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Abstract 
 

With the availability of Symmetric Multiprocessors (SMP) and high-speed 

interconnects, clusters of SMPs (CLUMPs) have become the ideal platform for 

performance computing. The performance of applications running on clusters mainly 

depends on the choice of parallel programming paradigm, workload characteristics of the 

applications, and the performance of communication subsystem. This thesis addresses 

these issues in details. 

It is still open to debate whether pure message-passing or mixed MPI-OpenMP is 

the programming of choice for higher performance on SMP clusters. In this thesis we 

investigate the performance of the recently released NAS Multi-Zone (NPB-MZ) 

benchmarks consisting of BT-MZ, SP-MZ, and LU-MZ, and SMG2000 of the ASCI 

Purple benchmark. Our studies show that the applications studied have a better MPI 

performance on clusters of small SMPs interconnected by the Myrinet network. 

In this thesis, we examine the MPI characteristics of the three applications in the 

NPB-MZ suite as well as two applications (SPECseis and SPECenv) in the SPEChpc2002 

suite in terms of their point-to-point and collective communications. We also evaluate the 

impact of different number of processors as well as different problem sizes on the 

communication characteristics of these applications. Overall, our experiments reveal that 

the applications studied have diverse communication patterns, and that they are sensitive 

to the changes in the system size and the problem size. 

This thesis presents an in-depth evaluation of the new Myrinet two-port networks 

at the user-level (GM), MPI-level, and at the Aggregate Remote Memory Copy Interface 

(ARMCI) level. High-performance interconnects such as Myrinet provide a one-sided 

communication model, referred to as Remote Direct Memory Access (RDMA), which is 

not utilized in many parallel applications, such as NPB-MZ. We realized that non-

blocking operations perform better than blocking, and two-port communication 

outperforms one-port communication. We noticed that for messages larger than 8KB, 

ARMCI non-blocking Put has a better performance than MPI Send/Receive operations. 



 

 

ii 

 

We take on the challenge to utilize these features to convert our two-sided 

applications in NPB-MZ to one-sided using the ARMCI. Our results indicate 

communication performance improvement of up to 43%, depending on the workload size 

and the number of processors involved, can be achieved.  
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Chapter 1 Introduction 
 

1.1 Motivation 

Most supercomputing sites in the world are using clusters since they are cheaper 

and more scalable than other high-performance architectures. As of today, more than 58% 

of top 500 supercomputers are clusters [48]. Cluster computing provides cost-effective 

high-performance computing. With the availability of advanced uniprocessors, symmetric 

multiprocessors (SMPs), and high-speed interconnects, clusters of uniprocessors and 

clusters of SMPs (CLUMPs) have become the ideal platforms for high-performance 

computing, as well as supporting the emerging commercial and networking applications.  

Many factors influence the performance of an application running on a cluster. 

However, mainly, the performance is dependant on the type of parallel programming 

paradigm in use, the communication characteristics of the application, and the 

performance of the communication subsystem. This thesis addresses these issues in detail. 

Firstly, we consider a number of well-known scientific applications. These 

applications have been written in OpenMP [14], MPI [30], and in the mixed MPI-

OpenMP [10, 15] parallel programming paradigms. OpenMP has emerged as the standard 

for parallel programming on shared-memory systems. Message Passing Interface (MPI) is 

the de facto standard for parallel programming in clusters. Given the availability of 

CLUMPs, it is now possible to write applications in mixed-mode. This thesis, investigates 

which parallel programming paradigm has a better performance on clusters of small 

multiprocessors interconnected by the Myrinet network. 

Communication overhead is one of the most important factors affecting the 

performance of clusters. The communication characteristics of applications written in 

MPI, and mixed-mode, as well as the performance of the communication subsystem 

greatly influence this overhead. Message-passing and mixed-mode applications exhibit a 

broad range of communication behaviour [54]. Therefore, understanding their behaviour 

plays a key role in optimizing their performance as well as in designing better 
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communication subsystems. This thesis addresses the spatial and volume communication 

attributes of the applications under study.  

As stated above, communication subsystem including the interconnection network 

hardware and the communication system software can easily become the bottleneck for 

an application running on a cluster. Therefore, high-performance clusters use 

contemporary interconnects to achieve performance. Low communication latency and 

high communication bandwidth are the two features of these interconnects. 

A number of high-performance interconnects are available for cluster computing. 

They include Quadrics QsNet [39], QsNet II [1], InfiniBand [29], Myrinet [7], GigaNet 

[52], and Sun Fire Link [40]. Myrinet is one of the popular high performance 

interconnects for building clusters. Myrinet provides low-latency and high-bandwidth 

messaging. As of November 2004, more than 38% of top 500 supercomputers [48] use 

Myrinet as their interconnect of choice.  

Message-passing applications run on top of a message-passing library, such as 

MPI. MPI runs on top of a user-level messaging library which itself runs on top of the 

network. GM is the user-level message-passing library for the Myrinet networks. Our 

platform uses Myrinet 2-port (E-Card) network interface cards (NICs). This thesis 

evaluates the performance of the Myrinet network, at the GM-level under single-port and 

two-port modelling. We also present the performance of the MPI on top of GM. 

Message-passing communication can be done in two different modes: one-sided 

communication and two-sided communication [21]. Initial Message Passing Interface 

defined in MPI uses Send and Receive operations. This model is called two-sided 

communication. Both sender and receiver are involved in a two-sided communication, 

and an implicit synchronization is achieved by performing this operation.  

In one-sided communication, one process specifies all communication parameters. 

To ensure the completion of communication, synchronization should be done explicitly. 

Get and Put operations are the most common one-sided communication operations. In 

fact, removing implicit synchronization can enhance the performance of the applications.  

Reducing data movements and simplifying programming can be addressed as two other 

major advantages of one-sided communication. 
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Aggregate Remote Memory Copy Interface (ARMCI) [3, 35] is a library that 

provides general purpose, efficient and widely portable Remote Memory Access (RMA) 

operations for contiguous and non-contiguous data transfers. User-level libraries and 

applications that use MPI or PVM [46] can be supported by ARMCI. ARMCI can be built 

on top of the GM layer. ARMCI Put and Get operations can be easily used in codes 

without the hassle of GM one-sided communication.  

In this work, we are also interested in evaluating the performance of one-sided 

communication in ARMCI. Having known the communication profile of the applications 

under study, and the superior performance of ARMCI over MPI for large messages, we 

convert our two-sided MPI applications to one-sided using ARMCI. 

1.2 Contributions 

In this thesis, we study different aspects of application performance on a cluster of 

SMPs. We use our own cluster in Parallel Processing Research Laboratory at Queen’s 

University. Our evaluation platform consists of eight dual 2.0GHz Intel Xeon MP servers 

(Dell PowerEdge 2650s). All nodes are connected to a 16-port Myrinet network through 

the Myrinet two-port "E card" (M3F2-PCIXE-2) network interface cards. Each node is 

running Red Hat Linux 2.4.24 as its operating system. We use Intel C++/Fortran compiler 

version 7.1 for 32-bit applications, as well as GCC compiler version 3.2.2. We use the 

mpich-1.2.5..10 library as the message-passing library, and GM version 2.1.0, Myrinet’s 

messaging library. This thesis makes the following contributions: 

 

• The first contribution of this thesis is in the collection and analysis of the 

communication characteristics of NAS Multi-Zone (NPB-MZ) [49] and 

SPEChpc2002 [44] benchmarks. We examine the MPI characteristics of these small 

to large-scale scientific applications in terms of their point-to-point and collective 

communications. We evaluate the impact of the problem size and the system size on 

the communication behaviour of the applications. Locality characteristics of NPB-MZ 

and SPEChpc2002 applications are gathered. We have used the First In First Out 

(FIFO), Least Recently Used (LRU), and Least Frequently Used (LFU) locality 

heuristics to evaluate the locality of message size and message destinations in our 
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applications. It is found that the applications studied have diverse communication 

characteristics. Those include very small to very large messages, frequent to 

infrequent messages, various distinct message sizes, set of favourite destinations, and 

regular versus irregular communication patterns. Some applications are sensitive to 

the bandwidth of the interconnect, while others are latency-bound as well. To the best 

of our knowledge, this is the first communication characterization of NPB-MZ and 

SPEChpc2002. 

 

• The question remains for the research community as to whether pure message-passing 

or mixed MPI-OpenMP is the programming of choice for higher performance on SMP 

clusters. This thesis contributes by addressing this question. We gather and analyze 

the communication characteristics of NPB-MZ and SMG2000 applications in mixed 

MPI-OpenMP paradigm, along with their performance evaluation. It is shown that for 

different combinations of processes and threads, pure MPI paradigm outperforms the 

Mixed MPI-OpenMP paradigm.  

 

• As the third contribution of this work, for the first time, we present an in-depth 

evaluation of the new Myrinet two-port networks at the user-level (GM), MPI-level, 

and at the ARMCI-level. We measure the performance of GM basic function calls, 

such as program initialization, memory allocation, memory deallocation, and program 

termination. We evaluate and compare the basic latency performance of GM 

Send/Receive, GM RDMA, MPI Send/Receive, and ARMCI RDMA operations for 

one- and two-port configuration of the Myrinet network interface card. We realize 

that, in general, non-blocking operations perform better than blocking, and the two-

port communications at the GM, MPI, and ARMCI levels (except for the GM/ARMCI 

RDMA read) outperform the one-port communications for the bandwidth. We notice 

that for messages larger than 8KB, ARMCI non-blocking Put has a better 

performance than MPI Send/Receive operations.  

 

• The fourth contribution of this thesis is in improving the communication performance 

of applications using ARMCI RDMA operations. We take on the challenge to convert 
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our two-sided application to one-sided using the ARMCI library. Our performance 

results indicate that communication performance of NPB-MZ applications improves 

between -30% to +43%. We also estimated the performance improvement using the 

communication characteristics of NPB-MZ applications and the basic communication 

performance of ARMCI and MPI (latency or bandwidth). The expected 

communication improvement is up to 5.9%. Using both blocking and non-blocking 

ARMCI Put operations improve the communication performance in some cases.  

 

1.3 Thesis Outline 

This thesis is presented in seven chapters. In Chapter 2, background of this work 

is presented. This chapter introduces the message-passing and shared-memory models, 

along with one-sided and two-sided communications. We introduce communication 

characteristics of parallel applications, Myrinet network, GM, MPI, and ARMCI.  

In Chapter 3, we introduce the different applications that are studied in this thesis. 

We describe NPB-MZ benchmark suite, SPEChpc2002 suite, and SMG2000.  

In Chapter 4, the communication characteristics of NPB-MZ and SPEChpc2002 

applications are studied. We examine point-to-point and collective communication 

characteristics of these applications. We present the frequency, volume, distribution, 

locality, and other characteristics of message sizes and message destinations. We also 

compare the communication characteristics of NPB-MZ in mixed MPI-OpenMP with 

MPI.   

In Chapter 5, we evaluate the basic performance of the Myrinet network at 

different levels. We evaluate the latency/bandwidth performance of the Myrinet network 

at MPI-level, GM-level, and ARMCI-level. The performance comparisons suggest the 

potential improvements in applications’ performance using ARMCI over MPI. 

In Chapter 6, we calculate the expected performance improvement by replacing 

MPI two-sided operations in NPB-MZ with ARMCI RDMA operations, as well as 

evaluating the runtime performance improvement. Performance evaluation of NPB-MZ 

and SMG2000 application under mixed MPI-OpenMP is also presented. We study the 

effect of using one or two ports of the Myrinet NIC on the performance of NPB-MZ and 
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SMG2000 applications. Finally, in Chapter 7, we conclude the thesis and present the 

potential future work. 



 

 

7 

 

Chapter 2 Background 
 

Using multiple computational processing units is one of the principles of High 

Performance Computing (HPC). Distributing a massive workload among a number of 

processors enables us to gain a large computing power. Multiple processor systems are 

either directly coupled or connected through an interconnection network. In either type, 

communication between processing units becomes a key performance factor. Therefore, 

communication patterns of an application running on a cluster along with the performance 

characteristics of the interconnection network both become interesting to study.  

In this chapter, we introduce the message-passing and shared-memory models as 

well as one-sided and two-sided communications. MPI [30] and OpenMP [14] are the de 

facto standards for message-passing and shared-memory programming models, 

respectively. Mixed MPI-OpenMP programming paradigm is getting a lot of attention 

with the prominence of SMP clusters. We also give a short introduction to the 

communication characteristics of message-passing applications. We introduce some of 

today’s high performance interconnection networks for cluster computing.  Specifically, 

we introduce the Myrinet. Different messaging libraries may be used on top of an 

interconnection network. We describe available message-passing libraries on top of 

Myrinet, namely GM, the low-level Myrinet’s messaging library, MPI over GM, and 

ARMCI.  

2.1 Message-Passing and Shared-Memory Model 

Message-passing is a model for interaction between processors within a parallel 

system. A message is constructed by software on one processor and is sent through an 

interconnection network to another processor. In message-passing model, the data sender 

process executes a Send operation and the data receiver process executes a Receive 

operation accordingly. Once these Send and Receive operations match each other, data 

transfer between processes happens. The memory of the processors in message-passing 

model can be shared or distributed. There is no need for a global memory map in a 

distributed memory system using message-passing. A schematic of the data transfer 
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between processes in the message-passing model is shown in Figure 2.1. A message-

passing communication that involves both the data sender and data receiver parties is 

called a two-sided communication. MPI [30] and PVM [46] are examples of message-

passing models. 

 
 

Send (data) 

Process 0 Process 1

Receive (data) 

Tim
e 

Data transfer 

Data transfer 

Message-passing

Receive (data)

Send (data)

 

 

Write/Put (data)

[Memory] (data)

Process 0 Process 1

Read/Get (data)

[Memory] (data)

Tim
e 

Data transfer 

Data transfer 

Shared-memory 
 

Figure 2.1 Message-passing and shared-memory model data transfer. 

 

Shared-memory model is another model for interactions between processors 

within a parallel system. In a shared-memory system, each processor has direct access to 

the memory of every other processor, meaning it can directly load or store any shared 

address. Multiprocessor systems may physically share a single global memory among 

their processors. Alternatively, logically shared-memory systems can be implemented on 

top of distributed memory systems in which each processor has its own local memory. 

This implementation is done by converting each non-local memory reference into an 

appropriate inter-processor communication. Shared-memory is generally considered 

easier to use than message-passing. OpenMP [14] and Pthreads [45] are examples of 

shared-memory models.  

In shared-memory model, the data sender process executes a Write/Put operation 

while the data receiver process does not need to execute any operation. The data will be 

written to the memory location according to the Write/Put operation. On the other hand, a 

process is able to receive data from other processes by executing Read/Get operation. 

Again, the process that provides the data does not need to perform any action. Once the 

Read/Get operation is issued, the data will be transferred from the memory of data 
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provider process to the memory of the issuer process. A schematic of the data transfer 

between processes in shared-memory model is shown in Figure 2.1. A communication 

model that involves either the data sender or the data receiver is called a one-sided 

communication.  

The message-passing and shared-memory models each have their own advantages 

and disadvantages. Developing message-passing parallel applications is more difficult 

than the shared-memory applications. Message-passing model has more code overhead 

comparing to the shared-memory model. Message-passing parallel applications are easily 

portable to different architectures. An application that uses message-passing consists of 

several concurrent tasks, each with its own data and local memory, using messages to 

communicate with one another. Message-passing requires the programmer to handle 

explicitly all parallelism and data distribution. Message-passing programs are inherently 

parallel, and unless explicitly coordinated by waiting for messages, all processes execute 

independently. Synchronization among the processes occurs explicitly through message-

passing. 

Message-passing programs generally take one of two approaches to parallelism: 

the multiple-program multiple-data (MPMD) approach (also known as the 

manager/worker approach) or the single-program multiple-data (SPMD) approach. With 

MPMD, a set of computational worker processes perform work for one or more manager 

processes. The MPMD method is generally used when little synchronization is required 

between worker processes [16]. 

The shared-memory style of programming is convenient because the compiler 

automatically optimizes computations that can be safely parallelized. The compiler also 

allows the user to parallelize (by using high-level directives, pragmas, or Pthreads 

functions [45]) manually the computations that the compiler cannot parallelize 

automatically. Enabling and disabling many of the compilers’ parallel optimizations is 

usually supported in the command-line options of the compiler. However, shared-memory 

model requires the programmer to handle the synchronization in some cases. In addition, 

although the directives and pragmas allow the user to get better performance from the 

programs, their functionality is not directly portable to other vendors’ platforms. 
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2.2 Parallel Programming Paradigms 

There are a number of parallel programming paradigms supporting high-

performance computing. MPI, OpenMP, and mixed-mode programming are the most 

common parallel programming paradigms in use today. The applications that we study in 

this thesis (to be described in Chapter 3) are developed using these parallel programming 

paradigms. MPI is the de facto standard for the message-passing model. Shared-memory 

model programs have adapted OpenMP as the standard parallel programming paradigm. 

The mixed-mode parallel programming paradigm is a combination of message-passing 

and shared-memory model programming. 

2.2.1 MPI 

MPI is the standard library for message-passing. MPI is defined by the MPI 

Forum, which is a group of parallel computer vendors, library writers, and parallel 

application specialists. Vendors such as IBM, Intel, TMC, Meiko, Cray, Convex, and 

Ncube, as well as library writers such as PVM, p4, Zipcode, TCGMSG, Chameleon, 

Express, and Linda participated in the MPI Forum for designing MPI [28]. MPI is 

designed for parallel computers, clusters, and heterogeneous networks. MPI model was 

designed because vendor systems were not portable. In addition, available portable 

systems by research community were incomplete, and did not have the most efficient 

performance. They were also not supported by vendors.  

MPI provides point-to-point message-passing, one-sided communication, and 

collective (global) operations. A point-to-point communication transfers a message 

between only two processes. A Send/Receive pair is needed for point-to-point message-

passing. Collective communication is coordinated among a group of processes. 

Operations such as gathering data from one or more processes and sharing them among 

all participating processes, or distributing data from one or more processes to a specific 

group of processes (scatter) are examples of collective communication operations. 

Broadcasting data from one process to all other participating processes is another 

example of collective communication.  
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2.2.1.1 Blocking and Non-Blocking Point-to-Point Communication 

Point-to-point communication is categorized as blocking or non-blocking 

operations. A blocking communication call means that the program execution will be 

suspended until the message buffer is safe to use. The common message-passing library 

standards, such as MPI, specify that a blocking Send or Receive does not return until the 

send buffer is safe to reuse (e.g. for MPI_Send), or the receive buffer is ready to use (e.g. 

for MPI_Recv). Using blocking communication makes the program more synchronized as 

blocking Send and Receive operations have to wait for each other to complete. However, 

blocking operations will not allow the user to overlap computation with communication 

while the program is waiting for the return of a blocking operation. 

A non-blocking communication call returns immediately after the call is initiated 

and does not wait to be certain that the communication buffer is safe to use. The 

programmer must make sure that the send buffer has been copied out before reusing it, or 

that the receive buffer is full before using it. For the case of MPI, the non-blocking 

MPI_Isend and MPI_Irecv are distinguished by the letter I, for immediate return. The 

syntax and argument list are the same as the blocking versions except for an additional 

argument, a request handler, which can later be used to wait for, or check on, the 

completion of the call.  

The computation can proceed immediately after a non-blocking communication 

call without waiting for the call to complete, which improves the program performance. 

Because the call returns immediately, non-blocking calls allow both communications and 

computations to proceed concurrently. For the case of MPI library, this is done using the 

MPI functions MPI_Test and MPI_Wait with the request handler returned from the non-

blocking Send and Receive. 

