocking, bidirectional blocking, and both-

way non-blocking messaging schemes, respectively. By using one port of the Myrinet

NIC, we achieved bandwidth of 234 MB/s, 243 MB/s, 234 MB/s, and 483 MB/s for

unidirectional blocking, unidirectional non-blocking, bidirectional blocking, and both-

way non-blocking messaging schemes, respectively. This shows that using both ports of

the Myrinet NIC provides a higher bandwidth (50-90% more than one-port). As the MPI

library is built on top of the GM layer, we do not expect it surpass the GM performance.

GM Send/Receive has a higher bandwidth than MPI Send/Receive. GM Send/Receive

achieved 495 MB/s and 247 MB/s for one- and two- port configuration, while MPI

achieved only 479 MB/s and 243 MB/s.

Most of the MPI implementations employ a two-level protocol for point-to-point

messages. MPI uses eager method for sending short messages, while it uses a rendezvous

mechanism for sending long messages. Eager mechanism improves the latency of

messaging while rendezvous mechanism provides a better bandwidth. In Figure 5.8, one

can see the bandwidth suddenly drops at around 16KB messages. It then increases until

reaching its maximum. This is due to the protocol change in MPI as explained above.

0
100
200
300
400
500
600
700
800

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Unidirectional-Blocking Unidirectional-Nonblocking
Bidirectional-Blocking Both-way-Nonblockingtwo-port

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B
/s

)

Unidirectional-Blocking Unidirectional-Nonblocking
Bidirectional-Blocking Both-way-Nonblockingone-port

Figure 5.8 MPI blocking and non-blocking Send/Receive unidirectional,

bidirectional, and both-way bandwidth (one/two-ports).

74

5.3 ARMCI Basic Performance

ARMCI [3] is a library that provides general purpose, efficient and widely

portable RMA operations for contiguous and non-contiguous data transfers. If data is

stored in only one location in the memory, it is called contiguous data. On the other hand,

if data is stored in multiple locations in the memory, it is called non-contiguous data.

Using multidimensional arrays in programs and sending data from different parts of it to

another process, is a simple example of a non-contiguous message-passing. In scientific

computing using non-contiguous data is popular. The performance comparison of

contiguous and non-contiguous ARMCI operations is done by other researchers [33]. In

this chapter, we focus on raw performance of the messaging libraries. Therefore, we

assess the performance of contiguous data transfer of ARMCI. All the measurements in

this part are performed using our ARMCI codes for measuring latency and bandwidth.

As we mentioned earlier, ARMCI uses client-server architecture in clusters of

workstations using GM [35]. Each node of the cluster has a server thread that handles

remote memory operations for each of the user processes running on the node. In order to

assess the best performance of the system in our measurements, we leave one processor

dedicated to the ARMCI server thread.

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Blocking-Put Blocking-Gettwo-port

0
2
4
6
8

10
12
14
16
18

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Blocking-Put Blocking-Getone-port

Figure 5.9 ARMCI blocking Put and Get latency (one/two-port).

ARMCI provides data transfer operations including Put, Get and Accumulate.

Blocking and non-blocking one-sided communication is supported in ARMCI. Figure 5.9

compares the latency of ARMCI blocking Put and blocking Get operations for both one-

and two-port configurations of the Myrinet NIC. ARMCI blocking Put operation has

75

smaller latency than ARMCI blocking Get operation using either one or two ports of the

Myrinet NIC. However, we do not see a big difference between their latencies. The

smallest latency of ARMCI blocking Put is 9.8 microseconds using one port of the

Myrinet NIC, and similarly 10.6 microseconds for ARMCI blocking Get. When using

two ports of the Myrinet NIC, the smallest latency of ARMCI blocking Put is 10.3

microseconds and similarly 11.0 microseconds for ARMCI blocking Get.

Figure 5.10 compares the latency of ARMCI non-blocking Put and non-blocking

Get operations for both one- and two-port configurations of the Myrinet NIC. Similar to

blocking operations of ARMCI, non-blocking Put operation has smaller latency than non-

blocking Get operation using either one or two ports of the Myrinet NIC. Non-blocking

Put and Get latencies have very close latencies. The smallest latency of ARMCI non-

blocking Put is 5.4 microseconds using one port of the Myrinet NIC, and similarly 5.5

microseconds for ARMCI non-blocking Get. When using two ports of the Myrinet NIC,

the smallest latency of ARMCI non-blocking Put is 5.4 microseconds and similarly 5.6

microseconds for ARMCI non-blocking Get.

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Nonblocking-Put Nonblocking-Gettwo-port

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Nonblocking-Put Nonblocking-Getone-port

Figure 5.10 ARMCI non-blocking Put and Get latency (one/two-port).

Figure 5.11 presents the bandwidth comparison of ARMCI blocking Put and Get

on one- and two-port configuration of the Myrinet NIC. Bandwidth of blocking Put and

Get operations on the one-port configuration are very similar. Maximum bandwidth of

246 MB/s is reached with blocking Put and Get operations on the one-port configuration.

When using two ports of the Myrinet NIC, ARMCI blocking Put outperforms the ARMCI

blocking Get operation and it reaches to a bandwidth of 489 MB/s while the bandwidth of

ARMCI blocking Get is 133 MB/s for message sizes between 32 KB and 1MB. ARMCI

76

blocking Get reaches the bandwidth of 190 MB/s at the message size of 8KB. We

investigated the blocking bandwidth drop at 16KB messages under two-port

configuration, but it is not quite clear whether this drop is due to the ARMCI library or

the GM implementations.

Figure 5.12 presents the bandwidth comparison of ARMCI non-blocking Put and

Get on one- and two-port configuration of the Myrinet NIC. Similar to the blocking

operations, bandwidth of non-blocking Put and Get operations on the one-port

configuration are very close. Maximum bandwidth of 247 MB/s is reached with non-

blocking Put and Get operations on the one-port configuration. Similar to blocking

operations, when using two ports of the Myrinet NIC, ARMCI non-blocking Put

outperforms the ARMCI non-blocking Get operation and it reaches to a bandwidth of 494

MB/s while the bandwidth of ARMCI non-blocking Get is 133 MB/s for message sizes

between 32 KB and 1MB. ARMCI non-blocking Get reaches the bandwidth of 362 MB/s

at the message size of 4KB.

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Blocking-Put Blocking-Gettwo-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Blocking-Put Blocking-Getone-port

Figure 5.11 ARMCI blocking Put and Get bandwidth (one/two-port).

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Nonblocking-Put Nonblocking-Gettwo-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Nonblocking-Put Nonblocking-Getone-port

Figure 5.12 ARMCI non-blocking Put and Get bandwidth (one/two-port).

77

0

5

10

15

20

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Nonblocking-Put Nonblocking-Get
Blocking-Put Nonblocking-Get

two-port

0
2
4
6
8

10
12
14
16
18

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

Nonblocking-Put Nonblocking-Get
Blocking-Put Blocking-Get

one-port

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B
/s

)

Nonblocking-Put Nonblocking-Get
Blocking-Put Blocking-Get

two-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Nonblocking-Put Nonblocking-Get
Blocking-Put Blocking-Get

one-port

Figure 5.13 Latency and bandwidth comparison of ARMCI blocking and non-

blocking Put and Get.

Obviously, the non-blocking ARMCI operations show a better performance than

the blocking ones. For both blocking and non-blocking ARMCI operations, Put performs

better, when both ports of the Myrinet NIC is utilized, while Get operation performs

better on a one-port configuration of the Myrinet NIC. Figure 5.13 compares ARMCI

blocking and non-blocking RDMA operations together. It is evident that non-blocking

Put has the best performance among blocking and non-blocking RDMA operations, while

blocking Get shows a poor performance. Get operations are very inefficient compared to

two-port configuration of the Myrinet NIC.

5.4 Overall Performance Comparison

It is possible to utilize different communication libraries in the parallel

applications. We evaluated the basic performance of three different communication

libraries: GM, MPI, and ARMCI, in the previous sections. It is important to understand

the performance differences of these libraries in order to tune the performance of

applications on clusters. In this section, we compare the latency and the bandwidth of

78

MPI Send/Receive, GM Send/Receive, GM Put and Get, and ARMCI Put and Get

operations.

Table 5.2 compares the latency of MPI Send/Receive, GM Send/Receive, GM Put

and Get, and ARMCI non-blocking Put and Get operations. We showed in the previous

section that ARMCI non-blocking Put and Get operations outperform the ARMCI

blocking Put and Get operations, therefore we do not include those in the table. Short

message latency of MPI blocking and non-blocking Send/Receive, GM Send/Receive, GM

RDMA Put, and ARMCI non-blocking RDMA Put and Get operations are very close and

between 4.6 and 6.0 µs on one- and two-port utilized NICs. GM RDMA Get shows a

larger short message latency of 9.4 µs compared to the other operations when using two

ports of the Myrinet NIC, while it has 5.6 µs latency on the one-port configuration.

When utilizing two ports of the Myrinet NIC, GM Put shows the best bandwidth

amongst the MPI, GM, and ARMCI operations. MPI blocking and non-blocking

Send/Receive, GM Send/Receive, GM Put, and ARMCI non-blocking Put operations

achieve bandwidth of 424 MB/S, 457 MB/S, 472 MB/S, 470 MB/S, and 471 MB/S,

respectively. Both GM and ARMCI Get operations perform poor compared to the Put

operations or two-sided message-passing operations. GM and ARMCI Get operations

achieve bandwidth of 130 MB/S and 127 MB/S, respectively. The bandwidths calculated

above are for the message size of one megabyte.

When using one-port configuration of the Myrinet NIC, interestingly, MPI non-

blocking Send/Receive, GM Send/Receive, GM Put and Get, and ARMCI non-blocking

Put and Get operations all achieve a bandwidth between 232 MB/S and 236 MB/S. MPI

blocking Send/Receive achieves bandwidth of 223 MB/S for one megabyte message sizes.

