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ABSTRACT

Pressing demands for less power consumption of processors while delivering higher perfor-

mance levels have put an extra attention on efficiency of the systems. Efficient management

of resources in the current computing systems, given their increasing number of entities and

complexity, requires accurate predictive models that can easily adapt to system and application

changes. Through performance monitoring counter (PMC) events, in modern processors, a vast

amount of information can be obtained from the system. This thesis provides a methodology

to efficiently choose such events for power modeling purposes. In addition, exploiting the

time-dependence of the data measured through PMCs and multi-meters, we build predictive

multivariate time-series models that estimate the run-time power consumption of a system. In

particular, we find an autoregressive moving average with exogenous inputs (ARMAX) model

that is combined with a recursive least squares (RLS) algorithm as a good candidate for such

purposes.

Many of the available estimation or prediction models avoid using the metrics that are

affected by the changes of the processor frequency. This thesis proposes a method to mitigate

the impact of frequency scaling in a run-time model on power and PMC metrics. This method is

based on a practical Gaussian approximation. Different segments of the trend of a metric that

are associated with different frequencies are scaled and offset into a zero mean unit variance

signal. This is an attempt to transform the variable frequency trend into a weakly stationary

time-series. Using this approach, we have shown that power estimation of a system using PMCs

can be done in a variable frequency environment.

We extend the ARMAX-RLS model to predict the near future power consumption and

PMCs of different applications in a variable frequency environment. The proposed method is

adaptive, independent of the system and applications. We have shown that a run-time per core

or aggregate system PMC event prediction, multiple-steps ahead of time, is feasible using an

ARMAX-RLS model. This is crucial for progressing from the reactive power and performance

management methods to more proactive algorithms.
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Chapter 1

Introduction

The thesis provides research to utilize available computing system information to obtain

effective and accurate power and performance models. Such models are essential for efficient

allocation and management of resources, given various goals, in a computing system. Power

saving, power capping, and performance enhancement are among the main goals that can

benefit from the contributions of this thesis.

This chapter provides a brief introduction to the research presented in this thesis.

Section 1.1 describes some of the motivations for this work. Section 1.2 provides a list of

problems that this thesis tries to address. Section 1.3 summarizes the main contributions of

this work. Section 1.4 outlines the organization of this thesis.

1.1 Motivations

Today’s computing industry faces two major challenges for delivering faster and more scalable

computing systems: power and performance. Performance has always been the main goal of

computing industry. However, recently, power consumption and its related issues have taken

a similar priority, if not more important [16, 107]. Computing system architects commonly

have been facing trade-offs between power consumption and performance enhancement. Heat

dissipation issues in processors, due to physical limitations, have stopped the trend of man-

ufacturing processors with higher operating frequencies. This is referred to as power wall

[43, 98] that hinders serial performance enhancement of processors. In addition, the perfor-

mance gap between memory modules and processors, which has been growing significantly,

presents an obstacle in improving serial performance of applications. This growing difference

between memory cycles and processor cycles is referred to as memory wall [145]. Furthermore,
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instruction-level parallelism (ILP) strives for finding enough parallelism in a stream of instruc-

tions to fully utilize a high-performance single-core processor. In computing literature, this is

referred to as ILP wall [98]. The combination of power wall, memory wall, and ILP wall, among

other reasons, has fueled research and development of multi-core processors, such as dual-core

IBM Power-5 processor [77], 32-way Sparc processor [81], 12-core AMD Opteron processor [26],

48-core Intel SCC processor [60, 99], and 64-core Godson-T [40].

This thesis focuses on high-performance computing (HPC) applications. HPC is the

cornerstone of scientific community in tackling challenging problems in diverse fields such as

energy, medicine, weather and climate, finance, defense, and data mining. HPC applications rep-

resent a category of applications with one of the tightest thresholds for acceptable performance

degradation under a power saving method.

Power consumption and cooling issues of current HPC systems result in high operational

and maintenance costs. The large number of power hungry cores in modern HPC systems incur

a substantial cost of ownership [10]. Therefore, along with traditional performance-oriented

focus of industry, power consumption and cooling issues of HPC systems have become an

important part of the new design constraints. Table 1.1 shows the gravity of high power

consumption and large number of cores in today’s HPC world. For instance, Jaguar, one of

the leading systems on the Top500 list [133], recording a performance of 1.941 PFLOPS, has

298,592 cores, requiring 5.142 MW of power. Assuming a nominal cost of $0.10/kWh, this

translates into an average annual electricity cost of $4.5M. Jaguar has a performance/power

efficiency of 377 MFLOPS/Watt. This is relatively low compared to custom designed Blue Gene

systems like Sequoia with 2069 MFLOPS/Watt. Jaguar has been updated with the latest 16-Core

AMD Opteron 2.2 GHz processors, in addition to partially utilizing NVIDIA 2090 graphical

processing units (GPU). In contrast, Sequoia uses custom Blue Gene/Q, 1.6 GHz Power BQC

processors with 16 processing cores (total of 18 cores available, however, only 16 cores are

used). The race for efficiency in supercomputing has inspired maintaining an efficiency ranking

system for the top supercomputers [129].

As current state of computing industry faces diminishing results in performance en-

hancement of single-core processors, it is expected for the future systems to have many more

cores per socket (e.g., 1000 cores per socket) [59, 91]. The large number of cores in a socket
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Table 1.1: Top 20 supercomputers (adapted from [133] in June 2012)
Rank Name Total Cores Power (kW) MFLOPS/Watt Cores/Socket

1 Sequoia 1,572,864 7,890 2,069 16
2 K computer 705,024 12,660 830 8
3 Mira 786,432 3,945 2,069 16
4 SuperMUC 147,456 3,423 846 8
5 Tianhe-1A 186,368 4,040 635 6
6 Jaguar 298,592 5,142 377 16
7 Fermi 163,840 822 2,099 16
8 JuQUEEN 131,072 658 2,099 16
9 Curie thin nodes 77,184 2,251 604 8
10 Nebulae 120,640 2,580 493 6
11 Pleiades 125,980 3,987 312 4
12 Helios 70,560 2,200 562 8
13 Blue Joule 114,688 575 2,099 16
14 TSUBAME 2.0 73,278 1,399 852 6
15 Cielo 142,272 3,980 279 8
16 Hopper 153,408 2,910 362 12
17 Tera-100 138,368 4,590 229 8
18 Oakleaf-FX 76,800 1,177 886 16
19 Roadrunner 122,400 2,345 444 9
20 DiRAC 98,304 493 2,099 16

brings in more challenges in managing resources of the system. Given the current challenges of

power and performance trade-offs, in addition to future challenges that many-core systems are

expected to introduce, it is necessary to obtain a highly efficient resource management system

to provide scalable systems with higher performance and lower power consumption.

Efficient resource management in a computing system becomes explosively difficult,

given the complexity and the number of modules in a system. This is mainly due to absence

of a simple and accurate model that can describe the behavior of the system from various

aspects. To solve this shortcoming, simple metrics, such as processor utilization, have been used

commonly as a basis for resource management and related decision makings. Two common

instances where processor utilization metric is used are the operating system scheduler and

the processor power management module (i.e., voltage and frequency governors).

In a system with a complex processor architecture running different flavors of applica-

tions, such as compute-bound, communication-bound, and memory-bound applications, there

are many reasons that make the processor utilization an inaccurate metric for resource man-
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agement purposes [115]. Examples of such complexities for a single processor are multi-level

caches, non-uniform memory, pipelining, out-of-order execution, and simultaneous multi-

threading (SMT). In addition to complex single processor advancements, multi-core processors

and multi-CPU systems, make the CPU utilization metric less reliable for performance capacity

prediction purposes.

Modern processors provide the capability to monitor their performance events through

hardware performance monitoring counters (PMC) [125]. Some systems also provide uncore

metrics, such as read or write bytes from or to memory controllers [67]. In most common

processors, a broad group of events are available for measurement through a small number

of registers. For example, the AMD Opteron processor used in this thesis provides more than

150 events to choose from and 4 registers for each core to use for monitoring such events

simultaneously. Future generations of microprocessors are expected to have more simultaneous

counters available [116]. In computer literature, PMCs also have been referred to via other

terms such as, performance monitoring unit (PMU) [115] and hardware performance monitoring

(HPM) support [120].

Given such a vast source of information, is it possible to provide a model that is accurate,

adaptive, system-independent, application-independent, and able to estimate and predict

the state of the system in terms of power consumption and performance events? Resource

management, power saving, power capping, task scheduling, and many other management

modules can significantly benefit from such models, if they come to realization.

The goal of this thesis is to facilitate building models and metrics that accurately repre-

sent the current and future state of the system for resource management purposes. This thesis

provides a better understanding of usage of PMCs in power estimation models. Specifically, this

thesis addresses the problem of finding an optimum set of events for efficient power modeling

[152]. Furthermore, novel power estimation models that are based on multivariate time-series

analysis are presented in this work [151]. Using multivariate time-series analysis is orthogonal

to many prior work in this field. In addition to power estimation models [150], this thesis

provides models that are predictive [154] both for power consumption and PMC events in a

frequency variable environment. In short, this work provides necessary tools and models to
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harvest valuable and accurate information to increase the efficiency of resource management

for current and future systems.

1.2 Problem Statement

Demand for efficiency in resource allocation stays at its peak in the present and future many-

core era, given the existence of trade-offs between the two important design measures, power

and performance. Current state of resource management mainly uses a reactive approach

towards system’s measured metrics. For example, current power managers of Windows Vista

and SUSE Linux Enterprise Server (SLES) adjust the frequency and voltage settings of next time

period in a reactive mode, based on the previous load [14]. Similar reactive decision makings

can be observed in schedulers [3, 5, 17]. The delay between observing a change in system’s

workload and adjusting the system’s settings, such as voltage and frequency, is inevitable in

reactive algorithms. This inherent delay in reactive methods results in a lower efficiency of

power and performance [13].

Modern processors are capable of measuring many different performance metrics

through PMCs. Predictive models for power and PMCs at run-time with a fine granularity in

time domain (many measurements, many estimations, and many predictions per second) can

significantly improve the efficiency of power and performance management modules. For

example, the adjustment of processor voltage and frequency can be trivially performed in

advance, knowing the upcoming workload performance requirements. The general conditions

that this thesis tries to follow in developing any model is accuracy, adaptiveness, application-

independence, architecture-independence, and non-intrusiveness. The primary questions that

this thesis tries to address are:

1. Given the large number of available PMC events and the small number of registers for

simultaneous measurements, what is an efficient method for finding an optimal selection

of multiple PMC events for power modeling of computing systems?

2. Under a fixed processor frequency, is it possible to use the time dependence of data to

obtain an accurate power estimation model based on PMCs? Is a multivariate time-series
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approach beneficial for this purpose? If yes, what models and algorithms in multivariate

time-series are more efficient?

3. Given that all trends of PMCs and power consumption is affected significantly by

frequency variations, is it possible to obtain a variable frequency power estimation

model that is based on multivariate time-series analysis?

4. Are multivariate time-series models capable of predicting future PMCs and power

consumption for different frequencies of the system multiple time steps ahead?

1.3 Contributions

This section summarizes the contributions made by the work presented in this thesis. First,

this thesis studies the problem of choosing proper PMC events for a PMC-based power model.

Without relying on architectural intuitions for PMC event selections, we perform a comprehen-

sive statistical analysis of PMC events and power consumption. We verify that the variability

of power-PMC and PMC-PMC correlations are tolerable for PMC event selections. In order to

provide the power models with the most useful information from the system, through the

limited number of available PMC registers and with a minimal overlap of information provided

by different measured PMC events, this thesis proposes an optimized method for selection of

multiple PMCs. The proposed method requires six times fewer executions of an application than

a principal component analysis method, without the assumption that the statistics of power

consumption and PMCs for different processes or threads of a parallel application are identical

among different cores or nodes. The presented results in Chapter 3 are for power models using

PMCs, however, this method can be adapted to the needs of one who seeks a linear model

between PMCs and other objectives, such as temperature-related and performance-related

metrics.

This thesis proposes a power estimation model that is based on multivariate time-series

analysis, in particular, autoregressive moving average with exogenous input model (ARMAX).

A multivariate time-series model exploits the intrinsic repetitiveness of computer software

and hardware activities through the time dependence in a power or PMC signal or between

power and PMC signals. We have shown that using the time dependence improves the power
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estimation models significantly. In order to obtain an ARMAX model that is able to adapt

to the changes in a system, in addition to being architecture- and application-independent,

it is equipped with a coefficient update algorithm. This thesis evaluates the effectiveness of

applying different coefficient update algorithms to the ARMAX models, such as multivariate

normal regression (MVNR), Kalman filter (KF), and recursive least squares (RLS). This thesis

studies different aspects of an ARMAX power estimation model, such as computation-time

overhead, sensitivity to measurement update delay, PMC selection, filter size, and adaptation

to significant application changes. Based on the minimal computational overhead and the

superior performance of th RLS algorithm, we adopt ARMAX-RLS as the preferred model for the

rest of this thesis (Chapter 5 and Chapter 6). The research in Chapter 4 is limited to a fixed

processor frequency and does not account for the variations in power and PMC trends of a

variable frequency environment.

The unknown scaling of PMC and power metrics as a result of frequency scaling cripples

the integration of many existing models into a real system. This thesis studies the effect of

frequency scaling on power and PMC signals and proposes a method to prepare those signals

for usage in a multivariate time-series power estimation model. In particular, the proposed

method is based on a practical Gaussian approximation, and it does not rely on differentiating

between the scaling and the non-scaling metrics. The proposed method is a general approach

for different PMC and power signals. Unlike the prior works, the proposed method is not limited

to a small set of PMC events that follows an architectural model. This approach scales and

offsets the metrics by their mean and variance associated to each frequency into a unified trend

with a zero mean and unit variance (ZMUV). It is demonstrated in Chapter 5 that an ARMAX

model, equipped with the RLS algorithm and the ZMUV module, can accurately estimate the

power consumption of a real system in a variable frequency environment.

Furthermore, we propose a model based on the ARMAX-RLS model to predict the future

PMC and power consumption values in a variable frequency environment. This method is a

general approach to PMC event rate and power consumption prediction, and unlike the prior

works it is not limited to the prediction of metrics that are insensitive to frequency scaling.

A PMC event rate is predicted using the previous PMC event rates. The prediction of future

power consumption is performed using both the previous PMC event rates and the previous
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power consumption values. The model proposed in Chapter 6 is able to predict the values

multiple time steps ahead. In addition to verifying the feasibility of this approach at the

simulation level using the real measurements, we have implemented a run-time ARMAX-RLS

PMC prediction model on a real system. This run-time PMC predictor runs as a user-space

application simultaneously with the operating system’s processes and other applications. The

real-time one-step ahead predictions for the instructions per cycle metric show a 23% reduction

in prediction error compared to the last value predictor. The two-step ahead predictions

achieve a 26% error reduction in run-time ARMAX-RLS compared to the last value predictor.

The results from the real-time implementation of this model verify that the per core and the

aggregate system PMC event predictions that are made multiple-steps ahead of time are feasible

using a multivariate time-series model. In short, by devising a model that can provide reliable

predictions of the system metrics, this thesis paves the road from the reactive power and

performance management methods to the proactive algorithms. This thesis focuses on HPC

applications, however, it is expected that the methods and results of this thesis to be applicable

to other categories of applications, without extensive changes.

1.4 Dissertation Outline

The rest of this thesis is organized as follows: Chapter 2 provides a brief background infor-

mation related to the work presented in this thesis. Chapter 3 provides an efficient PMC event

selection method and studies its related issues. Chapter 4, under a fixed processor frequency,

develops an ARMAX model for power estimation and studies different algorithms and aspects

of such models. Chapter 5 addresses the challenges that a variable frequency environment

brings to the category of PMC based models, such as power estimation models. A simple and

effective scale and offset method is proposed for adaptation of scaled PMC and power trend for

usage in time-series based models. Chapter 6 presents the multivariate time-series based model

for real-time prediction of PMCs and power. In Chapter 7, we provide a summary, concluding

remarks about the thesis as a whole, and possible future work.
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Chapter 2

Background

This chapter reviews the general related background and some of the previous research in

power estimation, power prediction, and performance prediction of computers. The related

work, relevant to the studies done in this thesis, will be covered in detail in the following

chapters. An overview of high performance computing and different parallel architectures and

programming paradigms, as well as their related hardware and software aspects, is provided

in Section 2.1. An introduction to hardware performance monitoring counters is presented in

Section 2.2. An overview of relationship of power consumption, temperature, and frequency of

processors is discussed in Section 2.3. In addition, common power saving techniques such as

dynamic voltage and frequency scaling, clock throttling, and dynamic concurrency throttling,

are introduced in Section 2.4. A general introduction to resource management, related models,

and utilized techniques, is presented in Section 2.5. We review the related research to power

and/or performance modeling of computers at processor-level and system-level in Section 2.5.1

and Section 2.5.2, respectively. A brief description of the applications used in this study is

provided in Section 2.6.

2.1 Parallelism and High Performance Computing

HPC applications rely on parallel processing. Parallelism has been applied at different layers

of abstraction, such as sub-word parallelism, instruction-level parallelism (ILP), thread-level

parallelism (TLP), and multi-processing, in one node to increase the performance of applications.

At node-level, shared-memory paradigms such as OpenMP [132] are commonly used to facilitate

development of parallel applications. In addition, multiple computing nodes are utilized for

running a parallel application using libraries such as Message Passing Library (MPI) [130].
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ILP is based on the idea of a processor performing multiple instructions at a time. ILP can

be achieved through several techniques. For example, at CPU level, instructions may be broken

down into steps, and steps of several different instructions are performed at the same time. This

ILP technique is known as instruction pipelining. In super-scalar processors, multiple pipelines

can be executed in parallel using multiple execution units. Sub-word parallelism enables us

to perform a single instruction on multiple data (SIMD). Sub-word parallelism is widely used

in multimedia processing [127]. TLP is based on executing different threads in parallel [135].

This multi-threading generally occurs by time slicing (where a single processor/core switches

between different threads) or by multi-processing (where threads are executed on separate

processors). Computer industry, recently, has not observed a major performance gain from ILP.

Therefore, seeking performance gains in other levels of parallelism, techniques such as chip

multi-processing (CMP) [106] and simultaneous multi-threading [134] have emerged.

SMT is a technique for improving the overall efficiency of the CPU by allowing multiple

independent threads to execute on a core in order to better utilize the processor resources. CMP

is a technique that uses multiple processor cores on a single die. In fact, CMP allows multiple

cores to share chip resources, such as an L2 cache and a memory controller, and thus to better

utilize them [106, 124]. SMT has been employed by industry to enhance the performance

of microprocessors, such as in Intel’s processors equipped with Intel Hyper-Threading (HT)

technology: previous-generation Intel Core processors, the 3rd generation Intel Core processor

family, and the Intel Xeon processor family [66]. SMT enables us to exploit TLP and ILP together

on a processor [134].

Multi-processor systems are categorized in two general classes: tightly coupled and

loosely coupled. Tightly coupled multi-processor systems contain multiple CPUs that are

connected through an interconnection network. These CPUs may have access to a central shared

memory, such as symmetric multi-processors (SMP), or may have access to both local and remote

shared memory, such as Non-Uniform Memory Access (NUMA) systems. Clusters, or loosely

coupled multi-processor systems, are built with multiple standalone single or multi-processor

commodity computers interconnected via a high speed communication system. Current popular

interconnects for clusters include 10-Gigabit Ethernet, 10-Gigabit iWARP Ethernet [112], and
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InfiniBand [65]. Clusters have emerged as the leading trend of supercomputing due to their

cost effectiveness.

Clusters usually utilize the message-passing model for interaction between processors

and/or nodes, while SMPs/NUMAs mainly use the shared-memory model. In message passing

model, a message is constructed on one processor and is sent through an interconnection

network to another processor. In shared memory model, data is directly stored in or loaded from

a shared memory location. MPI [130] and OpenMP [132] are the de facto standards for message

passing and shared memory programming models, respectively. A hybrid MPI-OpenMP [20]

programming paradigm is an attractive solution for some applications due to the prominence

of SMP clusters and multi-core systems.

OpenMP [132] has emerged as the standard for parallel programming on shared-memory

systems. Incremental development of OpenMP programs from the serial version of applications

makes it one of the popular parallel programming paradigms. OpenMP provides a set of

compiler directives and run-time library routines that extend Fortran, C, and C++ to express

shared-memory parallelism. OpenMP was designed to exploit certain characteristics of shared-

memory architectures (such as directly accessing memory throughout the system with no

explicit address mapping). The OpenMP application programming interface (API) defines

parallel regions and work-sharing constructs among threads.