2.2.1.2 MPI Point-to-point Protocols 

Most of the MPI implementations employ a two-level protocol for point-to-point 

messages. MPI uses eager method for sending short messages, while it uses a rendezvous 

mechanism for sending long messages. Eager mechanism improves the latency of 

messaging while rendezvous mechanism provides a better bandwidth. In the eager 

mechanism, data is eagerly sent along with the MPI envelope information (context, tag, 
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etc.). This minimizes the interaction of the send operation with the receiver. In a 

rendezvous implementation, the sender must first send a request and receive an 

acknowledgment before the data can be transferred. This is to make sure enough buffer 

space is available for large messages at the receiver side. For large messages, the 

overhead of the protocol exchange with the receiver is amortized by the transfer of the 

data [8]. Figure 2.2 illustrates the eager and rendezvous protocols. 

 

Rendezvous 

Write data 

Ready? 

Acknowledgement 

Sender Receiver 

Eager 

Sender Receiver 

Write data 

Tim
e 

Tim
e 

 
Figure 2.2 MPI eager and rendezvous messaging protocols. 

 

2.2.1.3 MPI One-sided Communication 

One-sided communication is supported in the MPI-2 [30]. Remote Memory 

Access (RMA) extends the communication mechanisms of MPI by allowing one process 

to specify all communication parameters, both for the sending side and for the receiving 

side. RMA is a one-sided communication operation. Using one-sided communication 

model facilitates the coding of some applications with dynamically changing data access 

patterns where the data distribution is fixed or slowly changing.  

Two-sided communication (Send/Receive) requires matching operations by 

sender and receiver. In order to issue the matching operations, an application needs to 

distribute the transfer parameters. This may require all processes to participate in a time 

consuming global computation, or to periodically poll for potential communication 
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requests to receive and act upon. RMA communication mechanisms avoid the need for 

global computations or explicit polling.  

MPI-2 provides three one-sided communication calls: MPI_Put (remote write), 

MPI_Get (remote read) and MPI_Accumulate (remote update). MPI-2 also provides a 

larger number of synchronization calls that support different synchronization styles. 

Using RMA functions enables implementers to take advantage of fast communication 

mechanisms provided by various platforms, such as coherent or non-coherent shared 

memory, DMA engines, hardware-supported Put/Get operations, communication 

coprocessors, and others.  

RMA communications are categorized in two groups: active target 

communication, and passive target communication. In active target communication, data 

is moved from the memory of one process to the memory of another, and both are 

explicitly involved in the communication. This communication pattern is similar to 

message passing, except that all the data transfer arguments are provided by one process, 

and the second process only participates in the synchronization.  

In passive target communication, data is moved from the memory of one process 

to the memory of another, and only the origin process is explicitly involved in the 

transfer. Thus, two origin processes may communicate by accessing the same location in 

a target window. The process that owns the target window may be distinct from the two 

communicating processes, in which case it does not participate explicitly in the 

communication. This communication paradigm is closest to a shared memory model, 

where shared data can be accessed by all processes, regardless of its location [30].  

2.2.1.4 MPI Collective Communication 

A collective communication operation is defined as a communication that 

involves a group of processes. Collective operations can be categorized into three classes: 

Data movement, synchronization, and collective computation. Non-blocking collective 

operations are not supported in MPI. Some of the collective functions supported in MPI 

are listed in Table 2.1. 

MPI_Bcast broadcasts from one member to all members of a group. MPI_Gather 

gathers data from all group members to one member. MPI_Scatter scatters data from one 
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member to all members of a group. MPI_Allgather is a variation on Gather where all 

members of the group receive the result. MPI_Alltoall scatters/gathers data from all 

members to all members of a group (also called complete exchange). MPI_Barrier is a 

collective operation that blocks until all the associated processes arrive at the barrier. In 

fact, MPI_Barrier synchronizes all the group members. MPI_Reduce gets the combined 

value of the received messages using the operation passed to the function. MPI_Scan 

computes the scan (partial reduction) of data on a collection of processes. Note that, it is 

possible to have collective operations in a user-defined subset of all processes.  

 

Table 2.1 List of some MPI collective communication operations. 

MPI Function Type 

MPI_Allgather Data movement 

MPI_Alltoall Data movement 

MPI_Bcast Data movement 

MPI_Gather Data movement 

MPI_Scatter Data movement 

MPI_Barrier Synchronization 

MPI_Reduce Collective computation 

MPI_Scan Collective computation 

 

2.2.2 OpenMP 

OpenMP [14] has emerged as the standard for parallel programming on shared-

memory systems. Incremental development of OpenMP codes from the serial version of 

applications makes it one of the popular parallel programming paradigms. OpenMP is a 

set of compiler directives and runtime library routines that extend Fortran, C, and C++ to 

express shared-memory parallelism. OpenMP was designed to exploit certain 

characteristics of shared-memory architectures (such as directly accessing memory 

throughout the system with no explicit address mapping) [14]. The OpenMP application-

programming interface (API) defines parallel regions and work sharing constructs among 
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threads. OpenMP is an explicit programming model, offering the programmer full control 

over parallelization.  

A shared-memory process may consist of multiple threads. OpenMP is based upon 

the existence of multiple threads in the shared-memory programming paradigm. OpenMP 

uses the fork-join model of parallel execution. All OpenMP programs start as a single 

process, namely the master thread. The master thread executes sequentially until the first 

parallel region construct is encountered. When the master thread encounters the parallel 

region then it creates a team of parallel threads. This is known as Fork operation. The 

statements in the program that are enclosed by the parallel region construct are then 

executed in parallel among the various team threads. When the team threads complete the 

statements in the parallel region construct, they synchronize and terminate, leaving only 

the master thread. This operation is known as Join operation. A sample OpenMP C code 

is given bellow (adapted from [37]): 

 
Sequential code ……. 

/* Fork happens here */ 

#pragma omp parallel private(var1, var2) shared(var3) 

  { 

  Parallel section executed by all threads  

        . 

        . 

        . 

  At the end of the parallel region, All threads  

  join master thread and disband  

  }   

/* Join happens here */ 

Sequential code ……. 

 

2.2.3 Mixed MPI-OpenMP (Mixed-Mode) 

Availability of clusters of symmetric multiprocessors has motivated the use of 

mixed-mode parallel programming. In fact, it is possible to exploit parallelism using a 

combination of MPI and OpenMP programming paradigms. Prominence of clusters 

encourages programmers to use MPI in the applications. Using MPI enables the 
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application to be portable and scalable. On the other hand, incremental code development 

and capability of parallelizing loops easily makes OpenMP desirable for shared-memory 

programming in an SMP machine. Therefore, clusters of SMPs are suitable platforms for 

MPI-OpenMP programming, running OpenMP within an SMP node, while running MPI 

across the nodes.  

The mixed MPI-OpenMP programming style is one of the most popular mixed-

mode programming paradigms. It provides the application developer a vast flexibility in 

terms of parallelism and performance tuning. Spreading different combinations of 

processes and threads over the system nodes enables one to achieve the best performance 

on an SMP cluster. However, it is still open to debate if pure-MPI or MPI-OpenMP 

provides the best performance. Some researchers have improved the performance of their 

applications using mixed-mode paradigm, while this is has not been beneficial for others 

[15, 10, 42].  

2.3 Application Characteristics 

Message-passing parallel applications involve a number of processes, where each 

process may exchange information with the other processes. Message-passing behaviour 

in parallel applications is important, as it can be crucial to the performance of the 

applications running on clusters. Application’s message-passing characteristics can be 

studied in terms of its point-to-point communications, collective communications, and 

locality characteristics. Unless the communications of processes vary by the message 

arrival time, the MPI characteristics of applications are independent of the experimental 

platform. This is usually true for the message-passing scientific applications. 

Point-to-point communication is the simplest type of communication in message-

passing programs. Most of the time, Send and Receive operations (either blocking or non-

blocking) constitutes the point-to-point communication. Although it looks easy to 

communicate with Send and Receive functions, their characteristics play a key role in the 

performance of applications.  

Communication properties of message-passing parallel applications can be 

categorized by the temporal, volume, and spatial attributes of the communications. The 

temporal attribute of communications characterizes the rate of message generations, and 
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the rate of computations in the applications. The volume of communications is 

characterized by the number of messages, and the distribution of message sizes in the 

applications. The spatial attribute of communications is characterized by the distribution 

of message destinations. Collective communication is widely used in message-passing 

applications. Collective communications can be characterized by the type of the collective 

operation, its frequency, and the payload. 

Many message-passing applications follow a repetitive communication pattern. 

For example, there can be repetition patterns in message size, message destination, or 

even among send and receive events. Repetitive communication patterns in message-

passing applications can be studied using locality heuristics. Locality metrics are useful in 

message-property prediction schemes for communication latency hiding. Three main 

locality schemes are widely used, especially in memory replacement policies. These are 

First In First Out (FIFO), Least Recently Used (LRU), and Least Frequently Used (LFU).  

Several researchers have studied some aspects of message-passing characteristics 

of applications [2, 12, 13, 22, 25, 51, 53]. Vetter and Mueller [51] presented the MPI 

point-to-point and collective communications as well as floating-point characteristics of 

some applications in the ASCI Purple suite, and the SAMRAI application. Kim and Lilja 

[25] quantified the characteristics of some kernels and applications in MPI and PVM as 

well as their execution times. They also introduced the concept of locality for 

Send/Receive communication calls using the LRU heuristics. Afsahi and Dimopoulos 

extended the notion of communication locality to the message destinations, and message 

reception calls using the LRU, LFU and FIFO policies [2]. They then devised different 

message predictors. Wong and his colleagues [53] studied the NPB benchmarks. 

Chodnekar and his associates [12] considered the inter-arrival time of messages, and 

message volume in message-passing and shared-memory applications. Karlsson and 

Brorsson [22] compared the communication patterns of some applications in SPLASH 

and NPB benchmarks under MPI and ThreadMark. Cypher and his colleagues [13] 

studied some application benchmarks that use explicit communication. 
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2.4 High-Performance Clusters and Interconnects 

The biggest computing challenges are tackled and solved through high 

performance computing (HPC). Automotive crash test simulations, human genome 

mapping, meteorological modeling, nuclear blast simulations and many other nowadays’ 

research areas benefit from high performance computing. High performance clusters 

provide high performance computing at a low-cost.  

Interconnection networks enable cluster nodes to communicate with each other. 

Different interconnection networks may be used for cluster computing. Quadrics QsNet 

[39], QsNet II [1], InfiniBand [29], Myrinet [7], GigaNet [52], and Sun Fire Link [40] are 

examples of common interconnects for clusters. Myricom’s Myrinet is one of the most 

popular high performance interconnects used for building clusters [48].  

2.4.1 Myrinet Network 

Myrinet [7] is a high performance packet communication and switching 

technology that has become commonplace for connecting clusters of workstations and 

servers. Clusters in today’s computing world are gaining more and more popularity as 

they can provide high performance computing with lower costs. Myrinet provides high 

performance, low-latency and high data-rate communication between host processes as 

well as high availability when faults occur by detecting and isolating them and providing 

alternative communication paths. 

Myrinet supports full-duplex 2+2 Gigabit/second data-rate links, switch ports and 

interface ports. Error control and flow control is performed on every link. Scalability of 

the switch networks is up to tens of thousands of hosts. One of the key factors of Myrinet 

network is offloading the protocol processing from the host processor. Host interfaces 

execute a firmware to offload protocol processing from the host computer. By bypassing 

the operating system, the firmware interacts directly with host processes and it interacts 

directly with the network to send, receive, and buffer packets. Bypassing operating 

system offers a low-latency communication and therefore achieving higher performance. 

Architecture of a node in a Myrinet cluster [6] is shown in Figure 2.3. Each node 

of the cluster is connected to the network with a Myrinet network interface card. The 

interface card is connected to host’s I/O bus. Each interface card consists of a processor 
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and some fast local memory. The data and control program is stored in its memory. The 

network interface processor is a fast RISC processor executing the Myrinet control 

program. There are versatile DMA controllers on the interface to support zero-copy APIs. 

The network interface used in this study is M3F2-PCIXE-2 E-card Myrinet/PCI-X 

interface. The E-card has a programmable Lanai-2Xp RISC processor which operates at 

333MHz and 2 MB of local memory. The E-card connects to the host with 64-bit 

133MHz PCI-X interface. Each port of the interface provides 2+2 Gbps data rate. The E-

card provides two ports and therefore supporting data transfer rate of 4+4 Gbps. 
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Figure 2.3 Myrinet host and network interface architecture (adapted from [6]). 

 

2.5 Messaging Layers 

Myrinet was developed based on packet-switching technology. The packets are 

wormhole-routed through a network consisting of switching elements and network 
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interface cards (NIC). GM [18] is a messaging library that runs on top Myrinet network. 

MPICH [19] is a portable implementation of MPI, developed by Argonne National 

Laboratory. MPICH is popular and highly portable. MPICH-GM [32] is a "port" of 

MPICH on top of GM (ch_gm) developed and supported by Myricom. We explain GM 

and MPICH-GM in the following.  

2.5.1 GM Messaging Layer 

GM [18] is a commercial open source user-level networking protocol from 

Myricom. It runs on top of Myrinet network. Multiple user processes can share a network 

interface card simultaneously as GM provides a protected user-level OS-bypass interface 

to the NIC. GM has a low host-CPU overhead. It provides a connectionless 

communication model. Communication endpoints in this model are called ports (Figure 

2.4). GM provides reliable and ordered delivery between these ports. GM consists of a 

driver, a network mapping program, the GM API library, Myrinet Control Program 

(MCP), and header files. The GM driver provides system services. The mapping program 

is the Myrinet mapper daemon that maps the network.  

GM messages can be delivered with two levels of priority. It allows deadlock-free 

bounded-memory forwarding. The client software can build a message and send to any 

port in the network. GM provides ordered message delivery for messages that have the 

same origin port, the same destination port, and the same priority level. Usually GM 

applications use only one priority for all the messages so that the order of messages will 

be preserved. GM supports both Send/Receive and RDMA operations. The performance 

of GM Send/Receive is provided in [20, 41, 55] and performance of RDMA in GM is 

provided in [26, 55]. 
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Figure 2.4 GM endpoints (ports) (adapted from [18]). 

 

For sending and receiving messages, GM should first be initialized by the 

gm_init() function; it then should open a port before communication could start. All the 

buffers used in message-passing must be allocated by calling GM memory 

allocation/registration functions. GM provides gm_dma_malloc() and gm_dma_free() 

function calls for memory allocation and also provides gm_register_memory() and 

gm_deregister_memory() to pin and unpin memory on operating systems that support 

memory registration. The largest message GM can send or receive is limited to 231-1 

bytes. However, because send and receive buffers must reside in DMAable memory, the 

maximum message size is limited to the amount of DMAable memory the GM driver is 

allowed to allocate by the operating system. 

Both sends and receives in GM are regulated by implicit tokens. These tokens 

represent the space allocated to the client in various internal GM queues. Internal GM 

queues for tokens are depicted in Figure 2.5. The client may call certain functions only 

when possessing an implicit send or receive token. In calling that function, the client 

implicitly relinquishes the token [18]. 
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Figure 2.5 Internal GM queues for tokens (adapted from [18]). 

 

A client of a port may send a message only when it possesses a send token for that 

port. Different steps of sending a message in GM are described in Figure 2.6. The client 

calls a GM API send function, gm_send_with_callback. Calling a send function 

relinquishes a send token. Completion of the send operation is notified to the client by 

calling a callback function and passing a context pointer to the client. The client provides 

a callback function and a context pointer to the send function. When the send operation 

completes, GM calls the callback function, passes a pointer to the GM port, a pointer to 

the client’s context, and a status code indicating if the send was successful. Calling the 

callback function implicitly passes back the send token to the client. The callback 

function is only called within a client’s call to gm_unknown(). The event handler 

function, gm_unknown, is a function that client must call once it receives an unrecognized 

event. 
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Figure 2.6 GM user token flow (send) (adapted from [18]). 

 

Receiving messages in GM is token-regulated like sending a message. For 

receiving a message the client provides GM a receive buffer. The client may provide a 

number of buffers up to the number of receive-tokens that it has. The client provides GM 

the receive buffer by calling the function gm_provide_receive_buffer(). Calling this 

function implicitly relinquishes a receive-token. The token flow in a receive operation in 

GM is depicted in Figure 2.7.  
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Figure 2.7 GM user token flow (receive) (adapted from [18]). 

 

The client software must provide GM with a receive token before it receives a 

message of a particular size and priority. The token should match in size and priority with 

the message. The buffer in which the received message will be stored is specified by the 

token. After providing such a buffer the client software polls for a receive event. Three 

different functions maybe used for polling a receive event. The three receive functions 

used for polling are gm_receive, gm_blocking_receive, and gm_blocking_receive_nospin. 

The gm_receive function is not blocking. If no receive is pending, an event will be set 

accordingly. The gm_blocking_receive and gm_blocking_receive_nospin functions block 

if necessary. The gm_blocking_receive function polls for receives for one millisecond 

before sleeping, while the gm_blocking_receive_nospin function sleeps immediately if no 

receive is pending.  

GM is a lightweight communication layer and it has certain limitations. Sending 

and receiving messages is only possible into DMAable memory. GM does not support 

gather and scatter operations. It is not able to register shared memory under Linux. Some 
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of these limitations can be addressed by a heavier layer on top of GM, such as ARMCI 

[34]. 

2.5.2 MPICH-GM 

MPICH [19] is a portable implementation of the MPI. MPICH over GM (MPICH-

GM [32]) is implemented by targeting its Channel Interface to the GM messaging layer. 

MPICH-GM uses eager protocol for sending small (less than 16K), and control messages 

via GM send/receive operations. It uses rendezvous protocol for sending large messages 

via GM one-sided Put operation. Note that GM can only send data from registered 

memory for DMA transfers. In the eager mode, data is copied into a pre-registered buffer 

to eliminate the overhead of pinning memory for small messages at the expense of a 

memory copy. To avoid significant overhead in memory copying for long messages, the 

application message buffers at the source and destination are pinned, and data are 

transmitted from its original location at the user space to its final destination achieving a 

zero-copy. In the rendezvous mode, the sender sends a request-to-send to the receiver, 

and in response, the receiver sends back a clear-to-send as well as the address of the 

receiver buffer. Then, the sender writes directly to the remote buffer using the GM Put 

operation.  

At the receiving side, if a message arrives before a matching message reception 

call has been posted, MPICH-GM copies the data into a buffer, and adds it to the 

unexpected queue. When a process calls one of the MPI message reception calls, it first 

searches the unexpected queue to see if the message has already been arrived. It copies 

the message into the application buffer space if the matching message is found. 

Otherwise, a descriptor is posted. It then optionally polls the network device until the 

corresponding message arrives. MPICH-GM by default uses the polling method; 

however, it provides the ability to change the behaviour. Three modes are supported: 

polling, blocking, and hybrid. These modes are supported though the function calls 

gm_receive(), gm_blocking_receive(), and gm_blocking_receive_nospin(), respectively.  
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2.5.3 ARMCI 

GM is a low-level messaging library. However, it is not portable. MPICH-GM 

[32] is a portable library on top of GM. However, it does not support the Remote Memory 

Access (RMA) features of MPI-2 (there are reported research works in supporting MPI-2 

one-sided communication in MPICH-2 [27, 31]). Aggregate Remote Memory Copy 

Interface [3] is a library that provides general purpose, efficient and widely portable RMA 

operations for contiguous and non-contiguous data transfers. A list of ARMCI operations 

is provided in Table 2.2. 

 

Table 2.2 ARMCI remote operations description. 

Operation Description 

ARMCI_Put, _PutV, _PutS Contiguous, vector and strided versions of put 

ARMCI_Get, _GetV, _GetS Contiguous, vector and strided versions of get 

ARMCI_Acc, _AccV, _AccS 
Contiguous, vector and strided versions of atomic 

accumulate 

ARMCI_Fence 
Blocks until outstanding operations targeting specified 

process complete 

ARMCI_AllFence 
Blocks until all outstanding operations issued by 

calling process complete 

ARMCI_Rmw Atomic read-modify-write 

ARMCI_Malloc 
Memory allocator, returns array of addresses for 

memory allocated by all processes 

ARMCI_Free Free memory allocated by ARMCI_Malloc 

ARMCI_Lock, _Unlock Mutex operations 

 

ARMCI provides data transfer operations including put, get and accumulate. It 

also provides synchronization operations such as local and global fence and atomic read-

modify-write. Utility operations such as memory allocation and deallocation and error 

handling are supported in ARMCI too. ARMCI only supports communication that targets 

remote memory allocated via the provided memory allocator routine, ARMCI_Malloc(). 