79

Table 5.2 Latency of MPI, GM, and ARMCI operations in µs (one- and two-port).

two-port MPI (Send/Receive) GM ARMCI
(Nonblocking)

Message Blocking Nonblocking Send/Recv Put Get Put Get
1 5.4 6.0 4.6 5.5 9.4 5.4 5.6
2 5.4 6.1 4.6 5.5 9.4 5.4 5.6
4 5.4 6.0 4.6 5.5 9.4 5.4 5.6
8 5.4 6.0 4.6 5.5 9.4 5.4 5.6

16 5.4 6.0 4.6 5.5 9.5 5.4 5.6
32 5.4 6.0 4.6 5.5 9.5 5.4 5.6
64 5.4 6.0 4.7 5.5 9.6 5.4 5.6
128 5.5 6.1 4.9 5.6 10.1 5.5 5.7
256 5.6 6.1 5.7 5.7 10.6 5.5 5.8
512 5.8 6.3 5.8 5.9 12.2 5.7 5.9
1K 6.2 6.5 6.2 6.2 14.8 6.0 6.2
2K 7.5 16.6 7.2 7.1 19.6 6.7 11.9
4K 13.4 15.9 23.4 9.5 30.2 9.3 11.3
8K 21.6 22.1 18.5 17.8 60.2 16.8 36.6
16K 70.6 41.9 34.1 34.3 119.8 33.2 116.6
32K 106.7 73.5 67.1 67.5 239.1 66.3 246.1
64K 179.6 138.9 133.3 133.8 477.9 132.6 491.9

128K 325.1 274.3 265.5 266.5 955.5 265.0 983.9
256K 611.1 545.0 530.0 531.9 1910.7 530.2 1967.5
512K 1197.3 1090.6 1059.0 1062.7 3820.7 1060.3 3934.7
1M 2355.2 2185.1 2117.1 2124.3 7641.2 2120.5 7868.3

one-port
1 5.4 6.0 4.6 5.5 5.6 5.4 5.5
2 5.4 6.0 4.6 5.5 5.6 5.4 5.5
4 5.4 6.0 4.6 5.5 5.6 5.4 5.5
8 5.4 6.0 4.6 5.5 5.6 5.4 5.5

16 5.4 6.0 4.6 5.5 5.6 5.4 5.5
32 5.4 6.0 4.6 5.5 5.6 5.4 5.5
64 5.4 6.0 4.7 5.5 5.6 5.4 5.5
128 5.5 6.1 4.8 5.5 5.7 5.4 5.6
256 5.6 6.1 5.7 5.6 5.8 5.5 5.7
512 5.7 6.2 5.8 5.8 6.0 5.6 5.8
1K 6.2 6.5 6.2 6.2 6.3 6.0 6.2
2K 8.4 17.2 9.0 8.9 8.9 8.4 8.4
4K 16.8 14.7 17.4 17.3 17.3 16.6 16.6
8K 33.3 24.9 33.8 33.9 33.8 33.2 33.1
16K 98.0 88.0 66.9 67.0 66.9 66.3 66.2
32K 167.3 139.0 133.0 133.2 132.9 132.5 132.3
64K 306.1 271.0 265.2 265.7 265.1 265.0 264.5

128K 583.8 538.9 529.6 530.6 529.4 530.0 528.9
256K 1139.3 1074.6 1058.4 1060.4 1057.9 1059.9 1057.9
512K 2251.8 2150.9 2116.3 2120.1 2115.0 2119.7 2115.7
1M 4472.6 4304.5 4231.8 4239.5 4229.3 4239.4 4231.4

80

5.4.1 Observations

As GM provides low-level functions, it is not suitable for developing applications.

ARMCI provides higher-level functions than GM. However, ARMCI functions are

mostly used in implementing communication libraries, such as Global Array [36]. We

look into the potential benefits of using ARMCI functions in applications. Figure 5.14

compares the latency and bandwidth of MPI Send/Receive, GM Send/Receive, and

ARMCI blocking and non-blocking Put on one- and two-port configurations of the

Myrinet NIC. One can see that after message size of 8KB, ARMCI operations perform

more efficiently than the MPI blocking functions (ARMCI Nonblocking operations

outperform for some messages shorter than this too). This improvement potential opens

up the debate whether replacing MPI functions with ARMCI functions will improve the

performance of communication or the applications. We address this question in the next

chapter.

To have an idea of how much performance improvement we may gain by moving

away from MPI functions to ARMCI functions in the applications, in Table 5.3 we

present the communication latency difference of MPI and ARMCI. Latency differences

for both blocking and non-blocking operations are evaluated on one- and two-port utilized

configurations of the Myrinet NIC. The negative numbers in the table show that MPI

outperforms ARMCI, while positive numbers show the better performance of ARMCI. In

order to locate easily the message sizes that ARMCI outperforms MPI, we have shaded

the corresponding boxes.

ARMCI blocking Put outperforms the MPI blocking and non-blocking

Send/Receive for messages larger than 8KB, and 256KB, respectively (under one/two-

port). Latency of ARMCI non-blocking Put operations is equal or smaller than MPI

blocking/non-blocking Send/Receive for all the messages sizes between 1B-1MB (expect

for MPI non-blocking with messages size of 4KB and 8KB under one-port). The

maximum communication performance improvement of ARMCI non-blocking Put over

MPI blocking is 53%, and 32% under two-port and one-port, respectively (with 16KB

messages). The maximum improvement of ARMCI non-blocking Put over MPI non-

blocking is 59%, and 51% under two-port and one-port, respectively (with 2KB

messages).

81

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

MPI Send/Receive GM Send/Receive
ARMCI Blocking-Put ARMCI Nonblocking-Put

two-port

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512 1K

Message size (bytes)

Ti
m

e
(µ

s)

MPI Send/Receive GM Send/Receive
ARMCI Blocking-Put ARMCI Nonblocking-Put

one-port

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

MPI Send/Receive GM Send/Receive
ARMCI Blocking-Put ARMCI Nonblocking-Puttwo-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)
Ba

nd
w

id
th

 (M
B/

s)

MPI Send/Receive GM Send/Receive
ARMCI Blocking-Put ARMCI Nonblocking-Put

one-port

Figure 5.14 Latency and bandwidth comparison of MPI blocking Send/Receive, GM

Send/Receive, and ARMCI blocking and non-blocking Put (one/two-port).

When using one port of the Myrinet NIC, not only ARMCI Put operation shows

superior performance to MPI, but also performance of ARMCI Get operation shows the

similar improvement potential. Blocking and non-blocking ARMCI operations (Put/Get)

performs up to 216-241 µs faster than MPI blocking Send/Receive. MPI non-blocking

Send/Receive operations have larger latency of up to 48-73 µs than ARMCI operations.

We believe that the better performance of MPI in short messages is due to its

eager protocol. MPI uses eager method for sending short messages, and rendezvous

mechanism for sending long messages. Eager mechanism improves the latency of

messaging while rendezvous mechanism provides a better bandwidth. In short, using

ARMCI Put (blocking/non-blocking) operations is promising to achieve a better

performance in parallel applications. We investigate this, in more detail, in the next

chapter.

82

Table 5.3 Performance advantage/disadvantage of ARMCI over MPI (in µs).

two-port MPI Blocking MPI Nonblocking MPI Blocking MPI Nonblocking
 ARMCI Blocking ARMCI Nonblocking

Message Put Get Put Get Put Get Put Get
1 -4.9 -5.6 -4.3 -5.0 0.0 -0.2 0.6 0.4
2 -4.9 -5.6 -4.2 -5.0 0.0 -0.2 0.7 0.5
4 -4.9 -5.6 -4.3 -5.0 0.0 -0.2 0.6 0.4
8 -4.9 -5.6 -4.2 -5.0 0.0 -0.2 0.6 0.4

16 -4.9 -5.6 -4.3 -5.1 0.0 -0.2 0.6 0.4
32 -5.0 -5.8 -4.3 -5.2 0.0 -0.2 0.6 0.4
64 -5.1 -6.0 -4.5 -5.4 0.0 -0.2 0.6 0.4
128 -5.0 -6.3 -4.4 -5.7 0.0 -0.2 0.6 0.4
256 -5.5 -7.0 -5.0 -6.4 0.1 -0.2 0.6 0.4
512 -7.0 -8.3 -6.5 -7.8 0.1 -0.1 0.6 0.4
1K -9.0 -11.0 -8.7 -10.7 0.2 -0.1 0.5 0.3
2K -13.0 -16.1 -3.9 -7.0 0.7 -4.5 9.9 4.7
4K -18.7 -23.3 -16.1 -20.7 4.1 2.1 6.6 4.6
8K -16.5 -21.4 -16.0 -20.9 4.8 -15.0 5.3 -14.5
16K 15.3 -1167.6 -13.4 -1196.4 37.4 -46.0 8.7 -74.7
32K 18.2 -145.0 -15.0 -178.2 40.4 -139.4 7.2 -172.7
64K 24.8 -317.7 -15.8 -358.3 46.9 -312.3 6.2 -353.0

128K 37.9 -663.1 -12.8 -713.8 60.0 -658.9 9.3 -709.6
256K 58.9 -1359.7 -7.2 -1425.8 80.8 -1356.5 14.7 -1422.6
512K 115.0 -2737.8 8.2 -2844.6 137.0 -2737.4 30.3 -2844.1
1M 212.7 -5510.1 42.5 -5680.2 234.7 -5513.1 64.6 -5683.2

one-port
1 -4.4 -5.3 -3.8 -4.7 0.0 -0.1 0.6 0.5
2 -4.4 -5.2 -3.8 -4.5 0.0 -0.1 0.7 0.6
4 -4.5 -5.2 -3.9 -4.6 0.0 -0.1 0.6 0.5
8 -4.4 -5.2 -3.8 -4.6 0.0 -0.1 0.6 0.5