OpenMP is an explicit programming model, offering the programmer full control over

parallelization. A shared-memory process may consist of multiple threads. OpenMP is based

upon the existence of multiple threads in the shared-memory programming paradigm. OpenMP

uses the fork-join model of parallel execution. All OpenMP programs start as a single process,

namely the master thread. The master thread executes sequentially until the first parallel

region construct is encountered. When the master thread encounters the parallel region then it

creates a team of parallel threads. This is known as a fork operation. The statements in the

program that are enclosed by the parallel region construct are then executed in parallel among

the various team threads. When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread. This operation is

known as a join operation.
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2.2 Performance Monitoring Counters

Modern processors provide the feature to monitor their performance events through perfor-

mance monitoring counters [125]. Some processors, such as Intel Xeon Processor E7 family [67],

also provide uncore metrics, such as read or write bytes from or to memory controllers. Many

of the available PMC drivers, such as PerfCtr [108] and hwpmc [90], virtualize the PMCs in the

system and provide user level support for both system-wide PMC counting and process-private

PMC counting. In process-private mode, after PMCs are attached to a target process, they are

counted (or sampled) only when their process is scheduled on a CPU. In system-wide PMC

measurement mode, PMCs are counted (or sampled) regardless of the running processes, and

they capture the hardware events for the entire system for each processor (or core).

The process-private mode is more suitable for performance tuning of applications, as

it focuses on selected processes and threads in the system. All the processes in the system

contribute to power consumption. Therefore, a system-wide PMC measurement, in most cases,

is more suitable for relating PMCs to system-level power consumption. In a multi-processor

(MP) system, programming PMCs with their hardware events and measuring them for each

processor is performed independently from other processors in the system. In addition, the

number of available PMC registers on each processor is usually much smaller than the number

of available PMC events that can be monitored. For example, for each core of a 2000 MHz

quad-core AMD Opteron-2350 processor (the processor used in this thesis), more than 160

different PMC events are available to be monitored using the four available PMC registers.

New hardware architectures and software techniques have been proposed to mitigate this

shortcoming [6, 7, 103, 116], however it is not yet addressed by the industry.

System-wide PMC measurement can be performed symmetrically or asymmetrically, with

respect to different processors/cores. A symmetric PMC measurement uses an identical set of

PMC events on all processors. An asymmetric PMC measurement uses non-identical sets of PMC

events on different processors, and therefore some of the events sampled on one core will not

be sampled on other cores. Depending on the workload and the decisions of the scheduler,

activities of different cores may differ significantly. Skipping PMC event sampling on some

of the cores prevents us from capturing the global activity picture of the system. In short, a
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symmetric PMC measurement has the benefit of capturing the relationship of PMC events with

system-level power consumption without being impacted by the scheduler, however, it suffers

from the limitation on the number of PMCs that can be simultaneously measured.

2.3 Power Consumption

Processors contribute significantly to the total power consumption of a system. The power

consumption of a CMOS processor can be modeled as the sum of dynamic switching power

and static leakage power [43], as shown in (2.1). C is capacitance and fclk represents the clock

frequency. In today’s modern processors, leakage power contributes to up to 40% of the chip

power [104]. Leakage power is a function of temperature [94]. An increase in temperature

results in an increase in leakage power. An increase in leakage power also results in an increase

in temperature, if not cooled down. Dependence on temperature puts the circuit design style

and thermal profile of integrated circuits (IC) among their critical design factors.

PTotal = PSwitching + PLeakage (2.1)

= CV∆Vfclk

2
+ ILeakageV

In current processor technology, approximately, a cubic relationship between power and

time (e.g., cycle time) exists. This is shown in (2.2). This cubic relationship is the foundation of

power wall in today’s processors [43, 98].

PT 3 = constant (2.2)

2.4 DVFS, Clock Throttling, and DCT

Modern processors provide the ability to dynamically adjust their frequency and voltage levels.

This technique is referred to as dynamic voltage and frequency scaling (DVFS). Lower levels

of frequency and voltage significantly change the power consumption and performance of

the chip. Switching to a lower frequency and voltage gear while performance demand is
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not at its peak can reduce the power consumption of the system. DVFS is the prominent

method of power saving in today’s computers. The different performance states are denoted

in Advanced Configuration and Power Interface (ACPI) specification [1] as P0, P1, · · · , Pn. P0

represents the maximum performance state and possibly the maximum power consumption. In

P1, performance and power consumption of processor are limited to less than their maximum

values. By ACPI definition, as the subscript number in a P state increases its performance

and power consumption decreases. The minimum performance and power consumption while

processor is running is associated with Pn, where n is different for each processor (e.g., in the

AMD Opteron used in this thesis n = 4).

Clock throttling [100] is another technique that reduces dynamic power consumption of

a processor. This technique does not change the voltage level of the processor. The original

clock frequency of processor is maintained during clock throttling, however, the clock signal

is regularly gated or disabled for some number of cycles. In particular, while the processor is

running instructions, operating system power management (OSPM) module has the ability to

program a value into a register that reduces the processor’s performance to a percentage of the

maximum performance. As processor voltage level is not changed, clock throttling provides

modest power savings with smaller overheads, relative to DVFS.

Dynamic concurrency throttling (DCT) is a software technique that adapts the concur-

rency level (number of running threads) of an application while running. For example, the

number of parallel threads of an OpenMP application running on a multi-core system can vary

over its execution time, based on predefined power or performance objectives. A combined

usage of DVFS and DCT have been found to be beneficial in power saving of some applications

[31].

2.5 Resource Management and Related Models

Figure 2.1 illustrates the organization of objectives, techniques, and models used in resource

management. The ultimate goal in this organization is to achieve a better efficiency in power

and performance of the system. For example, an efficient resource management can lead to a

better performance (e.g., lower latency or higher throughput), an effective thermal management
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Figure 2.1: Diagram of power and performance resource management approaches

of multi-core processors or data centers [95], an energy efficient system [97, 110], a power

capping method [41], and/or a virtual power budgeting system [105].

The techniques that are commonly used to achieve a better efficiency include DVFS,

clock throttling, DCT, and optimized dynamic scheduling algorithms. The decision makings

that guide the utilization of such techniques, in order to increase the system efficiency, are

mainly based on prediction and/or estimation of the system state. System state can include

different metrics such as workload and its balance among different processors, processor

and ambient thermal state, task priorities, and power consumption. Different models have

been previously proposed to predict or estimate the thermal, power, energy, and performance

metrics of a system. In addition to modeling metrics of a system, it has been common to model

the scaling and trade-off of metrics of a system, such as scaling of power and performance

under different frequencies. Such trade-off models facilitate decision makings with respect

to a specific objective, such as power saving. For example, a model that associates scaling of

the application execution time with processor frequency scaling can be used to find optimal

processor frequency for power saving objectives [62].

In the past decade, power consumption has become a first class architectural factor

for both mobile computing and high-end servers [101]. In this section, we review some of

the proposed models related to power, energy, and thermal management of processors and

computing systems.
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2.5.1 Processor-Level

Estimation and modeling of power consumption of computing systems have attracted a lot of

attention due to importance and complexity of the problem. Power modeling has been done at

different levels and components such as micro-architectural simulation, run-time, processor

level, component level, system-wide, etc. Performance monitoring counters have been used

in many of such models [25, 70, 76, 111]. Butts et al. [19] provide low-level models for static

power dissipation that is caused primarily by sub-threshold leakage. Brooks et al. [18] proposed

the Wattch simulator, a framework for architectural-level power analysis and optimizations.

Isci et al. [70] combine real total power measurement with PMC to obtain per unit power

estimations for an Intel Pentium 4 processor. Contreras et al. [25] demonstrate a linear power

estimation model that uses PMCs to estimate run-time power consumption of Intel PXA255

processor and main memory. They use the following PMC events for processor power modeling:

instructions per cycle (IPC), data dependencies, instruction cache miss, and TLB misses. The

PMC events in their memory model are instruction cache miss, data cache miss, and number

of data dependencies. Bircher et al. [15] have found IPC metrics useful in power estimation

techniques. They have used linear regression models to estimate the power consumption of an

Intel Pentium 4 processor. They report that IPC related metrics show a strong correlation with

CPU power, in particular the uops fetched per cycle metric.

Rajamani et al. [111] have provided a PMC-based power estimation model that scales

the activity rates between different frequencies of processor based on a static model obtained

offline. They use the calculated activities to estimate the power consumption of the system.

Kim et al. [24, 80] propose an on-chip bus performance monitoring unit that directly captures

on-chip and off-chip component activities. An online software converts counter values into

actual power values with simple first-order linear power models. Joseph et al. [76] estimate the

run-time power dissipation of different units of a Pentium Pro processor using PMCs combined

with architectural information provided by an architectural processor power simulator. Most of

these approaches are platform-specific and need training data set through micro-benchmarking.

Thermal models and issues related to cooling processors and computing systems

have been studied extensively. Based on Arrhenius model, lifetime of processors decreases
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exponentially as temperature increases [21, 126]. Therefore, rise of temperature in systems

leads to reduced chip reliability. Dick [35] discusses the impact of temperature on reliability

and related models in fault-tolerant systems. Gurrum et al. [51] study the limits for heat

removal from a model chip and effective cooling of electronic chips for reliability purposes.

High power density and cooling requirements have led to development of run-time processor-

level techniques that can mitigate the temperature emergencies on a chip. Skadron et al.

in [121] proposed HotSpot, a thermal model for architectural studies and related dynamic

thermal management (DTM) methods. Their model is based on an equivalent circuit of thermal

resistances and capacitances that correspond to micro-architecture blocks and essential aspects

of the chip’s thermal package. Coskun et al. [27] have proposed a proactive thermal management

approach that predicts the future temperature and adjusts the job allocation on the system.

Emerging three-dimensional circuits in multiprocessor system-on-chip system require new

methods for addressing their temperature problems, such as hot spots. Coskun et al. [28, 29]

have proposed dynamic management policies that complement liquid cooling for such systems.

2.5.2 System-Level

The impact of DVFS on performance and power consumption of the computing systems have

been studied by many researchers. Finding a model to describe the effect of power saving

techniques, such as DVFS, or to estimate the power consumption of the system has been

attempted by many studies. Li et al. [86, 87] have studied effect of dynamic concurrency

throttling and dynamic voltage and frequency scaling in energy-efficiency of hybrid MPI-OpenMP

applications. Curtis-Maury et al. [30–32] have proposed an online performance predictor for

optimization of DVFS and/or DCT on multi-core systems. Li et. al [88] propose simulation

based run-time models for estimation of operating system power consumption based on PMCs.

Jimenez et al. [74] have addressed the need for energy-usage-based accounting in large-scale

computing facilities.

As many HPC applications use MPI on high performance interconnects, there has been

many studies in exploring power saving methods for high performance interconnects and

MPI related aspects of applications. Zamani et al. [153] have studied the feasibility of power-
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awareness in modern interconnects, such as Myrinet-2000 [102] and Quadrics QsNet II [11].

Hoefler [57] discusses different software and hardware techniques for power-efficient HPC

networking. Hoefler et al. [58] study power consumption of different applications on two

interconnection networks, Myrinet and InfiniBand. Vishnu et al. [136, 137] have combined

DVFS techniques and interrupt driven execution to improve the energy efficiency of one-sided

communication primitives. Kerbyson et al. [79] use a priori information on application behavior

to put the processors in a low power state when in local or global synchronizations.

There has been a great body of research exploring the power scaling characteristics of

different applications and how their periods of time that are not CPU-intensive can be leveraged

to power saving schemes, via methods such as DVFS [44, 48, 61, 78, 89]. Unbalanced load

of clusters in a MPI program has been utilized to save power using DVFS [78, 89]. Hsu et al.

[61] proposed using a PMC based algorithm that detects the CPU-boundedness of a program

on the fly and adjusts the CPU speed accordingly using DVFS. Ge et al. [48] designed and

implemented distributed DVFS scheduling for power-aware clusters. Freeh et al. [44] have

investigated the trade-off between energy and performance in MPI programs on single- and

multiple-processor systems. Huang et al. [63] have proposed using PMCs in an interval-based,

run-time algorithm that characterizes the workload for power reduction via DVFS. Ge et al. have

proposed CPU MISER [49], a performance-directed, system-wide, run-time DVFS schedulers for

high performance computing.

Most of the above-mentioned methods are non-adaptive and PMCs are selected based on

architectural intuitions. The few studies that used correlation coefficient of power and PMCs to

choose the model inputs only considered single PMC selections and not the impact of PMCs

covariates. A downside of many previous work is the necessity to tap the supply points that

power the processor to measure its power consumption. Lively et al. [96] have studied selection

of multi-PMC events on 324 nodes for hybrid programs. They investigate 40 PMCs using a

performance-tuned supervised principal component analysis (PCA) [8] method. Their approach

assumes that different threads/processes of a parallel application exhibit similar PMC event

rate statistics. One of adaptive models available is proposed by Gurun et al. [52, 53]. They

have proposed a run-time feedback-based full system energy estimation model for embedded

devices, where a linear model of two or three hardware and software performance counters is
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used to model communication or computation energy consumption. They use recursive least

squares [54] and linear regression for finding and updating the model parameters on-the-fly.

Many researchers have used prediction methods to find opportunities for improving

power or performance efficiency of a system. Bircher and John [13] have presented an analysis

of core activity prediction in SYSMark2007 application. Flinn et al. [42] propose a monitoring

system for mobile clients which uses application resource usage to predict future behavior.

Grunwald et al. [50] consider two prediction algorithms originally proposed by Weiser et al.

[139] for dynamic clock policies. However, they do not observe a significant energy saving. Liu

et al. [93] have proposed an application-level power management approach for reducing energy

consumption in a mobile processor. Sarikaya et al. [118] have used a statistical metric model

(SMM) jointly with maximum likelihood estimation (MLE) for predicting workload behavior. They

attempt to model how frequently a specific behavior (i.e., phase) occurs using a probability

distribution. Isci et al. [72] propose a method to estimate the CPU demand in a virtualized

environment. Isci et al. [68, 71] developed a run-time phase predictor using a phase history

table. They use this approach with DVFS for power saving purposes.

2.6 Applications

Some of the serial and multi-threaded OpenMP applications of NAS Parallel Benchmark (NPB)

[75, 131] are used as test applications in this work. These benchmarks are designed to have

similar computation and data movement to other applications in computational fluid dynamics

(CFD). The NPB suite consists of kernel and pseudo applications. The kernel applications are

Integer Sort (IS) with random memory access, Embarrassingly Parallel (EP), Conjugate Gradient

(CG) with irregular memory access and communication, memory intensive Multi-Grid (MG) with

long- and short-distance communication, and discrete 3D fast Fourier Transform (FT) with

all-to-all communication. The pseudo applications include Block Tri-diagonal (BT) solver, Scalar

Penta-diagonal (SP) solver, and Lower-Upper (LU) Gauss-Seidel solver. In addition, we have used

Unstructured Adaptive (UA), one of the benchmarks for unstructured computation and data

movement, which has a dynamic and irregular memory access pattern.
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The NPB applications are provided in different problem sizes: Class S, W, A, B, C, D,

E, and F. We have used class A, B, and C of the above applications which is the standard test

problems with an approximately four times size increase going from one class to the next. The

largest class of the NPB applications that can run on our platform is class C. Throughout this

thesis, we frequently refer to these applications with their names followed by the used problem

size class name. For example, BT.C denotes BT application running with a class C problem size.

For the multi-threaded applications we run them with eight threads. The serial applications are

run with affinity of the process set to core 0.
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Chapter 3

Performance Monitoring Counter Selection

Demand for better computing performance and lower power consumption have become the

recent key goal of computing industry. At hardware level, designing low-power and high

performance systems faces many technological limitations. Given a manufactured system,

the key to achieving the highest performance while consuming the least power is in using

available system resources efficiently. A tangible example of efficient usage of resources in a

computer is turning off various components, such as the display monitor, shortly after users

stop interacting with the system.

Achieving efficiency in resource management becomes explosively complicated as the

number of modules, complexity of modules, and the number of parameters affecting our

objective metrics (e.g., performance and power metrics) for each module increases. In addition,

the trade-off between power and performance makes resource management more challenging.

A methodological approach for optimizing resource management is to build an accurate model

that relates the objective metrics to the parameters of the system. Having a model helps us

to find the optimum parameters for achieving the best efficiency depending on our objective

metrics and thresholds. However, finding an accurate model is not easily possible due to the

complexity and the number of modules. Simpler metrics, such as processor utilization, have

been used for many different purposes to play the role of a model. The current state of the

power and performance optimization methods, at the operating system level, uses the processor

utilization as a key metric for job scheduling and processor frequency/voltage management.

Current operating systems define CPU utilization as the percentage of time slots that the

CPU scheduler could assign to execution of running processes and threads. Current complex

architectures that enjoy advancements such as multi-level caches, non-uniform memory, pipelin-
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ing, out-of-order execution, simultaneous multi-threading, multi-core systems, and multi-CPU

systems, cannot reliably use CPU utilization metric as their performance capacity predictor

[115]. Compute-bound applications can use this metric much better than other flavors of

applications. An example of unreliable performance prediction is when the bottleneck of the

system does not occur in the processing module, but in other modules such as the memory

module; a memory-intensive workload can saturate the bandwidth of a memory module without

saturating the processing capacity of a multi-core system.

Modern processors provide the capability to monitor their performance events through

performance monitoring counters. Some systems also provide uncore metrics, such as read or

write bytes from or to memory controllers. In most common processors, number of available

choices for PMC events is significantly larger than the number of events that can be measured

simultaneously (e.g., a few hundred events and only four counters available). Previously, archi-

tectural intuitions have guided selection of PMCs for modeling workload/power consumption

of a system [15, 24, 25, 70, 88, 111]. However, it is unclear which PMC event “group” selection

fits such power models the best when multiple PMCs can be utilized simultaneously in a model.

The goal of this thesis is to facilitate building models and metrics that accurately

represent the current and future state of the system for resource management purposes. This

chapter first studies the measurement variability of PMC and power traces in a real system.

The correlation of different PMC events and power consumption are studied. Furthermore,

an optimized method for selection of multiple PMCs for power modeling is presented [152].

The presented results are for power models using PMCs, however it can be adapted to other

objectives.

3.1 Related Work

Bellosa [12] has studied the correlation of PMC events on Pentium II for operating-system-

directed power management. Bircher et al. [15] have studied correlation coefficients of 23 PMCs

with power consumption of a Pentium 4 processor (single-PMC study). They have found the

instructions per cycle metrics (in particular uops fetched per cycle) useful in power estimation

techniques using linear regression models to estimate the power consumption of a Pentium
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4 processor. Lively et al. [96] have developed application-centric PMC-based models for

performance and power consumption. Isci et al. [69] have studied the impact of real-system

variability on detecting recurrent phase behavior.

The work presented in this chapter is different from the above studies. We account

for covariance of the PMCs and therefore eliminating the redundant variations captured by

the other PMCs for providing an optimal multiple-PMC selection method. We avoid using a

PCA method, which exacerbates the efficiency of a multiple-PMC selection method, due to

the limited number of available PMC registers in modern processors. Our approach does not

suffer from the assumption, and possibly the incurred inaccuracies, that the statistics of power

consumption and PMCs for different processes or threads of a parallel application are identical

among different cores or nodes.

3.2 Experimental Framework

3.2.1 Hardware Platform

All the experiments in this thesis are conducted on a Dell PowerEdge R805 SMP server. The

server has two 2000 MHz quad-core AMD Opteron-2350 processors. The processors have 12

KB shared execution trace cache, and 16 KB L1 shared data cache on each core. The L2 cache

available per core is 512 KB. Each processor chip also has a shared 2 MB L3 cache. The system

has 8 GB DDR-2 SDRAM (667 MHz) memory.

The measurement infrastructure consists of a Keithley 2701/7710 digital multi-meter

(DMM), a 10 Ω shunt resistor, and the node under measurement that performs the profiling

task. Power consumption of the node is calculated by measuring the voltage of the shunt

resistor placed between the wall power outlet and the node (see Figure 3.1). Knowing the

value of the resistor, first the current and then the power and energy consumption of the

node are calculated. Three AC-voltage samples are read per second. In the DMM, the signal

first goes through an internal analog RMS-converter, where 1000/60 DC samples are read

out and averaged for each AC sample. The power measurements are validated with another

industry-made power meter, Wattsup, and the measurement error is less than 1%. The sampling

period for power measurements in this thesis is set to 280ms.
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Figure 3.1: Power measurement diagram

3.2.2 CentOS Software Configuration

The first system software configuration in this thesis that we refer to as CentOS configuration

is as follows. The operating system is CentOS Linux, running kernel version 2.6.18 patched

with the perfctr [108] library version 2.6.42 for PMC measurement purposes. We run our

application programs on the node along with the PMC profiling code which is synchronized

with the power measurement software. The overhead of the PMC profiling code and the power

measurement software is shown to be minimal. All the PMC events used in this thesis are

normalized with their number of cycles for each measurement (i.e., events/cycle). The sampling

period for PMC measurements in this thesis is set to 280ms.