In scientific computing, it is popular to store data in arrays. If the desired data is 

stored in different parts of the array or in general if the data is stored in several locations, 
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this type of data is called non-contiguous data. Therefore using ARMCI in scientific 

applications helps improving the communication performance. Remote copy APIs that 

only support contiguous data transfer, require multiple contiguous data transfers to send 

non-contiguous data. ARMCI, however, is optimized for non-contiguous data transfer. It 

is meant to be used primarily by library implementers rather than application developers. 

Example libraries that ARMCI is targeting include Global Array [36], P++/Overture [5], 

and Adlib PCRC run-time system [11]. User-level libraries and applications that use MPI 

[19], PVM [46] or TCGMSG [28] can be supported by ARMCI.  

Tipparaju and others [47] have used ARMCI to improve the performance of 

message-passing applications. They used ARMCI to evaluate effectiveness of the RMA 

communication on several popular scientific benchmarks and applications such as NAS 

CG and MG. They have achieved 12-49% overall improvement over MPI on 128 

processors. CG and MG are kernel applications and are not compute intensive. 
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Figure 2.8 ARMCI client-server architecture (adapted from [9]). 

 

ARMCI uses client-server architecture in clusters of workstations using GM [35]. 

Each node of the cluster has a server thread that handles remote memory operations for 

each of the user processes running on the node. When a user process wants to perform a 

remote memory operation, it sends a request to the server thread at the node where the 



 

 

28 

 

remote process is running. Each user process shares a memory region with the server 

thread. When the server thread receives a request, it performs the operation on the 

memory region for that process [9]. The client-server architecture of ARMCI is depicted 

in Figure 2.8. 

2.6 Summary 

In this chapter, we introduced the status of high performance clusters and 

interconnects. Shared-memory and message-passing models were described, as well as 

one-sided and two-sided communications. We showed the importance of communication 

characterization of parallel applications. This chapter introduced the Myrinet 

interconnection network and presented its architecture. We explained user-level 

messaging layer of Myrinet (GM), along with MPI built on top of GM. The Aggregate 

Remote Memory Copy Interface library, which supports one-sided communication on top 

of GM, is introduced in this chapter, as well.  

In the next chapter, we introduce the parallel applications studied in this thesis. In 

chapter 4, we gather the communication characteristics of our applications. Later on, we 

analyze the communication characteristics of the applications and propose using the 

ARMCI one-sided communication instead of MPI two-sided communications, to improve 

their communication performance. 
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Chapter 3 Parallel Applications 
 

Exploiting parallelism is a natural way to boost performance of applications. 

Parallel applications are designed to run on multiprocessor systems. Traditionally, 

performance of parallel applications on multiprocessor systems is evaluated by some 

well-known scientific or engineering benchmarks. Such benchmarks imitate the execution 

of the large applications. In this chapter, we introduce the parallel applications and 

benchmarks used in this thesis. They include the NPB-MZ benchmark suite, 

SPEChpc2002 benchmark suite, and SMG2000 of ASCI purple suite. For our study, we 

have used the most recently released versions of these benchmark applications. An 

overview of these sophisticated applications is presented in Table 3.1. 

 

Table 3.1 Overview of application benchmarks. 

Application Field Language #Lines 

BT-MZ 
Computational fluid dynamics; Block-

Tridiagonal systems 
Fortran 4700 

SP-MZ 
Computational fluid dynamics; Scalar 

Pentadiagonal systems 
Fortran 4200 

LU-MZ 
Computational fluid dynamics; Lower-Upper 

symmetric Gauss-Seidel  
Fortran 4600 

SPECenv Weather research and forecasting model Fortran and C 180000 

SPECseis 
Computing time and depth migrations used to 

locate gas and oil deposits 
Fortran and C 23000 

SMG2000 Solver for the linear systems C 27000 

 

3.1 NPB-MZ (Multi-Zone) 3.0 

The NAS Parallel Benchmark (NPB) [49] is a set of eight programs designed at 

the NASA Ames Research Center to help evaluate the performance of parallel 

supercomputers. The NPB benchmarks, which are derived from computational fluid 
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dynamics (CFD) applications, consist of five kernels and three pseudo-applications. 

Kernel applications are conjugate gradient (CG), multigrid (MG), 3-D fast-Fourier 

Transform (FT), Integer Sort (IS), and Embarrassingly Parallel (EP). Pseudo-

applications are Block Tridiagonal (BT), Scalar Pentadiagonal (SP), and Lower-Upper 

Diagonal (LU). 

In BT, network bandwidth and instruction cache is tested. In SP, memory 

bandwidth is tested, while in LU network latency and cache instruction is studied. NAS 

Multi-Zone benchmark suite (NPB-MZ) [49] is an extension of the NPB suite that 

involves solving the application benchmarks LU-MZ, BT-MZ and SP-MZ on collections 

of loosely coupled discretization meshes. NPB-MZ 3.0 was first released in summer 

2003. Each of these three applications is described in more detail later in the text. 

NPB consists of eight programs. These programs exhibit mostly fine-grain 

exploitable parallelism, and are almost all iterative, requiring multiple data exchanges 

between processes between iterations. Implementations in MPI, Java, High Performance 

Fortran, and OpenMP all take advantage of this fine-grain parallelism. However, many 

important scientific problems feature several levels of parallelism, and this property is not 

reflected in NPB. To remedy this deficiency, the NPB-MZ versions were created. The 

solutions on the meshes are updated independently, but after each time step, they 

exchange boundary value information. This strategy, which is common among structured-

mesh production flow solver codes in use at NASA Ames and elsewhere, provides 

relatively easily exploitable coarse-grain parallelism between meshes. Since the 

individual application benchmarks also allow fine-grain parallelism themselves, this NPB 

extension, named NPB Multi-Zone (NPB-MZ), is a good candidate for testing hybrid and 

multi-level parallelization tools and strategies (e.g., clusters of multiprocessors).  

NPB-MZ benchmarks are serial and parallel implementations of Multi-Zone 

benchmarks based on the original single-zone NPB 3.0. They are meant for testing the 

effectiveness of multi-level and hybrid parallelization paradigms and tools. The parallel 

implementation uses hybrid parallelism: MPI for the coarse-grain parallelism and 

OpenMP for the loop-level parallelism.  

Problem sizes and verification values are given for benchmark classes S, W, A, B, 

C, and D. Problem size S, W, and A are fairly small for evaluating performance of large 
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parallel architecture and are usually used to test the benchmark. Class B, C and D 

problem sizes are suitable for measuring the performance of a large scale system. The 

larger the problem size is, the better the system performance is evaluated. Class D has the 

biggest problem size and class C has a larger problem size than class B. In this thesis, we 

have used our applications with the problem size class B, and C. Class D is too big to run 

on our cluster. 

3.1.1 NAS BT-MZ 

Block Tridiagonal (BT) is a simulated CFD application that uses an implicit 

algorithm to solve 3-dimensional (3-D) compressible Navier-Stokes equations. The finite 

differences solution to the problem is based on an Alternating Direction Implicit (ADI) 

approximate factorization that decouples the x, y and z dimensions. The resulting systems 

are Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension 

[49]. BT-MZ is written in FORTRAN and has around 4700 lines of code. 

3.1.2 NAS SP-MZ 

Scalar Pentadiagonal (SP) is a simulated CFD application that has a similar 

structure to BT. The finite difference solution to the problem is based on a Beam-

Warming approximate factorization that decouples the x, y and z dimensions. The 

resulting system has Scalar Pentadiagonal bands of linear equations that are solved 

sequentially along each dimension [49]. SP-MZ is written in FORTRAN and has around 

4200 lines of code. 

3.1.3 NAS LU-MZ 

Lower-Upper Diagonal (LU) is a simulated CFD application that uses symmetric 

successive over-relaxation (SSOR) method to solve a seven-block-diagonal system 

resulting from finite-difference discretization of the Navier-Stokes equations in 3-D by 

splitting it into block Lower and Upper triangular systems [49]. LU-MZ is written in 

FORTRAN and has around 4600 lines of code. 
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3.2 SPEChpc2002 

In December 2002, SPEC (Standard Performance Evaluation Corporation) 

organization introduced SPEC HPC2002 suite [44], which improved upon and replaced 

the SPEC HPC96 benchmark suite. The benchmarks in the SPEChpc2002 V1.0 suite are 

derived from real HPC applications, and measure the overall performance of high-end 

computer systems, including the processors, the interconnection networks (shared or 

distributed memory), the compilers, the MPI and/or OpenMP parallel library 

implementation, and the input/output system. Serial, OpenMP, MPI, and combined MPI-

OpenMP parallelisms are supported. SPEChpc2002 supports shared memory, distributed 

memory and cluster architectures. 

SPEChpc2002 consists of three different benchmarks: SPECchem, SPECenv, and 

SPECseis. Each of the three benchmarks has Small (S) and Medium (M) workload 

classes. In this thesis, we have studied SPECseis and SPECenv, both with small and 

medium classes. SPECchem and SPECenv support MPI, OpenMP and combined MPI-

OpenMP. SPECseis supports MPI and OpenMP parallelism. SPEC HPC2002 runs on a 

UNIX or Linux system (Windows is not yet supported) with minimum 2 GB of memory, 

up to 100GB of disk, and a set of compilers. 

3.2.1 SPEChpc2002 – SPECenv  

SPECenv is based on a weather research and forecasting model called WRF. WRF 

is a state-of-the-art non-hydrostatic mesoscale weather model. The SPECenv class M 

metric expresses the performance of a computing system in simulating the weather over 

the continental United States for a 24 hour period at a 22km resolution using the WRF 

Model [44]. 

3.2.2 SPEChpc2002 – SPECseis  

SPECseis represents an industrial application that performs time and depth 

migrations used to locate gas and oil deposits and originally developed at Atlantic 

Richfield Corporation (ARCO). SPECseis includes more than 23,000 lines of FORTRAN 

and C code. Computational codes are written in FORTRAN while file Input/Output, data 

partitioning, synchronization primitives and message-passing layer are written in C [44]. 
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3.2.3 SPEChpc2002 – SPECchem 

SPECchem is based on a quantum chemistry application called GAMESS 

(General Atomic and Molecular Electronic Structure System) which is an improved 

version of programs that originated in the Department of Energy's National Resource for 

Computations in Chemistry. Many of the functions found in GAMESS are duplicated in 

commercial packages used in the pharmaceutical and chemical industries for drug design 

and bonding analysis. SPECchem includes more than 120,000 lines of FORTRAN and C 

code [44]. 

3.3 SMG2000 

SMG2000 is one of the applications in the ASCI compact benchmark suite [4]. 

SMG2000 is a parallel semi-coarsening multi-grid solver for the linear systems arising 

from finite differences, finite volume, or finite element discretizations of the diffusion 

equation ∇⋅(D∇ u) + σ u=f on logically rectangular grids. It solves both 2-D and 3-D 

problems. For solving problems of radiation diffusion and flow in porous media, such 

solver is needed. The parallelism in SMG2000 is achieved by data decomposition. 

SMG2000 is a memory-access bound application and memory-access speed has a large 

effect on performance. 

There is no standard problem size for SMG2000. In fact, the problem size scales 

with the number of processes. The problem size of SMG2000 is equal to the input 

problem size multiplied by number of processes; hence, as the number of processes 

increases, the problem size increases proportionally. In order to run SMG2000 with fixed 

problem size, the input value of problem size has to be decreased proportional to the 

increase in the number of processes; in other words, the multiplication of input problem 

size and number of processes should remain constant. 

3.4 Summary 

In this chapter, we introduced the different applications and benchmarks that we 

have studied in this thesis. We described the NPB-MZ benchmark suite, SPEChpc2002 

benchmark suite and SMG2000 application. These popular benchmarks are used to 

evaluate the performance of multiprocessor systems.  
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Communication characteristics of parallel applications can be crucial on their 

performance. In order to have a better understanding of their performance on our 

platform, in chapter 4 we study the message-passing behaviour of these parallel 

applications. 
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Chapter 4 Application Characteristics 
 

Message-passing parallel applications involve a number of processes, where each 

process may exchange information with the other processes. Message-passing behaviour 

of parallel applications is important, as it can be crucial to their performance running on 

clusters. In this chapter, we discuss different message-passing behaviour of our 

applications introduced in chapter 3. We study the MPI point-to-point communications, 

collective communications, and locality characteristics of these applications. We have 

written our own profiling code for NPB-MZ and SPEChpc2002 applications, using 

wrapper facility of MPI. However, we used Vampir/Vampirtrace too [38] for the MPI 

analysis of SMG2000. The information provided in this chapter will provide the HPC 

users, programmers and system designers with a better understanding of parallel 

applications and their communication characteristics impact on the performance. It is 

noteworthy that the MPI characteristics of the applications are independent of the 

platform we used in our experiments. 

4.1 Evaluation Platform 

We recall that our evaluation platform consists of eight dual 2.0GHz Intel Xeon 

MP Servers (Dell PowerEdge 2650s). All nodes are connected to a 16-port Myrinet 

network through the Myrinet two-port "E card" (M3F2-PCIXE-2) network interface 

cards. Each node is running Red Hat Linux 9 with Kernel 2.4.24 as its operating system. 

We use Intel C++/Fortran Compiler version 7.1 for 32-bit applications, as well as GCC 

compiler version 3.2.2. We have used the mpich-1.2.5..10 library as the message-passing 

library, and GM version 2.1.0, Myrinet’s messaging library. 

4.2 Point-to-point Communications 

Communication properties of message-passing parallel applications can be 

categorized by the temporal, volume, and spatial attributes of the communications [12, 

25]. The temporal attribute of communications characterizes the rate of message 

generations, and the rate of computations in the applications. We do not discuss the 
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temporal attribute in this thesis. The volume of communications is characterized by the 

number of messages, and the distribution of message sizes in the applications. The spatial 

attribute of communications is characterized by the distribution of message destinations.  

Point-to-point (P2P) communication is the simplest type of communication 

among processes in a message-passing programming paradigm. Major events in P2P 

communication are sends and receives that either of them can be blocking or non-

blocking. We quantify metrics such as number of sends (either blocking or non-blocking), 

average message size per message, total message size transferred per process, message 

size cumulative distribution function (CDF), number of unique message destinations per 

process, and destination distribution of messages of the root process (process zero). 

Knowing these metrics assists one in choosing the proper interconnection network for a 

cluster. For example, if a program is sending many short messages then latency of 

interconnection network becomes very important for the performance of the application. 

If the size of the messages is very large then the bandwidth of the network becomes an 

issue.  

Vetter and Mueller [51] presented the MPI point-to-point and collective 

communications as well as floating-point characteristics of some applications in the ASCI 

Purple suite, and the SAMRAI application. Kim and Lilja [25] quantified the 

characteristics of some kernels and applications in MPI and PVM as well as their 

execution times. Wong and his colleagues [53] studied the NPB benchmarks. Chodnekar 

and his associates [12] considered the inter-arrival time of messages, and message volume 

in message-passing and shared-memory applications. Karlsson and Brorsson [22] 

compared the communication patterns of some applications in SPLASH and NPB 

benchmarks under MPI and ThreadMark. Cypher and his colleagues [13] studied some 

application benchmarks that use explicit communication. In this thesis, we study the new 

application benchmarks that have not been studied before. Comparison of message-

passing characteristics of applications under mixed MPI-OpenMP and pure MPI is 

another aspect of this chapter that is not addressed by others before. 
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4.2.1 Message Frequency  

Message frequency of an application is the simplest P2P metric. In this study, we 

count the number of send calls, either blocking or non-blocking, for each process in an 

application. Minimum, average and maximum number of send calls is calculated per 

process and presented in Figure 4.1. The X-axis in Figure 4.1 shows the class size and the 

number of processes for each case. For instance, “B2” and “M4” correspond to class B 

running with two processes, and class M running with four processes, respectively.  

It is evident that the number of messages sent in the BT-MZ, SP-MZ, and LU-MZ 

is decreasing (except for some of the cases where the number of processes is two) with 

the increasing number of processes. This trend is consistent for both classes B, and C. 

However, contrary to the NPB-MZ benchmarks, the number of messages sent for the 

SPECenv and SPECseis applications shows a different trend, where they actually increase 

when the number of processes increases. This trend is consistent for both small and 

medium workloads.  
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Figure 4.1 Number of messages sent per process. 
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An interesting observation is that the processes in the LU-MZ (except for C2) and 

SPECseis send equal number of messages to their destinations, where this is not the case 

for the other applications. We can see a large difference between the minimum and the 

maximum number of messages sent among processes of SPECenv under class M. Among 

the five applications, SPECenv has the largest number of messages sent per process. For 

instance, with 16 processes, each process in SPECenv sends 90,000 messages on average, 

while each process in the SP-MZ, BT-MZ, SPECseis, and LU-MZ sends roughly 13,000, 

10,000, 5,000 and 1,000 messages, respectively. This shows that latency of the 

interconnection network will affect performance of SPECenv the most, but will affect the 

performance of LU-MZ the least. 

4.2.2 Average Message Size  

In this section, we quantify the average message size of all messages sent in each 

application. This will give us an understanding of size of the messages exchanged in the 

application and will help us understand the bottlenecks of the system due to the 

bandwidth of the interconnection network. It is interesting to know if the message sizes of 

an application are regular for different number of processes. We present the average 

message sizes of each benchmark in Figure 4.2. Note that the average message size is 

presented in Kilobyte (1024 bytes).  

One can easily observe that the average message size for the SPEC applications, 

for both small and medium workloads, becomes smaller as the number of processes 

increases. In contrast, the average message size for the NPB-MZ application benchmarks 

increases. BT-MZ and SP-MZ roughly use the same sort of message sizes; between 15KB 

to 25KB for the BT-MZ, and between 10KB to 21KB for the SP-MZ. However, LU-MZ 

uses larger message sizes, especially for the larger class C with message sizes between 

80KB and 100KB.  

In order to be able to compare the average message size sent in different 

applications, average of message sizes over all different classes and workloads, and 

different number of processes for each application is calculated and presented in Figure 

4.3. NAS applications, especially for the small class B, use the smallest average message 
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size among the all applications. It means the impact of network bandwidth on these 

applications will not be big compared to other applications. An overall observation is that 

the SPECenv, SPECseis, and LU-MZ are more bandwidth bound than the other 

applications.  
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Figure 4.2 Average message size per send.  
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Figure 4.3 Comparison of average message sizes of benchmarks 
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4.2.3 Message Volume  

It is interesting to know how much traffic each process generates on the 

interconnection network. The total message volume that a process sends over the network 

is roughly equal to the average message size per send times the number of messages sent 

per process. We have quantified and presented the minimum, average and the maximum 

number of bytes that each process sends over the network in Figure 4.4.  
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Figure 4.4 Total message volume per process 

 

The total message volume sent by each process in the SPEChpc2002 applications 

is very different for small and medium classes. However, this is not the case for the 

classes B and C in the NPB-MZ. SPECenv, medium class, has the largest message traffic 

per process on the network, roughly between 4000MB to 7000MB. However, for the 

small class, each process sends roughly 140MB to 230MB. SPECseis has message traffic 

of 110MB to 130MB per process on the network for the medium class, and around 8MB 

for the small class. For the C class, each process in BT-MZ, SP-MZ, and LU-MZ sends 
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130MB to 440MB, 130MB to 480MB, and 97MB to 232MB, respectively. In all of the 

five applications, we can notice that there is a big difference between small/B and 

medium/C classes in terms of total message volume per process.  

As shown in Figure 4.4, in most cases there is not a big difference among 

processes in terms of total number of bytes sent. One can see big differences among some 

processes for LU-MZ in C2, SPECenv in M8, M16 and M32, SP-MZ in C4 and C8, and 

BT-MZ in C4 and C8. SPECseis seems to be the most regular application in terms of 

number of sent bytes per process. 