16 -4.4 -5.1 -3.9 -4.6 0.0 -0.1 0.6 0.5
32 -4.5 -5.3 -3.9 -4.7 0.0 -0.1 0.6 0.5
64 -4.6 -5.5 -4.0 -4.9 0.0 -0.1 0.6 0.5
128 -4.5 -5.8 -3.9 -5.2 0.1 -0.1 0.6 0.5
256 -5.1 -6.5 -4.6 -6.0 0.1 -0.1 0.6 0.4
512 -6.5 -7.9 -5.9 -7.4 0.1 -0.1 0.6 0.4
1K -8.5 -10.6 -8.2 -10.3 0.2 0.0 0.5 0.3
2K -11.5 -14.6 -2.8 -5.8 0.0 0.1 8.8 8.9
4K -14.7 -19.3 -16.8 -21.5 0.2 0.3 -1.9 -1.9
8K -14.8 -19.6 -23.2 -28.0 0.1 0.2 -8.3 -8.2
16K 15.3 11.7 5.3 1.6 31.7 31.9 21.7 21.8
32K 18.2 14.5 -10.1 -13.8 34.8 35.1 6.5 6.8
64K 24.4 21.0 -10.7 -14.1 41.1 41.6 6.0 6.5

128K 37.3 34.3 -7.7 -10.6 53.9 54.9 8.9 9.9
256K 62.7 60.8 -1.9 -3.9 79.4 81.4 14.7 16.7
512K 115.5 115.5 14.6 14.6 132.0 136.1 31.1 35.2
1M 216.8 220.7 48.7 52.7 233.2 241.3 65.1 73.2

83

5.5 Summary

In this chapter, we have evaluated the basic performance of different message-

passing libraries on top of the Myrinet Network. We measured the performance of GM

basic function calls, such as program initialization, memory allocation, memory

deallocation, and program termination. We assessed and compared the basic

communication latency performance of GM Send/Receive, GM RDMA, MPI

Send/Receive, and ARMCI RDMA operations for one- and two-port configurations of the

Myrinet network interface card.

We realize that, in general, non-blocking operations perform better than blocking,

and the two-port communication at the GM, MPI, and ARMCI levels (except for the

RDMA read) outperforms the one-port communication for the bandwidth. We notice that

for messages larger than 8KB, ARMCI blocking Put performs better than MPI (under

one/two-port). By using ARMCI operations instead of MPI, we argue there is potential in

improving the communication performance in the parallel applications. This may also

affect the application performance if the communication/computation ratio is large

enough. In the next chapter, we will look into replacing MPI calls with ARMCI RDMA

calls in order to gain a better communication performance in real applications.

84

Chapter 6 Application Performance and

Impact of RDMA

It is important to systematically assess the features and performance of the new

interconnects for high performance clusters. We presented the performance of the two-

port Myrinet networks at the GM, MPI, and ARMCI layers using a complete set of micro-

benchmarks in the previous chapter. We also presented the communication characteristics

of the NAS Multi-Zone benchmarks in detail, and communication characteristics of the

SMG2000 application briefly in chapter four. In this chapter, we show the performance of

these applications under the MPI and MPI-OpenMP programming paradigms, and two-

port and one-port configuration of the Myrinet NIC.

Our experiments presented in the previous chapter show that the two-port

communications at the GM, MPI, and ARMCI levels (except for the RDMA read)

outperform the one-port communication for the bandwidth. In this chapter, we investigate

if this translates in a considerable improvement for our applications.

In the previous chapter, we also showed that ARMCI one-sided operations, for

certain message sizes, outperform the MPI two-sided operations. In the second part of this

chapter, we look into communication performance enhancement of NPB-MZ, using one-

sided communications instead of two-sided MPI communications. We use the

communication characteristics of NPB-MZ applications presented in chapter four and the

basic communication performance of ARMCI and MPI (latency or bandwidth) from

chapter five, to calculate the expected messaging performance improvement of NPB-MZ.

In order to measure the run-time messaging performance improvement of NPB-MZ, we

replace the MPI two-sided communications with ARMCI one-sided operations.

6.1 Mixed-Mode Application Performance

In this section, we first show the speedup of the MPI version of NPB-MZ and

SMG2000 applications in Figure 6.1. Interestingly, the speedup, from one to 16

processes, for the MPI version of the NPB-MZ benchmarks is linear. Applications reach

almost perfect speedup. However, the speedup for SMG2000, MPI version, is not as good

85

as the NPB-MZ. The speedup with 2, 4, 8, and 16 processes are 1.6, 3.5, 6.3, and 6.5,

respectively.

0
2
4
6
8

10
12
14
16
18

BT-B SP-B LU-B BT-C SP-C LU-C SMG2000

Application-Class

Sp
ee

du
p

2 4 8 16

Figure 6.1 Speedup of MPI version of NPB-MZ and SMG2000 (two-port).

BT-MZ-B

0
500

1000
1500
2000
2500
3000
3500

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

BT-MZ-C

0
2000
4000
6000
8000

10000
12000
14000

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

SP-MZ-B

0

500

1000

1500

2000

2500

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

SP-MZ-C

0

2000

4000

6000

8000

10000

12000

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

LU-MZ-B

0
500

1000
1500
2000
2500
3000
3500

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

LU-MZ-C

0
2000
4000
6000
8000

10000
12000
14000
16000

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

Figure 6.2 Execution time of NPB-MZ applications on Myrinet network (two-port).

86

It is possible to run different combinations for the number of threads and

processes in mixed-mode applications across a cluster. Jin and his colleague [23] have

examined the effectiveness of hybrid parallelization paradigms in NPB-MZ on three

different parallel computers. In this section, we present the performance of NPB-MZ

mixed-mode applications, as well as SMG2000 of the ASCI purple suite with different

combinations of number of threads and processes. We would like to know which parallel

programming paradigm, MPI or MPI-OpenMP, gives the best performance on our cluster.

Figure 6.2 and Figure 6.3 present the execution time of BT-MZ, SP-MZ, LU-MZ, and

SMG2000 applications on our platform. We chose the input size of 32x32x32 for the

serial version of SMG2000. We scale it down proportionally with the number of

processes to keep the total problem size constant for all runs.

The X-axis in Figure 6.2 and Figure 6.3 shows the number of processes and

threads for each case. For instance, “4P2T” means that there are four processes evenly

divided among four nodes of our cluster, where each process has two threads running on

its respective node. By using this approach, we are able to compare the performance of

the applications under pure MPI, and the mixed MPI-OpenMP. From the results, one can

claim that the MPI version of the applications performs better than their mixed-mode

versions. For instance, for BT-MZ with class C (BT-C), 2P1T runs faster than 1P2T;

4P1T runs faster than 2P2T; and so on. The same is true for the SMG2000. In the next

section, we will discuss the application performance difference, when using one-port or

two-port of the Myrinet NIC.

SMG2000 - two-port

0

5

10

15

20

25

30

1P1T 2P1T 1P2T 4P1T 2P2T 8P1T 4P2T 16P1T 8P2T

Processes/Threads

E
xe

c.
 T

im
e

(s
)

Figure 6.3 Execution time of SMG2000 on Myrinet Network (two-port).

87

6.2 Two-port Myrinet Card Application Performance

In the previous chapter, we studied the communication performance of the

Myrinet network using one or two ports of the Myrinet NIC. It is important to discover if

the bandwidth gain offered by the two-port NIC is actually beneficial to the application

layer. In order to study the effect of port utilization of the two-port Myrinet cards, we

have evaluated the performance of NPB-MZ and SMG2000 using one and two ports of

the Myrinet NIC (for both MPI and MPI-OpenMP). The difference in performance is

minimal, with at most 3% improvements for the two-port cases. It is noteworthy to

mention that these applications are compute-bound. The communication time is always

less than 5% of the total execution time. Therefore, the improvement in communication

cannot translate to application performance.

As we showed in chapter four, the message sizes for SMG2000 are short (less

than 1KB) so the two-port Myrinet network cannot offer any improvement over the one-

port. However, this is not the case for the NPB-MZ applications. Having a closer look at

the distribution of message sizes for the NPB-MZ applications in chapter four, it reveals

that the BT-MZ uses a large number of different message sizes. It uses up to 21 different

message sizes in class C (16 in class B). The shortest and the longest messages are 6KB

and 55KB in class C, respectively. In class B, 4KB and 41KB are the shortest and the

longest messages, respectively. The distribution of message sizes sent by the SP-MZ, and

LU-MZ are bimodal (14KB, and 21KB for SP-B; 18KB, and 28KB for SP-C; 29KB, and

43KB for LU-B; and 79KB, and 119KB for LU-C). Message sizes and the number of

messages sent for the NPB-MZ applications suggest these applications are bandwidth-

bound. Therefore, the two-port Myrinet network should improve the performance over

the one-port. A setback in performance improvement could be associated with the fact

that the one-port NIC can offer a better computation/communication overlap than the

two-port [55].

6.3 ARMCI One-Sided vs. MPI Two-Sided

MPI send and receive operations provide the programmer with a two-sided

communication model. In the two-sided communication, both the data sender and the data

receiver parties have to call the corresponding API functions. In MPI two-sided

88

communication, the data sender process executes an MPI_Send operation and the data

receiver process executes an MPI_Receive operation accordingly.

ARMCI provides one-sided communication operations. In the ARMCI one-sided

operations, processes involved in communication have direct access to the memory of

their peers. Only one of the communication peers needs to execute an operation. For

example, the data sender process executes a Write/Put operation while the data receiver

process does not need to execute any operation. The data will be written to the memory

location according to the Write/Put operation. On the other hand, a process is able to

receive data from other processes by executing Read/Get operation. Again, the process

that provides the data does not need to perform any action. Once the Read/Get operation

is issued, the data will be transferred from the memory of data provider process to the

memory of the issuer process.

6.3.1 Expected per Message Communication Improvement

In the previous chapter, we showed that ARMCI one-sided operations outperform

MPI two-sided operations for certain message sizes. In this section, we use this feature in

enhancing the communication performance of NPB-MZ by utilizing ARMCI one-sided

communications instead of MPI two-sided communications. We use the communication

characteristics of NPB-MZ applications from chapter four and the basic communication

performance of ARMCI and MPI (latency or bandwidth) presented in chapter five, to

calculate the expected messaging performance improvement in NPB-MZ. NPB-MZ

applications use non-blocking MPI Send/Receive operations.

In chapter five, we presented the communication latency of ARMCI and MPI

operations for some certain message sizes (powers of two from one byte to one

Megabyte). However, NPB-MZ applications exhibit different message sizes. Therefore,

we measure the ARMCI and MPI communication latency of different message sizes used

in the NPB-MZ applications.