Four multi-threaded OpenMP [132] applications from the NAS parallel benchmarks [131]

suite are used in this study. Throughout this thesis, we frequently refer to the NPB applications

with their names followed by the used problem size class name. For example, BT.C denotes

BT application running with a class C problem size. These NPB-3.3-OMP applications consist

of BT.C, CG.C, LU.C, and SP.C running with eight threads. These applications are chosen from

NPB-3.3 because they run for longer than 300 seconds on the used system, and therefore

provide sufficient samples for calculating an accurate correlation between the measured signals.

The offline calculations of this study are performed in Matlab.
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There are many PMC events available for a given modern processor, however, not all

of them have a significant correlation with power consumption. We have carefully selected

the events that exhibit at least a small statistical relevance to power consumption. In fact, we

select the events that have an absolute correlation coefficient of higher than 0.1 with power

consumption. Following this method, for the AMD Opteron processor [2] used in this study, 86

events are selected from more than 160 available events that are presented in Table 3.1 and

Table 3.2. The rest of this thesis studies these 86 PMC events.

3.3 Mathematical Review

We review projection of a vector on a line in this part. Let L be a line that is the span of a

non-zero vector v ∈ Rn. Any vector x ∈ Rn can be decomposed as a parallel component to the

line L, x‖L, and an orthogonal component to the line L, x⊥L = x − x‖L. The parallel component,

x‖L, is equivalent to the projection of vector x on line L and it is shown as ProjLx = 〈x,v〉
〈v,v〉v. The

inner product of vectors x and v is denoted as 〈x,v〉.

3.4 Measurement Variability

In a real system, there is always a variability between multiple executions of a given application.

This variability can be seen in different PMC metric measurements [39], as well as power

consumption. Measurement variability can happen for many reasons, such as time variability,

operating system interrupts, processor temperature change, etc. For example, variations in

a processor temperature can change its leakage power and therefore change its power curve.

Measurement variability has been studied before in other fields, such as phase detection [69].

In this section, we study the variability in measuring power-PMC and PMC-PMC correlations. To

ensure model accuracy, it is critical that variability of the measured correlations over repeated

tests is not significantly large. Evaluation of correlation variance becomes more important for

models that do not use an adaptive approach. One of the noticeable variations in our repeated

tests is variation in execution time of applications (sample length).

We have studied the power-PMC and PMC-PMC correlations of three PMC events for

BT.C, CG.C, LU.C, and SP.C applications. These are the PMCs that individually have the highest
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Table 3.1: List of selected PMC events for AMD Opteron processors (part I)
Event Code PMC Event

1 0x0000000433F00 Dispatched FPU Operations
2 0x0000000C30001 Cycles with at least one FPU operation in the FPU
3 0x0000000433F03 Retired SSE Operations
4 0x0000000430F04 Retired Move Ops
5 0x0000000437F20 Segment Register Loads
6 0x0000000430022 Pipeline Restart Due to Probe Hit
7 0x0000000430023 LS Buffer 2 Full
8 0x0000000430124 Locked Operations (instructions executed)
9 0x0000000430E24 Locked Operations (cycles spent)
10 0x000000043072A Cancelled Store to Load Forward Operations
11 0x0000000430040 Data Cache Accesses
12 0x0000000430041 Data Cache Misses
13 0x0000000431E42 Data Cache Refills from L2
14 0x0000000431F43 Data Cache Refills from the Northbridge
15 0x0000000430644 Data Cache Lines Evicted
16 0x0000000430345 L1 DTLB Miss and L2 DTLB Hit
17 0x0000000430346 L1 DTLB and L2 DTLB Miss
18 0x0000000430047 Misaligned Accesses
19 0x0000000430048 Micro-architectural Late Cancel of an Access
20 0x0000000430049 Micro-architectural Early Cancel of an Access
21 0x000000043074B Prefetch Instructions Dispatched
22 0x000000043024C DCACHE Misses by Locked Instructions
23 0x000000043034D L1 DTLB Hit
24 0x0000000430952 Ineffective Software Prefetchs
25 0x0000000438365 Memory Requests by Type
26 0x000000043016D Octwords Written to System
27 0x0000000430076 CPU Clocks not Halted
28 0x0000000433F7D Requests to L2 Cache
29 0x0000000430F7E L2 Cache Misses
30 0x000000043037F L2 Fill/Writeback
31 0x0000000430080 Instruction Cache Fetches
32 0x0000000430081 Instruction Cache Misses
33 0x0000000430082 Instruction Cache Refills from L2
34 0x0000000430084 L1 ITLB Miss, L2 ITLB Hit
35 0x0000000430385 L1 ITLB Miss, L2 ITLB Miss
36 0x0000000430086 Pipeline Restart Due to Instruction Stream Probe
37 0x0000000430087 Instruction Fetch Stall
38 0x0000000430088 Return Stack Hits
39 0x0000000430089 Return Stack Overflows
40 0x000000043008B Instruction Cache Victims
41 0x00000004300C0 Retired Instructions
42 0x00000004300C1 Retired uops
43 0x00000004300C2 Retired Branch Instructions
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Table 3.2: List of selected PMC events for AMD Opteron processors (part II)
Event Code PMC Event

44 0x00000004300C3 Retired Mispredicted Branch Instructions
45 0x00000004300C4 Retired Taken Branch Instructions
46 0x00000004300C5 Retired Taken Branch Instructions Mispredicted
47 0x00000004300C6 Retired Far Control Transfers
48 0x00000004300C7 Retired Branch Resyncs
49 0x00000004300C8 Retired Near Returns
50 0x00000004300C9 Retired Near Returns Mispredicted
51 0x00000004307CB Retired MMX/FP Instructions
52 0x00000004300CD Interrupts-Masked Cycles
53 0x00000004300D0 Decoder Empty
54 0x00000004300D1 Dispatch Stalls
55 0x00000004300D2 Dispatch Stall for Branch Abort to Retire
56 0x00000004300D3 Dispatch Stall for Serialization
57 0x00000004300D4 Dispatch Stall for Segment Load
58 0x00000004300D5 Dispatch Stall for Reorder Buffer Full
59 0x00000004300D6 Dispatch Stall for Reservation Station Full
60 0x00000004300D7 Dispatch Stall for FPU Full
61 0x00000004300D8 Dispatch Stall for LS Full
62 0x00000004300D9 Dispatch Stall Waiting for All Quiet
63 0x00000004300DA Dispatch Stall for Far Transfer or Resync to Retire
64 0x00100004307C0 Retired x87 Floating Point Operations
65 0x00100004300D3 LFENCE Instructions Retired
66 0x00100004300D4 SFENCE Instructions Retired
67 0x00100004300D5 MFENCE Instructions Retired
68 0x0000000433FE0 DRAM Accesses (hit, miss, conflict)
69 0x00000004303E2 Memory Controller DRAM Command Slots Missed
70 0x0000000433FE3 Memory Controller Turnarounds
71 0x0000000430FE4 Memory Controller Bypass Counter Saturation
72 0x000000043B8E9 Local CPU requests to both local and remote nodes
73 0x000000043F4E9 Any CPU requests to any IO
74 0x0000000433DEA Cache Block Commands
75 0x0000000430FEC Probe Responses
76 0x000000043F0EC Upstream Requests
77 0x01100004303F0 Memory Controller Requests
78 0x021000043FFE0 CPU to DRAM Requests to Target Node
79 0x031000043FFE1 IO to DRAM Requests to Target Node
80 0x04000004307F6 Hyper-Transport Link 0 Transmit Bandwidth
81 0x05000004307F7 Hyper-Transport Link 1 Transmit Bandwidth
82 0x06000004307F8 Hyper-Transport Link 2 Transmit Bandwidth
83 0x074000043F7E0 Read Request to L3 Cache
84 0x084000043F7E1 L3 Cache Misses
85 0x094000043FFE2 L3 Fills caused by L2 Evictions
86 0x1040000430FE3 L3 Evictions
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Table 3.3: Mean and standard deviation of power-PMC and PMC-PMC correlation coefficients
(102 measurements)

BT.C CG.C
Correlation Mean S.D. Mean S.D.
(Power, E1) 0.490 0.016 0.974 0.013
(Power, E2) 0.454 0.018 -0.967 0.014
(Power, E3) 0.410 0.017 0.953 0.019
(E1, E2) 0.757 0.004 -0.995 0.002
(E1, E3) 0.778 0.003 0.956 0.003
(E2, E3) 0.992 0.000 -0.944 0.010

LU.C SP.C
Correlation Mean S.D. Mean S.D.
(Power, E1) 0.618 0.037 0.485 0.040
(Power, E2) 0.560 0.044 -0.470 0.024
(Power, E3) 0.520 0.024 -0.365 0.055
(E1, E2) 0.759 0.006 -0.764 0.007
(E1, E3) 0.797 0.004 -0.370 0.007
(E2, E3) 0.580 0.010 0.169 0.020

correlation with power consumption for each application. We have measured the variance of

correlation calculations over 102 (an arbitrary large number) runs for each application. The

average and standard deviation of their correlation coefficients are shown in Table 3.3. The

selected three PMCs for each application are L2 Fill/Writeback, Retired SSE Operations, and

Retired Instructions for BT.C, CPU Clocks not Halted, Memory Requests by Type, and L1 DTLB and

L2 DTLB Miss for CG.C, Data Cache Lines Evicted, L2 Fill/Writeback, and Retired Move Ops for

LU.C, and Data Cache Misses, Memory Controller Bypass Counter Saturation, and Decoder Empty

for SP.C. In fact, these are the top three PMC events that show a strong correlation with power

consumption for each application. Further detail about selection of these PMCs are provided

later in Section 3.5. The variability of correlation coefficients for BT.C, CG.C, LU.C, and SP.C are

shown in Figure 3.2, Figure 3.3, Figure 3.4, and Figure 3.5, respectively.

Assuming measurements of correlation between our metrics are normally distributed,

we can calculate the confidence interval for the mean of these measurements. The correlation

coefficients measured between power consumption and the top three single PMCs for BT.C,

CG.C, LU.C, and SP.C applications have a 95% confidence interval that spreads around their

measured mean value up to 0.8%, 0.3%, 1.5%, and 1.6%, respectively. The 95% confidence interval
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Figure 3.2: Correlation measurement variability for BT.C
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Figure 3.3: Correlation measurement variability for CG.C
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Figure 3.4: Correlation measurement variability for LU.C
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Figure 3.5: Correlation measurement variability for SP.C
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for the correlation coefficients between the top three PMC metrics in each application spreads

around their measured mean value up to 0.1%, 0.1%, 0.3%, and 2.3% for BT.C, CG.C, LU.C, and

SP.C, respectively.

If a given application shows significantly different statistics during each run-time, a

model cannot be based on an arbitrary execution and its statistics. Thus, it is crucial to verify

the variability of statistics used in our method, such as power-PMC and PMC-PMC correlation

coefficients. The small standard deviations of power-PMC and PMC-PMC correlation coefficient

measurements allow us to calculate correlation coefficient metrics based on measurements

of one execution, as in the rest of this chapter. An interesting observation in Table 3.3 is the

presence of a significant covariance between the PMC events. For example, the three presented

PMC events for BT.C, CG.C, LU.C, and SP.C, show an absolute correlation coefficient of 0.76–0.99,

0.94–0.99, 0.58–0.80, and 0.16–0.76, with each other, respectively. In order to maximize the

amount of information gathered through the PMC events, given such high covariances among

them, an efficient method for selection of more than one PMC for power-PMC modeling is

required. This is studied in details later in Section 3.6.

3.5 Single PMC Selection

In this section, we compare different PMC events with respect to their correlation with power

consumption for a given application. We provide the list of highest correlated PMCs for each

application. However, the top correlated PMC events for each application are different from

other applications. Therefore, in order to compare the overall correlation coefficient of different

PMC events among our applications, we use a rank median approach: we rank the PMC events

based on their correlation with power for each application and the overall rank of each PMC

event is considered as the median of its ranks for different applications. Then, we provide

a unified list of PMC events, ordered based on their overall rank (lower ranks refer to higher

correlation coefficients).
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3.5.1 Correlation in Event Space

Among numerous available PMC events for a given modern processor only some of them

correlate with power consumption. We have carefully selected the events that have an absolute

correlation coefficient of higher than 0.1. These 86 events are presented in Table 3.1 and Table

3.2. Let ne be the total number of available power-relevant PMC events (ne = 86). Let nr be

the number of available PMC registers. For the AMD Opteron processors used in this work

nr = 4. Measurements of the i-th PMC event, ei, where i ∈ {1, · · · , ne}, with k samples in time

are denoted as vector Ei ∈ Rk. Their corresponding power measurements are represented by

P ∈ Rk.

In this thesis, sample correlation coefficient between measurement vectors X and Y is de-

noted as rX,Y. We find the power-PMC correlation coefficients for all the available power-relevant

PMC events, rEi,P, i ∈ {1, · · · , ne}. Having only nr PMC registers available for measurements,

this search takes ne/nr runs for each application benchmark (in this work, ne/nr = 86/4, thus

22 runs are required). This comparison does not consider PMC-PMC correlations (we investigate

this part in Section 3.6). The correlation coefficient of each event with power consumption is

measured for BT, CG, LU, and SP applications and the top correlated events for each application

are reported in Table 3.4, Table 3.5, Table 3.6, and Table 3.7, respectively.

3.5.2 Rank in Application Space

In this section, our objective is to find a set of events that each provides a good correlation

with power for most applications. We use a rank median approach to identify these PMCs for

our applications. First, each PMC event is ranked for each application based on its correlation

coefficient with power consumption. Stronger correlation coefficients are represented by smaller

ranks. The overall rank of each event is calculated as its rank median among our applications.

The overall ranks for the top 24 PMCs for our applications are provided in Table 3.8.

The best PMC for power modeling depends on the application. In this section, we

investigated the relationship of each PMC with power consumption of our applications. We

found that events such as micro-architectural early cancel of an access and data cache lines

evicted are overall among the top events for the applications used in this study, representing
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Table 3.4: BT.C - Top 25 correlated events

Event Name r
L2 Fill/Writeback 0.487
Retired SSE Operations 0.453
Retired Instructions 0.429
Retired uops 0.427
Retired Move Ops 0.427
Retired x87 Floating Point Operations 0.407
Dispatched FPU Operations 0.406
Micro-architectural Early Cancel of an Access 0.396
Canceled Store to Load Forward Operations 0.394
Retired MMX/FP Instructions 0.384
Instruction Cache Fetches 0.383
Data Cache Accesses 0.377
L1 DTLB Hit 0.371
L1 DTLB and L2 DTLB Miss -0.363
Retired Mispredicted Branch Instructions 0.340
Retired Taken Branch Instructions Mispredicted 0.334
Cycles with FPU operation ≥ 1 in FPU -0.331
Instruction Fetch Stall -0.329
Dispatch Stalls -0.326
Dispatch Stall for Reservation Station Full -0.317
Return Stack Hits 0.311
Memory Controller Bypass Counter Saturation -0.311
Data Cache Refills from L2 0.301
Retired Near Returns 0.298
Decoder Empty -0.297

a better choice than the commonly used intuition based events, such as retired uops. Many

PMCs show a significant covariance with each other. An example of this is shown in Table 3.3

where E1, E2, and E3 show an absolute correlation coefficient of 0.16-0.99 with each other. It

is essential to consider PMC covariance when selecting more than one PMC for a power-PMC

model. The focus of the next section includes multi-PMC selection and accounting for PMC

covariance.

3.6 Multiple PMC Selection

In this section, we take into account the correlation of PMCs with each other in order to

find the best set of PMCs for simultaneous measurement in system power modeling. If it
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Table 3.5: CG.C - Top 25 correlated events

Event Name r
CPU Clocks not Halted 0.975
Memory Requests by Type -0.972
L1 DTLB and L2 DTLB Miss 0.962
Retired uops 0.946
L3 Cache Misses 0.935
Read Request to L3 Cache 0.933
Dispatch Stall Waiting for All Quiet -0.932
Hyper-Transport Link 1 Transmit Bandwidth 0.932
DRAM Accesses (hit, miss, conflict) 0.932
Hyper-Transport Link 2 Transmit Bandwidth 0.931
Data Cache Refills from the Northbridge 0.931
MFENCE Instructions Retired 0.930
Data Cache Lines Evicted 0.930
Hyper-Transport Link 0 Transmit Bandwidth 0.929
Data Cache Refills from L2 0.927
Memory Controller DRAM Command Slots Missed 0.927
CPU to DRAM Requests to Target Node 0.927
L1 DTLB Miss and L2 DTLB Hit 0.927
Retired MMX/FP Instructions 0.925
Data Cache Misses 0.925
Memory Controller Turnarounds 0.921
Retired Branch Instructions 0.921
Micro-architectural Late Cancel of an Access 0.920
IO to DRAM Requests to Target Node 0.919
local CPU requests to local/remote Memory/IO 0.918

was possible to measure all the available PMC events simultaneously (e.g., 86 PMC events),

finding the best set of PMC events would have been straightforward using principal components

analysis [128]. The most important PMC events for an application would have been the PMC

events that have the largest component in the most significant eigenvector (i.e., the eigenvector

that is associated with the largest eigenvalue). However, due to the limited number of PMC

registers available on each processor core (e.g., four registers), while using a symmetric PMC

measurement method for data collection, it is not feasible to measure many PMC-power trends

simultaneously. Furthermore, variations among the collected data of repeated experiments for

a given application do not allow us to aggregate them and to use them in their time-sample

domain at the same time.
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Table 3.6: LU.C - Top 25 correlated events

Event Name r
Data Cache Lines Evicted 0.604
L2 Fill/Writeback 0.592
Retired Move Ops 0.507
Locked Operations (cycles spent) -0.468
Dispatch Stall for Serialization 0.450
Pipeline Restart Due to Instruction Stream Probe -0.444
Requests to L2 Cache 0.424
Memory Controller Bypass Counter Saturation 0.409
Canceled Store to Load Forward Operations 0.400
Data Cache Misses -0.382
Retired MMX/FP Instructions 0.380
Dispatch Stall for Reservation Station Full 0.375
Dispatched FPU Operations 0.349
LFENCE Instructions Retired 0.329
Micro-architectural Early Cancel of an Access -0.324
Data Cache Accesses 0.320
Retired SSE Operations 0.299
L2 Cache Misses 0.299
L1 DTLB Hit 0.298
Micro-architectural Late Cancel of an Access 0.297
Probe Responses 0.282
L3 Cache Misses 0.282
Hyper-Transport Link 2 Transmit Bandwidth 0.264
Octwords Written to System 0.263
Hyper-Transport Link 1 Transmit Bandwidth 0.260

Instead of using signals in time from different executions of a test, one could have

measured the cross correlation of all the possible pairs of events and power to obtain their

covariance matrix. It is possible to perform PCA calculations directly from a covariance matrix.

The challenge in this approach is the large number of cross correlation measurements to be

done. For example, in our study that uses 86 PMC events, the number of pairs of PMCs that

their covariance has to be measured is
(

86
2

)
= 3655 (not considering power measurements here).

Each execution of an application can measure 4 PMCs and therefore can capture up to
(

4
2

)
= 6

of the required 3655 pairs. The total number of executions for a given application is much

larger than 3655/6 (our estimate is between 1162 and 1247 experiments, which are the limits
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Table 3.7: SP.C - Top 25 correlated events

Event Name r
Data Cache Misses 0.508
Memory Controller Bypass Counter Saturation -0.473
Decoder Empty -0.470
Dispatch Stall for Reorder Buffer Full 0.427
Retired Taken Branch Instructions -0.405
MFENCE Instructions Retired 0.396
Memory Controller Requests -0.388
Retired Branch Instructions -0.374
L1 ITLB Miss, L2 ITLB Miss -0.343
Micro-architectural Early Cancel of an Access 0.279
CPU Clocks not Halted 0.275
Memory Requests by Type -0.274
Dispatch Stall Waiting for All Quiet -0.270
Data Cache Lines Evicted 0.257
CPU to DRAM Requests to Target Node -0.255
Dispatch Stall for FPU Full -0.253
Retired x87 Floating Point Operations 0.248
L2 Cache Misses 0.242
Ineffective Software Prefetch -0.240
Upstream Requests -0.239
Data Cache Refills from L2 0.237
DRAM Accesses (hit, miss, conflict) -0.231
L3 Cache Misses -0.219
Cache Block Commands -0.214
Requests to L2 Cache 0.212

for 85 and 88 events using a recursive function f(n) = f(n − 3) + n − 3, f(4) = 1), due to

unavoidable repeated pairs. This large number of tests discourages us in using a PCA approach.