4.2.4 Message Size Cumulative Distribution Function  

The cumulative distribution function (CDF) of message sizes provides more detail 

about the different message sizes sent in an application. Figure 4.5 presents the CDF of 

the message sizes for the applications under different system and problem sizes. Note that 

the horizontal axis for the SPECseis is in logarithmic scale. From the graphs, it can be 

seen that the BT-MZ and SPECenv use a large number of different message sizes while 

the other applications use only a few message sizes. BT-MZ uses up to 21 different 

message sizes in class C (16 in class B). The shortest and the longest messages are 5KB, 

and 55KB, respectively. SPECenv uses up to 70 different messages sizes in class S (50 in 

class M). It uses both short messages (as small as 4 bytes) and very long messages (as 

large as 3129KB for the class M). Thus, SPECenv is very much sensitive to both latency 

and bandwidth. 

The distribution of the size of messages sent by the SP-MZ, and LU-MZ are 

bimodal. There are only two different message sizes used in these applications. Message 

sizes for these two applications suggest they are very much bandwidth-bound. SPECseis 

uses five different message sizes each for both classes. It uses small messages (including 

zero-byte messages) as well as very large messages (up to 32768KB). This shows that 

SPECseis is more sensitive to the bandwidth than to the latency of the interconnect.  It is 

easily seen that message size range is very different for all these applications. We 

discovered that minimum message sizes for benchmarks are 5KB, 14KB, 29KB, 4 bytes 

and zero byte, and maximum message sizes are 55KB, 28KB, 79KB, 3129KB and 

32768KB for BT-MZ, SP-MZ, LU-MZ, SPECenv and SPECseis, respectively. 
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Figure 4.5 Message size CDF of NPB-MZ and SPEChpc2002 applications. 
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4.2.5 Message Destinations  

Spatial behaviour is characterized by the distribution of message destinations [25], 

[12]. We have studied the number of message destinations for each process in the 

applications, as shown in Figure 4.6. From the graphs, the number of message 

destinations per process does not change with the workload for the LU-MZ, and SPEC 

applications. Processes in the LU-MZ, SP-MZ, and SPECenv (except for some of the 

processes) have a few favourite communication partners. This is consistent with previous 

results for other applications [25, 51].  

However, processes in BT-MZ (especially the C class) and SPECseis 

communicate with most of the remaining processes. SPECenv has a very diverse range of 

number of destinations. For instance in S32, SPECenv has 8 destinations per process on 

average. However, some processes have 30 destinations and some only have 4 

destinations. We can see that except for LU-MZ and SPECseis, other benchmarks have 

some irregularity in terms of the number of destinations among processes. 
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Figure 4.6 Number of destinations per process. 
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4.2.6 Destination Distribution 

As discussed earlier, not all processes in the applications communicate with all 

other processes. Usually, process zero (root process) is responsible for distributing the 

data and verifying the results. This makes it a favourite destination for other processes. 

However, it is interesting to discover the set of destinations for process zero. Figure 4.7 

shows the distribution of message destinations for process zero in the applications 

running with 16 processes.  
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Figure 4.7 Destination distribution of process 0 (16 processes). 

 

Process zero in the SPEC applications, and the BT-MZ (class C) communicates 

with all other processes. Process zero in the SPECenv communicates infrequently with all 

other processes, and it has its own favourite partners. Interestingly, process zero in the 
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SPECseis has a uniform communication pattern. In all other cases, process zero 

communicates with a subset of all other processes. In SP-MZ and LU-MZ, process zero 

communicates with two to three other processes and four processes, respectively. 

4.3 Collective Communications 

Collective communication is widely used in message-passing applications. 

Collective communication involves more than two processes. Data distribution and 

synchronization is easier to implement using collective communication. Collective 

communications can be characterized by the type of the collective operation, frequency of 

collective operations, and their payload. 

Quantitative study of collective communications in our applications is presented 

in Table 4.1. This table presents the type, frequency, and the payload (in bytes) of the 

collective operations used in the NPB-MZ and SPEChpc2002 applications. Broadcast, 

barrier and reduce are the only collective primitives used in these applications. The 

reduce primitive in the SPECenv uses the “sum” operation. NPB-MZ applications use the 

“sum”, as well as the “max” operation. SPECenv uses a large number of broadcast 

operations with very large payloads. NPB-MZ applications use a few number of 

collective operations with small payload, while SPECenv uses a large number of 

collective operations with large payloads. SPECseis uses collective operations more 

frequently than NPB-MZ applications with larger payload. In contrast to the applications 

Vetter [51] has studied, SPECenv has significant collective payload. 

 

Table 4.1 Collective communications of NPB-MZ and SPEChpc2002 (16 processes) 

Application Class 
Number 

of 
processes

Number of 
Broadcasts and 
payload (bytes) 

Barrier
Number of 

Reduces and 
payload (bytes) 

BT-MZ B, C 2-32 3 (12) 2 3 (88) 
SP-MZ B, C 2-32 3 (12) 2 3 (88) 
LU-MZ B, C 2-16 7 (64) 2 4 (96) 
SPECenv S 2-32 946 (6631224) - 1 (16) 
SPECenv M 2-32 2247(102597148) - 1 (16) 
SPECseis S, M 2-16 38 (23312) 20 - 
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4.4 Locality Characteristics 

It is interesting to discover if message-passing applications exhibit any repetitive 

communication patterns. For example, there might be repetition patterns in message size, 

message destination, or even among the send and receive events. Locality metrics are 

useful in message-property prediction schemes and communication latency hiding 

techniques. Locality is also useful in predicting the buffer requirements ahead of time to 

hide the communication latency. It can also be used to set up the communication path in 

circuit-switch networks and optical networks [2]. Locality can be defined in different 

ways. In general, locality, regardless of its definition, shows the probability of repetition 

of a pattern in future based on that definition. It is important to choose a good model of 

locality to be able to predict next events easier. As locality is a probability metric, its 

value is between zero and one. The sooner the locality gets to value one, the better it can 

predict the next events.  

Three major locality schemes are widely used, especially in memory replacement 

policies. These are First In First Out (FIFO), Least Recently Used (LRU), and Least 

Frequently Used (LFU). These models are studied for message sizes and message 

destinations of our benchmarks. FIFO, LRU and LFU heuristics all maintain a set of k 

(window size) unique message identifier. If the next message event is already in the set 

then a hit is counted, otherwise a miss is counted. If a miss occurs, based on the heuristic 

the new identifier will be moved to the set. 

FIFO is the simplest heuristic. The last n unique identifiers are already in the set 

and if the next identifier is already in the set then number of hits will be increased by one; 

otherwise, the number of misses will be increased by one. The locality for FIFO is 

defined as “hit ratio”; that is the number of hits divided by the total number of hits and 

misses. The locality is presented in percentage format. Once a new identifier joins the set, 

the first identifier that has joined in k -1 steps ago will be moved out of the set. The 

youngest member replaces the oldest member of the set. 

LRU and LFU heuristics are similar to FIFO. The replacement scheme in LRU is 

such that the member of the set that the new member replaces with is the one that is least 

recently used. While applying LRU scheme, if there is a hit then the hit member will be 

moved from its place to the top of the set and all the other members will be pushed down. 
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If there is a miss then the last member of the set, which is the least recently used member 

will be moved out of the set and the new member will be placed at the top of the set and 

all other member will be pushed down. In the LFU heuristic, usage frequency of all the 

members is noted and if a miss occurs in the set then the member that has to be moved 

out is the one that has the least usage frequency. The new member will replace the least 

used member of the set.  

Kim and Lilja [25] introduced the concept of locality for Send/Receive 

communication calls using the LRU heuristics. Afsahi and Dimopoulos extended the 

notion of communication locality to the message destinations, and message reception 

calls using the LRU, LFU and FIFO policies [2]. They then devised different message 

predictors.  

4.4.1 Message Size Locality 

As mentioned earlier, FIFO is our simplest locality heuristic. Localities of 

message sizes based on FIFO heuristic for the five benchmarks are shown in Figure 4.8. 

Each application has been run with different number of processes. For a given number of 

processes, message size locality is the average of message size locality for each process. 

Message size locality varies as the number of processes in the application changes. 

Message size locality shown here is for window sizes 1 to 16. As the window size gets 

larger, the probability of a hit becomes larger; therefore, localities increase and get closer 

to the value one. It is clear that applications that do not have many different unique 

message sizes will reach the maximum value one quickly. In short, number of unique 

message sizes and window size has the largest effect on locality. BT-MZ and SPECenv 

have many different unique message sizes and therefore their locality curves approach the 

value one more smoothly and more slowly than the other applications that have only two 

or three different unique message sizes. 

We realized from Figure 4.8 that for BT-MZ class B, the more processes you have 

the better locality curve you get. This means that locality grows faster and gives a larger 

probability of repetition based on FIFO heuristic for larger number of processes. For 

example, BT-MZ class B reaches 80% locality with 32 processes with the window size of 

four while the same benchmark with two processes only reaches 70% locality with 
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window size of 13. For BT-MZ class C, the difference between locality curves of 

different number of processes is less than class B. 

The fact that larger number of processes leads to a better locality curve is true for 

SPECenv as well (except for number of processes equal to two). With two processes, 

surprisingly, SPECenv has a better locality curve than all the other curves for large 

number of window sizes. FIFO locality curve of SPECenv class S reaches 100% with 

window size of nine and for class M it reaches the value one with window size of eight 

while locality of other number of processes does not even get to the value one with 

window size of 16. This confirms that SPECenv has a large number of different unique 

message sizes and each unique message size is not locally repeated in a small number of 

consecutive sends very often. 

Studying the locality of message sizes of LU-MZ and SP-MZ shows that almost 

more that 50% of the time, the next message sent in the application has the same message 

size as the previous message. For SPECseis, this percentage is very close to 100% and it 

means that most of the time messages with the same size are sent consecutively. 

Locality of message sizes for LRU heuristics are shown in Figure 4.9. LRU 

heuristic performance is very similar to FIFO heuristic for our benchmarks. For BT-MZ 

class B and C, the larger the number of processes, the larger the probability of repetition 

patterns. For SPECenv class S and M, number of processes equal to two has the highest 

locality in message size and after that, 32, 16, 8 and 4 processes have higher localities, 

respectively. Locality of message sizes for LFU heuristics are shown in Figure 4.10. LFU 

heuristic performs slightly different from FIFO and LRU. The same trend among 

different number of processes exists that applications running with a higher number of 

processes have a higher locality (except for a few cases, such as SPECenv with 2 

processes).  

4.4.2 Message Destination Locality 

Each process in a parallel application might have a different style in 

communicating with other processes. A process might communicate only with one other 

process, a few other processes, or all other processes. Sequence of communication with 

other processes might also be different between applications. In this section, we study the 
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message destination locality of MPI Send/ISend primitives in NPB-MZ and 

SPEChpc2002 benchmarks. FIFO, LRU and LFU heuristics are once again used for this 

study. 

FIFO heuristic locality results for message destinations are shown in Figure 4.11. 

In general, as the window size increases, there is a better chance for a hit rather than a 

miss. The larger number of processes in the application means that there is larger number 

of possible destinations and therefore variety of destinations can decrease their locality. 

For example, in a two-process application, there are only two possible destinations hence 

the locality of destinations for window sizes of larger than one would be equal to one 

while locality for a 32-process application is usually less than 5% in our applications in 

small window sizes.  

Although for large number of processes there are many different possibilities as a 

message destination, as mentioned earlier not necessarily each process will communicate 

will all the other processes. This will eliminate some of destinations and will decrease the 

actual number of destinations for a process; therefore, the locality of message destinations 

will grow faster than a regular application in terms of message destinations. For example 

for 32 processes in BT-MZ class B, SP-MZ class B, SP-MZ class C, SPECenv class S 

and SPECenv class M, message destination locality will be around 100% for window 

sizes of larger than 9, 5, 2, 7, and 7, respectively for the FIFO heuristic. This shows that 

on average each process communicates only with 10, 6, 3, 8, and 8 other processes, 

respectively. We can see that these numbers (except for BT-MZ class B) match very well 

with the number of message destinations presented in Figure 4.6. In short, BT-MZ and 

SPECseis processes communicate with many other processes, while SP-MZ and LU-MZ 

only communicate with a few favourite processes, and SPECenv is somewhere between 

these two groups. 

Message destination localities using the LRU heuristic are presented in Figure 

4.12. Similar to message size results, LRU heuristic results for message destinations are 

very similar to FIFO. SP-MZ and LU-MZ have high message destination localities 

according to the LRU heuristic, while BT-MZ and SPECseis have low message 

destination localities. One can say that SPECenv has a medium locality comparing to 

theses two groups. 
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Message destination locality results for LFU heuristic is shown in Figure 4.13. 

The same trend in the locality with LFU heuristic can be seen that BT-MZ and SPECseis 

have low locality, SPECenv has a medium locality, and SP-MZ and LU-MZ have high 

locality in message destination. The LFU results are slightly different from FIFO and 

LRU. In the next section, we compare these heuristic to figure out which one could 

predict the next identifiers better. 
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Figure 4.8 Message size locality (FIFO heuristic) 
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Figure 4.9 Message size locality (LRU heuristic)  
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Figure 4.10 Message size locality (LFU) 
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Figure 4.11 Message destination locality (FIFO) 
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Figure 4.12 Message destination locality (LRU) 
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Figure 4.13 Message destination locality (LFU) 
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4.4.3 Comparison of Localities 

In this section, we compare message destination locality and message size locality 

of all five applications under different classes, while running with only 16 processes. We 

want to find out which heuristic performs better. The comparison of FIFO, LRU and LFU 

heuristics for message destinations and message size locality of applications are shown in 

Figure 4.14.  

For BT-MZ class B and C, LFU performs better than LRU and FIFO, both in 

message size locality and message destination locality. SP-MZ and LU-MZ have a 

relatively high locality and all three heuristics perform almost the same both for message 

size and message destination locality. The SPECenv message destination locality is 

almost the same for all three heuristics, while for message size locality there are small 

differences between them. For message size locality, LRU and FIFO perform almost the 

same and better than LFU for both classes of SPECenv. The case is completely the 

opposite for SPECseis. LFU performs better than LRU and FIFO for message destination 

locality and all of them perform similarly for message size locality, as SPECseis does not 

use many unique message sizes. 

In summary, LRU and FIFO have a very similar performance. LFU for some 

applications outperforms LRU and FIFO and sometimes shows a poorer performance. It 

can be concluded that dependant on the type of the application, different locality schemes 

should be used to get the most out of prediction schemes. 

4.5 Mixed-Mode Communication Characteristics 

It is possible to exploit parallelism using a combination of different parallel 

programming paradigms. Parallel programs that use multiple parallel programming 

paradigms concurrently are called mixed-mode programs. Prominence of clusters 

encourages programmers to use MPI in the applications. Meanwhile, the relatively easy 

programming style in OpenMP and its scalability on shared-memory system makes 

OpenMP a desirable parallel programming paradigm for SMP nodes. The mixed MPI-

OpenMP programming style is therefore one of the most promising parallel programming 

paradigms for SMP clusters.  

 



 

 

58 

 

BT-MZ Destination locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

BT-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SP-MZ Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SP-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

LU-MZ Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

LU-MZ Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

B-FIFO
B-LRU
B-LFU
C-FIFO
C-LRU
C-LFU

SPECenv Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECenv Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECseis Destination Locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

SPECseis Message size locality

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Window size

Lo
ca

lit
y

S-FIFO
S-LRU
S-LFU
M-FIFO
M-LRU
M-LFU

  
Figure 4.14 Comparison of different locality heuristics (16 processes). 
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NPB-MZ benchmark is a mixed-mode benchmark and it is possible to use both 

MPI and OpenMP concurrently. In this section, we look into the communication 

characteristics of our mixed-mode applications. 

4.5.1 Message Frequency 

It is possible to run different combinations of threads and processes in mixed-

mode applications across a cluster. In this section, we present the message frequency 

characteristics of NPB-MZ applications for different combinations. For example, some of 

the possible combinations of processes and threads that one can run on an eight dual-node 

cluster (16 processors) are 1P16T, 2P8T, 4P4T, 8P4T, and 16P1T. For instance, “8P2T” 

means that there are eight processes evenly divided among four nodes of the cluster, 

where each process has two threads running on its respective node. 1P16T is the pure 

OpenMP case, where there are no MPI communications, thus, we do not consider this 

case in our figures. 16P1T is the pure MPI case, where there is no OpenMP 

parallelization. This case is the one we have studied so far in this chapter. In the 

following, we compare the message frequency of different combinations of processes and 

threads. 

We count the number of send calls, either blocking or non-blocking, for each 

process in an application. We calculate the average send calls per process for each 

process and thread combination such as 2P8T, 4P4T, 8P4T, and 16P1T. Figure 4.15 

shows the message frequency of NPB-MZ in mixed-mode. It is evident that the number 

of messages sent in the BT-MZ, SP-MZ, and LU-MZ is decreasing (except for some of 

the cases where the number of processes is two) with the increasing number of processes. 

This trend is consistent for both classes B, and C. Total number of exchanged messages in 

the application is roughly equal to the number of processes times the average number of 

messages per process. Although number of sent messages per process is decreasing in this 

trend, the total number of messages exchanged in the applications is increasing. 

An interesting observation is that, on average, the SP-MZ-C sends equal number 

of messages per process when running with 4P4T and 8P2T, where this is not the case for 

the other applications and process-thread combinations. Among the three applications, 
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SP-MZ-C and BT-MZ-C have the largest number of messages sent per process, 

respectively. SP-MZ-C sends around 24000 messages per process when running with 

4P4T and 8P2T. BT-MZ-C sends approximately 21000 messages per process when 

running with 2P8T and 4P4T. 
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Figure 4.15 Number of messages sent per process in NPB-MZ (mixed-mode). 

4.5.2 Average Message Size 

In this section, we quantify the average message size of all messages sent in the 

NPB-MZ applications for different process/thread combinations. This helps us tune our 

applications when there is a bandwidth limitation in our interconnection network. The 

average message size of NPB-MZ applications in mixed-mode is presented in Figure 

4.16.  
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Figure 4.16 Average message size of NPB-MZ applications (mixed-mode). 

 

The average message size for the NPB-MZ application benchmarks do not vary 

significantly for different combinations of processes and threads, except for LU-MZ that 

has up to 25% average message size increase when running with 16P1T and 8P2T. For 
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the studied process/thread cases, BT-MZ, SP-MZ, and LU-MZ-B have average message 

sizes of between 15KB and 40 KB, while LU-MZ-C has average message sizes of 

between 80KB and 100KB. An overall observation is that the LU-MZ-C is more 

bandwidth bound than the other NPB-MZ applications.  

4.5.3 Message Volume 

The total message volume that a process sends over the network is roughly equal 

to the average message size per send times the number of messages sent per process. We 

present the average of number of bytes that each process sends over the network, for 

different combinations of processes and threads, in Figure 4.17.  
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Figure 4.17 Message volume of NPB-MZ applications (mixed-mode). 

 

The general trend, when increasing the number of processes and decreasing the 

number of threads, is that message volume gets smaller. The total message volume sent 

by each process in the SP-MZ and BT-MZ-C, when running with 4P4T, is larger than 

other studied combinations of processes and threads. For the C class, each process in BT-

MZ, SP-MZ, and LU-MZ sends 130MB to 440MB, 130MB to 480MB, and 97MB to 

232MB, respectively. The total amount of exchanged bytes in the application is equal to 

the number of processes times the average message volume per process. Although the 

average message volume per process is decreasing with more processes than threads, the 

total amount of exchanged bytes in the applications is increasing. 
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4.5.4 Comparison of MPI and Mixed-Mode Characteristics 

By carefully looking at the results presented in previous sections, we notice that 

the basic characteristics data of NPB-MZ is independent of the number of running 

threads. By that, we mean that if NPB-MZ applications are running with P processes, then 

number of threads, T, does not affect the communication characteristics of the 

application, while P is constant. For example, communication characteristics of 4P1T, 

4P2T, and 4P4T will be the same. We investigated this, and found out that there is no 

MPI communication operations inside the OpenMP parallel regions, thus the OpenMP 

loop parallelization will not affect the MPI communication characteristics. 