Table 6.2, Table 6.3, Table 6.1, Table 6.4, and Table 6.5 show the expected

difference in latency of non-blocking MPI Send/Receive operations and ARMCI blocking

and non-blocking Put operations, when using one or two ports of the Myrinet NIC for

different message sizes in NPB-MZ. The negative numbers in the tables show that MPI

89

outperforms ARMCI, while positive numbers show otherwise. In order to observe easily

the message sizes that ARMCI outperforms MPI, we have shaded the corresponding

boxes. It is noteworthy to mention that these latency differences are calculated per

message. The number of times that each message size is used in each application is also

shown in the tables. Later in section 6.3.2, we will determine the total communication

latency difference in the application.

Table 6.1 Estimated communication improvement of BT-MZ-C per message.

Estimated performance

difference (µs)

Number of Messages/Application ARMCI
Blocking

ARMCI
Nonblocking Message

size (KB)
C-2 C-4 C-8 C-16 C-32 2-port 1-port 2-port 1-port

6.1 3216 4422 4824 5628 6030 -15.7 -20.5 2.5 -6.7
8.1 5628 7236 9246 10452 12864 -13.7 -20.0 3.3 -5.7

10.2 3216 5628 8844 9246 12864 -16.3 -17.0 4.3 -2.8
11.2 1608 3618 4824 5628 6030 -18.4 -15.3 4.1 -0.1
12.2 2412 6432 10452 11256 12060 -13.8 -16.4 4.1 -2.2
13.2 1608 2814 6030 6030 6432 -14.5 -15.0 4.3 -0.7
14.2 804 2814 5226 5628 6432 -15.0 -14.6 4.6 -0.4
15.2 804 3216 5226 5226 6030 -16.6 -18.8 4.5 -2.2
16.3 1608 2814 3216 5628 6030 -5.5 24.5 14.2 38.5
17.3 3216 6432 9246 10452 12060 -7.4 -7.9 13.2 6.5
19.3 1608 5628 6834 11658 11658 -10.0 -10.4 14.5 6.4
21.3 2412 4824 9246 10452 12864 -14.8 -7.8 5.7 6.4
24.4 1608 4020 10050 11658 12060 -8.8 -7.9 12.6 6.4
26.4 2412 5628 7236 9648 12462 -7.8 -8.0 14.0 6.7
29.5 1608 4824 7638 11658 12060 -14.9 -7.8 5.5 6.6
33.5 1608 5226 6030 11256 12864 -7.7 -7.3 13.3 6.9
36.6 2412 4422 6834 10050 12864 -13.3 -7.4 4.7 7.0
41.6 804 2412 4422 5226 6432 -7.6 -7.5 13.4 6.9
45.7 804 2010 2814 6432 6432 -14.8 -7.3 5.5 6.9
50.8 804 1206 4422 5226 6030 -8.1 -8.1 14.2 6.9
55.9 804 1608 4422 4422 6432 -15.1 -10.3 6.9 6.7

90

Table 6.2 Estimated communication improvement of BT-MZ-B (2 processes) per

message.

 Estimated performance difference (µs)
ARMCI Blocking ARMCI NonBlocking Message

size (KB)

Number of
Messages/
Application 2-port 1-port 2-port 1-port

5.3 2412 -14.6 -18.8 1.7 -5.4
6.4 1608 -16.2 -18.9 2.6 -4.5
8.2 1608 -13.8 -14.4 3.2 -0.3
8.8 1608 -14.7 -15.7 3.9 -1.2

10.5 1608 -17.1 -15.6 4.3 -0.9
11.1 804 -18.5 -16.4 4.1 -1.2
12.9 1608 -14.3 -15.9 4.2 -1.5
14.1 1608 -14.8 -16.2 4.8 -1.8
17.0 804 -7.2 -7.9 13.1 6.5
22.3 804 -13.8 -8.1 6.3 6.7
26.4 1608 -7.8 -8.0 14.0 6.7
27.5 1608 -10.1 -10.3 14.7 6.5
32.2 804 -9.0 -7.5 12.6 6.8
41.0 804 -7.4 -7.5 13.1 6.9

Table 6.3 Estimated communication improvement of BT-MZ-B (4-32 processes) per

message.

 Estimated performance difference (µs)
Number of

Messages/Application ARMCI Blocking ARMCI NonBlocking Message
size (KB)

B-4 B-8 B-16 B-32 2-port 1-port 2-port 1-port
5.3 2412 2010 3216 3216 -14.6 -18.8 1.7 -5.4
6.4 2814 2412 3216 3216 -16.2 -18.9 2.6 -4.5
8.2 1608 2814 3216 3216 -13.8 -14.4 3.2 -0.3
8.8 2814 2814 3216 3216 -14.7 -15.7 3.9 -1.2

10.5 2412 2814 2814 3216 -17.1 -15.6 4.3 -0.9
11.1 1608 3216 3216 3216 -18.5 -16.4 4.1 -1.2
12.9 2010 2412 3216 3216 -14.3 -15.9 4.2 -1.5
14.1 2412 3216 3216 3216 -14.8 -16.2 4.8 -1.8
16.4 2814 3216 3216 3216 -7.4 -7.8 12.7 6.5
17.0 1206 2412 2814 3216 -7.2 -7.9 13.1 6.5
21.1 2010 2010 2814 3216 -14.4 -7.9 5.6 6.6
22.3 2412 2814 3216 3216 -13.8 -8.1 6.3 6.7
26.4 804 2412 3216 3216 -7.8 -8.0 14.0 6.7
27.5 1608 3216 2814 3216 -10.1 -10.3 14.7 6.5
32.2 2010 2412 2412 3216 -9.0 -7.5 12.6 6.8
41.0 1206 2010 3216 3216 -7.4 -7.5 13.1 6.9

91

Table 6.4 Estimated communication improvement of SP-MZ per message.

 Estimated performance difference (µs)

 ARMCI Blocking ARMCI
Nonblocking

Message
size (KB)

Number of
Messages/
Application 2-port 1-port 2-port 1-port

SP-B-2 14.1 12832 -14.8 -16.2 4.8 -1.8
SP-B-4 14.1 36892 -14.8 -16.2 4.8 -1.8
 21.1 6416 -14.4 -7.9 5.6 6.6
SP-B-8 14.1 51328 -14.8 -16.2 4.8 -1.8
SP-B-16 14.1 51328 -14.8 -16.2 4.8 -1.8
 21.1 12832 -14.4 -7.9 5.6 6.6
SP-B-32 14.1 51328 -14.8 -16.2 4.8 -1.8
 21.1 44912 -14.4 -7.9 5.6 6.6
SP-C-2 18.3 25664 -7.7 -8.0 14.0 6.6
SP-C-4 18.3 76992 -7.7 -8.0 14.0 6.6
 28.4 20050 -13.1 -7.8 4.9 6.5
SP-C-8 18.3 176440 -7.7 -8.0 14.0 6.6
 28.4 17644 -13.1 -7.8 4.9 6.5
SP-C-16 18.3 205312 -7.7 -8.0 14.0 6.6
SP-C-32 18.3 205312 -7.7 -8.0 14.0 6.6
 28.4 25664 -13.1 -7.8 4.9 6.5

Table 6.5 Estimated communication improvement of LU-MZ per message.

 Estimated performance difference (µs)

 ARMCI Blocking ARMCI
Nonblocking

Message
size (KB)

Number of
Messages/
Application 2-port 1-port 2-port 1-port

LU-B-2 29.3 4016 -15.1 -7.8 5.4 6.5
LU-B-4 29.3 8032 -15.1 -7.8 5.4 6.5
LU-B-8 29.3 8032 -15.1 -7.8 5.4 6.5
 43.4 4016 -10.0 -9.8 14.6 7.0
LU-B-16 29.3 8032 -15.1 -7.8 5.4 6.5
 43.4 8032 -10.0 -9.8 14.6 7.0
LU-C-2 79.2 6024 -14.6 -9.9 6.7 6.9
LU-C-4 79.2 8032 -14.6 -9.9 6.7 6.9
LU-C-8 79.2 8032 -14.6 -9.9 6.7 6.9
 119.8 4016 -12.8 -8.2 9.0 8.7
LU-C-16 79.2 8032 -14.6 -9.9 6.7 6.9
 119.8 8032 -12.8 -8.2 9.0 8.7

One can observe that the ARMCI blocking Put does not have a better performance

than the MPI Send/Receive operations for the NPB-MZ message sizes. ARMCI non-

blocking Put, when using two ports of the Myrinet NIC, shows a smaller latency than the

MPI non-blocking Send/Receive for all of the message sizes used in BT-MZ, SP-MZ, and

92

LU-MZ. In this case, the expected time difference for message sizes in NPB-MZ is up to

14µs per message. When using the one-port configuration of the Myrinet NIC, ARMCI

non-blocking Put shows a smaller latency than the MPI non-blocking Send/Receive for

most of the message sizes used in BT-MZ, and SP-MZ. This is true, for all the message

sizes used in LU-MZ as well. The latency difference is up to 38µs for this case.

6.3.2 Expected Overall Communication Improvement

To determine the total communication time improvement that an application can

benefit by using ARMCI instead of MPI operations, we multiply the number of messages

by the estimated latency difference per message, and then divide them by the number of

running processes. Table 6.6, Table 6.7, and Table 6.8 present the total communication

time improvement for NPB-MZ applications when replacing their MPI non-blocking

Send/Receive calls with the ARMCI blocking and non-blocking Put operations. When

using two ports of the Myrinet NIC, using ARMCI operations is beneficial for different

number of processes of NPB-MZ applications, while using one port of the NIC, ARMCI

does not improve the communication performance of the SP-MZ-B (except for 32

processes). One can easily notice the positive effect of using ARMCI non-blocking Put

operations on the communication performance of the applications.

The expected communication performance improvement for BT-MZ is between

12-173 milliseconds under two-port NICs, and between 4-79 milliseconds under one-port.