Here, we propose using a sub-space projection method that searches for the best

combination of PMC events without using a PCA method. In a PCA method, the first eigenvector

provides the significance of contribution of all the PMC events. However, even if the order of

significance of all of PMC events were available we cannot measure more than four PMCs at a

time. We use this fact as a leverage to reduce the calculations needed to find the top four PMCs,

and therefore to reduce the number of runs that is needed for collecting the PMC traces of an

application. Our proposed sub-space projection method uses more than 6 times less number of

executions than a PCA method to find the top four PMCs (176 runs for sub-space projection
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Table 3.8: Top 24 unified events (rank median)

Event Name Rank
Micro-architectural Early Cancel of an Access 12.5
Data Cache Lines Evicted 13.5
L2 Fill/Writeback 14.0
Data Cache Misses 15.0
Retired MMX/FP Instructions 15.0
Memory Controller Bypass Counter Saturation 15.0
Retired uops 20.0
Dispatched FPU Operations 21.5
Data Cache Refills from L2 22.0
L3 Cache Misses 22.5
Retired SSE Operations 23.0
Canceled Store to Load Forward Operations 24.0
Dispatch Stall for Reservation Station Full 25.0
Retired x87 Floating Point Operations 25.0
Requests to L2 Cache 26.0
Memory Requests by Type 26.5
CPU Clocks not Halted 26.5
L2 Cache Misses 26.5
Octwords Written to System 28.0
Retired Move Ops 29.0
Data Cache Accesses 30.0
Dispatch Stall Waiting for All Quiet 30.0
DRAM Accesses (hit, miss, conflict) 30.0
Cache Block Commands 30.0

method, in contrast to more than 1162 runs for PCA). In the following, we explain our proposed

method and results.

3.6.1 Sub-Space Projection Method

In this section, we are searching for the most correlated set of PMCs with power consumption,

denoted as S. Our method requires nr stages and each stage has four steps. In this section, k

represents the stage number (1 ≤ k ≤ nr ). The set of all PMC events is denoted as T , |T | = ne.

Let Sk represent the set of PMCs found at the end of stage k and Rk be the set of the remaining

PMC events for search at the end of stage k. Rk is equivalent to the set difference of T and Sk,

Rk = T\Sk. We perform the following four steps for each stage k.
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Step 1 - Simultaneous Measurement

In this step, at stage k, we measure each member of Rk−1 simultaneously with all of the

members of Sk−1. The members of Sk−1 will occupy k − 1 of the available nr PMC registers.

Therefore, nr − k + 1 registers are available for assigning to the members of Rk−1 (|Rk−1| =

ne − k+ 1). The number of times required to run each application to finish this step at stage k

is d(ne − k+ 1)/(nr − k+ 1)e. For ne = 86, nr = 4, the number of runs for stage 1 to 4 is 22,

29, 42, and 83 (total 176 runs), respectively. For the initial stage, k = 1, the set of the selected

PMCs is empty, S0 = ∅, and the set of the remaining search pool includes all the PMCs, R0 = T .

Step 2 - Signal Decorrelation

The second step is to decorrelate the signals of all of the PMC events in our remaining search

pool (members of Rk−1) and their corresponding power measurements against the signals of

the previously selected PMC events that are simultaneously measured with them (all members

of Sk−1). The results of this step are residual PMC and power signals. This step is skipped

during the first stage.

For example, at stage k = 4, any of the remaining PMC events in the search pool, such

as x ∈ R3, will have a PMC measurement signal of X and a power measurement of P. Let

S3 = {a,b, c}. The PMC signals of a, b, and c events that are simultaneously measured with

event x are shown as A, B, and C. The residual signal of PMC event x when decorrelated against

PMC signals of events a, b, and c, denoted as X⊥ABC, is calculated in (3.1), (3.2), and (3.3).

X⊥A = X− ProjAX (3.1)

X⊥AB = X⊥A − ProjBX⊥A (3.2)

X⊥ABC = X⊥AB − ProjCX⊥AB (3.3)

The residual signal of power measurement associated with the measurement of PMC

event x after being decorrelated against a, b, and c, denoted as P⊥ABC is calculated similarly to

X⊥ABC, shown in (3.4), (3.5), and (3.6).
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P⊥A = P− ProjAP (3.4)

P⊥AB = P⊥A − ProjBP⊥A (3.5)

P⊥ABC = P⊥AB − ProjCP⊥AB (3.6)

Step 3 - Residual Correlation

In the third step, correlation coefficients between the PMC measurement residuals and power

measurement residual for every x ∈ Rk−1 are calculated. For example, for k = 4 (similar to step

2), we calculate the correlation coefficient between X⊥ABC and P⊥ABC, denoted as rX,P, for every

x ∈ R3.

Step 4 - PMC Event Selection

The fourth step is to find the PMC event that has the largest absolute residual correlation

coefficient with power. For example, at stage k, we are looking for event y ∈ Rk−1 with

decorrelated PMC and power measurements of Y and Py such that for every other event

x ∈ Rk−1 with decorrelated PMC and power measurements of X and Px: |rY,Py| ≥ |rX,Px|.

After finding the PMC event y with the strongest correlation coefficient with power it

is moved from the search pool Rk−1 to the pool of selected PMCs and we go to the next stage

using (3.7), (3.8), and (3.9).

Sk = Sk−1 ∪ {y} (3.7)

Rk = Rk−1\{y} (3.8)

k = k+ 1 (3.9)

3.6.2 Results

We apply the sub-space projection method to our applications and we find the most significant

set of PMC events related to power consumption. These events for BT.C (in order of significance

and the most significant event first) are L2 fill/writeback, dispatch stall for FPU full, retired move
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ops, and MFENCE instructions retired. For CG.C these are CPU clocks not halted, LS buffer 2 full,

L1 ITLB miss, L2 ITLB hit, and LFENCE instructions retired. Similarly for LU.C the events are data

cache lines evicted, dispatch stall for reorder buffer full memory controller DRAM command

slots missed, and instruction cache fetches. For SP.C the events are data cache misses, micro-

architectural early cancel of an access, L3 fills caused by L2 evictions, and memory controller

bypass counter saturation.

After finding the set of four PMCs for each application, denoted as {a,b, c, d}, we

have presented the projection of power consumption on these PMC events, P‖ABCD = P −

P⊥ABCD, in Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9, respectively for BT, CG, LU, and SP

applications. In these figures, the first, middle, and last 50 samples of the execution time and

their estimated value (both normalized) only based on projection on PMC signals are provided

for each application. The y-axis is power consumption normalized to absolute value of 1 and

mean of zero. The goodness of fit, R2, for each of the projected signals is given on top of each

figure. The R2 is presented after adding projection on each significant PMC (in significance

order). From left to right the presented R2 value is associated with P‖A, P‖AB, P‖ABC, and P‖ABCD,

respectively. The power projection on all PMC events, P‖ABCD, can be calculated as in (3.10).

P‖ABCD = ProjAP+ ProjBP⊥A + ProjCP⊥AB + ProjDP⊥ABC (3.10)

The best R2 achieved for BT, CG, LU, and SP applications with their most significant PMC sets

are 0.58, 0.98, 0.80, and 0.45, respectively. Using only the most significant PMC for power

projection (i.e., P‖A) achieves R2 of 0.31, 0.94, 0.46, and 0.21, similarly.

We extend our investigation to temporal analysis of R2 in our applications. We present

the R2 of P‖ABCD for each 64-sample segment of the execution of our applications in Figure

3.10. One can notice a significant difference in goodness of fit in the first segment of execution

time (warm-up phase). Except for LU, other applications show a much better R2 in their first

execution segment. It should be noted that our applications are launched on an idle system and

range of change in power consumption from idle to busy is much larger than between other

phases of an application, thus gaining a better R2. We believe that minimal range of change for

CG power consumption (≈ 4% variation, see Figure 3.7) is the reason exhibiting a negative R2
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Figure 3.6: Zero-mean normalized power variations captured by PMCs (BT.C)

(except for the first segment). A negative R2 that shows the mean of the signal as an estimator

performs better than the method used here.

3.7 Discussion

Achieving efficiency in resource management requires reliable metrics and models. The demand

for a lower power and a higher performance is driving the computing industry towards including

a larger number of components with more complexity. Managing resources of such systems

requires reliable and in-depth information about the system. However, complexity of such

systems has transformed some of the classic metrics into unreliable system state predictors,

such as the CPU utilization. In a non-classic approach, modern processors can provide a vast

amount of detailed information through performance monitoring counters. The selection of

an optimal event among the many available events may significantly improve the accuracy of

a model. PMC events commonly have been selected based on architectural intuitions. This
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Figure 3.7: Zero-mean normalized power variations captured by PMCs (CG.C)

chapter proposes a systematic statistical method that efficiently finds the optimal PMC events

for a model.

In particular, this chapter studies single and multi-PMC selection methods for power-PMC

modeling purposes. We have provided application specific single-PMCs that are most correlated

with power for BT.C, CG.C, LU.C, and SP.C applications, as well as a unified group of PMCs for

all of our applications. Our proposed multi-PMC selection method provides the least redundant

PMC selection without facing obstacles faced by PCA-based methods, or their shortcoming in

accuracy. The best combination PMCs obtained through this method can produce estimates of

power with an R2 of 0.45-0.98 for our applications. In Chapter 4, we show that the time-domain

dependence of data in power-PMC trends can be used to build a more accurate model under

a fixed processor frequency. In Chapter 5, this model is extended to a variable frequency

environment.
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Figure 3.8: Zero-mean normalized power variations captured by PMCs (LU.C)
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Figure 3.9: Zero-mean normalized power variations captured by PMCs (SP.C)
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Figure 3.10: R2 for 64-sample segments
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Chapter 4

Fixed Frequency Power Estimation

Power consumption and cooling issues are among the important design constraints of current

high-performance computing systems. Run-time power savings are mostly achieved by a power

management (PM) module, which dynamically optimizes the parameters of the system (e.g.,

processor voltage/frequency) to meet its performance and power requirements. Having access

to a real-time power measurement for an adaptive PM module is invaluable. Some of the recent

high-end servers provide embedded power and thermal measurements, such as HP[56] and IBM

PowerExecutive[64]. In most applications, variations in power consumption happen so quickly

that an external power measurement reading cannot provide an in time measurement for the

PM module. Applications suffering from power measurement delays, as well as systems without

an embedded measurement system, can significantly enjoy an accurate power estimation model.

An accurate power estimation model can perform as a control feedback loop for enhancing

decision making of the PM module. A delayed real power measurement (e.g., external) can be

used to update power estimation model in each step.

In Chapter 3, we have discussed an efficient method to choose appropriate PMCs for

power models and have provided the results for some of the NPB applications. This chapter

provides a model for estimating power consumption of a computing system using the current

and the past PMCs, as well as the past (non-intrusive) power measurements, under a fixed

processor frequency. The emergence of the computers have been revolutionary because of

their accurate operation in repetitive tasks, among other reasons and compared to a human

being’s abilities. This repetitive nature is seen in both hardware and software aspects of the

computing devices. In this chapter, we exploit this repetitiveness through the time dependence

between the measured metrics of a system to develop a power model. A linear model between
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activity of the system (or its equivalent metrics, such as PMCs) and power consumption has

been considered by many previous work [15, 24, 25, 70, 88, 111]. In order to model the power

consumption of a system, we combine the time dependence of data within each metric signal

(i.e., power or PMC), in addition to the time dependence of data between the signals, with the

linear relationship between power consumption and PMCs. In particular, we use a multivariate

time-series approach to estimate the power consumption of the system. In order to obtain

an adaptive model that can adjust to the changes in a system, we combine the multivariate

time-series with a coefficient update algorithm. The proposed model is an autoregressive

moving average with exogenous inputs jointly used with a coefficient update algorithm [151]. A

change in frequency significantly affects the trends of power and PMC measurements. Therefore,

the discussion for variable frequency models is postponed to Chapter 5. This chapter studies

the efficiency of different update algorithms, such as recursive least squares, Kalman filter,

multivariate normal regression, and block multivariate normal regression. In addition, we study

the efficiency of simpler models (e.g., moving average) proposed by others [15, 53] for the

purpose of comparison with this work. The proposed method is both platform-independent

and application-independent, and does not require tapping into the system’s internal power

supply lines. This chapter studies the efficiency of power models from different aspects, such

as update algorithms, measurement delay, PMC selection, model parameters, and adaptation to

significant changes in the behavior of applications.

4.1 Related Work

Modeling the relationships of PMCs, workload, and power consumption of a system have

been approached from the architectural point of view previously [15, 24, 25, 70, 88, 111]. In

an orthogonal approach, we examine such relationships from a stochastic aspect. Although

similar time-series approaches have been used by researchers in other fields and applications

[27–29, 138, 147, 156], we propose using the ARMAX model [54] (described later in Section

4.2.1), as a promising candidate, for relating the power and performance metrics to each other.

The ARMAX model is capable of capturing the time dependence of the signals and the linear

relationship of power and PMC signals.

46



Many researchers have used PMCs or a sort of access rate metric in various energy

models of computer systems or some of its components [15, 25, 76, 111]. Contreras et al. [25]

estimate the power consumption of CPU and memory using a first-order linear sum of PMCs.

Joseph et al. [76] estimate the run-time power dissipation of different units of a Pentium Pro

processor using PMCs combined with architectural information provided by an architectural

processor power simulator. Rajamani et al. [111] have used PMCs to model instantaneous

performance and power of an Intel Pentium-M processor. Their approach is platform-specific

and needs training data set through micro-benchmarking. Some researchers [15] have found IPC

metrics useful in power estimation techniques. Bircher et al. [15] have used linear regression

models to estimate the power consumption of a single-core processor (Pentium 4). They report

that IPC related metrics show a strong correlation with CPU power, in particular the uops fetched

per cycle metric. A downside of many previous work is the necessity to tap the supply points

that power the processor to measure its power consumption.

Kalman filter [4] has been used in different ways to improve power or energy efficiency:

as a workload estimator [9], as well as a resource management tool [73]. Jain et al. [73] have

looked at stream resource management from a filtering point of view and have exploited KF

in their solution. Bang et al. [9] have proposed a KF-based workload estimation method for

dynamic voltage scaling, where they estimate the processing time of real-time multimedia

workloads. The way we use KF in this study is different from [9, 73] as we are not estimating

a workload or an unknown value. We use KF as a coefficient update algorithm for an ARMAX

model.

Time series prediction methods are well known and widely used in financial and indus-

trial problems, where ARMAX and autoregressive (AR) models are commonly utilized along with

system identification techniques. Some researchers have applied them to computing systems

[138, 147, 156]. Xu et al. [147] have studied predictive closed-loop control techniques for

systems management by comparing algorithms based on AR models, combined analysis of

variance (ANOVA) and AR models, and a multi-pulse model. Zhu et al. [156] as well as Wang et

al. [138] have discussed the strength of control theory approaches in computing systems, where

they use an ARMAX model along with system identification experiments to capture the dynamic

relationship between the CPU allocation to a web server and its measured mean response time.
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To the best of our knowledge, an ARMAX model has not been used by others in modeling power

and performance relationships in computing systems.

Gurun et al. [53] have proposed a run-time feedback-based full system energy estimation

model for embedded devices, where a moving average of order zero (i.e., MA(0) model) of two

or three hardware and software performance counters is used to model communication or

computation energy consumption. The advantage of their approach is in using recursive least

squares linear regression with exponential decay for finding and updating the model parameters

on-the-fly. This work is substantially different than [53] as we are using an ARMAX model that

is non-zero order for both the AR part and the exogenous terms. The exogenous terms of our

model incorporates the past PMC values, while the autoregressive part of our model utilizes

feedback power measurement.

4.2 Models and Algorithms

In this section, we provide the mathematical background for the models and algorithms that

are used in this chapter.

4.2.1 ARMAX

Our estimation and prediction methodology in this thesis is based on autoregressive moving

average with exogenous inputs model [54]. ARMAX models are widely used in different fields,

such as in economic time-series prediction, hydrology, dendrochronology, etc. A general form

of ARMAX(p,q,b) represents a model with p autoregressive terms (i.e., AR(p)), q moving average

terms (i.e., MA(q)), and b exogenous inputs terms and is shown in (4.1). The Xi, c, εi, ψi, θi, ηi,

and di are scalar variables.

Xt = c + εt +
p∑
i=1

ψiXt−i +
q∑
i=1

θiεt−i +
b∑
i=1

ηidt−i (4.1)

where ψ1, · · · ,ψp and θ1, · · · ,θq are the parameters of the model, and η1, · · · ,ηb are the

parameters of the exogenous input.
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We choose q = 0 in our ARMAX models and focus on p autoregressive terms and b

exogenous input terms. Therefore, our ARMAX(p, 0, b) model looks similar to an autoregressive

moving average model, ARMA(p,b). However, by definition, the exogenous input terms are not

related to the errors of previous modeling time steps. Thus, we do not use the term ARMA for

it. In order to estimate the parameters of our ARMAX models in this thesis we use different

algorithms, such as recursive least-squares filters and Kalman filters, in addition to standard

multivariate normal regressions.

4.2.2 Discrete-Time Kalman Filter

Kalman filter is a recursive filtering algorithm that enables us to estimate the state of a process

[4, 140]. It has been extensively studied and used in different fields of science and engineering.

The Kalman filter estimation is done in a way that the mean of the squared error is minimized.

The KF algorithm consists of a cycle of prediction and correction. In the prediction phase, the

process state in the upcoming time step is estimated. In the correction phase, based on the

observed measurement the algorithm is adjusted for a better prediction. The signal model

consists of a process equation shown in (4.2) and a measurement equation shown in (4.3).

xk+1 = Fkxk +wk (4.2)

zk = H′kxk + vk (4.3)

The state of process is shown by x ∈ Rn. The measurement of process is shown by

z ∈ Rm. The process noise is shown by the random variable wk with normal distribution N(0,Q).

The measurement noise is represented by the random variable vk with normal distribution

N(0,R). The initial process state x0 is N(x̄0,P0). The process noise {wk}, measurement noise

{vk}, and the initial process state x0 are jointly Gaussian and mutually independent. The n×n

matrix Fk relates the current state xk to the next state xk+1, when there is no process noise.

The m×n matrix H′k relates the current state xk to the current measurement zk. The matrix

H′k is the transpose of matrix Hk.

Here, we denote the a priori state estimate at time step k that uses all the measurements

up until time k−1 by x̂k/k−1. This quantity is defined as E{xk | z0,z1, . . . ,zk−1} for k = 1,2,3, . . . .
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The set of measurements up to time k− 1, which can be shown as {z0,z1, . . . ,zk−1}, is denoted

by Zk−1. We denote the a posteriori state estimate at time step k that uses the measurement zk

in addition to all the measurements up to time k− 1 as x̂k/k. In other words, x̂k/k is E{xk | Zk}.

The a priori and a posteriori estimate errors are defined as in (4.4) and (4.5).

ek/k−1 = xk − x̂k/k−1 (4.4)

ek/k = xk − x̂k/k (4.5)

The a priori and a posteriori error covariance matrices, Σk/k−1 and Σk/k, are calculated

using (4.6) and (4.7).

Σk/k−1 = E{[xk − x̂k/k−1][xk − x̂k/k−1]′ | Zk−1} (4.6)

= E{ek/k−1e′k/k−1}

Σk/k = E{[xk − x̂k/k][xk − x̂k/k]′ | Zk−1} (4.7)

= E{ek/ke′k/k}

In the Kalman filter equations the a posteriori state estimate x̂k/k is formulated as a

linear combination of an a priori estimate x̂k/k−1 and a weighted difference between an actual

measurement zk and a measurement prediction ẑk/k−1 as described in (4.8) and (4.9).

ẑk/k−1 = H′x̂k/k−1 (4.8)

x̂k/k = x̂k/k−1 +Kk(zk − ẑk/k−1) (4.9)

= x̂k/k−1 +Kk(zk −H′x̂k/k−1)

The zk − ẑk/k−1 part in (4.9) is called measurement innovation. The n ×m matrix Kk

in (4.9) is chosen to be the gain that minimizes the a posteriori error covariance Σk/k. For

conciseness, we skip the steps to derive a Kk (available in [140] and [4]). One form of Kk that

satisfies the aforementioned condition is shown in (4.12). The smaller Rk gets, the larger Kk

becomes. Therefore, the actual measurement zk is trusted more and its estimate ẑk/k−1 is

trusted less as the innovation factor – their difference (zk − ẑk/k−1) – will be compensated more
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via a larger gain Kk. The smaller Σk/k−1 gets (as a result of a good estimation of x), the smaller

Kk becomes. Thus, the innovation factor will adjust the x̂k/k less away from the x̂k/k−1. The

prediction phase and correction phases of the Kalman filter can be summarized as below.