However, if a certain number of parallel entities (either processes, or threads in 

each process) is desirable, then different combinations of threads and processes can be 

used to run the application in mixed-mode across a cluster. Even by utilizing the same 

number parallel entities, different process/thread combinations of NPB-MZ have different 

communication characteristics, as we showed in the previous sections. Based on the 

application communication characteristics and system latency/bandwidth limitations, one 

process/thread combination may be more advantageous than the other combinations. Of 

course, it also depends on the availability of the SMP nodes with sufficient number of 

processors to support execution of the threads. 

4.6 SMG2000 Characteristics  

The communication characteristics of SMG2000 have been studied by other 

researchers [51]. We have used VAMPIR [38] to extract some basic communication 

characteristics of SMG2000 in this work, as shown in Table 4.2. As there is no standard 

problem size for SMG20000, we chose 128x64x64 input size for its serial version. If the 

input problem size is not changed, the total application problem size is proportional to the 

number of processes in the application. Therefore, we have scaled down the input size 

proportionally with the number of processes to keep the total problem size constant. 

SMG2000 uses short message sizes (smaller than 1KB) compared to NPB-MZ 

and SPEChpc2002 applications. As the number of processes increases, the average 

message size becomes smaller. SMG2000 sends more messages when running larger 

number of processes. SMG2000 uses few collective operations, such as All_reduce, 
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Barrier, All_gather, and All_gatherv. The number of collectives used in SMG2000 does 

not change according to the number of process (except for All_reduce with two and four 

processes). 

 

Table 4.2 MPI Characteristics of SMG2000. 

#processes 2 4 8 16 

#Send calls 44303 51941 52423 50827 

Average message size (KB) 0.92 0.54 0.32 0.32 

#All_reduce  15 14 14 14 

#Barrier  1 1 1 1 

#All_gather  1 1 1 1 

#All_gatherv 1 1 1 1 

 

4.7 Summary 

In this chapter, we have examined the MPI characteristics of small to large-scale 

scientific applications in terms of their point-to-point and collective communications. We 

quantified metrics such as message frequency, average message size per message, total 

message volume per process, message size cumulative distribution function, number of 

unique message destinations per process, and destination distribution of messages of the 

root process.  

For collective communications, we presented the type, frequency, and the 

payload. We also evaluated the impact of the problem size and the system size on the 

communication behaviour of the applications. We found that the applications studied 

have diverse communication characteristics. Those include very small to very large 

messages, frequent to infrequent messages, various distinct message sizes, set of favourite 

destinations, and regular versus irregular communication patterns. Some applications are 

sensitive to the bandwidth of the interconnect, while others are latency-bound as well. 

Our evaluation also revealed that most applications are sensitive to the changes in the 

system size and the problem size. We discovered all applications use only a few 

collective operations. However, SPEC applications use them frequently with very large 
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payloads. The applications studied have static communication characteristic that do not 

change between multiple runs. 

Overall, the information provided in this chapter will help system designers, 

application developers, and library/middleware designers to better understand the current 

and future communication workloads of parallel applications. This study verifies that 

message-passing applications communicate intensively. Therefore, they will benefit from 

improvements in the interconnect hardware and their features as well as the 

communication system software and libraries. Collective communications such as 

broadcast, barrier, and reduce are expensive operations. Thus, it is essential to optimize 

their implementation in hardware and/or software in the future computer systems.  

We have also gathered the locality characteristics of NPB-MZ and SPEChpc2002 

applications. We used the FIFO, LFU, and LRU locality heuristics to evaluate the locality 

of message size and message destinations in our applications. We found out that LRU and 

FIFO have a very similar performance. LFU for some applications outperforms LRU and 

FIFO and sometimes shows a poorer performance. We realized that for BT-MZ class B 

and C, LFU heuristic performs better than LRU and FIFO heuristics, both in message size 

locality and message destination locality. SP-MZ and LU-MZ have a relatively high 

locality and all three heuristics (FIFO, LFU, and LRU) perform almost the same both for 

message size and message destination locality.  

We noticed that all three heuristics have similar results for the SPECenv message 

destination locality and message size locality. SP-MZ and LU-MZ show a high locality 

for both message size and message destination. SPECseis message size also shows a high 

locality, while its message destination locality grows linearly as the window size is 

increased. Message destination locality of BT-MZ and SPECenv, as well as the message 

size locality of BT-MZ, show a medium locality compared to the other applications. 

SPECenv message size locality is low compared to the other applications.  

In this chapter, we have also compared the communication characteristic of NPB-

MZ applications in the mixed-mode. We found out that different process/thread 

combinations change the communication characteristics of NPB-MZ. We also realized 

that MPI communication characteristics of NPB-MZ are independent from the number of 

threads.  
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To evaluate the message-passing performance of applications, we will evaluate 

the basic performance of our Myrinet network in the next chapter. We evaluate the 

performance of GM, MPI over GM, and ARMCI to see how these messaging libraries 

really affect the communication performance. 
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Chapter 5 Myrinet Performance Evaluation 
 

Performance of applications running on clusters mainly depends on the 

programming paradigm of choice, communication characteristics of the applications, and 

most importantly on the performance of the communication subsystem. So far, we have 

studied the parallel applications and their communication characteristics. In this chapter, 

we assess the performance of the Myrinet interconnect at different layers; that is at the 

GM level, MPI level and ARMCI level. We measure the performance of the GM basic 

function calls. We evaluate the latency/bandwidth performance of GM Send/Receive, GM 

RDMA, MPI Send/Receive, and ARMCI RDMA operations for one- and two-port 

configurations of the Myrinet network card interface. This chapter helps in a better 

understanding of the impact of communication subsystem on the application 

performance. 

5.1 GM Basic Performance 

GM [18] is a commercial open source user-level networking protocol from 

Myricom. GM runs on top of the Myrinet network. Multiple user processes can share a 

network interface card (NIC) simultaneously as GM provides a protected user-level 

interface to the NIC. GM provides a connectionless communication model. 

Communication endpoints in this model are called ports. GM provides reliable and 

ordered delivery between these ports. 

GM consists of a driver, a network-mapping program, the GM API library, 

Myrinet-Interface Control Program (MCP), and header files. The NICs that we used in 

this study, two-port “E-card” Myrinet/PCI-X interface, have been introduced recently by 

Myricom. They have two ports instead of one as in previous models. It means that each 

NIC is equipped with two uplink optical fibres and two downlink optical fibres. Having 

two links for each up- or down-link communication avoids large latency and provides a 

better bandwidth in case of traffic on one link. The concepts of ports on the NICs and 

ports in GM should not be mistaken. Ports in GM are software concepts while ports on 

the NIC are physical fibre links. GM depending on its version has eight or more ports 
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where some of them are reserved for internal use. In this chapter, we compare the 

performance aspects of the Myrinet networks when the two ports of NIC are operating 

versus when only one of them is working. All the measurements in this section are done 

using our own code. 

In a program that uses GM, some initializations need to be done. GM_Init() has to 

be called and a GM port for communication should be opened with GM_Open(). 

GM_Allow_remote_memory_access() should be called if a program wants to expose and 

area of its memory so that other programs can write into that memory, with RDMA calls 

such as GM_Put(). GM_Provide_receive_buffer() should be called to provide a buffer in 

case of receiving of a message. At the termination point of the program GM_Close() is 

used to close the used ports. To allocate and pass buffers to these functions, memory 

should be allocated using GM_Malloc(), and should be freed using GM_Free(). The 

overhead of these function calls are presented in Table 5.1. The table shows that 

terminating a GM program is a very costly operation (GM_Close). Exposing memory to 

other GM processes, as well as providing receive buffers are not very time-consuming 

operation. Opening GM ports is a time-consuming operation compared to other 

initialization operations, such as GM_Init.  

 

Table 5.1 Timing of Basic GM function calls. 

GM Function Time (µs) 
GM_Init 57.45 
GM_Open 1682.81 
GM_Allow_remote_memory_access 0.24 
GM_Provide_receive_buffer 0.38 
GM_Close 20863.90 

 

Figure 5.1 illustrates the execution time of GM_Free for different message sizes. 

Freeing the allocated memory in GM is not a costly operation and it takes approximately 

one to two microseconds for various message sizes. In both the Send/Receive and RDMA 

communication models, communication buffers must be registered/deregistered in the 

physical memory using gm_register_memory() and gm_deregister_memory() at both ends 

to enable DMA transfer in and out of those regions. Performance of these functions for 

different message sizes is presented in Figure 5.2. Up to 64KB message sizes, registration 
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time is shorter than deregistration. In general, registration and deregistration are costly 

operations. 
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Figure 5.1 GM_Free execution time for different message sizes. 
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Figure 5.2 GM memory registration and deregistration cost and bandwidth. 

 

5.1.1 GM Send/Receive Performance 

In the following, we first define the latency and bandwidth. Then we describe our 

experimental framework. The message latency and bandwidth are two important metrics 

for many parallel and distributed computations. Latency is defined as the time it takes for 

a message to travel from the sender process address-space to the receiver process address-

space. Bandwidth is reported as the total number of bytes per unit time delivered during 

the time measured. In the unidirectional latency/bandwidth test, the sender transmits a 

message repeatedly to the receiver, and then waits for the last message to be 

acknowledged. The bidirectional test is the ping-pong test where the sender sends a 

message and the receiver upon receiving the message, immediately replies with the same 

message size. This is repeated sufficient number of times to eliminate the transient 

conditions of the network. In the both-way test, both the sender and receiver send data 
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simultaneously. This test puts more pressure on the communication subsystem, and the 

PCI-X bus. 

In the two-sided communication model, the data sender process executes a Send 

operation and the data receiver process executes a Receive operation accordingly. Once 

these Send and Receive operations match, data transfer between processes completes. GM 

supports the channel communication model, where it is possible to transfer data using 

Send and Receive operations. We measure the unidirectional, bi-directional and both-way 

latency/bandwidth with different message sizes for GM send/receive. Figure 5.3 shows 

the latency of GM Send/Receive operation for different messaging schemes using one and 

two ports of the Myrinet NIC. The short message latency of one- and two-port 

configurations are not very different; unidirectional messaging has the smallest latency 

and both-way messaging shows the largest latency.  
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Figure 5.3 GM Send/Receive latency in unidirectional, bidirectional and both-way 

messaging (one/two-port). 

 

Figure 5.4 compares the GM Send/Receive bandwidth under three different 

messaging schemes (Unidirectional, Bidirectional and Both-way) using one and two ports 

of the NIC. Unidirectional GM Send/Receive achieves the maximum bandwidth of 495 

MB/s using two ports of the NIC while its bandwidth is 247 MB/s for one port. 

Bidirectional GM Send/Receive reaches the bandwidth of 490 MB/s using two ports of 

the NIC and 246 MB/s using one port. Both-way messaging has the best bandwidth as 

both parties are sending messages at the same time. Using two ports of the NIC, GM 

Send/Receive achieves a bandwidth of 766 MB/s and bandwidth of 493 MB/s while using 

one port. As expected, the bandwidth performance of NIC with the two ports active is 
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much better than the one port. We believe the bandwidth drop for 4KB messages may be 

due to a protocol change in GM or the fact that GM uses 4KB packets for messaging. We 

suggest designers of Myrinet to improve this issue in their future systems. 
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Figure 5.4 GM Send/Receive bandwidth in unidirectional, bidirectional, and both-

way messaging (one/two-port). 

5.1.2 GM RDMA Performance 

In one-sided communication model, data transfer is done with participation of 

only one party, while in two-sided communication model both communication parties 

have to participate in transferring data. In one-sided communication model, the data 

sender process executes a Write/Put operation and the data receiver process does not need 

to execute any operation. The data will be written to the memory location according to the 

Write/Put operation. On the other hand, a process is able to receive data from other 

processes by executing Read/Get operation. Again, the process that provides the data does 

not need to perform any action. Figure 5.5 shows the unidirectional communication 

latency comparison of GM put and GM get operations using one and two ports of the 

NIC. GM Put and Get operations on one-port configuration have smaller latency than 

two-port configuration. 

Figure 5.6 shows the bandwidth comparison of GM Put and Get using one- and 

two-port configurations. GM Put achieves bandwidth of 493 MB/s and 247 MB/s for two- 

and one-port, respectively, while GM Get achieves bandwidth of 137 MB/s and 247 MB/s 

for two- and one-port configurations, respectively. GM Put and Get operations have 

similar latency and bandwidth using one port of the NIC. 
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In the two-port configuration, the minimum latency of GM Send/Receive, Get, and 

Put operations are 4.57, 5.50, and 9.40 microseconds, respectively. For message size of 

larger than 512 bytes, latency of GM Send/Receive and Get operations are very close to 

each other (except for message size of 4Kbytes). Latency of GM Get operation is larger 

than GM Send/Receive and Get operations for all the message sizes of one byte to one 

megabyte.  
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Figure 5.5 GM Put and Get unidirectional latency. 

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Put Gettwo-port

0

50

100

150

200

250

300

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

Put Getone-port

 
Figure 5.6 GM Put and Get unidirectional bandwidth. 

 

In the one-port configuration of the system, the minimum latency of GM 

Send/Receive, Get, and Put operations are 4.57, 5.47, and 5.59 microseconds, 

respectively. For message sizes of one byte to one megabyte, latency of GM 

Send/Receive, Get, and Put operations are very close to each other. According to these 

results, we do not suggest using GM Get operation when the system is using two ports of 

the Myrinet NIC. GM Get operation in a two-port configuration has a larger latency than 

the GM Get operation in a one-port configuration. However, due to promising 

performance of both GM Send/Receive and GM Put, we recommend using them in GM 

user-level programming for either one- or two-port configured systems.  
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5.2 MPI over GM Basic Performance 

Many of the HPC applications use MPI as the message-passing library. Finding 

performance of MPI helps us get a better understanding of communication time of the 

application. MPI provides point-to-point message-passing and collective operations. One-

sided communication is supported in the MPI-2 [30], but we do not address the 

performance of MPI-2 one-sided operations in this thesis (it is not yet available on top of 

the Myrinet network). The MPI we used, MPICH-GM, is built on top of the GM layer. 

All the measurements in this section are performed using our own MPI codes. 

Figure 5.7 shows the latency in sending messages with unidirectional, 

bidirectional, and both-way schemes. The short message latency of MPI Send/Receive for 

different messaging schemes does not differ a lot between one-port and two-port 

configurations. MPI blocking Send/Receive operation has the minimum latency of 5.4 µs 

while non-blocking Send/Receive operation has the latency of 6.0 µs. Among different 

messaging schemes, bidirectional-messaging using blocking Send/Receive operations, 

shows the largest latency (for messages larger than 128 bytes). As it uses blocking 

operations and ping-pong synchronization is performed for every message, it is expected 

that bidirectional-messaging scheme shows a larger latency than the others. In fact, both-

way non-blocking Send/Receive test shows the smallest latency, because there is no 

synchronization between the messages and both communication parties send message 

without waiting for the other one. Using non-blocking operations enhances the latency 

too.  
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Figure 5.7 MPI blocking and non-blocking Send/Receive unidirectional, 

bidirectional, and both-way latency (one/two-ports). 
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Figure 5.8 shows the bandwidth under unidirectional, bidirectional, and both-way 

messaging schemes using one- and two-port configurations. In the two-port configuration, 

the system reaches the bandwidth of 445 MB/s, 479 MB/s, 443 MB/s, and 742 MB/s for 

unidirectional blocking, unidirectional non-blocking, bidirectional blocking, and both-

way non-blocking messaging schemes, respectively. By using one port of the Myrinet 

NIC, we achieved bandwidth of 234 MB/s, 243 MB/s, 234 MB/s, and 483 MB/s for 

unidirectional blocking, unidirectional non-blocking, bidirectional blocking, and both-

way non-blocking messaging schemes, respectively. This shows that using both ports of 

the Myrinet NIC provides a higher bandwidth (50-90% more than one-port). As the MPI 

library is built on top of the GM layer, we do not expect it surpass the GM performance. 

GM Send/Receive has a higher bandwidth than MPI Send/Receive. GM Send/Receive 

achieved 495 MB/s and 247 MB/s for one- and two- port configuration, while MPI 

achieved only 479 MB/s and 243 MB/s. 

Most of the MPI implementations employ a two-level protocol for point-to-point 

messages. MPI uses eager method for sending short messages, while it uses a rendezvous 

mechanism for sending long messages. Eager mechanism improves the latency of 

messaging while rendezvous mechanism provides a better bandwidth. In Figure 5.8, one 

can see the bandwidth suddenly drops at around 16KB messages. It then increases until 

reaching its maximum. This is due to the protocol change in MPI as explained above. 
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Figure 5.8 MPI blocking and non-blocking Send/Receive unidirectional, 

bidirectional, and both-way bandwidth (one/two-ports). 
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5.3 ARMCI Basic Performance 

ARMCI [3] is a library that provides general purpose, efficient and widely 

portable RMA operations for contiguous and non-contiguous data transfers. If data is 

stored in only one location in the memory, it is called contiguous data. On the other hand, 

if data is stored in multiple locations in the memory, it is called non-contiguous data. 

Using multidimensional arrays in programs and sending data from different parts of it to 

another process, is a simple example of a non-contiguous message-passing. In scientific 

computing using non-contiguous data is popular. The performance comparison of 

contiguous and non-contiguous ARMCI operations is done by other researchers [33]. In 

this chapter, we focus on raw performance of the messaging libraries. Therefore, we 

assess the performance of contiguous data transfer of ARMCI. All the measurements in 

this part are performed using our ARMCI codes for measuring latency and bandwidth.  

As we mentioned earlier, ARMCI uses client-server architecture in clusters of 

workstations using GM [35]. Each node of the cluster has a server thread that handles 

remote memory operations for each of the user processes running on the node. In order to 

assess the best performance of the system in our measurements, we leave one processor 

dedicated to the ARMCI server thread. 
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Figure 5.9 ARMCI blocking Put and Get latency (one/two-port). 

 

ARMCI provides data transfer operations including Put, Get and Accumulate. 

Blocking and non-blocking one-sided communication is supported in ARMCI. Figure 5.9 

compares the latency of ARMCI blocking Put and blocking Get operations for both one- 

and two-port configurations of the Myrinet NIC. ARMCI blocking Put operation has 
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smaller latency than ARMCI blocking Get operation using either one or two ports of the 

Myrinet NIC. However, we do not see a big difference between their latencies. The 

smallest latency of ARMCI blocking Put is 9.8 microseconds using one port of the 

Myrinet NIC, and similarly 10.6 microseconds for ARMCI blocking Get. When using 

two ports of the Myrinet NIC, the smallest latency of ARMCI blocking Put is 10.3 

microseconds and similarly 11.0 microseconds for ARMCI blocking Get. 

Figure 5.10 compares the latency of ARMCI non-blocking Put and non-blocking 

Get operations for both one- and two-port configurations of the Myrinet NIC. Similar to 

blocking operations of ARMCI, non-blocking Put operation has smaller latency than non-

blocking Get operation using either one or two ports of the Myrinet NIC. Non-blocking 

Put and Get latencies have very close latencies. The smallest latency of ARMCI non-

blocking Put is 5.4 microseconds using one port of the Myrinet NIC, and similarly 5.5 

microseconds for ARMCI non-blocking Get. When using two ports of the Myrinet NIC, 

the smallest latency of ARMCI non-blocking Put is 5.4 microseconds and similarly 5.6 

microseconds for ARMCI non-blocking Get. 
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Figure 5.10 ARMCI non-blocking Put and Get latency (one/two-port). 