For SP-MZ, it is between 16-319 milliseconds, and between 6-160 milliseconds, under

two-port and one-port, respectively; and finally, for LU-MZ, it is between 8-20

milliseconds and between 7-21 milliseconds under two-port and one-port, respectively. It

is interesting to observe that the performance gain is larger for larger classes with smaller

number of processes. Looking back at number of messages per process for NPB-MZ

applications in Figure 4.1, we see that number of sent messages per process decreases as

the number of processes increase. In addition, larger class size has larger number of

messages per process.

93

Table 6.6 Estimated improvement of BT-MZ communication time (ms).

 blocking non-blocking
Class Processes 2-port 1-port 2-port 1-port

B 2 -128 -134 63 6
B 4 -105 -104 55 13
B 8 -67 -65 40 12
B 16 -39 -38 23 6
B 32 -20 -20 12 4
C 2 -257 -235 151 62
C 4 -269 -239 173 79
C 8 -212 -188 136 62
C 16 -131 -110 90 48
C 32 -76 -64 51 27

Table 6.7 Estimated improvement of SP-MZ communication time (ms).

 blocking non-blocking
Class Processes 2-port 1-port 2-port 1-port

B 2 -95 -104 31 -12
B 4 -160 -162 53 -6
B 8 -95 -104 31 -12
B 16 -59 -58 20 -1
B 32 -44 -37 16 6
C 2 -99 -103 179 85
C 4 -214 -194 293 160
C 8 -199 -194 319 160
C 16 -99 -103 179 85
C 32 -60 -58 94 48

Table 6.8 Estimated improvement of LU-MZ communication time (ms).

 blocking non-blocking
Class Processes 2-port 1-port 2-port 1-port

B 2 -30 -16 11 13
B 4 -30 -16 11 13
B 8 -20 -13 13 10
B 16 -13 -9 10 7
C 2 -44 -30 20 21
C 4 -29 -20 13 14
C 8 -21 -14 11 11
C 16 -14 -9 8 8

94

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingBT-MZ - 2Port

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingBT-MZ - 1Port

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingSP-MZ - 2Port

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingSP-MZ - 1Port

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingLU-MZ - 2Port

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

7%

9%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

Blocking NonBlockingLU-MZ - 1Port

Figure 6.4 Expected Messaging Improvement of Blocking and Non-Blocking

ARMCI over MPI for BT-MZ, SP-MZ, and LU-MZ.

The expected communication time improvements (percentage) using ARMCI are

shown in Figure 6.4. Our estimations show 2.2-3.1% improvement for BT-MZ

communication time when using two ports of the Myrinet NIC, and 0.3-1.2% when using

only one port. SP-MZ shows an improvement potential of 1.4-5.9% when using two

ports, and 1.2-2.9% when using one port. LU-MZ does not seem to have a good

improvement potential. Our estimations show 0.1-1.1% expected improvement for LU-

MZ when using two ports of the NIC, and 0.2-0.7% when utilizing only one port of the

Myrinet NIC.

95

6.3.3 NPB-MZ Communication Patterns

In this section, we describe the communication patterns of NPB-MZ applications.

NPB-MZ applications have two phases of execution: computation and communication.

For each process, these two phases are separate from each other. By that, we mean one

process does not enter the computation phase until it finishes the communication phase,

and vice versa. It is noteworthy to mention that it is possible the computation phase of

one process overlaps with the communication phase of another process.

[1] P0 [2] P1 [3] P2 [4] P3 [5] P4 [6] P5 [7] P6 [8] P7

[9] P0 [10] P1 [11] P2 [12] P3 [13] P4 [14] P5 [15] P6 [16] P7

[17] P0 [18] P1 [19] P2 [20] P3 [21] P4 [22] P5 [23] P6 [24] P7

[25] P0 [26] P1 [27] P2 [28] P3 [29] P4 [30] P5 [31] P6 [32] P7

[33] P0 [34] P1 [35] P2 [36] P3 [37] P4 [38] P5 [39] P6 [40] P7

[41] P0 [42] P1 [43] P2 [44] P3 [45] P4 [46]P5 [47] P6 [48] P7

[49] P0 [50] P1 [51] P2 [52] P3 [53] P4 [54] P5 [55] P6 [56] P7

[57] P0 [58] P1 [59] P2 [60] P3 [61] P4 [62] P5 [63] P6 [64] P7

Figure 6.5 Example of message exchange among zones in NPB-MZ.

96

The workload in NPB-MZ is split into a mesh of zones, as illustrated in Figure

6.5. At the beginning of the program, all the zones are evenly distributed among the

processes. For example if the running class size of the application has 64 zones, and the

application is running with 8 processes, 8 zones are assigned to each process. After

finishing computation of each zone, the owner process of the zone updates the

neighbouring zones with the new values. Once one process finishes the computation of all

its zones, it enters the communication phase and updates all the neighbouring zones (by

sending messages to their owner process). The communication phase completes when

message exchange with all of the neighbouring zones is finished. Once the

communication phase is completed, each process continues with another computation

phase.

Do loop (for all the zones belonging to the process)

{

 Computing zone IDs

Receiving message from the zone west (MPI_IRecv)

Sending message to the zone west (MPI_ISend)

Receiving message from the zone east (MPI_IRecv)

Sending message to the zone east (MPI_ISend)

Receiving message from the zone south (MPI_IRecv)

Sending message to the zone south (MPI_ISend)

Receiving message from the zone north (MPI_IRecv)

Sending message to the zone north (MPI_ISend)

}

Wait for completion of all the non-blocking operations (MPI_Waitall)

Figure 6.6 Pseudo code for NPB-MZ communication.

The message exchange algorithm with the neighbouring zones for a few zones is

illustrated in Figure 6.5. The processes are shown with P0-P8 and zone numbers are

written inside the bracket. Each zone performs the depicted message exchange with its

neighbours. To have a better understanding of the message exchange algorithm in NPB-

MZ, pseudo code of the NPB-MZ communication is presented in Figure 6.6. This

message exchange algorithm leads to a loose synchronization among all the zones (and

their owner processes). First, each process computes its zone IDs. The process sends a

message to the four neighbours of its zones (west, east, south, and north). Each zone

97

receives a message from each of its four neighbours as well. At the end, the program

assures that the non-blocking message exchange is completed.

6.3.4 Converting MPI Communications to ARMCI

BT-MZ, SP-MZ, and LU-MZ use MPI non-blocking communication for

exchanging data among processes. To verify our expectations as claimed in the previous

section, and to see the impact of replacing two-sided communication operations with one-

sided operations, we modified the NPB-MZ codes and replaced their MPI non-blocking

Send/Receive communications with ARMCI blocking and non-blocking Put operations.

As we used different APIs in our code, some codes had to be added to make the code

change possible. However, the code overhead in our applications was minimal.

Replacing MPI calls with ARMCI functions is not an easy task. NPB-MZ

applications are written in FORTRAN language, while ARMCI supports C programming

language. ARMCI provides data transfer operations including put, get and accumulate.

Utility operations such as memory allocation and deallocation and error handling are

supported in ARMCI. However, ARMCI only supports communication that targets

remote memory allocated via the provided memory allocator routine, ARMCI_Malloc().

The address of the allocated memory region by ARMCI is stored in pointers. However, C

pointers are not compatible with FORTRAN pointers.

Jin and Jost [22] have evaluated the feasibility of RMA programming on shared

memory parallel computers. They have discuss different RMA based implementations of

selected CFD application benchmark kernels, such as BT, SP, and LU of NPB, and have

compared them to corresponding message passing based codes. They have used MPI for

the message-passing implementation, and shared memory parallelization library (SMPlib)

and the MPI-2 extension to the MPI Standard for the RMA based implementations. They

have found the RMA programming more scalable than MPI programming.

A pseudo code of the converted code using ARMCI blocking and non-blocking

operations is presented in Figure 6.8 and Figure 6.7, respectively. Instead of sending

messages by MPI_ISend, we use ARMCI blocking/non-blocking Put operations. As the

data receiver is not notified in one-sided communication, a notification message is needed

for the data receiver process. We use the notification functions provided by ARMCI

98

(ARMCI_Notify/Waitnotify) to notify the data receiver process. When using non-blocking

ARMCI operations, we use ARMCI_Waitall function to assure the completion of the

operations.

Do loop (for all the zones belonging to the process)

{

 Computing zone IDs

Writing message to the zone west (ARMCI_NBPut)

Writing message to the zone east (ARMCI_NBPut)

Writing message to the zone south (ARMCI_NBPut)

Writing message to the zone north (ARMCI_NBPut)

}

/* Making sure that ARMCI Non-blocking operations are completed */

ARMCI_Waitall

Do loop (for all the zones belonging to the process)

{

 Computing zone IDs

/* Notifying the peer that the ARMCI_NBPut is completed */

Sending notification to the zone west (ARMCI_notify)

Sending notification to the zone east (ARMCI_notify)

Sending notification to the zone south (ARMCI_notify)

Sending notification to the zone north (ARMCI_notify)

}

Do loop (for all the zones belonging to the process)

{

 Computing zone ids

 /* Making sure that the ARMCI_NBPut of the peer is completed */

Waiting for notification of the zone west (ARMCI_WaitNotify)

Waiting for notification of the zone east (ARMCI_WaitNotify)

Waiting for notification of the zone south (ARMCI_WaitNotify)

Waiting for notification of the zone north (ARMCI_WaitNotify)

}

Figure 6.7 Pseudo code for ARMCI nonblocking version of NPB-MZ

communication.

99

Do loop (for all the zones belonging to the process)

{

 Computing zone IDs

Writing message to the zone west (ARMCI_Put)

/* Notifying the peer that the ARMCI_Put is completed */

Sending notification to the zone west (ARMCI_notify)

Writing message to the zone east (ARMCI_Put)

Sending notification to the zone east (ARMCI_notify)

Writing message to the zone south (ARMCI_Put)

Sending notification to the zone south (ARMCI_notify)

Writing message to the zone north (ARMCI_Put)

Sending notification to the zone north (ARMCI_notify)

}

Do loop (for all the zones belonging to the process)

{

 Computing zone IDs

 /* Making sure that the ARMCI_Put of the peer is completed */

Waiting for notification of the zone west (ARMCI_WaitNotify)

Waiting for notification of the zone east (ARMCI_WaitNotify)

Waiting for notification of the zone south (ARMCI_WaitNotify)

Waiting for notification of the zone north (ARMCI_WaitNotify)

}

Figure 6.8 Pseudo code for ARMCI blocking version of NPB-MZ communication.