Prediction (Time Update)

In this phase of the Kalman filter, based on the information at time k, the process is projected

in time and x̂k+1/k and Σk+1/k at times k + 1 are estimated. The equations for updating the

Kalman filter in time are shown in (4.10) and (4.11).

x̂k+1/k = Fkx̂k/k (4.10)

Σk+1/k = FkΣk/kF′k +Qk (4.11)

Correction (Measurement Update)

Three major steps are done in measurement update phase. First, the Kalman gain Kk is updated

as in (4.12). Then based on the latest measurement zk an a posteriori state estimate x̂k/k is

generated using the equation (4.13). At last, an a posteriori error covariance estimate Σk/k is

calculated using (4.14).

Kk = Σk/k−1Hk(H′kΣk/k−1Hk + Rk)−1 (4.12)

x̂k/k = x̂k/k−1 +Kk(zk −H′x̂k/k−1) (4.13)

Σk/k = (I−KkH
′
k)Σk/k−1 (4.14)

After a time update and a measurement update step, these two phases are repeated and

at each cycle the current a posteriori variables will be the a priori variables in the next time

step.

4.2.3 Recursive Least-Squares Filter

The RLS algorithm is used for finding the coefficients of adaptive filters, and it recursively

produces the least squares of the error signal. Unlike many other adaptive filtering methods
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that try to reduce the mean square error and require statistical information about the input

or the desired output signals, the RLS calculates a least squares error directly from the input

and the desired output. This makes the RLS filters a signal-dependent algorithm. The RLS filter

is computationally less intensive than the KF as it does not require any matrix inversion. It

is noteworthy to mention that a RLS filter can be reformulated as a KF as in (4.15) and (4.16).

Details can be found in [54].

xk+1 = λ−1/2xk (4.15)

zk = H′kxk + vk (4.16)

A summary of RLS algorithm [55] is presented in (4.17) to (4.22), where w(n) is the

tap-weight vector at time n, I is the identity matrix, λ is a small positive constant for high

signal-to-noise ratio (SNR), and is a large positive constant for low SNR. u(n) is the tap-input

vector at time n, λ−1 represents the exponential forgetting factor. P(n) is referred to as the

inverse correlation matrix and k(n) is referred to as the gain vector. The RLS algorithm in this

thesis uses λ = 0.9867.

ŵ(0) = 0,P(0) = δ−1I (4.17)

π(n) = P(n− 1)u(n) (4.18)

k(n) = π(n)(λ+ u′(n)π(n))−1 (4.19)

ξ(n) = d(n)− ŵ′(n− 1)u(n) (4.20)

ŵ(n) = ŵ(n− 1)+ k(n)ξ∗(n) (4.21)

P(n) = λ−1P(n− 1)− λ−1k(n)u′(n)P(n− 1) (4.22)

4.2.4 System Identification using KF

In this section, we explain how KF can be used for finding the coefficients of a scalar ARMA

equation. For the scalar ARMA equation presented in (4.23), the coefficients that we are

interested to find are a(1) , · · · , a(n+m). The system input measurements are represented by

52



{uk} and the system output measurements are denoted by {yk}, with a time subscript of k. In

a run-time model, the input and output values become available over time.

yk +
n∑
j=1

a(j)yk−j =
m∑
j=1

a(n+j)uk−j (4.23)

Let equation (4.23) describe the behavior of a system with constant coefficients a(i),

then with enough number of measurements and solving a set of linear equations one can

find those coefficients. However, if the coefficients are varying or the equation is not fully

modeling the system, in order to enable the model to follow the changes, the coefficients of the

ARMA equation should be adaptively updated as the new measurements become available. By

assuming that the coefficients in (4.23) are changing over time, we can rewrite the equation as

(4.24), where {vk} is a zero mean, white, Gaussian random process.

yk +
n∑
j=1

a(j)k yk−j =
m∑
j=1

a(n+j)k uk−j + vk (4.24)

We model the change of coefficients in (4.23) as if they are perturbed randomly over

time with an added noise. This change in coefficients can be written as in (4.25), where {w(i)
k }

is a zero mean, white, Gaussian random process. The random processes {w(i)
k } and {w(j)

k }

are independent for i ≠ j, also independent from {vk} in (4.24). For initialization purpose,

we assume each a(i)0 is a Gaussian random variable with an a priori mean and variance. The

variances of w(i)
k and vk are also assigned according to the measurement values and the way

the a(i)k are varying.

a(i)k+1 = a
(i)
k +w

(i)
k (4.25)

A Kalman filter approach, among others, can be used for finding and updating the

coefficients. For applying the Kalman filter on this identification problem, we define an (n+m)-

dimensional state vector xk as in (4.26). In addition, we use the {w(j)
k } processes to define a

(n +m)-dimensional, white, zero mean, Gaussian vector process {wk}. Therefore, the state
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equation can be written in a vector form as in (4.27) by using (4.25) and (4.26).

x(1)k = a(1)k , x(2)k = a(2)k , · · · , x(n+m)k = a(n+m)k (4.26)

xk+1 = xk +wk (4.27)

The Fk of the KF as defined in (4.2) is set as the identity matrix. The H′ matrix is defined

as a row vector in (4.28). The process {zk} is defined by zk = yk and using (4.24), (4.26), and

(4.28) we can formulate zk as in (4.29).

H′k = [−yk−1 · · · −yk−n uk−1 · · · uk−m] (4.28)

zk = H′kxk + vk (4.29)

One can notice the similarity of equations (4.27) and (4.29) with (4.2) and (4.3). At this

point, we have formulated the identification problem as a Kalman filter problem that we already

discussed its solution in section 4.2.2. The Kalman filter for this is shown in equations (4.30),

(4.31), and (4.32).

x̂k+1/k = [I−KkH
′
k]x̂k/k−1 +Kkzk (4.30)

Kk = Σk/k−1Hk[H′kΣk/k−1Hk + Rk]−1 (4.31)

Σk+1/k = Σk/k−1 −KkH
′
kΣk/k−1 +Qk (4.32)

In this solution, Rk = E[v2
k] and Qk = E[wkw′k]. The initialization of equation (4.30)

is done by setting x̂0/−1 equal to the vector of a priori estimates of the coefficients. Equation

(4.32) is initialized with Σ0/−1 set equal to the a priori covariance matrix of the coefficients.

4.3 Experimental Framework

All the experiments in this chapter are conducted on the Dell PowerEdge R805 SMP server

and the Keithley power measurement setup that are specified in Section 3.2.1. Due to the

requirements of the libraries, applications, and the Linux kernels that are used to perform our
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extensive tests, which this thesis includes a part of them, we have used two different software

setups. We have described the first configuration, CentOS software configuration, in Section

3.2.2. In the following, we explain the second software configuration of this work, Ubuntu

software configuration.

4.3.1 Ubuntu Software Setup

The second software configuration in this thesis, which we refer to as Ubuntu configuration, is

as follows. The operating system is Ubuntu Linux, running kernel version 2.6.28.9 patched with

the perfctr library version 2.6.39 for PMC measurement purposes. The measured PMC events

are: Dispatch stalls, memory controller page access event, retired x86 instructions, and cycles

with no FPU ops retired. These events are selected based on common architectural intuitions

for PMC-based power models. In Section 4.5.5, we also incorporate the optimal PMC selections

obtained in Chapter 3, for comparison with the above PMC events, using an ARMAX power-PMC

model.

A number of serial and OpenMP applications from the NAS parallel benchmarks [131]

suite are used in this study as benchmarks. These applications consists of NPB-3.3-SER bench-

mark suite (BT.A, BT.B, CG.B, EP.B, FT.B, LU.A, LU.B, SP.A, SP.B, UA.A, and UA.B) and NPB-3.3-OMP

(BT.C, CG.C, LU.B, SP.C, UA.B, and BT.B) running with eight threads. We have chosen those

applications in class B and C of NPB-3.3 that run for longer than 100 seconds on our system,

in order to have sufficient samples to compare the algorithms used in this study. In the serial

applications, we set the affinity of the application process to only one core.

4.4 Time-Series

In this section, we investigate the power consumption trend from a time-series perspective. In

Figure 4.1, we assess the degree of dependence in the data by showing the sample autocorre-

lation function (sample ACF) of differenced power consumption data. The horizontal lines in

this figure are the 95% confidence interval for Gaussian white noise process of length N , where

N is the sample length for each application. For a Gaussian white noise process it is expected

to have 95% of the ACF values (lags larger than zero) between the 95% bounds. We can see
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Figure 4.1: Sample autocorrelation function of the differenced power trends

that power consumption signals for the studied benchmarks have many more than 5% ACF

values outside those bounds. This shows that there is a significant relationship in time between

our data samples. This strengthens the idea of using a time-series approach that includes an

autoregressive component for power modeling.

4.4.1 Power Estimation Model

In this section, we develop our power model that uses current PMC measurements, as well as

past power and PMC measurements, to estimate the current power consumption of the system

under a fixed processor frequency. This work utilizes a model and an update algorithm, depicted

in Figure 4.2. Two different models are used in this study: an autoregressive moving average

with exogenous inputs model and a zero-order moving average model. The ARMAX model is

our proposed method and the MA model (similar to [15, 53]) is for comparison purposes. The

ARMAX and MA models relate the input and output values to each other via different coefficients.

Finding and adaptively updating these coefficients can be done by different algorithms, such as
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Figure 4.2: Block diagram of the model and coefficient update algorithm

RLS, KF, and MVNR. After each time step, the modeling error is provided to the coefficient update

algorithm and the coefficients are adjusted according to the objectives of the chosen algorithm.

For the MA model, two different update algorithms are used: recursive least squares that is

applied adaptively at each time step, as well as a multivariate normal regression that is applied

in advance to the whole trace. For the ARMAX model, four different update algorithms are used:

recursive least squares, Kalman filter, multivariate normal regression, and block multivariate

normal regression (BMVNR). The power estimations in this chapter are all performed offline in

MATLAB using collected real system measurements.

The first zero-order moving average model in this study is equipped with the RLS update

algorithm (similar to [53]), which is denoted as MA-0. The second zero-order MA model uses

a MVNR update algorithm. However, the MVNR algorithm is applied once to the entire signal

profile in advance. This is referred to as “Oracle” (similar to [15]). Oracle is a non-adaptive and

a non-causal algorithm and is merely implemented here for comparison purposes.

The MA-0 and Oracle models are defined in (4.33), where P[t] represents the power

measurement of the system at time t. There are jmax PMC events used in the model (for our

AMD Opteron jmax = 4). The jth PMC value (1 ≤ j ≤ jmax) at time t is shown as cj[t]. The

cj[t] is linearly related to the current power consumption measurement P[t] via a coefficient

αj . The values of αj are updated at each time step using a RLS algorithm for MA-0 and once

at the beginning for Oracle model using the whole trace. All the PMC measurements used in

this thesis (e.g., cj[t]) are normalized by the number of clock cycles of the sample, therefore,
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representing a PMC rate.

P[t] =
jmax∑
j=1

αjcj[t] (4.33)

The ARMAX model used in this study is an ARMAX(n, 0, m + 1), which does not

include the moving average terms for non-exogenous inputs, provided in (4.34). The jth PMC

measurement at time t − i is denoted as cj[t − i], which is linearly related to the current power

consumption measurement P[t] via a coefficient αi,j . A past power measurement at time t − i,

P[t − i], is related to the current power measurement via a coefficient βi. The time window that

(4.34) covers includes the current and the previous m PMC measurements (m + 1 terms), as

well as the past n power measurements.

P[t] =
m∑
i=0

jmax∑
j=1

αi,jcj[t − i]+
n∑
i=1

βiP[t − i] (4.34)

The values of αi,j and βi are updated at each time step using a coefficient update

algorithm (e.g., RLS, KF, MVNR, or BMVNR). The total number of these coefficients is jmax(m+

1)+n. ARMAX-RLS and ARMAX-KF models are formulated as explained in Section 4.2.4. For

ARMAX-MVNR models, the coefficients at time t = i are calculated using a multivariate normal

regression model that uses all the observed measurements from t = 0 until t = i. The ARMAX-

BMVNR model uses an algorithm similar to MVNR, however, at time t = i the coefficients are

calculated using the observations from t = i− T0 to t = i, where T0 is the length of the block.

The BMVNR algorithm has the advantage of having a fixed problem size to MVNR algorithm,

which has a growing number of calculations as time progresses.

4.5 Simulation Results of Real System Measurements

In this section, we provide different simulation results of the ARMAX model in estimating power

consumption from a real system measurement. In Section 4.5.1, we define the methodology we

use throughout this thesis for reporting modeling errors. Section 4.5.2 compares the efficiency

of different coefficient update algorithms in power estimation using an ARMAX model. Section
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4.5.3 discusses the computational overhead of different coefficient update algorithms. Section

4.5.4 studies the sensitivity of the ARMAX model to the update delay of the measurements.

In Section 4.5.5, we investigate the effect of filter size and PMC event selection in estimation

efficiency of ARMAX-RLS models. Adaptation of ARMAX-RLS model to significant changes in

workload behavior is investigated in Section 4.5.6.

4.5.1 Error Reporting

In this work, we report the efficiency of the models by using coefficient of determination, R2,

mean absolute error of total signal (MAETS), and mean absolute error of dynamic signal (MAEDS).

Let xi be an observation and x̂i its estimated value for n readings (1 ≤ i ≤ n). Let x̄ represent

the average of xi, x̄ = 1
n
∑n
i=1 xi. Let xmin and xmax be the minimum and maximum observed

values of xi. Our model efficiency metrics, R2, MAETS, and MAEDS are calculated as in (4.35),

(4.36), and (4.37), respectively.

R2 = 1−
∑n
i=1 (xi − x̂i)2∑n
i=1 (xi − x̄)2

(4.35)

MAETS = 1
n

n∑
i=1

|x̂i − xi|
|xmax|

(4.36)

MAEDS = 1
n

n∑
i=1

|x̂i − xi|
xmax − xmin

(4.37)

MAEDS uses the dynamic range of signal for calculating the error percentage, while

MAETS uses the maximum of signal. The maximum of signal, specially for power measurements,

contains a static part that never changes and may be significantly larger than the dynamic range

of the signal. Unfortunately, many related work report their error rates without removing the

static part of the estimated signals. When evaluating model errors, smaller denominator of

MAEDS in (4.37), xmax − xmin, makes it a more suitable metric than MAETS in (4.36) with a

larger denominator, |xmax|. For example, a 3% MAETS in estimation of a power consumption

signal with xmin = 280 and xmax = 310 might seem as a great result. However, it might not

seem so great when it is translated into its dynamic range as 280W of the signal never changes

and is related to idle power. For this example, the dynamic range of signal is xmax −xmin = 30

and therefore its MAEDS is 31% (10.3 times larger than its MAETS).
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Some estimation methods tend to have a “training” or “warm-up” period to become

efficient, which its length depends also on parameters of the model. In this thesis, the whole

signal profile is used for the estimation phase. However, in order to avoid unfair comparisons,

the R2, MAEDS, and MAETS metrics are calculated using the measurements and their estimates

after the first hundred samples. In this thesis, we use the term “overall average of MAEDS

(or MAETS)” that is calculated in two steps: first, calculating the MAEDS (or MAETS) of each

benchmark, then calculating the average of the MAEDS (or MAETS) among all the benchmarks.

4.5.2 Coefficient Update Algorithms

In this section, we evaluate the effectiveness of the six models introduced in Section 4.4.1 for

different NPB benchmarks. We use the Ubuntu software configuration for this section to find a

suitable update algorithm for PMC-based power modeling. The model parameters used in this

section are: m = 4, n = 4, and jmax = 4 as defined in (4.33) and (4.34). The m and n ARMAX

parameters used in this thesis are chosen by manually searching for the values that do not

provide diminishing improvements. The PMC events used in this section are: dispatch stalls,

memory controller page access event, retired x86 instructions, and cycles with no FPU ops retired.

The block size for BMVNR is set arbitrarily to 75 samples in this study, based on the execution

length of our applications.

A part of the measured run-time power and its estimate for BT.C OpenMP application

running with eight threads is shown in Figure 4.3 for all the six model configurations. The

MAEDS of BT.C.OMP.8 shown in Figure 4.3 for RLS, MVNR, BMVNR, KF, MA-0, and Oracle methods

is 4.8%, 6.1%, 5.0%, 5.0%, 12.7%, and 14.9%, respectively. For most of the application traces,

RLS is the best method in terms of estimation error. The overall average of MAEDS for all the

applications studied in this work for RLS, MVNR, BMVNR, KF, MA-0, and Oracle methods is 8.0%,

8.1%, 8.2%, 8.5%, 15.6%, and 19.5%, respectively. Similarly, the overall average of MAETS among

all the applications for RLS, MVNR, BMVNR, KF, MA-0, and Oracle models is 0.62%, 0.67%, 0.70%,

0.68%, 1.26%, and 1.46%, respectively.

The MAEDS and MAETS metrics for all the applications in Ubuntu software configuration,

as well as the overall average, are presented in Figure 4.4. The minimum and maximum error
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when using a MAEDS metric among all the applications are 3.4% and 41.5%, respectively. One can

notice the superior efficiency of ARMAX model when combined with RLS, for power estimation.

The order of the ARMAX model has an impact on the error levels and computation time. For

ARMAX models of a higher order than (4, 0, 4), given the PMC event selection used in this

section, we did not observe a significant improvement in power estimation efficiency. One can

conclude that ARMAX(4, 0, 4)-RLS is a good candidate for estimating power. Furthermore, no

lack of numerical robustness was observed from RLS algorithm in our modelings.

4.5.3 Computation-time Overhead

In order to have a real-time power estimation method integrated in a system, such as the ones

mentioned above, the estimation method requires to perform computation much faster than

the measurement sampling rate. An estimation method, such as MVNR, that uses an increasing

window size of inputs from the beginning until the estimation time, becomes slower over time,

and therefore not suitable for integration in a system. To alleviate this problem, one can use a

fixed-size block for MVNR (e.g., BMVNR) to lower the computational time of the MVNR method.

The KF method in principle should have a fixed computation size as it has only a fixed number

of matrix operations for each time step. However, depending on the parameters of the ARMAX,

the matrix inversion operations can be costly for the KF approach. In our simulation, the MVNR,

BMVNR, and KF methods ran 321, 37, and 117 times longer than the RLS method for BT.C.OMP-8

shown in Figure 4.3. The actual implementation of RLS takes approximately 710 microseconds

per sample on our experimental system.

4.5.4 Sensitivity to Measurement Update Delay

In this section, we investigate the impact of presence of a delay in receiving some of the

measurements in our ARMAX model (e.g., delay in receiving measurements from an external

digital multimeter). To include a lag time g between the current samples and the previous

samples, we rewrite the ARMAX equation of (4.34) as in (4.38), where ∆ij is defined as 1− δij ,

and δij is the Kronecker delta, which by definition its value is 1 for i = j; 0, otherwise. In other

words, ∆ij = 1 for i ≠ j; 0, otherwise.
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Figure 4.3: Comparing power estimation of BT.C running with 8 threads using RLS, MVNR,
BMVNR, KF, MA-0, and Oracle models
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Figure 4.4: MAEDS and MAETS of power estimation using different coefficient update algorithms
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Figure 4.5: The effect of delay on MAEDS using different coefficient update algorithms

P[t] =
m∑
i=0

jmax∑
j=1

αi,jcj[t − i− g∆i0]+
n∑
i=1

βiP[t − i− g] (4.38)

In Figure 4.5 we present the impact of increasing the lag time from 0 to 56 samples,

with a step size of 8 samples, on overall MAEDS percentage of our applications. The increase

in overall MAEDS is under 4% for RLS, MVNR, and KF approaches, which shows an acceptable

delay tolerance of the ARMAX model.

4.5.5 PMC Selection and Filter Size

In this section we use the ARMAX-RLS model as our base model [151] to study the impact of

PMC event selection on power estimation efficiency. Furthermore, we study extreme cases of

model parameters (m and n) and their implication on estimation results. This section uses the

CentOS software configuration (detailed in Section 3.2.2).