 

Figure 5.11 presents the bandwidth comparison of ARMCI blocking Put and Get 

on one- and two-port configuration of the Myrinet NIC. Bandwidth of blocking Put and 

Get operations on the one-port configuration are very similar. Maximum bandwidth of 

246 MB/s is reached with blocking Put and Get operations on the one-port configuration. 

When using two ports of the Myrinet NIC, ARMCI blocking Put outperforms the ARMCI 

blocking Get operation and it reaches to a bandwidth of 489 MB/s while the bandwidth of 

ARMCI blocking Get is 133 MB/s for message sizes between 32 KB and 1MB. ARMCI 
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blocking Get reaches the bandwidth of 190 MB/s at the message size of 8KB. We 

investigated the blocking bandwidth drop at 16KB messages under two-port 

configuration, but it is not quite clear whether this drop is due to the ARMCI library or 

the GM implementations. 

Figure 5.12 presents the bandwidth comparison of ARMCI non-blocking Put and 

Get on one- and two-port configuration of the Myrinet NIC. Similar to the blocking 

operations, bandwidth of non-blocking Put and Get operations on the one-port 

configuration are very close. Maximum bandwidth of 247 MB/s is reached with non-

blocking Put and Get operations on the one-port configuration. Similar to blocking 

operations, when using two ports of the Myrinet NIC, ARMCI non-blocking Put 

outperforms the ARMCI non-blocking Get operation and it reaches to a bandwidth of 494 

MB/s while the bandwidth of ARMCI non-blocking Get is 133 MB/s for message sizes 

between 32 KB and 1MB. ARMCI non-blocking Get reaches the bandwidth of 362 MB/s 

at the message size of 4KB.  
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Figure 5.11 ARMCI blocking Put and Get bandwidth (one/two-port). 
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Figure 5.12 ARMCI non-blocking Put and Get bandwidth (one/two-port). 
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Figure 5.13 Latency and bandwidth comparison of ARMCI blocking and non-

blocking Put and Get. 

 

Obviously, the non-blocking ARMCI operations show a better performance than 

the blocking ones. For both blocking and non-blocking ARMCI operations, Put performs 

better, when both ports of the Myrinet NIC is utilized, while Get operation performs 

better on a one-port configuration of the Myrinet NIC. Figure 5.13 compares ARMCI 

blocking and non-blocking RDMA operations together. It is evident that non-blocking 

Put has the best performance among blocking and non-blocking RDMA operations, while 

blocking Get shows a poor performance. Get operations are very inefficient compared to 

two-port configuration of the Myrinet NIC.  

5.4 Overall Performance Comparison 

It is possible to utilize different communication libraries in the parallel 

applications. We evaluated the basic performance of three different communication 

libraries: GM, MPI, and ARMCI, in the previous sections. It is important to understand 

the performance differences of these libraries in order to tune the performance of 

applications on clusters. In this section, we compare the latency and the bandwidth of 
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MPI Send/Receive, GM Send/Receive, GM Put and Get, and ARMCI Put and Get 

operations.  

Table 5.2 compares the latency of MPI Send/Receive, GM Send/Receive, GM Put 

and Get, and ARMCI non-blocking Put and Get operations. We showed in the previous 

section that ARMCI non-blocking Put and Get operations outperform the ARMCI 

blocking Put and Get operations, therefore we do not include those in the table. Short 

message latency of MPI blocking and non-blocking Send/Receive, GM Send/Receive, GM 

RDMA Put, and ARMCI non-blocking RDMA Put and Get operations are very close and 

between 4.6 and 6.0 µs on one- and two-port utilized NICs. GM RDMA Get shows a 

larger short message latency of 9.4 µs compared to the other operations when using two 

ports of the Myrinet NIC, while it has 5.6 µs latency on the one-port configuration. 

When utilizing two ports of the Myrinet NIC, GM Put shows the best bandwidth 

amongst the MPI, GM, and ARMCI operations. MPI blocking and non-blocking 

Send/Receive, GM Send/Receive, GM Put, and ARMCI non-blocking Put operations 

achieve bandwidth of 424 MB/S, 457 MB/S, 472 MB/S, 470 MB/S, and 471 MB/S, 

respectively. Both GM and ARMCI Get operations perform poor compared to the Put 

operations or two-sided message-passing operations. GM and ARMCI Get operations 

achieve bandwidth of 130 MB/S and 127 MB/S, respectively. The bandwidths calculated 

above are for the message size of one megabyte. 

When using one-port configuration of the Myrinet NIC, interestingly, MPI non-

blocking Send/Receive, GM Send/Receive, GM Put and Get, and ARMCI non-blocking 

Put and Get operations all achieve a bandwidth between 232 MB/S and 236 MB/S. MPI 

blocking Send/Receive achieves bandwidth of 223 MB/S for one megabyte message sizes. 
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Table 5.2 Latency of MPI, GM, and ARMCI operations in µs (one- and two-port). 

two-port MPI (Send/Receive) GM ARMCI 
(Nonblocking) 

Message Blocking Nonblocking Send/Recv Put Get Put Get 
1 5.4 6.0 4.6 5.5 9.4 5.4 5.6
2 5.4 6.1 4.6 5.5 9.4 5.4 5.6
4 5.4 6.0 4.6 5.5 9.4 5.4 5.6
8 5.4 6.0 4.6 5.5 9.4 5.4 5.6

16 5.4 6.0 4.6 5.5 9.5 5.4 5.6
32 5.4 6.0 4.6 5.5 9.5 5.4 5.6
64 5.4 6.0 4.7 5.5 9.6 5.4 5.6
128 5.5 6.1 4.9 5.6 10.1 5.5 5.7
256 5.6 6.1 5.7 5.7 10.6 5.5 5.8
512 5.8 6.3 5.8 5.9 12.2 5.7 5.9
1K 6.2 6.5 6.2 6.2 14.8 6.0 6.2
2K 7.5 16.6 7.2 7.1 19.6 6.7 11.9
4K 13.4 15.9 23.4 9.5 30.2 9.3 11.3
8K 21.6 22.1 18.5 17.8 60.2 16.8 36.6
16K 70.6 41.9 34.1 34.3 119.8 33.2 116.6
32K 106.7 73.5 67.1 67.5 239.1 66.3 246.1
64K 179.6 138.9 133.3 133.8 477.9 132.6 491.9

128K 325.1 274.3 265.5 266.5 955.5 265.0 983.9
256K 611.1 545.0 530.0 531.9 1910.7 530.2 1967.5
512K 1197.3 1090.6 1059.0 1062.7 3820.7 1060.3 3934.7
1M 2355.2 2185.1 2117.1 2124.3 7641.2 2120.5 7868.3

one-port    
1 5.4 6.0 4.6 5.5 5.6 5.4 5.5
2 5.4 6.0 4.6 5.5 5.6 5.4 5.5
4 5.4 6.0 4.6 5.5 5.6 5.4 5.5
8 5.4 6.0 4.6 5.5 5.6 5.4 5.5

16 5.4 6.0 4.6 5.5 5.6 5.4 5.5
32 5.4 6.0 4.6 5.5 5.6 5.4 5.5
64 5.4 6.0 4.7 5.5 5.6 5.4 5.5
128 5.5 6.1 4.8 5.5 5.7 5.4 5.6
256 5.6 6.1 5.7 5.6 5.8 5.5 5.7
512 5.7 6.2 5.8 5.8 6.0 5.6 5.8
1K 6.2 6.5 6.2 6.2 6.3 6.0 6.2
2K 8.4 17.2 9.0 8.9 8.9 8.4 8.4
4K 16.8 14.7 17.4 17.3 17.3 16.6 16.6
8K 33.3 24.9 33.8 33.9 33.8 33.2 33.1
16K 98.0 88.0 66.9 67.0 66.9 66.3 66.2
32K 167.3 139.0 133.0 133.2 132.9 132.5 132.3
64K 306.1 271.0 265.2 265.7 265.1 265.0 264.5

128K 583.8 538.9 529.6 530.6 529.4 530.0 528.9
256K 1139.3 1074.6 1058.4 1060.4 1057.9 1059.9 1057.9
512K 2251.8 2150.9 2116.3 2120.1 2115.0 2119.7 2115.7
1M 4472.6 4304.5 4231.8 4239.5 4229.3 4239.4 4231.4
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5.4.1 Observations 

As GM provides low-level functions, it is not suitable for developing applications. 

ARMCI provides higher-level functions than GM. However, ARMCI functions are 

mostly used in implementing communication libraries, such as Global Array [36]. We 

look into the potential benefits of using ARMCI functions in applications. Figure 5.14 

compares the latency and bandwidth of MPI Send/Receive, GM Send/Receive, and 

ARMCI blocking and non-blocking Put on one- and two-port configurations of the 

Myrinet NIC. One can see that after message size of 8KB, ARMCI operations perform 

more efficiently than the MPI blocking functions (ARMCI Nonblocking operations 

outperform for some messages shorter than this too). This improvement potential opens 

up the debate whether replacing MPI functions with ARMCI functions will improve the 

performance of communication or the applications. We address this question in the next 

chapter.  

To have an idea of how much performance improvement we may gain by moving 

away from MPI functions to ARMCI functions in the applications, in Table 5.3 we 

present the communication latency difference of MPI and ARMCI. Latency differences 

for both blocking and non-blocking operations are evaluated on one- and two-port utilized 

configurations of the Myrinet NIC. The negative numbers in the table show that MPI 

outperforms ARMCI, while positive numbers show the better performance of ARMCI. In 

order to locate easily the message sizes that ARMCI outperforms MPI, we have shaded 

the corresponding boxes.  

ARMCI blocking Put outperforms the MPI blocking and non-blocking 

Send/Receive for messages larger than 8KB, and 256KB, respectively (under one/two-

port). Latency of ARMCI non-blocking Put operations is equal or smaller than MPI 

blocking/non-blocking Send/Receive for all the messages sizes between 1B-1MB (expect 

for MPI non-blocking with messages size of 4KB and 8KB under one-port). The 

maximum communication performance improvement of ARMCI non-blocking Put over 

MPI blocking is 53%, and 32% under two-port and one-port, respectively (with 16KB 

messages). The maximum improvement of ARMCI non-blocking Put over MPI non-

blocking is 59%, and 51% under two-port and one-port, respectively (with 2KB 

messages).  
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Figure 5.14 Latency and bandwidth comparison of MPI blocking Send/Receive, GM 

Send/Receive, and ARMCI blocking and non-blocking Put (one/two-port). 

 

When using one port of the Myrinet NIC, not only ARMCI Put operation shows 

superior performance to MPI, but also performance of ARMCI Get operation shows the 

similar improvement potential. Blocking and non-blocking ARMCI operations (Put/Get) 

performs up to 216-241 µs faster than MPI blocking Send/Receive. MPI non-blocking 

Send/Receive operations have larger latency of up to 48-73 µs than ARMCI operations.  

We believe that the better performance of MPI in short messages is due to its 

eager protocol. MPI uses eager method for sending short messages, and rendezvous 

mechanism for sending long messages. Eager mechanism improves the latency of 

messaging while rendezvous mechanism provides a better bandwidth. In short, using 

ARMCI Put (blocking/non-blocking) operations is promising to achieve a better 

performance in parallel applications. We investigate this, in more detail, in the next 

chapter.  
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Table 5.3 Performance advantage/disadvantage of ARMCI over MPI (in µs). 

two-port MPI Blocking MPI Nonblocking MPI Blocking MPI Nonblocking 
 ARMCI Blocking ARMCI Nonblocking 

Message Put Get Put Get Put Get Put Get 
1 -4.9 -5.6 -4.3 -5.0 0.0 -0.2 0.6 0.4
2 -4.9 -5.6 -4.2 -5.0 0.0 -0.2 0.7 0.5
4 -4.9 -5.6 -4.3 -5.0 0.0 -0.2 0.6 0.4
8 -4.9 -5.6 -4.2 -5.0 0.0 -0.2 0.6 0.4

16 -4.9 -5.6 -4.3 -5.1 0.0 -0.2 0.6 0.4
32 -5.0 -5.8 -4.3 -5.2 0.0 -0.2 0.6 0.4
64 -5.1 -6.0 -4.5 -5.4 0.0 -0.2 0.6 0.4
128 -5.0 -6.3 -4.4 -5.7 0.0 -0.2 0.6 0.4
256 -5.5 -7.0 -5.0 -6.4 0.1 -0.2 0.6 0.4
512 -7.0 -8.3 -6.5 -7.8 0.1 -0.1 0.6 0.4
1K -9.0 -11.0 -8.7 -10.7 0.2 -0.1 0.5 0.3
2K -13.0 -16.1 -3.9 -7.0 0.7 -4.5 9.9 4.7
4K -18.7 -23.3 -16.1 -20.7 4.1 2.1 6.6 4.6
8K -16.5 -21.4 -16.0 -20.9 4.8 -15.0 5.3 -14.5
16K 15.3 -1167.6 -13.4 -1196.4 37.4 -46.0 8.7 -74.7
32K 18.2 -145.0 -15.0 -178.2 40.4 -139.4 7.2 -172.7
64K 24.8 -317.7 -15.8 -358.3 46.9 -312.3 6.2 -353.0

128K 37.9 -663.1 -12.8 -713.8 60.0 -658.9 9.3 -709.6
256K 58.9 -1359.7 -7.2 -1425.8 80.8 -1356.5 14.7 -1422.6
512K 115.0 -2737.8 8.2 -2844.6 137.0 -2737.4 30.3 -2844.1
1M 212.7 -5510.1 42.5 -5680.2 234.7 -5513.1 64.6 -5683.2

one-port   
1 -4.4 -5.3 -3.8 -4.7 0.0 -0.1 0.6 0.5
2 -4.4 -5.2 -3.8 -4.5 0.0 -0.1 0.7 0.6
4 -4.5 -5.2 -3.9 -4.6 0.0 -0.1 0.6 0.5
8 -4.4 -5.2 -3.8 -4.6 0.0 -0.1 0.6 0.5

16 -4.4 -5.1 -3.9 -4.6 0.0 -0.1 0.6 0.5
32 -4.5 -5.3 -3.9 -4.7 0.0 -0.1 0.6 0.5
64 -4.6 -5.5 -4.0 -4.9 0.0 -0.1 0.6 0.5
128 -4.5 -5.8 -3.9 -5.2 0.1 -0.1 0.6 0.5
256 -5.1 -6.5 -4.6 -6.0 0.1 -0.1 0.6 0.4
512 -6.5 -7.9 -5.9 -7.4 0.1 -0.1 0.6 0.4
1K -8.5 -10.6 -8.2 -10.3 0.2 0.0 0.5 0.3
2K -11.5 -14.6 -2.8 -5.8 0.0 0.1 8.8 8.9
4K -14.7 -19.3 -16.8 -21.5 0.2 0.3 -1.9 -1.9
8K -14.8 -19.6 -23.2 -28.0 0.1 0.2 -8.3 -8.2
16K 15.3 11.7 5.3 1.6 31.7 31.9 21.7 21.8
32K 18.2 14.5 -10.1 -13.8 34.8 35.1 6.5 6.8
64K 24.4 21.0 -10.7 -14.1 41.1 41.6 6.0 6.5

128K 37.3 34.3 -7.7 -10.6 53.9 54.9 8.9 9.9
256K 62.7 60.8 -1.9 -3.9 79.4 81.4 14.7 16.7
512K 115.5 115.5 14.6 14.6 132.0 136.1 31.1 35.2
1M 216.8 220.7 48.7 52.7 233.2 241.3 65.1 73.2
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5.5 Summary 

In this chapter, we have evaluated the basic performance of different message-

passing libraries on top of the Myrinet Network. We measured the performance of GM 

basic function calls, such as program initialization, memory allocation, memory 

deallocation, and program termination. We assessed and compared the basic 

communication latency performance of GM Send/Receive, GM RDMA, MPI 

Send/Receive, and ARMCI RDMA operations for one- and two-port configurations of the 

Myrinet network interface card.  

We realize that, in general, non-blocking operations perform better than blocking, 

and the two-port communication at the GM, MPI, and ARMCI levels (except for the 

RDMA read) outperforms the one-port communication for the bandwidth. We notice that 

for messages larger than 8KB, ARMCI blocking Put performs better than MPI (under 

one/two-port). By using ARMCI operations instead of MPI, we argue there is potential in 

improving the communication performance in the parallel applications. This may also 

affect the application performance if the communication/computation ratio is large 

enough. In the next chapter, we will look into replacing MPI calls with ARMCI RDMA 

calls in order to gain a better communication performance in real applications.  
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Chapter 6 Application Performance and 

Impact of RDMA 
 

It is important to systematically assess the features and performance of the new 

interconnects for high performance clusters. We presented the performance of the two-

port Myrinet networks at the GM, MPI, and ARMCI layers using a complete set of micro-

benchmarks in the previous chapter. We also presented the communication characteristics 

of the NAS Multi-Zone benchmarks in detail, and communication characteristics of the 

SMG2000 application briefly in chapter four. In this chapter, we show the performance of 

these applications under the MPI and MPI-OpenMP programming paradigms, and two-

port and one-port configuration of the Myrinet NIC.  

Our experiments presented in the previous chapter show that the two-port 

communications at the GM, MPI, and ARMCI levels (except for the RDMA read) 

outperform the one-port communication for the bandwidth. In this chapter, we investigate 

if this translates in a considerable improvement for our applications.  

In the previous chapter, we also showed that ARMCI one-sided operations, for 

certain message sizes, outperform the MPI two-sided operations. In the second part of this 

chapter, we look into communication performance enhancement of NPB-MZ, using one-

sided communications instead of two-sided MPI communications. We use the 

communication characteristics of NPB-MZ applications presented in chapter four and the 

basic communication performance of ARMCI and MPI (latency or bandwidth) from 

chapter five, to calculate the expected messaging performance improvement of NPB-MZ. 

In order to measure the run-time messaging performance improvement of NPB-MZ, we 

replace the MPI two-sided communications with ARMCI one-sided operations.  

6.1 Mixed-Mode Application Performance  

In this section, we first show the speedup of the MPI version of NPB-MZ and 

SMG2000 applications in Figure 6.1. Interestingly, the speedup, from one to 16 

processes, for the MPI version of the NPB-MZ benchmarks is linear. Applications reach 

almost perfect speedup. However, the speedup for SMG2000, MPI version, is not as good 
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as the NPB-MZ. The speedup with 2, 4, 8, and 16 processes are 1.6, 3.5, 6.3, and 6.5, 

respectively.  
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Figure 6.1 Speedup of MPI version of NPB-MZ and SMG2000 (two-port). 
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Figure 6.2 Execution time of NPB-MZ applications on Myrinet network (two-port). 
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It is possible to run different combinations for the number of threads and 

processes in mixed-mode applications across a cluster. Jin and his colleague [23] have 

examined the effectiveness of hybrid parallelization paradigms in NPB-MZ on three 

different parallel computers. In this section, we present the performance of NPB-MZ 

mixed-mode applications, as well as SMG2000 of the ASCI purple suite with different 

combinations of number of threads and processes. We would like to know which parallel 

programming paradigm, MPI or MPI-OpenMP, gives the best performance on our cluster. 

Figure 6.2 and Figure 6.3 present the execution time of BT-MZ, SP-MZ, LU-MZ, and 

SMG2000 applications on our platform. We chose the input size of 32x32x32 for the 

serial version of SMG2000. We scale it down proportionally with the number of 

processes to keep the total problem size constant for all runs. 

The X-axis in Figure 6.2 and Figure 6.3 shows the number of processes and 

threads for each case. For instance, “4P2T” means that there are four processes evenly 

divided among four nodes of our cluster, where each process has two threads running on 

its respective node. By using this approach, we are able to compare the performance of 

the applications under pure MPI, and the mixed MPI-OpenMP. From the results, one can 

claim that the MPI version of the applications performs better than their mixed-mode 

versions. For instance, for BT-MZ with class C (BT-C), 2P1T runs faster than 1P2T; 

4P1T runs faster than 2P2T; and so on. The same is true for the SMG2000. In the next 

section, we will discuss the application performance difference, when using one-port or 

two-port of the Myrinet NIC. 
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Figure 6.3 Execution time of SMG2000 on Myrinet Network (two-port). 
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6.2 Two-port Myrinet Card Application Performance  

In the previous chapter, we studied the communication performance of the 

Myrinet network using one or two ports of the Myrinet NIC. It is important to discover if 

the bandwidth gain offered by the two-port NIC is actually beneficial to the application 

layer. In order to study the effect of port utilization of the two-port Myrinet cards, we 

have evaluated the performance of NPB-MZ and SMG2000 using one and two ports of 

the Myrinet NIC (for both MPI and MPI-OpenMP). The difference in performance is 

minimal, with at most 3% improvements for the two-port cases. It is noteworthy to 

mention that these applications are compute-bound. The communication time is always 

less than 5% of the total execution time. Therefore, the improvement in communication 

cannot translate to application performance. 