6.3.5 Observed Communication Improvement

As stated earlier, ARMCI uses client-server architecture in clusters of

workstations using GM. Each node of the cluster has a server thread that handles remote

memory operations for each of the user processes running on the node. As our cluster

consists of eight dual nodes, we assessed the communication performance of ARMCI

version of NPB-MZ from two to eight processes (each on one node), in order to keep one

processor dedicated to the ARMCI server thread.

We have instrumented the NPB-MZ codes by adding timers to measure the time

each process spends in communication. Processes do not have equal communication time.

We measure the communication time of each process by running the instrumented code.

Figure 6.9 shows the communication times of each process in SP-MZ class C. We

instrumented three versions of the code: original MPI version, ARMCI blocking version,

100

and ARMCI non-blocking version. In the original MPI version, we only inserted

appropriate timers to measure the communication time. In the ARMCI blocking version,

in addition to the inserted timers, we replaced the MPI Send/Receive calls with ARMCI

blocking Put operations. The ARMCI non-blocking version is similar to the blocking

version, except that we used ARMCI non-blocking Put instead of blocking operations. It

is clear that for most of the processes, the code with ARMCI non-blocking calls takes less

amount of time than MPI and ARMCI blocking codes. Figure 6.9.b shows the average

communication time of processes. We ran the instrumented codes a number of times and

calculated the average communication time.

0
1
2
3
4
5
6
7
8

p0 p1 p2 p3 p4 p5 p6 p7

Process

Ti
m

e
(s

)

ARMCI Blocking ARMCI Nonblocking MPI

(a)
0

1

2

3

4

5

6

ARMCI Blocking ARMCI Nonblocking MPI

Ti
m

e
(s

)

(b)

Figure 6.9 (a) Communication time per process, and (b) average communication

time per process for SP-MZ-C (two-port).

Using the above method, we measured the average communication time per

process of the instrumented codes. Figure 6.10 shows the communication time

improvement of NPB-MZ applications using ARMCI functions in percentage format.

Although blocking ARMCI results are not promising, we achieved average improvement

for some cases. When using both ports of the Myrinet NIC, BT-MZ class C shows

communication performance improvement of 7-40%, using ARMCI blocking Put,

whereas non-blocking Put shows performance improvement of 12-35%. BT-MZ does not

show significant improvement when using blocking operations for class B; however, the

communication improves 2-8% for non-blocking operations. When utilizing only one port

of the Myrinet NIC, BT-MZ shows communication improvement of 6-28% and 7-27% by

replacing non-blocking and blocking operations with MPI, respectively.

SP-MZ was the most promising application among NPB-MZ applications for

communication improvement. SP-MZ communication time decreases 4-35% using

101

blocking operations, and 13-21% using non-blocking operations on two-port

configuration of the Myrinet NIC. We achieved 6-27% better communication

performance by using ARMCI blocking Put, and 5-21% improvement using ARMCI non-

blocking Put, under one port of the Myrinet NIC.

Our estimations in the previous section do not show a good improvement potential

for LU-MZ. However, using ARMCI blocking operations communication improves

between 25-40% for some cases under two-port, while using non-blocking operations

decreases the communication time by 3-43% for class C. When using one port of the

Myrinet card, for some cases, LU-MZ communication time improves 1-17% and 2-16%

by using blocking and non-blocking operations, respectively.

-20%

-10%

0%

10%

20%

30%

40%

50%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 2Port

-30%

-20%

-10%

0%

10%

20%

30%

40%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 1Port

-20%

-10%

0%

10%

20%

30%

40%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 2Port

-40%

-30%

-20%

-10%

0%

10%

20%

30%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 1Port

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 2Port

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 1Port

Figure 6.10 Messaging Improvement of blocking and non-blocking ARMCI over

MPI for BT-MZ, SP-MZ, and LU-MZ.

102

The broad range of performance results hints there might be many other factors

affecting our communication timing. We can name operating system load,

synchronization of the nodes, and network traffic contention as some of the possible

reasons. The performance improvement varies across different classes and different

number of processes. The more communication traffic, the more likely improvement in

performance using ARMCI. We investigated the source of broad range of performance,

and we found out it is due to the communication pattern of NPB-MZ applications. The

communication time of each process consists of different timings, such as sending

messages, sending notifications, and waiting for the notification from other zones. The

ARMCI superior performance enhances sending the messages, while the wait for

receiving notifications from other zones (processes) is not directly affected by ARMCI.

To cancel the effect of wait time in the measured communication time of processes, we

choose the process with the shortest communication time in each run. We run the

applications several times. Then, we average the communication time of processes with

the minimum wait. In fact, we measure the communication time with the least wait time

in each run in order to observe the effect of ARMCI on communication time. The

improvement results calculated using this method is presented in Figure 6.11. Using this

method, our results are more consistent and we do not get a broad range of results for

different runs. The minimum and maximum of the measurement are shown by bars in

Figure 6.11.

Using ARMCI non-blocking improves the BT-MZ performance for all of the

classes and number of processes (except for C8) under one and two-port. Its

communication performance improvement is between 23-43% under two-port and

between 4-16% under one-port. ARMCI blocking also improves the BT-MZ

communication under two-port up to 18%.

ARMCI non-blocking operations improve the performance of SP-MZ class B

under two-port by up to 57%. SP-MZ class C with 8 processes also presents 11% of

improvement. SP-MZ-B with eight processes is the only case that shows improvement

under one-port (34%). ARMCI blocking operations did not improve the SP-MZ

communication time.

103

LU-MZ is not improved by using ARMCI under two-port (except for B8). LU-

MZ class C under one-port can benefit in communication time up to 44% and 29% by

using ARMCI blocking and non-blocking operations, respectively.

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 2Port

-15%

-10%

-5%

0%

5%

10%

15%

20%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 1Port

-200%

-150%

-100%

-50%

0%

50%

100%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 2Port

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 1Port

-300%

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 2Port

-80%

-60%

-40%

-20%

0%

20%

40%

60%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 1Port

Figure 6.11 Messaging Improvement of Blocking and Non-Blocking ARMCI over

MPI for BT-MZ, SP-MZ, and LU-MZ (Minimum process time).

Our expected results did not show any potential for improvement by using

blocking operations; however, our empirical results show improvement for many classes

and number of processes of NPB-MZ. We believe this is due to the synchronized

communication pattern of NPB-MZ applications. As explained in the previous section,

each process of NPB-MZ reaches a communication phase after a computation phase. The

communication phase is blocking and the process does not exit this phase until the

104

communications finish. This blocking structure of the communication phase of the code

makes all the processes synchronize with each other to some extents every time they

reach this part of the program. Using non-blocking operations in the part of the code that

itself is blocking, imposes extra synchronization in that section. We think that this extra

synchronization in the code may be the reason for the reduced performance when using

non-blocking operations. In fact, non-blocking operations normally show better

performance in applications where computation and communication can overlap. In a

blocking communication part of the code without any computation, there is not much gain

to use non-blocking operations.

6.4 Summary

In this chapter, we evaluated the performance of NPB-MZ applications under the

MPI and MPI-OpenMP programming paradigms. We showed that for different

combinations of number of processes and threads, pure MPI paradigm outperforms the

Mixed MPI-OpenMP paradigm. This is also true for SMG2000 benchmark from ASCI

purple suite. NPB-MZ scalability is very good on our cluster and it almost reaches the

linear scalability. However, SMG2000 does not show a perfect scalability and it achieves

speedup of 6.5 running on sixteen processors.

We also compared the performance of NPB-MZ and SMG2000 applications on

two-port and one-port configuration of the Myrinet NIC. Our experiments presented in

the previous chapter show that the two-port communication at the GM, MPI, and ARMCI

levels (except for the RDMA read) outperforms the one-port communication for the

bandwidth. We investigated if the performance can be optimally used at the application

layer. However, this did not translate in a considerable improvement at least for our

applications. The difference in performance was minimal, with at most 3% improvements

for the two-port cases. All three of these applications are very compute-bound

application, where they spend most of the time computing rather than communicating.

The time spent in communication is very small compared to the time they spend in

computation.

In this chapter, we looked into whether the performance gain of ARMCI one-

sided operations over MPI two-sided operations can translate in performance for the

105

applications. We tried to enhance the communication performance of NPB-MZ, using

one-sided communications instead of two-sided communications. We estimated the

performance improvement utilizing the communication characteristics of NPB-MZ

applications, and the measured communication latency difference of ARMCI and MPI for

NPB-MZ message sizes. We discovered that ARMCI non-blocking Put operations could

enhance the communication performance of the NPB-MZ applications.

To verify our speculations, we replaced the MPI two-sided communications in the

NPB-MZ applications with ARMCI one-sided operations. The empirical performance of

the modified codes shows performance improvement of up to 43%. Using either ARMCI

blocking and non-blocking Put operations improved the communication performance in

some cases. In some other cases, NPB-MZ did not show any performance improvement.

106

Chapter 7 Conclusion and Future Work

As network computing becomes commonplace, the interconnection networks and

the communication system software become critical in achieving high performance.

Clusters of SMPs have become the ideal platform for high performance computing, as

well as supporting the emerging commercial and networking applications. The choice of

parallel programming paradigm, workload characteristics of the applications, and the

performance of communication subsystem mainly affect the performance of the

applications running on clusters. In this thesis, we have discussed these issues in detail.