We use two different sets of PMC events for each application to see their differences in

estimation performance. In our first selection, we use the top four correlated single PMCs for

each application from Tables 3.4, 3.5, 3.6, and 3.7, respectively for BT, CG, LU, and SP. We refer

to this selection of PMC as “Top PMCs”. In our second selection, we use the obtained results

from our proposed sub-space projection in Section 3.6.2. We refer to this selection of PMCs as
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Table 4.1: R2, MAEDS, and MAETS of power estimation using an ARMAX with different parame-
ters (n, 0, m+ 1)

Application Top Best Top Best Top Best

ARMAX(20, 0, 21) R2 MAEDS% MAETS%
BT.C 0.88 0.87 6.0 5.9 0.4 0.5
CG.C 0.36 0.27 6.3 9.5 0.1 0.2
LU.C 0.84 0.87 5.1 4.7 0.4 0.3
SP.C 0.79 0.85 5.3 4.0 0.3 0.3

ARMAX(0, 0, 1) R2 MAEDS% MAETS%
BT.C -0.86 0.31 27.5 15.8 2.0 1.2
CG.C -1.77 -55.03 12.4 58.4 0.2 1.1
LU.C -10.33 -7.45 44.0 49.6 3.1 3.5
SP.C -15.51 0.08 54.2 11.2 3.4 0.8

ARMAX(0, 0, 21) R2 MAEDS% MAETS%
BT.C 0.88 0.87 5.9 6.0 0.4 0.5
CG.C -0.04 -1.48 8.1 18.4 0.2 0.4
LU.C 0.85 0.87 4.7 4.4 0.3 0.3
SP.C 0.70 0.77 6.2 4.9 0.4 0.3

ARMAX(20, 0, 1) R2 MAEDS% MAETS%
BT.C 0.80 0.79 7.9 7.7 0.6 0.6
CG.C 0.30 0.09 6.4 10.5 0.1 0.2
LU.C 0.81 0.87 5.6 4.6 0.4 0.3
SP.C 0.78 0.80 5.1 4.3 0.3 0.3

“Best Combination”. In the following, we explore estimation efficiency of ARMAX(n, 0, m+ 1)

model in four different configurations (i.e., m,n ∈ {0,20}). A summary of the results in this

section is provided in Table 4.1.

ARMAX(20, 0, 21)

This model uses the last 20 power and PMC readings, in addition to the current PMC reading. It

achieves an excellent result of 0.2%–0.5% estimation error (MAETS) for the best combination

selection of PMCs. Both the top PMC selection and the best combination selection perform

well and their results are close. For CG, R2 is 0.36 and 0.27 in case of top PMC and best

combination selections, respectively. For BT, LU, and SP, R2 remains between 0.79 and 0.88

for both selections. The low R2 value for CG is assumed to be due to its “flat” power curve

and meaning its average is a better estimator. The MAETS and MAEDS confirms that errors are
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Figure 4.6: Power estimation of BT.C using ARMAX(20, 0, 21)

small for CG (MAEDS of 6.3% and 9.5%, and MAETS of 0.1% and 0.2%). We present some of the

observed and estimated power consumption of BT, CG, LU, and SP applications in Figure 4.6 ,

Figure 4.7, Figure 4.8, and Figure 4.9, respectively.

ARMAX(0, 0, 1) - No time dependence

This model uses only the current sample PMC measurements (no previous power/PMC) and is

equivalent of a MA-0 model. This is an extreme case for the purpose of comparison to other

scenarios and to understand estimation efficiency without looking at the past values. Except

for BT with the best combination selection of PMCs, the other applications for either selection

of PMCs do not provide a good R2. The dynamic range errors (MAEDS) for either selections

of PMCs are between 11% and 59%. It is important to notice, as a misleading measure, that

even with such a poor estimation performance, the total signal error average (MAETS) is in the

range of 0.2%–3.4% and 0.8%–3.5% for top PMCs selection and best combination PMC selection,

respectively.
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Figure 4.7: Power estimation of CG.C using ARMAX(20, 0, 21)
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Figure 4.8: Power estimation of LU.C using ARMAX(20, 0, 21)
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Figure 4.9: Power estimation of SP.C using ARMAX(20, 0, 21)

ARMAX(0, 0, 21) - Exogenous inputs

This model uses the current and the past 20 PMC measurements and no previous power

measurement. Except for CG, the R2 measure shows a great estimation performance and its

performance is close to ARMAX(20, 0, 21) model. The dynamic range average estimation error

(MAEDS) range is 4.7%–8.1% and 4.4%–18.4% for the top PMC selection and best combination PMC

selection, respectively. The total signal average estimation error (MAETS) range is 0.2%–0.5%

overall for either PMC selections. Both MAETS and MAEDS metrics are close to the performance

metrics of ARMAX(20, 0, 21).

ARMAX(20, 0, 1) - Autoregressive model with current PMC

This model uses only the current PMC measurement and the past 20 power measurements. The

R2 metric performs very close to ARMAX(20, 0, 21) and ranges between 0.09–0.30 for CG and

0.78–0.87 for BT, CG, and LU. The difference in MAEDS metric between ARMAX(20, 0, 1) and

ARMAX(20, 0, 21) is less than 2.0% for all the applications/selections. Similarly, the difference

of MAETS metrics are less than 0.3%.
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In short, using time dependence between power and/or PMC measurements significantly

improves the estimation efficiency. Furthermore, error calculations based on total power signal

can be misleading and hide model deficiencies, therefore we suggest using metrics such as

MAEDS.

4.5.6 Adapting to Significant Application Changes

Many HPC applications comprise of control structures that make their behavior repetitive for

some periods of their execution time (e.g., loops). Such repetitive behavior of an application

makes the task of estimation or prediction easier. Therefore, it is necessary to evaluate the

efficiency of an estimation or prediction model under extreme cases. For instance, a model can

be challenged by the periods of time that the behavior of the application varies significantly or

the system is in idle periods. For this purpose, we run multiple benchmarks (FT.B, SP.B, CG.C,

and LU.B) consecutively, with a sleep period (three seconds) between every two benchmarks. A

part of the power estimation of ARMAX-RLS and its error for this test case is shown in Figure

4.10. This test uses the Ubuntu software configuration (see Section 4.3.1 for the PMC events

used). This allows us to just focus on the extreme part of the trace. One can notice that the

estimation error increases as soon as the CG.C benchmark ends. However, the model feedback

adjusts the increase in error to follow the power trend more accurately. Although during the

idle period the activity of the system is minimal and the PMCs are not changing significantly,

the power estimation follows the power measurements. When the next application starts (i.e.,

LU.B), the PMCs are suddenly changed and the estimates follow the new power trend.

The overshoot or undershoot in power estimation varies based on the “experience” of

the coefficient update algorithm through the different parts of a trace. The RLS algorithm, and

some other algorithms, are data dependent. The update algorithm changes the coefficients

significantly if a significant error is observed and each chosen set of the coefficients almost

result in a unique behavior of the estimator. The presented extreme case result in Figure 4.10 is

an example scenario, keeping in mind that other traces result in different worst case estimation

errors (larger or smaller errors).
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Figure 4.10: Run-time power estimation of multiple applications (extreme cases: idle period,
and start/end of a benchmark)

4.6 Discussion

This chapter studies efficiency of our multivariate time-series based power model from different

aspects. We have conducted our experiments on a real multi-core system, and gathered PMC

values and system power consumption measurements in real-time when running serial and

OpenMP applications from the NAS Parallel Benchmark suite. We have compared the efficiency

of different coefficient update algorithms, such as KF, RLS, MVNR, and BMVNR, in power

estimation using an ARMAX model. The overall average of MAETS among all the applications

for RLS, MVNR, BMVNR, and KF models is 0.62%, 0.67%, 0.70%, and 0.68%, respectively. The RLS

algorithm performs the best among the studied algorithm and has one of the least computational

overheads. The ARMAX model combined with RLS, MVNR, and KF algorithms perform with a
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small sensitivity to measurement update delay (less than 4% increase in MAEDS for up to 56

time sample delays). This is desirable in systems with a long delay between external system

measurements and model update. We have found that larger filter sizes can improve the

estimation efficiency. In fact, as long as the time dependence of the inputs or outputs of the

system is captured in the ARMAX model (i.e., m > 1 or n > 1 in an ARMAX(n, 0, m+ 1) model),

a better estimation efficiency is observed. We have also shown that an optimal PMC selection for

power modeling can improve the efficiency of the estimation model. However, the improvement

gained through the time dependence aspect is more significant than the PMC selection. We have

presented that an adaptive multivariate time-series model such as the ARMAX-RLS can follow

the significant changes in the workload behavior.

In summary, we have shown that ARMAX-RLS is a great candidate for power modeling

using PMCs, under a fixed processor frequency. In Chapter 5, we propose a method to use

the ARMAX-RLS model for a variable frequency environment [150]. Later in Chapter 6, the

ARMAX-RLS model obtained in this chapter is used to develop a run-time power and PMC

prediction system [154].
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Chapter 5

Variable Frequency Power Estimation

In Chapter 3, we presented a methodology to efficiently choose performance monitoring

counters for modeling power consumption of a system. Chapter 4 studied application of

ARMAX models combined with coefficient update algorithms, such as RLS, for estimating

system power consumption using PMCs under a fixed processor frequency. Any change in the

operating frequency of a processor impacts its power consumption and performance monitoring

counters. In most cases, the changes of such metrics do not follow the changes of frequency

linearly. Therefore, it is not straightforward to use the changing metrics of the system in

a time-series model despite knowing the exact value of frequency. Many prior attempts by

researchers [47, 83, 123] have used a regression based approach which tries to capture the

impact of frequency scaling in system metrics by differentiating between scaling and non-scaling

metrics. These methods suffer from a limited set of PMCs that fit the theoretical model, which

mostly represents an oversimplified version of a real system or workload. This chapter provides

a novel solution to this problem.

Our approach is based on a practical Gaussian approximation [150]. Using the Gaussian

distribution properties, we use the mean and variance of the obtained signals under different

frequency settings to scale and offset them into a unified trend. We choose a unified trend with

a zero mean and unit variance. Our approach is adaptive and does not dictate the usage of any

specific PMC event.

5.1 Related Work

Zhang et al. [155] have described an on-line regression-based power estimation and model

generation framework for smart-phones. Their approach uses the built-in battery voltage
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sensors in smart-phones. In their regression model, they use the CPU utilization and the

frequency-voltage settings to capture the frequency-power relationship. Gandhi et al. [46] find

that the power-to-frequency curve for both clock throttling and DVFS can be approximated as a

linear function. They find for the combination of clock throttling and DVFS, power-to-frequency

relationship exhibits a piecewise linear characteristic. They approximate this relationship using

a cubic fit.

Rountree et al. [113, 114] have proposed using a new architectural PMC event, leading

loads, to model the relationship between CPU clock frequency, memory usage, and performance.

Through simulations, they have observed improvements in the efficiency of frequency scaling

models. Most available models divide the program execution into CPU time, which scales with

frequency scaling, and bus time, which does not scale with frequency scaling [113]. Snowdon et

al. [123] have proposed a general regression-based PMC model for the prediction of power and

energy under DVFS. Lee et al. [83] have proposed a model to predict the performance impact of

DVFS. They have used a first-order linear regression analysis to estimate performance impact

from monitored activity information such as cycles per instruction (CPI) and the number of

memory accesses. Ge et al. [47] use on-chip and off-chip time to provide a speedup model that

accounts for the degree of parallelism and the effects DVFS. Sasaki et al. [119] have used a

PMC-based regression approach to model the scaling of performance through DVFS.

Our work in this thesis is different from the aforementioned work: we provide an

adaptive solution that does not require a prior model calibration. Given the small and limited

number of available PMC registers, our approach does not dictate the type of PMC events that

should be monitored in order to be able to predict the scaling impact of DVFS. We exploit the

probability distribution properties of power and PMC signals to provide a simple and effective

solution for prediction of scaling impact of DVFS on power and PMC signals.

5.2 Effect of Variable Frequency on PMC and Power Trends

Changing frequency of a processor scales its processing speed and power consumption. How-

ever, this does not directly scale the performance, power consumption, or the operating

frequency (if exists) of other modules in the system, such as memory modules, storage devices,
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Figure 5.1: The impact of frequency changes on power consumption and PMCs of BT.C

and interconnection networks. Due to the scaled performance of processor and its scaled

number of requests for other modules, some of the other modules might experience a scaled

load. The overall performance and power consumption of an application depends on the usage

of each module. Therefore, overall performance and power consumption varies among different

applications when processor frequency is scaled.

This unknown scaling, to some extent, is also applicable to PMCs. As an example, Figure

5.1 shows the processor frequency, power consumption, and four PMC events of the system

while running BT.C application on CentOS software configuration (detailed in Section 3.2.2).

It is noticeable that the change in frequency leads to sudden changes in the signal level, its

pattern, and its statistics (e.g., mean and variance). The signal scaling varies among different

events and applications.
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In addition, different phases of an application or different applications tend to have

different activity levels for each PMC. This means that their mean and variance is varying over

time. For illustration of this effect, we have consecutively run five NPB-OMP applications. These

applications are BT.C, LU.C, SP.C, FT.C, and MG.C running with eight threads while changing

the frequency of all eight cores simultaneously according to a previously generated random

frequency pattern (duration and value). In this thesis, we choose an identical frequency for all

the cores in the system to avoid a possible load imbalance. Figure 5.2 shows the frequency,

instantaneous value of power consumption, as well as its mean and variance associated with

each frequency, calculated based on the history of the signal up to each point in time. Similarly,

Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6 show the measured PMC rates, as well as their

mean and variance up to each time sample.

It is noticeable that the mean and variance of power consumption signal over different

applications do not vary significantly compared to the PMC signals, after accumulating enough

samples. However, the range, pattern, mean, and variance of the PMC signals can vary signifi-

cantly over time for different applications and their different phases. For Micro-architectural

Early Cancel of an Access, from sample 4000 to the end of samples, there is a significant change

in the pattern of the PMC rate as the applications show different behaviors. For Data Cache

Lines Evicted, for samples 1500–4500 and 6000–7000 a significant change of pattern can be

noticed. For L2 Fill/Writeback, samples of 6000–7000 exhibit a significant different pattern to

the rest of the signal. For Retired MMX/FP Instructions, up to five distinct phases can be seen in

the signal pattern and its statistics.

The ARMAX model used in this thesis performs the best when its signals are station-

ary. Therefore, the changes of signal statistics due to variations of frequency or variations of

application behavior is not desired for an ARMAX model. The ARMAX-RLS model is contin-

uously adjusting itself to changes of application behavior. However, in a variable frequency

environment, if the signals are applied to an ARMAX as they are measured, their significant

changes that are the result of frequency difference will be continuously adjusted by changing

the obtained model (i.e., ARMAX coefficients). This can result in an unreliable modeling. The

rest of this chapter focuses on addressing this issue and providing a method to accurately use

the ARMAX-RLS methods in a variable frequency environment.
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5.3 Zero Mean Unit Variance Module

The trend of power consumption or a PMC event is not necessarily a Gaussian or stationary

time-series. The goal in this chapter is to overcome the impact of change of frequency on

time-series models. The proposed solution for this problem is based on a practical Gaussian

approximation. Assuming that the input signals are Gaussian enables us to use the Gaussian

distribution properties for simplifying our approach. In particular, the first two moments of a

Gaussian distribution (mean and variance) are sufficient to completely describe it. Therefore,

for statistical convenience, we assume that our power and PMC trends are Gaussian.

Furthermore, we assume that the input signals to the time-series are weakly stationary

for a fixed frequency setting. Under frequency scaling, we attempt to transform the measured

signal to a signal that is weakly stationary. Given the Gaussian approximation, this translates

into keeping the mean and variance of the input signals identical and consistent under different

frequency settings. For each processor frequency, mean and variance of the input signals are

different and varies over time. To obtain a weakly stationary signal for each of the input signals,

we use a zero mean and unit variance transformation. The ZMUV transformation makes sure

that the mean and variance of the different segments of the signal, which are associated with

different frequency settings, are identical.

Let S be a power or PMC signal of the system, with a total of n samples, over the

execution time of an application. Let f(t) = fi represent the frequency of the processor at

the time sample t. Assume that processor can have p different frequencies, fi ∈ {f1, · · · , fp},

ordered from the smallest frequency f1 to the largest frequency fp (p = 5 for this study). Signal

S can be split based on the frequency of each time sample into p smaller signals Sf1 , · · · ,Sfp

that each only contain the samples of time associated with one of the available frequencies. One

way of obtaining this signal is: for each frequency fi (i = 1, · · · , p), initialize u = 1 and iterate

t over time (t = 1, · · · , n), if f(t) = fi then Sfi(u) = S(t) and u = u+ 1. The total number of

measurement points does not change in this method as shown in (5.1).

|S| =
p∑
i=1

|Sfi| (5.1)

81



Model Error & 
Measurements 

Coefficients 

Model 
(ARMAX, MA, etc.) 

Coefficient Update 
(RLS, KF, MVNR, etc.) 

 Scale and 
Offset Power, PMC 

ZMUV Measured  
Signals 

Estimation or Prediction  
of ZMUV Signals 

Estimation or  
Prediction 

Inverse 
 

Inverse 
Scale and 

Offset 

Zero Mean Unit Variance 

Figure 5.7: Block diagram of model, coefficient update and scaling (zero mean unit variance)
modules

In order to be able to adjust the mean and variance of the power and PMC signals

associated with different frequencies into a unified Gaussian time-series that can be used in an

ARMAX-RLS model, we keep track of their mean, µfi , and variance, σ2
fi . Then, before the power

and PMC trends are provided to the ARMAX-RLS model, we scale and offset the trend to a zero

mean and unit variance trend for each trend associated with a frequency. This enables us to

adapt different segments of power and PMC trends that are associated with different processor

frequencies to a unified zero mean and unit variance time-series model (e.g., ARMAX-RLS). After

model calculations and estimation, the unified signal can be translated from the unified ZMUV

to a specific frequency by using the inverse scale and offset associated with the target frequency.

A block diagram of modeling module, coefficient update module, and ZMUV module is shown

in Figure 5.7.

5.3.1 Scale and Offset

Let Sfi show a measured signal associated to frequency fi. Assume Sfi has a Gaussian distri-

bution with mean µfi and variance of σ2
fi . We use the transformation in (5.2) to obtain a zero
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mean and unit variance Gaussian distribution.

ufi =
Sfi − µfi
σfi

(5.2)

The inverse of the above transformation (5.3) is used to translate ZMUV signals into

signals associated to their frequency.

Sfi = ufiσfi + µfi (5.3)

For a real-time signal such as Sfi , mean and variance values are not known a priori and

vary over time. Therefore, we define the mean and variance of these metrics as a time dependent

variable with mean µfi(t) and variance σ2
fi(t). The ZMUV module has the responsibility of

keeping track of mean µfi(t) and variance σ2
fi(t) for all the signals. As an example, the unified

ZMUV signals power consumption and one of the PMCs of FT.C, along with their mean and

variance over time, are shown in Figure 5.8, and Figure 5.9. A cumulative mean and variance

is used in this thesis, however, for applications with a significantly long execution time it is

recommended that a running mean and variance to be used. Using a running mean and variance

makes these metrics more adaptive when the number of observations are significantly large.

5.4 ZMUV Signal Estimation Results

In this section, we present the results of power estimation of a zero mean unit variance signal

obtained from scaled and offset values from different frequencies. Figure 5.10 depicts both the

ZMUV power signal and its estimate for a part of the execution of BT.C execution. Table 5.1

summarizes the R2 and MAEDS of estimation of ZMUV power signals for BT.C, LU.C, SP.C, FT.C,

and MG.C for ARMAX(4, 0, 5) and ARMAX(10, 0, 11) models. Both models perform similarly,

however, it is noticed that the model with the shorter windows, ARMAX(4, 0 , 5), slightly

performs better. As the signals in this estimation has a zero mean their MAEDS and MAETS

values are identical.
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Figure 5.8: ZMUV signal, mean, and variance of power consumption for FT.C

Table 5.1: R2 and MAEDS of variable frequency ZMUV power estimation using ARMAX(4, 0, 5)
and ARMAX(10, 0, 11)

ARMAX (4, 0, 5) (10, 0, 11) (4, 0, 5) (10, 0, 11)
Application R2 R2 MAEDS% MAEDS%

BT.C 0.83 0.82 7.31 7.74
LU.C 0.79 0.78 8.24 8.50
SP.C 0.81 0.80 7.97 8.28
FT.C 0.44 0.38 10.73 11.31
MG.C 0.45 0.37 12.02 13.57

5.5 Power Estimation Results

In this section, we provide the power estimation results for BT.C, LU.C, SP.C, FT.C, and MG.C

after inverse transformation from the ZMUV signals. The ARMAX(4, 0, 5) is chosen for these

results. In a variable frequency environment, power consumption of all applications in this

chapter are estimated with a MAEDS of less than 10%, a MAETS of less than 2.7%, and an R2 of

larger than 0.74. Table 5.2 summarizes the statistics of power estimation for this section. A
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Figure 5.9: ZMUV signal, mean, and variance of Micro-architectural Early Cancel of an Access
(rate) for FT.C

Table 5.2: R2, MAEDS, and MAETS of variable frequency power estimation using ARMAX(4, 0, 5)
Application R2 MAEDS% MAETS%

BT.C 0.94 5.32 1.60
LU.C 0.91 5.83 1.63
SP.C 0.92 5.38 1.30
FT.C 0.82 9.53 2.60
MG.C 0.75 8.05 2.05

part of the power consumption and its estimate under a random length and value of frequency

for BT.C, LU.C, SP.C, FT.C, and MG.C are shown in Figure 5.10, Figure 5.11, Figure 5.12, Figure

5.13, and Figure 5.14, respectively.
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Figure 5.10: Estimation of the ZMUV power signal and its equivalent in original frequencies for
BT.C
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Figure 5.11: Variable frequency power estimation of LU.C
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Figure 5.12: Variable frequency power estimation of SP.C
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Figure 5.13: Variable frequency power estimation of FT.C
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Figure 5.14: Variable frequency power estimation of MG.C
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5.6 Discussion

This chapter provided a solution to variable frequency power estimation using a multivariate

time-series method, such as ARMAX-RLS. The key to this solution is to scale and offset the

signals for different frequencies in a way that will maintain equal means and variances. The

zero mean unit variance module in this chapter performs this equalization of signal statistics

transparently before providing the signals to ARMAX-RLS layer. The inverse signal translation

is performed after obtaining the estimated values.