As we showed in chapter four, the message sizes for SMG2000 are short (less 

than 1KB) so the two-port Myrinet network cannot offer any improvement over the one-

port. However, this is not the case for the NPB-MZ applications. Having a closer look at 

the distribution of message sizes for the NPB-MZ applications in chapter four, it reveals 

that the BT-MZ uses a large number of different message sizes. It uses up to 21 different 

message sizes in class C (16 in class B). The shortest and the longest messages are 6KB 

and 55KB in class C, respectively. In class B, 4KB and 41KB are the shortest and the 

longest messages, respectively. The distribution of message sizes sent by the SP-MZ, and 

LU-MZ are bimodal (14KB, and 21KB for SP-B; 18KB, and 28KB for SP-C; 29KB, and 

43KB for LU-B; and 79KB, and 119KB for LU-C). Message sizes and the number of 

messages sent for the NPB-MZ applications suggest these applications are bandwidth-

bound. Therefore, the two-port Myrinet network should improve the performance over 

the one-port. A setback in performance improvement could be associated with the fact 

that the one-port NIC can offer a better computation/communication overlap than the 

two-port [55]. 

6.3 ARMCI One-Sided vs. MPI Two-Sided  

MPI send and receive operations provide the programmer with a two-sided 

communication model. In the two-sided communication, both the data sender and the data 

receiver parties have to call the corresponding API functions. In MPI two-sided 
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communication, the data sender process executes an MPI_Send operation and the data 

receiver process executes an MPI_Receive operation accordingly.  

ARMCI provides one-sided communication operations. In the ARMCI one-sided 

operations, processes involved in communication have direct access to the memory of 

their peers. Only one of the communication peers needs to execute an operation. For 

example, the data sender process executes a Write/Put operation while the data receiver 

process does not need to execute any operation. The data will be written to the memory 

location according to the Write/Put operation. On the other hand, a process is able to 

receive data from other processes by executing Read/Get operation. Again, the process 

that provides the data does not need to perform any action. Once the Read/Get operation 

is issued, the data will be transferred from the memory of data provider process to the 

memory of the issuer process.  

6.3.1 Expected per Message Communication Improvement  

In the previous chapter, we showed that ARMCI one-sided operations outperform 

MPI two-sided operations for certain message sizes. In this section, we use this feature in 

enhancing the communication performance of NPB-MZ by utilizing ARMCI one-sided 

communications instead of MPI two-sided communications. We use the communication 

characteristics of NPB-MZ applications from chapter four and the basic communication 

performance of ARMCI and MPI (latency or bandwidth) presented in chapter five, to 

calculate the expected messaging performance improvement in NPB-MZ. NPB-MZ 

applications use non-blocking MPI Send/Receive operations.  

In chapter five, we presented the communication latency of ARMCI and MPI 

operations for some certain message sizes (powers of two from one byte to one 

Megabyte). However, NPB-MZ applications exhibit different message sizes. Therefore, 

we measure the ARMCI and MPI communication latency of different message sizes used 

in the NPB-MZ applications.  

Table 6.2, Table 6.3, Table 6.1, Table 6.4, and Table 6.5 show the expected 

difference in latency of non-blocking MPI Send/Receive operations and ARMCI blocking 

and non-blocking Put operations, when using one or two ports of the Myrinet NIC for 

different message sizes in NPB-MZ. The negative numbers in the tables show that MPI 
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outperforms ARMCI, while positive numbers show otherwise. In order to observe easily 

the message sizes that ARMCI outperforms MPI, we have shaded the corresponding 

boxes. It is noteworthy to mention that these latency differences are calculated per 

message. The number of times that each message size is used in each application is also 

shown in the tables. Later in section 6.3.2, we will determine the total communication 

latency difference in the application.  

 

Table 6.1 Estimated communication improvement of BT-MZ-C per message. 

 
   

 
Estimated performance 

difference (µs) 

Number of Messages/Application ARMCI 
Blocking 

ARMCI 
Nonblocking Message 

size (KB) 
C-2 C-4 C-8 C-16 C-32 2-port 1-port 2-port 1-port 

6.1 3216 4422 4824 5628 6030 -15.7 -20.5 2.5 -6.7
8.1 5628 7236 9246 10452 12864 -13.7 -20.0 3.3 -5.7

10.2 3216 5628 8844 9246 12864 -16.3 -17.0 4.3 -2.8
11.2 1608 3618 4824 5628 6030 -18.4 -15.3 4.1 -0.1
12.2 2412 6432 10452 11256 12060 -13.8 -16.4 4.1 -2.2
13.2 1608 2814 6030 6030 6432 -14.5 -15.0 4.3 -0.7
14.2 804 2814 5226 5628 6432 -15.0 -14.6 4.6 -0.4
15.2 804 3216 5226 5226 6030 -16.6 -18.8 4.5 -2.2
16.3 1608 2814 3216 5628 6030 -5.5 24.5 14.2 38.5
17.3 3216 6432 9246 10452 12060 -7.4 -7.9 13.2 6.5
19.3 1608 5628 6834 11658 11658 -10.0 -10.4 14.5 6.4
21.3 2412 4824 9246 10452 12864 -14.8 -7.8 5.7 6.4
24.4 1608 4020 10050 11658 12060 -8.8 -7.9 12.6 6.4
26.4 2412 5628 7236 9648 12462 -7.8 -8.0 14.0 6.7
29.5 1608 4824 7638 11658 12060 -14.9 -7.8 5.5 6.6
33.5 1608 5226 6030 11256 12864 -7.7 -7.3 13.3 6.9
36.6 2412 4422 6834 10050 12864 -13.3 -7.4 4.7 7.0
41.6 804 2412 4422 5226 6432 -7.6 -7.5 13.4 6.9
45.7 804 2010 2814 6432 6432 -14.8 -7.3 5.5 6.9
50.8 804 1206 4422 5226 6030 -8.1 -8.1 14.2 6.9
55.9 804 1608 4422 4422 6432 -15.1 -10.3 6.9 6.7
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Table 6.2 Estimated communication improvement of BT-MZ-B (2 processes) per 

message. 

  Estimated performance difference (µs) 
ARMCI Blocking ARMCI NonBlocking Message 

size (KB) 

Number of 
Messages/ 
Application 2-port 1-port 2-port 1-port 

5.3 2412 -14.6 -18.8 1.7 -5.4
6.4 1608 -16.2 -18.9 2.6 -4.5
8.2 1608 -13.8 -14.4 3.2 -0.3
8.8 1608 -14.7 -15.7 3.9 -1.2

10.5 1608 -17.1 -15.6 4.3 -0.9
11.1 804 -18.5 -16.4 4.1 -1.2
12.9 1608 -14.3 -15.9 4.2 -1.5
14.1 1608 -14.8 -16.2 4.8 -1.8
17.0 804 -7.2 -7.9 13.1 6.5
22.3 804 -13.8 -8.1 6.3 6.7
26.4 1608 -7.8 -8.0 14.0 6.7
27.5 1608 -10.1 -10.3 14.7 6.5
32.2 804 -9.0 -7.5 12.6 6.8
41.0 804 -7.4 -7.5 13.1 6.9

 

Table 6.3 Estimated communication improvement of BT-MZ-B (4-32 processes) per 

message. 

     Estimated performance difference (µs) 
Number of 

Messages/Application ARMCI Blocking ARMCI NonBlocking Message 
size (KB) 

B-4 B-8 B-16 B-32 2-port 1-port 2-port 1-port 
5.3 2412 2010 3216 3216 -14.6 -18.8 1.7 -5.4
6.4 2814 2412 3216 3216 -16.2 -18.9 2.6 -4.5
8.2 1608 2814 3216 3216 -13.8 -14.4 3.2 -0.3
8.8 2814 2814 3216 3216 -14.7 -15.7 3.9 -1.2

10.5 2412 2814 2814 3216 -17.1 -15.6 4.3 -0.9
11.1 1608 3216 3216 3216 -18.5 -16.4 4.1 -1.2
12.9 2010 2412 3216 3216 -14.3 -15.9 4.2 -1.5
14.1 2412 3216 3216 3216 -14.8 -16.2 4.8 -1.8
16.4 2814 3216 3216 3216 -7.4 -7.8 12.7 6.5
17.0 1206 2412 2814 3216 -7.2 -7.9 13.1 6.5
21.1 2010 2010 2814 3216 -14.4 -7.9 5.6 6.6
22.3 2412 2814 3216 3216 -13.8 -8.1 6.3 6.7
26.4 804 2412 3216 3216 -7.8 -8.0 14.0 6.7
27.5 1608 3216 2814 3216 -10.1 -10.3 14.7 6.5
32.2 2010 2412 2412 3216 -9.0 -7.5 12.6 6.8
41.0 1206 2010 3216 3216 -7.4 -7.5 13.1 6.9
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Table 6.4 Estimated communication improvement of SP-MZ per message. 

   Estimated performance difference (µs) 

 ARMCI Blocking ARMCI 
Nonblocking 

 

Message 
size (KB) 

Number of 
Messages/ 
Application 2-port 1-port 2-port 1-port 

SP-B-2 14.1 12832 -14.8 -16.2 4.8 -1.8
SP-B-4 14.1 36892 -14.8 -16.2 4.8 -1.8
 21.1 6416 -14.4 -7.9 5.6 6.6
SP-B-8 14.1 51328 -14.8 -16.2 4.8 -1.8
SP-B-16 14.1 51328 -14.8 -16.2 4.8 -1.8
 21.1 12832 -14.4 -7.9 5.6 6.6
SP-B-32 14.1 51328 -14.8 -16.2 4.8 -1.8
 21.1 44912 -14.4 -7.9 5.6 6.6
SP-C-2 18.3 25664 -7.7 -8.0 14.0 6.6
SP-C-4 18.3 76992 -7.7 -8.0 14.0 6.6
 28.4 20050 -13.1 -7.8 4.9 6.5
SP-C-8 18.3 176440 -7.7 -8.0 14.0 6.6
 28.4 17644 -13.1 -7.8 4.9 6.5
SP-C-16 18.3 205312 -7.7 -8.0 14.0 6.6
SP-C-32 18.3 205312 -7.7 -8.0 14.0 6.6
 28.4 25664 -13.1 -7.8 4.9 6.5

 

Table 6.5 Estimated communication improvement of LU-MZ per message. 

   Estimated performance difference (µs) 

 ARMCI Blocking ARMCI 
Nonblocking 

 

Message 
size (KB) 

Number of 
Messages/ 
Application 2-port 1-port 2-port 1-port 

LU-B-2 29.3 4016 -15.1 -7.8 5.4 6.5
LU-B-4 29.3 8032 -15.1 -7.8 5.4 6.5
LU-B-8 29.3 8032 -15.1 -7.8 5.4 6.5
 43.4 4016 -10.0 -9.8 14.6 7.0
LU-B-16 29.3 8032 -15.1 -7.8 5.4 6.5
 43.4 8032 -10.0 -9.8 14.6 7.0
LU-C-2 79.2 6024 -14.6 -9.9 6.7 6.9
LU-C-4 79.2 8032 -14.6 -9.9 6.7 6.9
LU-C-8 79.2 8032 -14.6 -9.9 6.7 6.9
 119.8 4016 -12.8 -8.2 9.0 8.7
LU-C-16 79.2 8032 -14.6 -9.9 6.7 6.9
 119.8 8032 -12.8 -8.2 9.0 8.7
 

One can observe that the ARMCI blocking Put does not have a better performance 

than the MPI Send/Receive operations for the NPB-MZ message sizes. ARMCI non-

blocking Put, when using two ports of the Myrinet NIC, shows a smaller latency than the 

MPI non-blocking Send/Receive for all of the message sizes used in BT-MZ, SP-MZ, and 
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LU-MZ. In this case, the expected time difference for message sizes in NPB-MZ is up to 

14µs per message. When using the one-port configuration of the Myrinet NIC, ARMCI 

non-blocking Put shows a smaller latency than the MPI non-blocking Send/Receive for 

most of the message sizes used in BT-MZ, and SP-MZ. This is true, for all the message 

sizes used in LU-MZ as well. The latency difference is up to 38µs for this case. 

6.3.2 Expected Overall Communication Improvement 

To determine the total communication time improvement that an application can 

benefit by using ARMCI instead of MPI operations, we multiply the number of messages 

by the estimated latency difference per message, and then divide them by the number of 

running processes. Table 6.6, Table 6.7, and Table 6.8 present the total communication 

time improvement for NPB-MZ applications when replacing their MPI non-blocking 

Send/Receive calls with the ARMCI blocking and non-blocking Put operations. When 

using two ports of the Myrinet NIC, using ARMCI operations is beneficial for different 

number of processes of NPB-MZ applications, while using one port of the NIC, ARMCI 

does not improve the communication performance of the SP-MZ-B (except for 32 

processes). One can easily notice the positive effect of using ARMCI non-blocking Put 

operations on the communication performance of the applications.  

The expected communication performance improvement for BT-MZ is between 

12-173 milliseconds under two-port NICs, and between 4-79 milliseconds under one-port. 

For SP-MZ, it is between 16-319 milliseconds, and between 6-160 milliseconds, under 

two-port and one-port, respectively; and finally, for LU-MZ, it is between 8-20 

milliseconds and between 7-21 milliseconds under two-port and one-port, respectively. It 

is interesting to observe that the performance gain is larger for larger classes with smaller 

number of processes. Looking back at number of messages per process for NPB-MZ 

applications in Figure 4.1, we see that number of sent messages per process decreases as 

the number of processes increase. In addition, larger class size has larger number of 

messages per process.  
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Table 6.6 Estimated improvement of BT-MZ communication time (ms). 

  blocking non-blocking 
Class Processes 2-port 1-port 2-port 1-port 

B 2 -128 -134 63 6
B 4 -105 -104 55 13
B 8 -67 -65 40 12
B 16 -39 -38 23 6
B 32 -20 -20 12 4
C 2 -257 -235 151 62
C 4 -269 -239 173 79
C 8 -212 -188 136 62
C 16 -131 -110 90 48
C 32 -76 -64 51 27

 

Table 6.7 Estimated improvement of SP-MZ communication time (ms). 

  blocking non-blocking 
Class Processes 2-port 1-port 2-port 1-port 

B 2 -95 -104 31 -12
B 4 -160 -162 53 -6
B 8 -95 -104 31 -12
B 16 -59 -58 20 -1
B 32 -44 -37 16 6
C 2 -99 -103 179 85
C 4 -214 -194 293 160
C 8 -199 -194 319 160
C 16 -99 -103 179 85
C 32 -60 -58 94 48

 

Table 6.8 Estimated improvement of LU-MZ communication time (ms). 

  blocking non-blocking 
Class Processes 2-port 1-port 2-port 1-port 

B 2 -30 -16 11 13
B 4 -30 -16 11 13
B 8 -20 -13 13 10
B 16 -13 -9 10 7
C 2 -44 -30 20 21
C 4 -29 -20 13 14
C 8 -21 -14 11 11
C 16 -14 -9 8 8
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Figure 6.4 Expected Messaging Improvement of Blocking and Non-Blocking 

ARMCI over MPI for BT-MZ, SP-MZ, and LU-MZ. 

 

The expected communication time improvements (percentage) using ARMCI are 

shown in Figure 6.4. Our estimations show 2.2-3.1% improvement for BT-MZ 

communication time when using two ports of the Myrinet NIC, and 0.3-1.2% when using 

only one port. SP-MZ shows an improvement potential of 1.4-5.9% when using two 

ports, and 1.2-2.9% when using one port. LU-MZ does not seem to have a good 

improvement potential. Our estimations show 0.1-1.1% expected improvement for LU-

MZ when using two ports of the NIC, and 0.2-0.7% when utilizing only one port of the 

Myrinet NIC. 
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6.3.3 NPB-MZ Communication Patterns 

In this section, we describe the communication patterns of NPB-MZ applications. 

NPB-MZ applications have two phases of execution: computation and communication. 

For each process, these two phases are separate from each other. By that, we mean one 

process does not enter the computation phase until it finishes the communication phase, 

and vice versa. It is noteworthy to mention that it is possible the computation phase of 

one process overlaps with the communication phase of another process.  
 

[1] P0 [2] P1 [3] P2 [4] P3 [5] P4 [6] P5 [7] P6 [8] P7 

[9] P0 [10] P1 [11] P2 [12] P3 [13] P4 [14] P5 [15] P6 [16] P7 

[17] P0 [18] P1 [19] P2 [20] P3 [21] P4 [22] P5 [23] P6 [24] P7 

[25] P0 [26] P1 [27] P2 [28] P3 [29] P4 [30] P5 [31] P6 [32] P7 

[33] P0 [34] P1 [35] P2 [36] P3 [37] P4 [38] P5 [39] P6 [40] P7 

[41] P0 [42] P1 [43] P2 [44] P3 [45] P4 [46]P5 [47] P6 [48] P7 

[49] P0 [50] P1 [51] P2 [52] P3 [53] P4 [54] P5 [55] P6 [56] P7 

[57] P0 [58] P1 [59] P2 [60] P3 [61] P4 [62] P5 [63] P6 [64] P7 

Figure 6.5 Example of message exchange among zones in NPB-MZ. 
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The workload in NPB-MZ is split into a mesh of zones, as illustrated in Figure 

6.5. At the beginning of the program, all the zones are evenly distributed among the 

processes. For example if the running class size of the application has 64 zones, and the 

application is running with 8 processes, 8 zones are assigned to each process. After 

finishing computation of each zone, the owner process of the zone updates the 

neighbouring zones with the new values. Once one process finishes the computation of all 

its zones, it enters the communication phase and updates all the neighbouring zones (by 

sending messages to their owner process). The communication phase completes when 

message exchange with all of the neighbouring zones is finished. Once the 

communication phase is completed, each process continues with another computation 

phase.  

 
Do loop (for all the zones belonging to the process) 

{ 

 Computing zone IDs 

Receiving message from the zone west  (MPI_IRecv) 

Sending message to the zone west      (MPI_ISend) 

Receiving message from the zone east  (MPI_IRecv) 

Sending message to the zone east      (MPI_ISend) 

Receiving message from the zone south (MPI_IRecv) 

Sending message to the zone south      (MPI_ISend) 

Receiving message from the zone north (MPI_IRecv) 

Sending message to the zone north      (MPI_ISend) 

} 

Wait for completion of all the non-blocking operations (MPI_Waitall) 

Figure 6.6 Pseudo code for NPB-MZ communication. 

 

The message exchange algorithm with the neighbouring zones for a few zones is 

illustrated in Figure 6.5. The processes are shown with P0-P8 and zone numbers are 

written inside the bracket. Each zone performs the depicted message exchange with its 

neighbours. To have a better understanding of the message exchange algorithm in NPB-

MZ, pseudo code of the NPB-MZ communication is presented in Figure 6.6. This 

message exchange algorithm leads to a loose synchronization among all the zones (and 

their owner processes). First, each process computes its zone IDs. The process sends a 

message to the four neighbours of its zones (west, east, south, and north). Each zone 
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receives a message from each of its four neighbours as well. At the end, the program 

assures that the non-blocking message exchange is completed. 