OpenMP has emerged as the standard for parallel programming on shared-

memory systems. Message-passing, particularly the Message Passing Interface, is the de

facto standard for parallel programming in network-based computing systems. However,

it is still open to debate whether pure message-passing or mixed MPI-OpenMP is the

programming of choice for higher performance on SMP clusters. To address this

question, we evaluated the performance of NPB-MZ applications under the MPI and

MPI-OpenMP programming paradigms. We showed that for different combinations of

processes and threads, pure MPI paradigm outperforms the Mixed MPI-OpenMP

paradigm. We showed MPI performs better than mixed MPI-OpenMP in NPB-MZ

applications, and SMG2000 benchmark from ASCI purple. NPB-MZ scalability is very

good on our cluster and it almost reaches the linear scalability. However, SMG2000 does

not show a perfect scalability and it achieves speed up of 6.5 running on sixteen

processors.

To help having a better understanding of the applications’ performance on

clusters, it is important to understand their communication behaviour. We examined the

MPI characteristics of small to large-scale scientific applications, including the NPB-MZ

benchmark suite, SPEChpc2002 benchmark suite, and SMG2000 application, in terms of

their point-to-point and collective communications. We quantified metrics such as

number of sends, average message size per message, total message volume per process,

message size cumulative distribution function (CDF), number of unique message

107

destinations per process, and destination distribution of messages of the root process

(process zero).

For collective communications, we presented the type, frequency, and the

payload. We also evaluated the impact of the problem size and the system size on the

communication behaviour of the applications. We found that the applications studied

have diverse communication characteristics. Those include very small to very large

messages, frequent to infrequent messages, various distinct message sizes, set of favourite

destinations, and regular versus irregular communication patterns. Some applications are

sensitive to the bandwidth of the interconnect, while others are latency-bound as well.

Our evaluation also revealed that most applications are sensitive to the changes in the

system size and the problem size. We discovered all applications use only a few

collective operations. However, SPEC applications use them frequently with very large

payloads.

This thesis presents the locality characteristics of NPB-MZ and SPEChpc2002

applications. We used FIFO, LFU, and LRU locality heuristics to evaluate the locality of

message size and message destinations in our applications. We found out that LRU and

FIFO have a very similar performance. LFU for some applications outperforms LRU and

FIFO and sometimes shows a lower performance. We realized that some applications

show good locality of message size or message destinations. We compared the

communication characteristic of NPB-MZ applications in MPI-OpenMP with pure MPI.

We found out that different process/thread combinations change the communication

characteristics of NPB-MZ. We also realized that MPI communication characteristics of

NPB-MZ are independent from the number of threads.

Overall, the information provided in this thesis will help system designers,

application developers, and library/middleware designers to understand better the current

and future communication workloads of parallel applications. This study verifies that

message-passing applications communicate intensively. Therefore, they will benefit from

improvements in the interconnect hardware and their features as well as the

communication system software and libraries. Collective communications such as

broadcast, barrier, and reduce are expensive operations. Thus, it is essential to optimize

their implementation in hardware and/or software in the future computer systems.

108

To examine how network really affects the communication performance of the

applications, we evaluated the basic performance of different message-passing libraries

on Myrinet Network. In this thesis, we presented an in-depth evaluation of the new

Myrinet two-port networks at the user-level (GM), MPI-level, and at the Aggregate

Remote Memory Copy Interface (ARMCI) level. We measured the performance of GM

basic function calls, such as program initialization, memory allocation, memory

deallocation, and program termination. We assessed and compared the basic latency

performance of GM Send/Receive, GM RDMA, MPI Send/Receive, and ARMCI RDMA

operations for one- and two-port configuration of the Myrinet network card interface. We

realized that, in general, non-blocking operations perform better than blocking, and the

two-port communication at the GM, MPI, and ARMCI levels (except for the RDMA

read) outperforms the one-port communication for the bandwidth. We noticed that for

certain messages sizes, ARMCI performs better than MPI.

We compared the performance of NPB-MZ and SMG2000 applications on two-

port and one-port configuration of the Myrinet NIC. We investigated if the superior

bandwidth performance of the two-port NIC can be optimally used at the application

layer. However, this did not translate in a considerable improvement at least for our

applications. The difference in performance was minimal, with at most 3% improvements

for the two-port cases.

Most of the parallel applications written in MPI, including the NPB-MZ

applications, use a two-sided communication model based on send and receive

operations. In this model, communication involves both the sender and the receiver side.

Synchronization is achieved implicitly through communication operations. High-

performance interconnects such as Myrinet provide a one-sided communication model

referred to as Remote Direct Memory Access (RDMA). One-sided operations allow data

transfer directly between user-level buffers on remote nodes without the active

participation of the receiver. This does not incur software overhead at the receiving end.

In this thesis, we showed the potential improvement in communication time of

parallel applications by using ARMCI one-sided operations instead of MPI two-sided

calls. We looked into whether the performance gain of ARMCI one-sided operations over

109

MPI two-sided operations can be translated for the applications. We took on the challenge

to convert our two-sided applications to one-sided.

The empirical performance of the modified communication codes shows

performance improvement of up to 43%. Using either ARMCI blocking and non-blocking

Put operations improved the communication performance in some cases. In some other

cases, NPB-MZ did not show any performance improvement.

Finally, we reiterate the programmers, users, and system designers should

continually consider the impact of communications on the overall performance of their

applications. The choice of the communication hardware and the supporting software,

parallel programming paradigms, messaging libraries, and communication algorithms are

some of the noteworthy issues in achieving high performance in clusters.

7.1 Future Work

We would like to extend our study on the communication characteristic of other

scientific, engineering, and commercial message-passing application and benchmarks.

We would like to include communication/computation timing comparisons in our study.

As some of the applications are mixed-mode applications, they can run under MPI,

OpenMP, and MPI-OpenMP. Thus, it is interesting to characterize OpenMP directives of

these applications as well.

We intend to evaluate the performance of MPI-2 (MPI-2/MPICH-2) one-sided

operations on our cluster, and examine its impact on the applications. Our plan is to

compare the performance of the MX, the new alternative messaging library for Myrinet

(not yet available), with GM. We intend to extend our study on other interconnection

networks, such as Quadrics and InfiniBand to evaluate the impact of RDMA.

Algorithms for one-sided communication and two-sided communication models

are very different. It is interesting to revise the algorithms, and implement different

applications with the appropriate algorithm for one-sided communications, rather than

just replacing the two-sided communications.

110

References
[1] D. Addison, J. Beecroft, D. Hewson, M. McLaren and F. Petrini, “Quadrics QsNet II:

A Network for Supercomputing Applications”. In Hot Chips 15, August 2003.

[2] A. Afsahi and N.J. Dimopoulos, “Efficient Communication Using Message

Prediction for Clusters of Multiprocessors”, Concurrency and Computation: Practice

and Experience, 14(10) 2002, pp. 859-883.

[3] ARMCI. Available : http://www.emsl.pnl.gov/docs/parsoft/armci/

[4] ASCI Purple, SMG2000 Readme File, (http://www.llnl.gov/asci/purple).

[5] F. Bassetti, D. Brown, K. Davis, W. Henshaw, and D. Quinlan, “Overture: an object-

oriented framework for high performance scientific computing”, Proceedings of the

1998 ACM/IEEE conference on Supercomputing, pp. 1-9, 1998.

[6] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal, “User-Level Network Interface Protocols”,

IEEE Computer, Nov. 1998, pp. 53-60.

[7] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and

Su Wen-King, “Myrinet A Gigabit-per-Second Local-Area Network” IEEE Micro,

February 1995, pp. 29-36.

[8] R. Brightwell, and K. Underwood, “Evaluation of an Eager Protocol Optimization for

MPI”, Workshop Paper, EuroPVM/MPI 2003, September 2003.

[9] D. Buntinas, A. Saify, D.K. Panda, and J. Nieplocha, “Optimizing Synchronization

Operations for Remote Memory Communication Systems”, Proceedings of the

International Parallel and Distributed Processing Symposium, IPDPS’03, 2003.

[10] F. Cappello and O. Richard, “Performance characteristics of a network of commodity

multiprocessors for the NAS benchmarks using a hybrid memory model”, Parallel

Architectures and Compilation Techniques, 1999. Proceedings. 1999 International

Conference on, 12-16 Oct. 1999 pp. 108 – 116.

[11] B. Carpenter, G. Zhang, and Y. Wen, “NPAC PCRCruntime kernel definition”,

Technical Report CRPC-TR97726, Center for Research on Parallel Computation,

1997.

[12] S. Chodnekar, V. Srinivasan, A. Vaidya, A. Sivasubramanian, and C. Das, “Towards

a Communication Characterization Methodology for Parallel Applications”,

111

Proceedings of 3rd International Conference on High Performance Computer

Architecture, 1997, pp. 310- 321.

[13] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural Requirements

of Parallel Scientific Applications with Explicit Communication”, Proceedings of

20th International Symposium on Computer Architecture, 1993.

[14] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory

programming”, Computational Science and Engineering, IEEE Volume 5, Issue 1,

Jan.-March 1998 pp. 46 – 55.

[15] N. Drosinos, and N. Koziris, ”Performance comparison of pure MPI vs hybrid MPI-

OpenMP parallelization models on SMP clusters”, Parallel and Distributed

Processing Symposium, 2004. Proceedings. 18th International, 26-30 April 2004 pp.

15.

[16] Exemplar Programming Guide for HP-UX Systems, First Edition, 1997. Available:

http://docs.hp.com/en/B6056-96002/ch07s03.html

[17] N.R. Fredrickson, A. Afsahi, and Y. Qian, “Performance Characteristics of OpenMP

Constructs, and Application Benchmarks on a Large Symmetric Multiprocessor”,

Proceedings of the 17th Annual ACM International Conference on Supercomputing,

ICS'03, San Francisco, CA, USA, June 23-26, 2003, pp. 140-149.

[18] GM reference manual 2.0.6. Myricom.

[19] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard”, Parallel

Computing, 22(6), pp. 789-828, 1996.

[20] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini, “Architectural and

Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-

Scale SMP Servers”, Super Computing Conference (SC’00), 2000.

[21] W. Jiang, L. Jiuxing, J. Hyun-Wook, D.K. Panda, W. Gropp, and R. Thakur, “High

Performance MPI-2 One-Sided Communication over InfiniBand”, In Proceedings of

the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGrid 2004). IEEE, 2004, pp. 531-538.