The results in this chapter show that the time dependence of signals can provide an

accurate model even when frequency of the processors are changing. In Chapter 6, we exploit

the time dependence to a larger extent and study the efficacy of prediction of power and PMC

signals using the proposed ARMAX-RLS equipped with a ZMUV module.
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Chapter 6

Power and Performance Prediction

Accurate prediction of power and performance metrics can be leveraged into valuable decision

making assets in a real system. Saving power consumption can be as easy as reducing the

processor frequency when knowing its performance is not going to be a bottleneck in the next

period of time.

In Chapter 4 and Chapter 5, we proposed and studied the estimation of power con-

sumption using previous power measurements, previous PMC measurements, and present

PMC measurements. This chapter extends the multivariate ARMAX-RLS model that was earlier

obtained for power estimation purposes, to predict the future power and PMC events. The

predictions can be made for many steps ahead of time. In Section 6.2, we describe the modified

model for prediction of any PMC event in a variable frequency environment. In Section 6.3, we

describe the model for power predictions. For predictions further than one-step ahead in future

we use both the PMC and power prediction models in parallel. Finally, in Section 6.4, we present

a real system implementation and the run-time measurements and predictions of our proposed

PMC prediction model. We show that average system PMC events predictions, as well as per

core PMC predictions, are achievable in run-time with small errors.

6.1 Related Work

Many prior research has studied the prediction of different computing system metrics [23, 33,

34, 36–39, 82, 84, 85, 92, 109, 117, 122, 141–144, 148, 149]. We divide the discussion of the

related work in this chapter to two groups, based on whether they have used a time-series

approach. The methods that do not use a time-series approach, resort to using heuristics

and table based history predictors. Duesterwald et al. [39] exploited program periodicity
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and table-based history predictors for adaptively predicting program behavior. Lee et al. [82]

proposed a statistical inference approach for micro-architectural design space exploration via

regression models. Smith [122] has proposed an instance-based learning technique to predict

job execution times, batch scheduling queue wait times, and file transfer times in a distributed

computing system. Yang et al. [148] have proposed different algorithms to predict the CPU load.

In [149] they use these methods for scheduling purposes, through predicting the CPU load,

average CPU load, and the variation of the CPU load. Dhiman et al. [33] have used Gaussian

mixture models for online power prediction in virtualized environments. They use architectural

metrics of the physical and virtual machines (VM) collected dynamically by the system to predict

both the physical machine and per VM level power consumption.

Most of the methods that have used a time-series approach, limit their focus to the

univariate time-series methods, use a fixed frequency environment, or choose a metric that,

unlike most PMC events, is not affected by DVFS. An example of such metrics are the system

load and the processor utilization. Liu et al. [92] have used univariate AR or MA models to

predict the processor or disk utilization for multimedia applications. They have used DVFS

to save energy based on their predictions. Our adaptive multivariate approach is different

from [92] as their CPU or disk utilization metrics do not scale due to DVFS. Sarikaya et al.

[117] have proposed a unified prediction method for predicting computer metrics. They have

used univariate autoregressive models for PMCs. Their experiments and model are designed

for a fixed frequency environment which does not represent a possible power saving method

through DVFS. They have shown that AR models can provide better predictors than last value

predictors. Wolski [143] has developed the Network Weather Service (NWS), which is an online

resource prediction system for grid computing. Wolski et al. [141], using NWS, predict the

TCP/IP end-to-end throughput and latency that is attainable by an application using systems

located at different sites. Wolski et al. [142] have examined the problem of predicting available

CPU performance on Unix time-shared systems for dynamic scheduling purposes.

Dinda et al. [38] evaluate linear models for predicting the host load average. They

have considered different time-series models such as, AR, MA, autoregressive moving average

(ARMA), autoregressive integrated moving average (ARIMA), and autoregressive fractionally

integrated moving average (ARFIMA) models. They have used the resource prediction system
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(RPS) toolkit for their experiments [36]. They have found that host load prediction is practical

using univariate models such as AR(16). However, coarse-grain metrics, such as the system load,

are not as helpful as some other fine-grain metrics, such as IPC, for increasing the efficiency of

the resource management of the system (e.g., power management). Furthermore, our approach

is different from them as a system load trend, unlike power and PMCs, does not scale under

DVFS. Wu et al. [144] have developed a hybrid model which integrates AR model with the

confidence interval estimate for grid computing load prediction purposes. They have tried

to improve their prediction accuracy through using a Kalman filter for minimizing the load

measurement errors, and a Savitzky-Golay filter for smoothing the history data. Dinda [37]

has utilized the approach in [38] to estimate the running time of a compute-bound task using

univariate time-series of CPU load. Qiao et al. [109] have empirically studied the predictability

of transfer time of application-level messages over an IP network using various time-series

models. Diao et al. [34] have used a KF-based fixed-lag smoothing method to predict the sleep

and active power states (ACPI C-states) of processors in a multicore system.

Some of the researchers have extended the usage of time-series models for thermal

predictions of the system. Lewis et al. [84] have developed a system-wide energy consumption

model for servers by making use of PMCs and experimental measurements. The inputs to

their linear regression model include traffic on the system bus, misses in the L2 cache, CPU

temperatures, and ambient temperatures. Lewis et al. [85] have related the processor power,

bus activity, and system ambient temperatures using a chaotic time-series regression model.

They have found better efficiency in their approach compared to other time-series based thermal

modelings such as AR and multivariate adaptive regression splines [45].

Other researchers have explored the power saving opportunities given a performance

metric prediction, such as IPC. Xin et al. [146] have studied the feasibility of DVFS energy saving

using a last-value predictor of IPC. Chheda et al. [23] have used a compiler-driven static IPC

estimation to overcome the shortcomings of the run-time last-value IPC predictors. They have

shown through simulation that fetch throttling and DVFS can benefit from such methods for

power saving.

Unlike the prior research, we provide a generic solution for prediction of PMCs and power

in a variable frequency environment through a multivariate ARMAX-RLS model. Furthermore,
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the metrics that can be used as inputs or predicted through our approach is not limited to

the group of metrics that are insensitive to DVFS. One of the applications of our proposed

method, as studied by many others, is to use the predicted metrics such as IPC for power saving

algorithms. The predicted metrics are also useful in improving dynamic scheduling algorithms

from the power or performance aspects.

6.2 Performance Prediction using ARMAX-RLS

In this section, we formulate the relationship of PMC measurements as an ARMAX(n, 0, m)

model. We choose not to include the power measurements in this model and to use only the

PMC measurements. One of the reasons for this is to eliminate any source of synchronization

problems between the externally measured power consumption and the internally measured

PMCs in a run-time PMC prediction of a real system. Furthermore, the system power consump-

tion is smoothed by the power supply unit and does not change as fast as the PMCs. In Section

6.3, we use this PMC prediction model to build a power prediction model, where previous power

measurements are also included. In Section 6.4, we present a real system implementation of

the PMC prediction model described in this section.

6.2.1 PMC Prediction Model

Let nr be the number of available PMC registers for each core. For the AMD Opteron processors

used in this thesis (detailed in Section 3.2.1) nr = 4. Let y[t] represent the PMC event rate

measurement at time t that we are interested in its future predictions. The remaining nr − 1

PMC events measured at time t, which constitute the exogenous inputs of our ARMAX model,

are shown by xj[t], j ∈ {1, · · · , nr − 1}. The previous PMC measurements y[t − i] are related

to the current PMC measurement y[t] via a coefficient βi. Similarly, the previous measurements

of the other PMC events (i.e., the exogenous inputs) xj[t − i] are related to the current PMC

measurement y[t] via a coefficient αi,j . This model is presented in (6.1), where jmax = nr − 1.

At each time step, upon the observation of all the x[t] and y[t] variables, the coefficients are

updated using the RLS algorithm.
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y[t] =
m∑
i=1

jmax∑
j=1

αi,jxj[t − i]+
n∑
i=1

βiy[t − i] (6.1)

After updating the coefficients at time t, one can use the obtained model to predict the

the value of y[t] in the upcoming time samples. We use a superscript t for the coefficients to

show the time step in which they have been updated. For example, the βi and αi,j coefficients

that are updated using the RLS algorithm after the PMC observations at time t are shown as

β(t)i and α(t)i,j , respectively. The one-step ahead prediction of y[t] can be formulated as in (6.2).

The predicted values of x and y are denoted as x̂ and ŷ , respectively. The prediction of each

of the nr PMC events is performed separately through a dedicated model. A total of nr parallel

prediction models can be used to predict all of the simultaneous nr PMC events in the next

time step.

ŷ[t + 1] =
m∑
i=1

jmax∑
j=1

α(t)i,jxj[t + 1− i]+
n∑
i=1

β(t)i y[t + 1− i] (6.2)

A k-step ahead prediction can be performed either directly by relating the current

measurements to the ones k-step ahead, or recursively by splitting a k-step ahead prediction

into k one-step ahead predictions. We perform our multi-step predictions by choosing the latter

method, as suggested by others for a better efficiency [22]. For predicting PMC values further

than one step at time t, we use the model obtained at time t and substitute the missing PMC

observations in time by their previously predicted values. The coefficients of the model are

updated only based on real observations at time t and therefore they will not be updated due

to performing a k-step ahead prediction. A k-step ahead prediction model can be formulated as

in (6.3), where k ≤m,n. This includes k− 1 previously predicted terms of x̂j and ŷ , as well as

their m− k+ 1 and n− k+ 1 latest observations of x and y , respectively.

Similar to our earlier power estimation method in Chapter 4, the model provided in

this chapter also requires the adaptation of signals that are obtained in a variable frequency

environment using the ZMUV module described in Chapter 5. All of the PMC measurements
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used in the models in this chapter, such as x or y , are obtained through a ZMUV transformation.

In order to obtain the original values of the predictions that are produced by our models in

this chapter, an inverse ZMUV transformation needs to be performed (described in Section 5.3).

The offline simulation results of this prediction model using real system measurements in a

variable frequency environment are presented in Section 6.2.2.

ŷ[t + k] =
k−1∑
i=1

jmax∑
j=1

α(t)i,j x̂j[t + k− i]+
k−1∑
i=1

β(t)i ŷ[t + k− i]+ (6.3)

m∑
i=k

jmax∑
j=1

α(t)i,jxj[t + k− i]+
n∑
i=k
β(t)i y[t + k− i]

6.2.2 PMC Prediction Results

We use the proposed model in Section 6.2.1 to evaluate its efficiency in predicting PMCs of

different NPB applications in a variable frequency environment. These applications are BT.C,

LU.C, SP.C, FT.C, and MG.C running with eight threads. The frequency of all eight cores change

simultaneously according to a previously generated random frequency pattern (duration and

value). We choose to have an identical frequency for all of the cores in the system at any time,

in order to avoid a load imbalance in the system. The PMC events that we measure and predict

in this section are IPC, Micro-architectural Early Cancel of an Access, Data Cache Lines Evicted,

and L2 Fill/Writeback. The measurements and results provided here are for the average PMC

rate among the eight cores of the system. We compare the prediction efficiency of two different

filter sizes in our models, ARMAX(4, 0, 4) and ARMAX(10, 0, 10). In most practical cases, one- or

two-step ahead predictions are sufficient for resource management purposes. The prediction

errors for further steps are expected to be larger. In this thesis, only one- and two-step ahead

predictions are reported. A summary of the efficiency of our method for one- and two-step

ahead prediction of average system IPC, Micro-architectural Early Cancel of an Access, Data

Cache Lines Evicted, and L2 Fill/Writeback are provided in Table 6.1, Table 6.2, Table 6.3, and

Table 6.4, respectively.

For our five applications, using ARMAX(10, 0, 10) model, IPC is predicted one-step ahead

with a R2 of 0.54–0.88, a MAEDS of 4.04–9.97%, and a MAETS of 3.34–9.52%. For two-step ahead
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predictions of IPC, the efficiency metrics are: R2 of 0.50–0.83, MAEDS of 4.04–11.83%, and

MAETS of 3.70–11.30%. For IPC predictions, the ARMAX(10, 0, 10) in all cases performs better

than the ARMAX(4, 0, 4) model. Micro-architectural Early Cancel of an Access is predicted one-

step ahead using the ARMAX(10, 0, 10) model with a R2 of 0.64–0.84, a MAEDS of 6.66–9.15%,

and a MAETS of 5.15–8.51%. The two step-ahead predictions using the ARMAX(10, 0, 10) model

performs with a R2 of 0.56–0.85, a MAEDS of 7.32–10.58%, and a MAETS of 5.66–9.06%. The

ARMAX(10, 0, 10) in all cases performs better than the ARMAX(4, 0, 4) model for this PMC event.

The one-step ahead predictions of Data Cache Lines Evicted rate using the ARMAX(10, 0,

10) model have a R2 of 0.45–0.95, a MAEDS of 4.43–10.96%, and a MAETS of 3.44–10.67%. The

two-step ahead metrics for these prediction are a R2 of 0.28–0.94, a MAEDS of 4.78–13.92%,

and a MAETS of 3.71–13.56%. In most cases, the prediction efficiency metrics of the ARMAX(10,

0, 10) outperform the ones for the ARMAX(4, 0, 4) model. The one-step ahead prediction

of L2 Fill/Writeback using the ARMAX(10, 0, 10) model performs with a R2 of 0.58–0.80, a

5.40–10.04%, and a MAETS of 1.98–9.82%. The two-step ahead predictions of this model have a

R2 of 0.52–0.80, a MAEDS of 5.22–12.03%, and a MAETS of 1.89–11.76%. For L2 Fill/Writeback,

the prediction efficiency metrics of the ARMAX(10, 0, 10) outperform the ones for the ARMAX(4,

0, 4) model in most cases. Overall, we believe that the ARMAX(10, 0, 10) outperforms the

ARMAX(4, 0, 4) as it has a better chance, due to its longer filters, to capture the variations of the

application behavior. The small prediction errors achieved in this section provide the resource

managers a chance to mitigate their reaction delay and to perform proactively.

We provide a part of the observed IPC signals for BT.C, LU.C, SP.C, FT.C, and MG.C,

with their one-step and two-step ahead predictions using an ARMAX(4, 0, 4) model, in Figure

6.1, Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5, respectively. The prediction results

for the rest of the signals, which are not shown here, are similar to the depicted parts. The

accurate predictions of IPC obtained using this method provides us with many opportunities

for developing power saving algorithms, as studied by other researchers [23, 146].
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Table 6.1: Efficiency of variable frequency IPC predictions
ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.76 0.78 7.61 7.35 6.28 6.07
LU.C 0.64 0.77 8.62 6.68 5.61 4.35
SP.C 0.79 0.88 7.37 5.70 4.31 3.34
FT.C 0.58 0.62 10.47 9.97 10.00 9.52
MG.C 0.53 0.54 4.30 4.04 3.94 3.70

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.69 0.74 9.09 8.17 7.50 6.74
LU.C 0.63 0.75 8.59 6.80 5.60 4.43
SP.C 0.73 0.83 8.28 6.62 4.85 3.88
FT.C 0.43 0.52 12.89 11.83 12.31 11.30
MG.C 0.49 0.50 4.29 4.04 3.93 3.70

Table 6.2: Efficiency of variable frequency Micro-architectural Early Cancel of an Access rate
predictions

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.69 0.73 9.68 9.10 9.05 8.51
LU.C 0.74 0.84 10.49 8.11 9.22 7.13
SP.C 0.83 0.84 7.50 7.44 6.15 6.10
FT.C 0.63 0.64 9.18 9.15 6.86 6.84
MG.C 0.63 0.66 7.56 6.66 5.84 5.15

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.63 0.71 11.39 9.69 10.66 9.06
LU.C 0.72 0.84 10.95 8.13 9.63 7.15
SP.C 0.63 0.66 10.88 10.58 8.92 8.68
FT.C 0.55 0.59 10.39 10.27 7.77 7.68
MG.C 0.53 0.56 7.95 7.32 6.15 5.66
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Table 6.3: Efficiency of variable frequency Data Cache Lines Evicted rate predictions
ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.68 0.71 11.50 10.96 11.19 10.67
LU.C 0.67 0.76 7.14 6.03 4.22 3.57
SP.C 0.90 0.95 6.03 4.43 4.68 3.44
FT.C 0.49 0.48 8.49 8.21 7.79 7.54
MG.C 0.33 0.45 11.14 9.85 11.11 9.83

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.40 0.56 15.77 13.92 16.19 13.56
LU.C 0.61 0.68 7.69 7.02 4.55 4.15
SP.C 0.89 0.94 6.41 4.78 4.98 3.71
FT.C 0.29 0.28 10.31 9.83 9.46 9.03
MG.C 0.35 0.48 11.01 9.64 10.99 9.62

Table 6.4: Efficiency of variable frequency L2 Fill/Writeback rate predictions
ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.80 0.80 8.18 8.16 4.26 4.25
LU.C 0.80 0.80 6.54 6.51 3.14 3.13
SP.C 0.77 0.75 8.05 8.39 1.90 1.98
FT.C 0.55 0.63 11.12 10.04 10.87 9.82
MG.C 0.54 0.58 5.91 5.40 5.77 5.27

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.78 0.80 9.11 8.43 4.74 4.38
LU.C 0.79 0.80 6.73 6.59 3.23 3.16
SP.C 0.79 0.77 7.65 8.01 1.80 1.89
FT.C 0.38 0.52 13.68 12.03 13.37 11.76
MG.C 0.53 0.58 5.80 5.22 5.66 5.10
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Figure 6.1: One-step and two-step ahead predictions for IPC of BT.C
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Figure 6.2: One-step and two-step ahead predictions for IPC of LU.C
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Figure 6.3: One-step and two-step ahead predictions for IPC of SP.C
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Figure 6.4: One-step and two-step ahead predictions for IPC of FT.C
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Figure 6.5: One-step and two-step ahead predictions for IPC of MG.C
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One of the benefits of our general approach for PMC prediction, unlike other approaches

[23], is to be able to predict PMC events other than the IPC. The one-step and two-step ahead

predictions using an ARMAX(10, 0, 10) for a part of the signal of the IPC (labeled as PMC1),

Micro-architectural Early Cancel of an Access (labeled as PMC2), Data Cache Lines Evicted

(labeled as PMC3), and L2 Fill/Writeback (labeled as PMC4) for BT.C, LU.C, SP.C, FT.C, and MG.C

are shown in Figure 6.6, Figure 6.7, Figure 6.8, Figure 6.9, and Figure 6.10, respectively.

It is noticeable that FT.C and MG.C, which run only for a relatively short time, compared

to the other applications, BT.C, LU.C, and SP.C, follow the changes of the metrics closely in

shape, however, not as closely in terms of matching the signal levels (i.e., scale and offset) as

other applications. We believe that this is to due to the fact that the mean and variance of

the metrics calculated for each frequency, up to each time sample during the execution of the

application, have not converged to a stable region due to the lack of samples. For example, a

300 sample execution time running with five different frequencies only allocates approximately

60 samples by the end of the execution for calculation of mean and variance. An example

of unstable, but converging, mean and variance trends has been shown in Figure 5.9. Before

running each of the applications presented in this section, the initial mean and variance values

in the ZMUV module are reset to zero. This mismatch in scale and offset can be improved by

providing a longer mean and variance for the ZMUV module before running this application.

However, we choose to present to results here with a reset ZMUV module for the sake of a fair

comparison and focusing on the other aspects of prediction (e.g., application behavior and

ARMAX efficiency). In Section 6.3, we extend and utilize this PMC prediction model to predict

future power consumption of the system.

6.3 Power Prediction using ARMAX-RLS

In this section, we provide an ARMAX model for prediction of power consumption based on

previous PMC and power measurements.
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6.3.1 Power Prediction Model

The problem formulation for power prediction is similar to the PMC prediction model. However,

this prediction model includes both power and PMC measurements as its inputs. Let P[t] and

cj[t] represent the power consumption and the jth PMC event rate (1 ≤ j ≤ nr ) measured at

time t, respectively. The previous power measurements P[t− i] are related to the current power

measurement P[t] via a coefficient βi. Similarly, the previous measurements of the jth PMC

event cj[t − i] are related to the current power measurement P[t] via a coefficient αi,j .