6.3.4 Converting MPI Communications to ARMCI  

BT-MZ, SP-MZ, and LU-MZ use MPI non-blocking communication for 

exchanging data among processes. To verify our expectations as claimed in the previous 

section, and to see the impact of replacing two-sided communication operations with one-

sided operations, we modified the NPB-MZ codes and replaced their MPI non-blocking 

Send/Receive communications with ARMCI blocking and non-blocking Put operations. 

As we used different APIs in our code, some codes had to be added to make the code 

change possible. However, the code overhead in our applications was minimal. 

Replacing MPI calls with ARMCI functions is not an easy task. NPB-MZ 

applications are written in FORTRAN language, while ARMCI supports C programming 

language. ARMCI provides data transfer operations including put, get and accumulate. 

Utility operations such as memory allocation and deallocation and error handling are 

supported in ARMCI. However, ARMCI only supports communication that targets 

remote memory allocated via the provided memory allocator routine, ARMCI_Malloc(). 

The address of the allocated memory region by ARMCI is stored in pointers. However, C 

pointers are not compatible with FORTRAN pointers. 

Jin and Jost [22] have evaluated the feasibility of RMA programming on shared 

memory parallel computers. They have discuss different RMA based implementations of 

selected CFD application benchmark kernels, such as BT, SP, and LU of NPB, and have 

compared them to corresponding message passing based codes. They have used MPI for 

the message-passing implementation, and shared memory parallelization library (SMPlib) 

and the MPI-2 extension to the MPI Standard for the RMA based implementations. They 

have found the RMA programming more scalable than MPI programming. 

A pseudo code of the converted code using ARMCI blocking and non-blocking 

operations is presented in Figure 6.8 and Figure 6.7, respectively. Instead of sending 

messages by MPI_ISend, we use ARMCI blocking/non-blocking Put operations. As the 

data receiver is not notified in one-sided communication, a notification message is needed 

for the data receiver process. We use the notification functions provided by ARMCI 
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(ARMCI_Notify/Waitnotify) to notify the data receiver process. When using non-blocking 

ARMCI operations, we use ARMCI_Waitall function to assure the completion of the 

operations.  
 

 

Do loop (for all the zones belonging to the process) 

{ 

 Computing zone IDs 

Writing message to the zone west     (ARMCI_NBPut) 

Writing message to the zone east    (ARMCI_NBPut) 

Writing message to the zone south    (ARMCI_NBPut) 

Writing message to the zone north    (ARMCI_NBPut) 

} 

/* Making sure that ARMCI Non-blocking operations are completed */ 

ARMCI_Waitall 

Do loop (for all the zones belonging to the process) 

{ 

 Computing zone IDs 

/* Notifying the peer that the ARMCI_NBPut is completed */ 

Sending notification to the zone west  (ARMCI_notify) 

Sending notification to the zone east  (ARMCI_notify) 

Sending notification to the zone south (ARMCI_notify) 

Sending notification to the zone north (ARMCI_notify) 

} 

Do loop (for all the zones belonging to the process) 

{ 

 Computing zone ids 

 /* Making sure that the ARMCI_NBPut of the peer is completed */ 

Waiting for notification of the zone west  (ARMCI_WaitNotify) 

Waiting for notification of the zone east  (ARMCI_WaitNotify) 

Waiting for notification of the zone south (ARMCI_WaitNotify) 

Waiting for notification of the zone north (ARMCI_WaitNotify) 

} 

Figure 6.7 Pseudo code for ARMCI nonblocking version of NPB-MZ 

communication. 
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Do loop (for all the zones belonging to the process) 

{ 

 Computing zone IDs 

Writing message to the zone west        (ARMCI_Put) 

/* Notifying the peer that the ARMCI_Put is completed */ 

Sending notification to the zone west  (ARMCI_notify) 

Writing message to the zone east       (ARMCI_Put) 

Sending notification to the zone east  (ARMCI_notify) 

Writing message to the zone south       (ARMCI_Put) 

Sending notification to the zone south (ARMCI_notify) 

Writing message to the zone north       (ARMCI_Put) 

Sending notification to the zone north (ARMCI_notify) 

} 

Do loop (for all the zones belonging to the process) 

{ 

 Computing zone IDs 

 /* Making sure that the ARMCI_Put of the peer is completed */ 

Waiting for notification of the zone west  (ARMCI_WaitNotify) 

Waiting for notification of the zone east  (ARMCI_WaitNotify) 

Waiting for notification of the zone south (ARMCI_WaitNotify) 

Waiting for notification of the zone north (ARMCI_WaitNotify) 

} 

Figure 6.8 Pseudo code for ARMCI blocking version of NPB-MZ communication. 

6.3.5 Observed Communication Improvement  

As stated earlier, ARMCI uses client-server architecture in clusters of 

workstations using GM. Each node of the cluster has a server thread that handles remote 

memory operations for each of the user processes running on the node. As our cluster 

consists of eight dual nodes, we assessed the communication performance of ARMCI 

version of NPB-MZ from two to eight processes (each on one node), in order to keep one 

processor dedicated to the ARMCI server thread.  

We have instrumented the NPB-MZ codes by adding timers to measure the time 

each process spends in communication. Processes do not have equal communication time. 

We measure the communication time of each process by running the instrumented code. 

Figure 6.9 shows the communication times of each process in SP-MZ class C. We 

instrumented three versions of the code: original MPI version, ARMCI blocking version, 



 

 

100 

 

and ARMCI non-blocking version. In the original MPI version, we only inserted 

appropriate timers to measure the communication time. In the ARMCI blocking version, 

in addition to the inserted timers, we replaced the MPI Send/Receive calls with ARMCI 

blocking Put operations. The ARMCI non-blocking version is similar to the blocking 

version, except that we used ARMCI non-blocking Put instead of blocking operations. It 

is clear that for most of the processes, the code with ARMCI non-blocking calls takes less 

amount of time than MPI and ARMCI blocking codes. Figure 6.9.b shows the average 

communication time of processes. We ran the instrumented codes a number of times and 

calculated the average communication time. 
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Figure 6.9 (a) Communication time per process, and (b) average communication 

time per process for SP-MZ-C (two-port). 

 

Using the above method, we measured the average communication time per 

process of the instrumented codes. Figure 6.10 shows the communication time 

improvement of NPB-MZ applications using ARMCI functions in percentage format. 

Although blocking ARMCI results are not promising, we achieved average improvement 

for some cases. When using both ports of the Myrinet NIC, BT-MZ class C shows 

communication performance improvement of 7-40%, using ARMCI blocking Put, 

whereas non-blocking Put shows performance improvement of 12-35%. BT-MZ does not 

show significant improvement when using blocking operations for class B; however, the 

communication improves 2-8% for non-blocking operations. When utilizing only one port 

of the Myrinet NIC, BT-MZ shows communication improvement of 6-28% and 7-27% by 

replacing non-blocking and blocking operations with MPI, respectively. 

SP-MZ was the most promising application among NPB-MZ applications for 

communication improvement. SP-MZ communication time decreases 4-35% using 
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blocking operations, and 13-21% using non-blocking operations on two-port 

configuration of the Myrinet NIC. We achieved 6-27% better communication 

performance by using ARMCI blocking Put, and 5-21% improvement using ARMCI non-

blocking Put, under one port of the Myrinet NIC. 

Our estimations in the previous section do not show a good improvement potential 

for LU-MZ. However, using ARMCI blocking operations communication improves 

between 25-40% for some cases under two-port, while using non-blocking operations 

decreases the communication time by 3-43% for class C. When using one port of the 

Myrinet card, for some cases, LU-MZ communication time improves 1-17% and 2-16% 

by using blocking and non-blocking operations, respectively. 
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Figure 6.10 Messaging Improvement of blocking and non-blocking ARMCI over 

MPI for BT-MZ, SP-MZ, and LU-MZ. 
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The broad range of performance results hints there might be many other factors 

affecting our communication timing. We can name operating system load, 

synchronization of the nodes, and network traffic contention as some of the possible 

reasons. The performance improvement varies across different classes and different 

number of processes. The more communication traffic, the more likely improvement in 

performance using ARMCI. We investigated the source of broad range of performance, 

and we found out it is due to the communication pattern of NPB-MZ applications. The 

communication time of each process consists of different timings, such as sending 

messages, sending notifications, and waiting for the notification from other zones. The 

ARMCI superior performance enhances sending the messages, while the wait for 

receiving notifications from other zones (processes) is not directly affected by ARMCI. 

To cancel the effect of wait time in the measured communication time of processes, we 

choose the process with the shortest communication time in each run. We run the 

applications several times. Then, we average the communication time of processes with 

the minimum wait. In fact, we measure the communication time with the least wait time 

in each run in order to observe the effect of ARMCI on communication time. The 

improvement results calculated using this method is presented in Figure 6.11. Using this 

method, our results are more consistent and we do not get a broad range of results for 

different runs. The minimum and maximum of the measurement are shown by bars in 

Figure 6.11.  

Using ARMCI non-blocking improves the BT-MZ performance for all of the 

classes and number of processes (except for C8) under one and two-port. Its 

communication performance improvement is between 23-43% under two-port and 

between 4-16% under one-port. ARMCI blocking also improves the BT-MZ 

communication under two-port up to 18%.  

ARMCI non-blocking operations improve the performance of SP-MZ class B 

under two-port by up to 57%. SP-MZ class C with 8 processes also presents 11% of 

improvement. SP-MZ-B with eight processes is the only case that shows improvement 

under one-port (34%). ARMCI blocking operations did not improve the SP-MZ 

communication time.  
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LU-MZ is not improved by using ARMCI under two-port (except for B8). LU-

MZ class C under one-port can benefit in communication time up to 44% and 29% by 

using ARMCI blocking and non-blocking operations, respectively.  

 

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 2Port

-15%

-10%

-5%

0%

5%

10%

15%

20%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingBT - 1Port

-200%

-150%

-100%

-50%

0%

50%

100%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 2Port

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingSP - 1Port

-300%

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 2Port

-80%

-60%

-40%

-20%

0%

20%

40%

60%

B2 B4 B8 C2 C4 C8

Class/Number of processes

Im
pr

ov
em

en
t

Blocking NonBlockingLU - 1Port

 
Figure 6.11 Messaging Improvement of Blocking and Non-Blocking ARMCI over 

MPI for BT-MZ, SP-MZ, and LU-MZ (Minimum process time). 

 

Our expected results did not show any potential for improvement by using 

blocking operations; however, our empirical results show improvement for many classes 

and number of processes of NPB-MZ. We believe this is due to the synchronized 

communication pattern of NPB-MZ applications. As explained in the previous section, 

each process of NPB-MZ reaches a communication phase after a computation phase. The 

communication phase is blocking and the process does not exit this phase until the 
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communications finish. This blocking structure of the communication phase of the code 

makes all the processes synchronize with each other to some extents every time they 

reach this part of the program. Using non-blocking operations in the part of the code that 

itself is blocking, imposes extra synchronization in that section. We think that this extra 

synchronization in the code may be the reason for the reduced performance when using 

non-blocking operations. In fact, non-blocking operations normally show better 

performance in applications where computation and communication can overlap. In a 

blocking communication part of the code without any computation, there is not much gain 

to use non-blocking operations. 

6.4 Summary 

In this chapter, we evaluated the performance of NPB-MZ applications under the 

MPI and MPI-OpenMP programming paradigms. We showed that for different 

combinations of number of processes and threads, pure MPI paradigm outperforms the 

Mixed MPI-OpenMP paradigm. This is also true for SMG2000 benchmark from ASCI 

purple suite. NPB-MZ scalability is very good on our cluster and it almost reaches the 

linear scalability. However, SMG2000 does not show a perfect scalability and it achieves 

speedup of 6.5 running on sixteen processors.  

We also compared the performance of NPB-MZ and SMG2000 applications on 

two-port and one-port configuration of the Myrinet NIC. Our experiments presented in 

the previous chapter show that the two-port communication at the GM, MPI, and ARMCI 

levels (except for the RDMA read) outperforms the one-port communication for the 

bandwidth. We investigated if the performance can be optimally used at the application 

layer. However, this did not translate in a considerable improvement at least for our 

applications. The difference in performance was minimal, with at most 3% improvements 

for the two-port cases. All three of these applications are very compute-bound 

application, where they spend most of the time computing rather than communicating. 

The time spent in communication is very small compared to the time they spend in 

computation.  

In this chapter, we looked into whether the performance gain of ARMCI one-

sided operations over MPI two-sided operations can translate in performance for the 



 

 

105 

 

applications. We tried to enhance the communication performance of NPB-MZ, using 

one-sided communications instead of two-sided communications. We estimated the 

performance improvement utilizing the communication characteristics of NPB-MZ 

applications, and the measured communication latency difference of ARMCI and MPI for 

NPB-MZ message sizes. We discovered that ARMCI non-blocking Put operations could 

enhance the communication performance of the NPB-MZ applications.  

To verify our speculations, we replaced the MPI two-sided communications in the 

NPB-MZ applications with ARMCI one-sided operations. The empirical performance of 

the modified codes shows performance improvement of up to 43%. Using either ARMCI 

blocking and non-blocking Put operations improved the communication performance in 

some cases. In some other cases, NPB-MZ did not show any performance improvement.  
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Chapter 7 Conclusion and Future Work 
 

As network computing becomes commonplace, the interconnection networks and 

the communication system software become critical in achieving high performance. 

Clusters of SMPs have become the ideal platform for high performance computing, as 

well as supporting the emerging commercial and networking applications. The choice of 

parallel programming paradigm, workload characteristics of the applications, and the 

performance of communication subsystem mainly affect the performance of the 

applications running on clusters. In this thesis, we have discussed these issues in detail. 

OpenMP has emerged as the standard for parallel programming on shared-

memory systems. Message-passing, particularly the Message Passing Interface, is the de 

facto standard for parallel programming in network-based computing systems. However, 

it is still open to debate whether pure message-passing or mixed MPI-OpenMP is the 

programming of choice for higher performance on SMP clusters. To address this 

question, we evaluated the performance of NPB-MZ applications under the MPI and 

MPI-OpenMP programming paradigms. We showed that for different combinations of 

processes and threads, pure MPI paradigm outperforms the Mixed MPI-OpenMP 

paradigm. We showed MPI performs better than mixed MPI-OpenMP in NPB-MZ 

applications, and SMG2000 benchmark from ASCI purple. NPB-MZ scalability is very 

good on our cluster and it almost reaches the linear scalability. However, SMG2000 does 

not show a perfect scalability and it achieves speed up of 6.5 running on sixteen 

processors.  

To help having a better understanding of the applications’ performance on 

clusters, it is important to understand their communication behaviour. We examined the 

MPI characteristics of small to large-scale scientific applications, including the NPB-MZ 

benchmark suite, SPEChpc2002 benchmark suite, and SMG2000 application, in terms of 

their point-to-point and collective communications. We quantified metrics such as 

number of sends, average message size per message, total message volume per process, 

message size cumulative distribution function (CDF), number of unique message 
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destinations per process, and destination distribution of messages of the root process 

(process zero).  

For collective communications, we presented the type, frequency, and the 

payload. We also evaluated the impact of the problem size and the system size on the 

communication behaviour of the applications. We found that the applications studied 

have diverse communication characteristics. Those include very small to very large 

messages, frequent to infrequent messages, various distinct message sizes, set of favourite 

destinations, and regular versus irregular communication patterns. Some applications are 

sensitive to the bandwidth of the interconnect, while others are latency-bound as well. 

Our evaluation also revealed that most applications are sensitive to the changes in the 

system size and the problem size. We discovered all applications use only a few 

collective operations. However, SPEC applications use them frequently with very large 

payloads.  

This thesis presents the locality characteristics of NPB-MZ and SPEChpc2002 

applications. We used FIFO, LFU, and LRU locality heuristics to evaluate the locality of 

message size and message destinations in our applications. We found out that LRU and 

FIFO have a very similar performance. LFU for some applications outperforms LRU and 

FIFO and sometimes shows a lower performance. We realized that some applications 

show good locality of message size or message destinations. We compared the 

communication characteristic of NPB-MZ applications in MPI-OpenMP with pure MPI. 

We found out that different process/thread combinations change the communication 

characteristics of NPB-MZ. We also realized that MPI communication characteristics of 

NPB-MZ are independent from the number of threads. 

Overall, the information provided in this thesis will help system designers, 

application developers, and library/middleware designers to understand better the current 

and future communication workloads of parallel applications. This study verifies that 

message-passing applications communicate intensively. Therefore, they will benefit from 

improvements in the interconnect hardware and their features as well as the 

communication system software and libraries. Collective communications such as 

broadcast, barrier, and reduce are expensive operations. Thus, it is essential to optimize 

their implementation in hardware and/or software in the future computer systems.  
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To examine how network really affects the communication performance of the 

applications, we evaluated the basic performance of different message-passing libraries 

on Myrinet Network. In this thesis, we presented an in-depth evaluation of the new 

Myrinet two-port networks at the user-level (GM), MPI-level, and at the Aggregate 

Remote Memory Copy Interface (ARMCI) level. We measured the performance of GM 

basic function calls, such as program initialization, memory allocation, memory 

deallocation, and program termination. We assessed and compared the basic latency 

performance of GM Send/Receive, GM RDMA, MPI Send/Receive, and ARMCI RDMA 

operations for one- and two-port configuration of the Myrinet network card interface. We 

realized that, in general, non-blocking operations perform better than blocking, and the 

two-port communication at the GM, MPI, and ARMCI levels (except for the RDMA 

read) outperforms the one-port communication for the bandwidth. We noticed that for 

certain messages sizes, ARMCI performs better than MPI.  

We compared the performance of NPB-MZ and SMG2000 applications on two-

port and one-port configuration of the Myrinet NIC. We investigated if the superior 

bandwidth performance of the two-port NIC can be optimally used at the application 

layer. However, this did not translate in a considerable improvement at least for our 

applications. The difference in performance was minimal, with at most 3% improvements 

for the two-port cases.  

Most of the parallel applications written in MPI, including the NPB-MZ 

applications, use a two-sided communication model based on send and receive 

operations. In this model, communication involves both the sender and the receiver side. 

Synchronization is achieved implicitly through communication operations. High-

performance interconnects such as Myrinet provide a one-sided communication model 

referred to as Remote Direct Memory Access (RDMA). One-sided operations allow data 

transfer directly between user-level buffers on remote nodes without the active 

participation of the receiver. This does not incur software overhead at the receiving end. 

In this thesis, we showed the potential improvement in communication time of 

parallel applications by using ARMCI one-sided operations instead of MPI two-sided 

calls. We looked into whether the performance gain of ARMCI one-sided operations over 
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MPI two-sided operations can be translated for the applications. We took on the challenge 

to convert our two-sided applications to one-sided. 

The empirical performance of the modified communication codes shows 

performance improvement of up to 43%. Using either ARMCI blocking and non-blocking 

Put operations improved the communication performance in some cases. In some other 

cases, NPB-MZ did not show any performance improvement.  

Finally, we reiterate the programmers, users, and system designers should 

continually consider the impact of communications on the overall performance of their 

applications. The choice of the communication hardware and the supporting software, 

parallel programming paradigms, messaging libraries, and communication algorithms are 

some of the noteworthy issues in achieving high performance in clusters. 

7.1 Future Work 

We would like to extend our study on the communication characteristic of other 

scientific, engineering, and commercial message-passing application and benchmarks. 

We would like to include communication/computation timing comparisons in our study. 

As some of the applications are mixed-mode applications, they can run under MPI, 

OpenMP, and MPI-OpenMP. Thus, it is interesting to characterize OpenMP directives of 

these applications as well.  

We intend to evaluate the performance of MPI-2 (MPI-2/MPICH-2) one-sided 

operations on our cluster, and examine its impact on the applications. Our plan is to 

compare the performance of the MX, the new alternative messaging library for Myrinet 

(not yet available), with GM. We intend to extend our study on other interconnection 

networks, such as Quadrics and InfiniBand to evaluate the impact of RDMA. 

Algorithms for one-sided communication and two-sided communication models 

are very different. It is interesting to revise the algorithms, and implement different 

applications with the appropriate algorithm for one-sided communications, rather than 

just replacing the two-sided communications. 
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