[22] H. Jin and G. Jost, “Performance Evaluation of Remote Memory Access (RMA)

Programming on Shared Memory Parallel Computers”, NASA Technical Reports

112

NAS-03-001, January 2003.

[23] H. Jin, R.F. Van der Wijngaart, “Performance characteristics of the multi-zone NAS

parallel benchmarks”, Proceedings of 18th International Parallel and Distributed

Processing Symposium, 2004. 26-30 April, pp. 6.

[24] S. Karlsson, and M. Brorsson, “A Comparative Characterization of Communication

Patterns in Applications using MPI and Shared Memory on an IBM SP2”,

Proceedings of CANPC’98, Workshop on Communication, Architecture, and

Applications for Network-based Parallel Computing, 1998.

[25] J. Kim and D.J. Lilja, “Characterization of Communication Patterns in Message-

Passing Parallel Scientific Application Programs”, Proceedings of CANPC’98

Workshop on Communication, Architecture, and Applications for Network-based

Parallel computing, 1998.

[26] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D.K. Panda, and P.

Wyckoff, “Microbenchmark Performance Comparison of High-Speed Cluster

Interconnects”, IEEE Micro, 2004, Vol. 24, No.1, pp.42-51.

[27] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and B.

Toonen, “Design and Implementation of MPICH2 over InfiniBand with RDMA

Support”, International Parallel and Distributed Processing Symposium (IPDPS 04),

April, 2004.

[28] T. G. Mattson, “Programming environments for parallel computing: a comparison of

CPS, Linda, P4, PVM, POSYBL, and TCGMSG”, Proceedings of the Twenty-

Seventh Hawaii International Conference on System Sciences, Software Technology

Volume 2, 4-7 Jan. 1994 pp.586 – 594.

[29] Mellanox Technologies, Available: http://www.mellanox.com.

[30] Message Passing Interface, MPI. Available: http://www.mpi-forum.org

[31] MPICH-2 homepage. Available: http://www-unix.mcs.anl.gov/mpi/mpich2/.

[32] MPICH-GM. Available: http://www.myri.com/scs/

[33] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory Copy Library

for Distributed Array Libraries and Compiler Run-time Systems”, Proceedings of the

3rd Workshop on Runtime Systems for Parallel Programming (RTSPP) of

International Parallel Processing Symposium IPPS/SPDP '99, San Juan, Puerto

113

Rico, April 1999.

[34] J. Nieplocha, E. Apra, J. Ju, and V. Tipparaju, “One-sided Communication on

Clusters with Myrinet”, Cluster Computing 6, pp. 115-124, 2003.

[35] J. Nieplocha, J. Ju, and E. Apra, “One-sided Communication on Myrinet-based SMP

Clusters using the GM Message-Passing Library”, in Proceedings of CAC01

Workshop, 15th International Parallel and Distributed Processing Symposium

(IPDPS'01), San Francisco, 2001.

[36] J. Nieplocha, R.J. Harrison, and R.J. Littlefield, “Global Arrays: A nonuniform

memory access programming model for high-performance computers”, Journal of

Supercomputing 10, pp. 197-220, 1997.

[37] OpenMP Tutorial from Lawrence Livermore National Laboratory, available:

http://www.llnl.gov/computing/tutorials/openMP

[38] Pallas GmbH. Pallas: Think Parallel. http://www.pallas.com.

[39] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Performance Evaluation of the

Quadrics Interconnection Network”, Journal of Cluster Computing, 2003, pp. 125-

142.

[40] Y. Qian, A. Afsahi, N.R. Fredrickson, and R. Zamani, “Performance Evaluation of

the Sun Fire Link SMP Clusters”, 18th International Symposium on High

Performance Computing Systems and Applications, HPCS 2004, May 2004, pp. 145-

156.

[41] Y. Qian, A. Afsahi, and R. Zamani, "Myrinet Networks: A Performance Study",

Proceedings of the 3rd IEEE International Symposium on Network Computing and

Applications, IEEE NCA04, Cambridge, MA, USA, August 30 - September 1, 2004,

pp. 323-328.

[42] R. Rabenseifner, “Comparison of Parallel Programming Models on Clusters of SMP

Nodes”, In proceedings of the 45th Cray User Group Conference, CUG SUMMIT

2003, May 12-16, Columbus, Ohio, USA.

[43] D. Seed, A. Sivasubramaniam, and C.R. Das, “Communication in Parallel

Applications: Characterization and Sensitivity Analysis”, In Proceedings of the

International Conference on Parallel Processing, pages 446-453, August 1997.

[44] SPEC HPC2002 Benchmark suite, (http://www.spec.org/hpc2002/).

114

[45] Standard for information technology - portable operating system interface (POSIX).

System interfaces. IEEE Std 1003.1, 2004 Edition.

[46] V. Sunderam, J. Dongarra, A. Geist, and R Manchek, “The PVM Concurrent

Computing System: Evolution, Experiences, and Trends”, Parallel Computing, Vol.

20, No. 4, April 1994, pp. 531-547.

[47] V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman, and D. K. Panda,

“Exploiting Nonblocking Remote Memory Access Communication in Scientific

Benchmarks on Clusters”, International Conference on High Performance

Computing, HiPC 2003, Bangalore, India.

[48] TOP500 Supercomputer Sites. Available: http://www.top500.org

[49] R.F. Van der Wijngaart, and H. Jin, “NAS Parallel Benchmarks, Multi-Zone

Versions”, NAS Technical Report NAS-03-010, July 2003.

[50] R.F. Van der Wijngaart, Rupak Biswas, Michael Frumkin, and Huiyu Feng, “Beyond

the NAS Parallel Benchmarks: Measuring Performance of Dynamic and Grid-

oriented Applications”, NASA Ames Research Center.

[51] J.S. Vetter and F. Mueller, “Communication Characteristics of large-scale scientific

applications for contemporary cluster architectures”, Journal of Parallel and

Distributed Computing 63, 2003, pp. 853-865.

[52] W. Vogels, D. Follett, J. Hsieh, D. Lifka, and D. Stern, “Tree-saturation control in

the AC3 velocity cluster”, Hot Interconnect 8, 2000.

[53] F.C. Wong, R.P. Martin, R.H. Arpaci-Dusseau and D.E. Culler, “Architectural

requirements and scalability of the NAS parallel benchmarks”, Proceedings of 1999

ACM/IEEE conference on Supercomputing, 1999.

[54] R. Zamani and A. Afsahi, "Communication Characteristics of Message-Passing

Scientific and Engineering Applications", 16th IASTED International Conference on

Parallel and Distributed Computing and Systems, PDCS 2004, MIT, Cambridge,

MA, USA, November 9-11, 2004.

[55] R. Zamani, Y. Qian, and A. Afsahi, "An Evaluation of the Myrinet/GM2 Two-Port

Networks", 3rd IEEE Workshop on High-Speed Local Networks, HSLN 2004, held in

conjunction with the 29th Annual IEEE Conference on Local Computer Networks,

LCN 2004, Tampa, FL, USA, November 16-18, 2004, pp. 734-742.

	
	Abstract
	 Acknowledgements
	 Table of Contents
	 List of Figures
	
	 Glossary
	
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline
	Chapter 2 Background
	2.1 Message-Passing and Shared-Memory Model
	2.2 Parallel Programming Paradigms
	2.2.1 MPI
	2.2.1.1 Blocking and Non-Blocking Point-to-Point Communication
	2.2.1.2 MPI Point-to-point Protocols
	2.2.1.3 MPI One-sided Communication
	2.2.1.4 MPI Collective Communication

	2.2.2 OpenMP
	2.2.3 Mixed MPI-OpenMP (Mixed-Mode)

	2.3 Application Characteristics
	2.4 High-Performance Clusters and Interconnects
	2.4.1 Myrinet Network

	2.5 Messaging Layers
	2.5.1 GM Messaging Layer
	2.5.2 MPICH-GM
	2.5.3 ARMCI

	2.6 Summary

	Chapter 3 Parallel Applications
	3.1 NPB-MZ (Multi-Zone) 3.0
	3.1.1 NAS BT-MZ
	3.1.2 NAS SP-MZ
	3.1.3 NAS LU-MZ

	3.2 SPEChpc2002
	3.2.1 SPEChpc2002 – SPECenv
	3.2.2 SPEChpc2002 – SPECseis
	3.2.3 SPEChpc2002 – SPECchem

	3.3 SMG2000
	3.4 Summary

	Chapter 4 Application Characteristics
	4.1 Evaluation Platform
	4.2 Point-to-point Communications
	4.2.1 Message Frequency
	4.2.2 Average Message Size
	4.2.3 Message Volume
	4.2.4 Message Size Cumulative Distribution Function
	4.2.5 Message Destinations
	4.2.6 Destination Distribution

	4.3 Collective Communications
	4.4 Locality Characteristics
	4.4.1 Message Size Locality
	4.4.2 Message Destination Locality
	4.4.3 Comparison of Localities

	4.5 Mixed-Mode Communication Characteristics
	4.5.1 Message Frequency
	4.5.2 Average Message Size
	4.5.3 Message Volume
	4.5.4 Comparison of MPI and Mixed-Mode Characteristics

	4.6 SMG2000 Characteristics
	4.7 Summary

	Chapter 5 Myrinet Performance Evaluation
	5.1 GM Basic Performance
	5.1.1 GM Send/Receive Performance
	5.1.2 GM RDMA Performance

	5.2 MPI over GM Basic Performance
	5.3 ARMCI Basic Performance
	5.4 Overall Performance Comparison
	5.4.1 Observations

	5.5 Summary

	Chapter 6 Application Performance and Impact of RDMA
	6.1 Mixed-Mode Application Performance
	6.2 Two-port Myrinet Card Application Performance
	6.3 ARMCI One-Sided vs. MPI Two-Sided
	6.3.1 Expected per Message Communication Improvement
	6.3.2 Expected Overall Communication Improvement
	6.3.3 NPB-MZ Communication Patterns
	6.3.4 Converting MPI Communications to ARMCI
	6.3.5 Observed Communication Improvement

	6.4 Summary

	Chapter 7 Conclusion and Future Work
	7.1 Future Work

	 References