P[t] =
m∑
i=1

jmax∑
j=1

αi,jcj[t − i]+
n∑
i=1

βiP[t − i] (6.4)

This model is presented in (6.4), where jmax = nr . At time step t the αi,j and βi

coefficients are updated using the RLS algorithm. Similar to the PMC prediction model notation,

we denote the updated coefficients at time step t via a superscript, such as in α(t)i,j and β(t)i .

We can use the obtained model at time t to perform a one-step ahead prediction of power

consumption as described in (6.5).

P̂[t + 1] =
m∑
i=1

jmax∑
j=1

α(t)i,j cj[t + 1− i]+
n∑
i=1

β(t)i P[t + 1− i] (6.5)

A k-step ahead prediction of power consumption (k > 1) is performed using the PMC

prediction models and the power prediction model in parallel and recursively by performing k

one-step ahead predictions. We use the model obtained at time t and substitute the missing

power and PMC observations in time by their previously predicted values. This requires running

nr + 1 parallel models, nr for the prediction of the PMCs and one model for prediction of

power. The coefficients of the models are updated only at time t with real measurements. A

k-step ahead prediction model for power consumption is formulated in (6.6), where k ≤m,n.

This includes k − 1 previously predicted terms of ĉj and P̂, as well as their m − k + 1 and

n− k+ 1 latest observations of cj and P, respectively. The PMC predictions ĉj are calculated

using (6.2) and (6.3), discussed in Section 6.2.1. As discussed earlier in Section 4.5.3, the RLS
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does not require any matrix inversion and can be implemented using matrix additions and

multiplications. The additional complexity of having the nr PMC models running in parallel

to the power model is not needed for obtaining the one-step ahead predictions, which many

resource managers need.

The ZMUV module adapts the power and PMC prediction methods proposed in this

chapter for a variable frequency environment. Similar to the PMC prediction model, all the

measured inputs in our proposed power prediction model (e.g., cj[t] and P[t]) are scaled

and offset to a unified frequency time-series using a ZMUV transformation (see Section 5.3).

The original values after performing predictions can be obtained by using an inverse ZMUV

transformation. The offline simulation results of our proposed power prediction model using

real system measurements in a variable frequency environment are presented in Section 6.3.2.

P̂[t + k] =
k−1∑
i=1

jmax∑
j=1

α(t)i,j ĉj[t + k− i]+
k−1∑
i=1

β(t)i P̂[t + k− i]+ (6.6)

m∑
i=k

jmax∑
j=1

α(t)i,j cj[t + k− i]+
n∑
i=k
β(t)i P[t + k− i]

6.3.2 Power Prediction Results

In this section, we evaluate the efficiency of the power prediction method proposed in Section

6.3.1. We predict the power consumption of our system for BT.C, LU.C, SP.C, FT.C, and MG.C

running with eight threads in a variable frequency environment. We use a previously generated

random frequency pattern (duration and value) for all of the cores identically. We use the same

PMC events as in Section 6.2.2, which are IPC, Micro-architectural Early Cancel of an Access,

Data Cache Lines Evicted, and L2 Fill/Writeback. The PMC events are used as a system aggregate

metric, as opposed to a per core measurement. A summary of efficiency of one- and two-step

ahead power prediction using ARMAX(4, 0, 4) and ARMAX(10, 0, 10) models is provided in Table

6.5.

Our proposed power prediction method, when using the ARMAX(10, 0, 10) model,

provides the one-step ahead predictions of our test applications with a R2 of 0.63–0.72, a

MAEDS of 8.53–11.09%, and a MAETS of 2.57–3.34%. The two-step ahead power predictions
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Table 6.5: Efficiency of variable frequency power consumption predictions
ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.72 0.72 9.30 9.53 3.09 3.17
LU.C 0.70 0.70 8.39 8.53 2.51 2.56
SP.C 0.67 0.67 9.64 9.94 2.49 2.57
FT.C 0.68 0.68 11.49 11.09 3.46 3.34
MG.C 0.63 0.63 9.93 10.05 3.05 3.08

ARMAX (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10) (4, 0, 4) (10, 0, 10)
App./2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

BT.C 0.60 0.61 12.12 12.01 4.03 3.99
LU.C 0.53 0.54 11.09 11.14 3.32 3.34
SP.C 0.52 0.53 12.07 12.15 3.12 3.14
FT.C 0.67 0.69 11.32 10.86 3.41 3.27
MG.C 0.64 0.63 9.86 9.79 3.03 3.00

using this model for our test applications performs with a R2 of 0.53–0.69, a MAEDS of 9.79–

12.15%, and a MAETS of 3.00–3.99%. The ARMAX(4, 0, 4) model in most cases performs similar

to the ARMAX(10, 0, 10) model and slightly better in some cases. A part of the one- and two-step

ahead power prediction for BT.C, LU.C, SP.C, FT.C, and MG.C using an ARMAX(10, 0, 10) model

is presented in Figure 6.11, Figure 6.12, Figure 6.13, Figure 6.14, and Figure 6.15, respectively.
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Figure 6.11: One-step and two-step ahead predictions for power consumption of BT.C
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Figure 6.12: One-step and two-step ahead predictions for power consumption of LU.C
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Figure 6.13: One-step and two-step ahead predictions for power consumption of SP.C
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Figure 6.14: One-step and two-step ahead predictions for power consumption of FT.C
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Figure 6.15: One-step and two-step ahead predictions for power consumption of MG.C
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6.4 IPC Prediction in Real Time

We have implemented the PMC prediction model that is introduced in Section 6.2 in a real-time

environment. The results of this real-time implementation confirm the results of the study

in Section 6.2 that were obtained at a simulation level. The prediction code 1 is written in

C/C++ and is able to predict PMC events, such as IPC. We have chosen the input PMC events for

this multivariate time-series prediction model to be IPC, Micro-architectural Early Cancel of an

Access, Data Cache Lines Evicted, and L2 Fill/Writeback.

We run a number of multi-threaded NPB-OMP applications in a row as a real test for our

prediction program. We have included a delay between some of our applications to include

the effect of idle periods in the PMC predictions. The order of sleep periods and application

executions are as the following: we start with a 2-second sleep period, followed by BT.A, CG.A,

EP.A, FT.A, IS.A, LU.A, MG.A, SP.A, a 2-second sleep period, BT.B, a 2-second sleep period, FT.B, a

2-second sleep period, LU.B, a 2-second sleep period, MG.B, a 2-second sleep period, SP.B, and a

2-second sleep period. The predicted values include the activity of all the threads and processes

running on the system, including the operating system, ARMAX-RLS predicting program, and

the test benchmark applications.

The frequency of all cores are simultaneously changed to a previously generated random

frequency pattern. In this test, we are measuring four PMC events on the eight available cores.

It is expected that for a time-series prediction approach, such as the ARMAX-RLS, the prediction

error for the further time steps to be larger. Moreover, a dynamic resource management system

commonly requires only the predictions of a few steps ahead to transform its reactive scheme

into a proactive algorithm. Thus, we limit the prediction horizon of this real-time application

to two time steps ahead. We perform one- and two-step ahead PMC predictions using an

ARMAX(10, 0, 10) for each core using its PMC measurements. Furthermore, we perform a similar

PMC prediction on the system using the average of each PMC event of all of the cores that we

refer to average here. As the predictions for each PMC event is calculated using its own model,

for the average system and eight cores a total of 36 models are running simultaneously. If only

1The transformation of Matlab code to C/C++ code was performed collaboratively with Ryan Patrick Anderson
and Mike Mallin, the undergraduate research assistants at the Parallel Processing Research Laboratory, Department
of Electrical and Computer Engineering, Queen’s University.

114



the one-step ahead predictions of one PMC event are needed, we can reduce this number of

parallel models running on the system to one model per core. If one is only interested in the

overall system prediction, the per core prediction models can be disabled as well and leaving

only one model running on the system. Such a versatile module can be utilized for different

purposes, including power saving methods based on PMC metrics [23, 146]. We present the

prediction results of the run-time PMCs in two sections. In Sections 6.4.1, we provide the

real-time predictions of the aggregate PMC events of all cores (average). Section 6.4.2 presents

the real-time IPC prediction of each core on our system.

6.4.1 Aggregate PMCs

A summary of the predictions efficiency metrics of the aggregate PMC events at run-time using

an ARMAX(10, 0, 10) model is provided in Table 6.6. The PMC events used for this test are IPC

(labeled as PMC1), Micro-architectural Early Cancel of an Access (labeled as PMC2), Data Cache

Lines Evicted (labeled as PMC3), and L2 Fill/Writeback (labeled as PMC4). We also compare the

prediction efficiency metrics of our ARMAX model to a last value predictor, denoted as LAST.

The one-step ahead prediction of all the PMC events are performed with a R2 of 0.56–

0.68, a MAEDS of 3.49–6.24%, and a MAETS of 3.49–6.20%. The two-step ahead prediction

of all the PMC events using the ARMAX model perform with a R2 of 0.24–0.59, a MAEDS of

4.20–6.98%, and a MAETS of 4.20–6.94%. The LAST predictor does not provide a good R2 for

power prediction. The ARMAX model provides 24–50% (23% for IPC) smaller errors than the

LAST predictor for one-step ahead predictions. The error reduction of ARMAX compared to the

LAST predictor is 21–41% (26% for IPC) for two-step ahead predictions. A part of the real-time

IPC prediction of this multi-application test is shown in Figure 6.16 and Figure 6.17. Similarly, a

part of the real-time predictions for L2 Fill/Writeback is shown in Figure 6.18 and Figure 6.19.
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Figure 6.16: One-step and two-step ahead real time predictions for IPC (set 1)
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Figure 6.17: One-step and two-step ahead real time predictions for IPC (set 2)
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Figure 6.18: One-step and two-step ahead real time predictions for L2 Fill/Writeback (set 1)
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Figure 6.19: One-step and two-step ahead real time predictions for L2 Fill/Writeback (set 2)
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Table 6.6: Efficiency of variable frequency real time aggregate PMC prediction
Model ARMAX LAST ARMAX LAST ARMAX LAST
PMC/1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

PMC1 0.68 0.47 5.70 7.45 5.65 7.39
PMC2 0.68 0.08 6.24 10.56 6.20 10.50
PMC3 0.61 -0.49 4.95 10.15 4.95 10.15
PMC4 0.56 0.39 3.49 4.68 3.49 4.67

Model ARMAX LAST ARMAX LAST ARMAX LAST
PMC/2-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%

PMC1 0.49 0.23 6.75 9.17 6.69 9.09
PMC2 0.59 -0.10 6.98 11.75 6.94 11.67
PMC3 0.46 -0.07 5.90 8.23 5.90 8.23
PMC4 0.24 0.20 4.20 5.35 4.20 5.35

6.4.2 Per Core PMCs

In this section, we evaluate the efficiency of the ARMAX model in predicting the per core

PMC events, as well as the system aggregate PMCs (average). We use an ARMAX(10, 0, 10)

model for this section in a variable frequency environment. The PMC events predicted in this

section are IPC, Micro-architectural Early Cancel of an Access, Data Cache Lines Evicted, and L2

Fill/Writeback. Table 6.7 provides the details of the efficiency metrics of one-step ahead PMC

predictions.

For IPC, all the cores and the aggregate system provide a R2 of 0.67–0.71, a MAEDS of

5.39–5.99%, and a MAETS of 5.38–5.99%. For Micro-architectural Early Cancel of an Access,

the per core and aggregate prediction efficiency metrics have a R2 of 0.61–0.70, a MAEDS of

4.84–6.49%, and a MAETS of 4.84–6.49%. For Data Cache Lines Evicted, the per core/aggregate

prediction efficiency metrics are R2 of 0.59–0.69, MAEDS of 3.71–8.22%, and MAETS of 3.71–

8.22%. Finally, for L2 Fill/Writeback, the per core/aggregate prediction efficiency metrics are

R2 of 0.43–0.62, MAEDS of 3.20–3.84%, and MAETS of 3.20–3.84%. The efficiency metrics of

prediction for most cores and the system aggregate are mostly similar to each other. For all

of the per cores/aggregate predictions, the ARMAX model outperforms the LAST predictor

significantly. The are many different applications, such as power saving and dynamic scheduling

algorithms, that can benefit from such a run-time prediction system.
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Table 6.7: Efficiency of aggregate and per core one-step ahead PMC predictions
IPC

Model ARMAX LAST ARMAX LAST ARMAX LAST
Core/1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%
Average 0.68 0.47 5.70 7.45 5.65 7.39
Core 0 0.71 0.49 5.69 7.39 5.69 7.39
Core 1 0.68 0.37 5.39 7.41 5.38 7.41
Core 2 0.67 0.52 5.79 7.15 5.79 7.14
Core 3 0.67 0.44 5.76 7.70 5.75 7.70
Core 4 0.68 0.47 5.95 7.84 5.94 7.84
Core 5 0.68 0.45 5.89 7.70 5.89 7.70
Core 6 0.67 0.47 5.99 7.82 5.99 7.82
Core 7 0.67 0.45 5.92 7.66 5.92 7.65

Micro-architectural Early Cancel of an Access
Core/1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%
Average 0.68 0.08 6.24 10.56 6.20 10.50
Core 0 0.64 0.15 5.59 8.76 5.58 8.76
Core 1 0.61 0.23 5.22 7.93 5.22 7.92
Core 2 0.70 0.28 4.84 7.86 4.84 7.86
Core 3 0.69 0.07 5.52 9.70 5.52 9.69
Core 4 0.66 0.08 6.00 9.93 6.00 9.92
Core 5 0.66 0.14 6.49 10.23 6.49 10.22
Core 6 0.65 0.05 5.79 9.64 5.79 9.64
Core 7 0.72 0.16 5.84 9.95 5.84 9.94

Data Cache Lines Evicted
Core/1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%
Average 0.61 -0.49 4.95 10.15 4.95 10.15
Core 0 0.62 -0.46 3.85 7.81 3.85 7.80
Core 1 0.60 -0.39 3.85 7.40 3.85 7.40
Core 2 0.69 -0.18 7.40 15.14 7.40 15.14
Core 3 0.66 -0.41 8.22 17.09 8.22 17.09
Core 4 0.59 -0.46 3.71 7.44 3.71 7.44
Core 5 0.63 -0.52 4.93 10.16 4.93 10.16
Core 6 0.60 -0.48 3.74 7.59 3.74 7.59
Core 7 0.63 -0.58 6.51 13.40 6.51 13.40

L2 Fill/Writeback
Core/1-Step R2 R2 MAEDS% MAEDS% MAETS% MAETS%
Average 0.56 0.39 3.49 4.68 3.49 4.67
Core 0 0.59 0.41 3.51 4.67 3.51 4.67
Core 1 0.62 0.44 3.20 4.05 3.20 4.05
Core 2 0.55 0.45 3.54 4.57 3.54 4.57
Core 3 0.60 0.48 3.84 5.12 3.84 5.12
Core 4 0.55 0.35 3.58 4.79 3.58 4.79
Core 5 0.56 0.35 3.64 4.94 3.64 4.94
Core 6 0.55 0.35 3.67 4.94 3.67 4.94
Core 7 0.43 0.32 3.66 4.84 3.66 4.84

119



6.5 Discussion

Given the need for increased efficiency in the current computing systems, having access to

predicted values of different metrics of the system becomes significantly important. Power

reduction can become a trivial task of changing voltage and frequency if one has accurate

predictions of the upcoming workload and system state. We have used the ARMAX-RLS model

to show that it is possible to obtain run-time prediction of different PMC events, such as IPC, in a

variable frequency environment. Furthermore, using the ARMAX-RLS one can predict the power

consumption of the system in a variable frequency environment. For both PMC and power,

many steps of predictions can be made ahead of time. We have shown that our ARMAX-RLS

predictors significantly outperform the last value predictors, which are commonly used. Finally,

we have implemented the PMC prediction model proposed in this chapter on a real multicore

system. For example, one-step ahead of time, we are able to predict the per core or aggregate

PMC rates of IPC, Micro-architectural Early Cancel of an Access, Data Cache Lines Evicted, and

L2 Fill/Writeback with a MAETS of 5.4–6.0%, 4.8–6.5%, 3.7–8.2%, and 3.2–3.8%, respectively.
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Chapter 7

Conclusions and Future Work

Architectural intuition has guided many prior work to choose PMC events in a power model.

However, a comprehensive statistical analysis of PMC event selection has been missing prior

to this work. The proposed method for efficient selection of an optimal set of PMC events for

power modeling purposes requires six times less number of executions than a PCA method. Our

proposed method does not suffer from inaccuracies incurred by assuming that the statistics

of power consumption and PMCs for different processes or threads of a parallel application

are identical among different cores or nodes. This helps power models to incorporate useful

information of the system, through the limited number of available PMC registers, with minimal

overlap of information provided by different measured PMC events. We have shown that the

most significant PMC events in an application, or a group of applications, are not necessarily

the same as the ones arbitrarily chosen by architectural intuitions.

We exploit the intrinsic repetitiveness of computer software and hardware through the

time dependence between the measured metrics of a system to develop a power model. We

have shown that combining a linear model between the activity of a system and its power

consumption with the time dependence of data within each metric signal (i.e., power or PMC),

in addition to the time dependence of data between the signals, can provide an accurate power

estimation model. To prepare this model as a run-time estimation method, we equip the

multivariate time-series model with a coefficient update algorithm to be able to adjust to the

changes in a system. In particular, we use an autoregressive moving average with exogenous

inputs jointly used with a coefficient update algorithm [151], such as KF, MVNR, and RLS. We

have shown that ARMAX-RLS is a suitable candidate for adaptive run-time power estimation

that is both architecture and application independent. The minimal computational overhead
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and superior performance of RLS algorithm, compared to other algorithms such as Kalman

filter and MVNR, provide us with an adaptive module that is suitable for on-the-fly run-time

modeling of real systems.

The impact of frequency scaling on PMC and power metrics rules out many existing

models for integration in a real system for run-time estimation and prediction of metrics. Unlike

many prior works that use a regression method to capture the impact of frequency scaling in

the system metrics and differentiating between scaling and non-scaling metrics, our approach

is based on a practical Gaussian approximation [150]. Prior methods suffer from being able

to model only a limited set of PMCs that fit the theoretical model, which mostly represents

an oversimplified version of a real system or workload. We use the Gaussian distribution

properties with an attempt to make a variable frequency trend of a metric that is closer to

a weakly stationary signal. We scale and offset the metrics by their the mean and variance

associated to each frequency into a unified trend with a zero mean and unit variance. Our

approach is adaptive and does not dictate the usage of any specific PMC event. We have

shown that accurate power estimation of a real system in a variable frequency environment is

achievable through an ARMAX-RLS model when equipped with a ZMUV module.

In addition, we have extended our ARMAX-RLS model that is equipped with a ZMUV

module, to predict the near future PMCs and power consumption of a system in a variable

frequency environment. Unlike prior work that focuses on the univariate time-series methods

under a fixed frequency environment, or prediction of metrics that are insensitive to DVFS,

such as the system load and processor utilization, we have provided a generic methodology for

predicting power consumption and PMC events in a variable frequency environment. We have

shown that per core or aggregate system PMC event predictions multiple-steps ahead of time

is feasible using a multivariate time-series model, such as the ARMAX-RLS. Such a prediction

method can be used by resource managers to increase the efficiency of the system. For example,

we have shown that IPC can be predicted with a small error, one or two steps ahead of time,

which can be used in power saving algorithms suggested by others. The prediction of metrics

can also be used in improving dynamic scheduling algorithms from the power or performance

aspects. Overall, obtaining a reliable prediction of the system metrics is crucial for progressing

from a reactive power and performance management method to a proactive algorithm.
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7.1 Future Work

First, we would like to perform a comprehensive study on different types of applications with

regard to the selection of the best PMCs for power modeling purposes. We would like to provide

a group of PMCs that are representative of a large set of various applications. This can be

beneficial for those who would like to skip the statistical PMC selection step and not to be

forced into picking intuition based PMC events.

In order to evaluate the efficiency of our approaches in a frequency variable environment,

we have changed the frequency of all eight cores in our system simultaneously according to a

previously generated random frequency pattern (duration and value). However, we have chosen

to have an identical frequency for all of the cores in the system at any time, in order to avoid

any system load imbalance. We would like to study the impact of possible load imbalance

when non-identical frequencies are used for the different cores in a system, with respect to the

efficiency of our ARMAX-RLS prediction and estimation methods.

In addition, we would like to study the usage of other time-series models, such as an

ARIMAX model, to see if we can gain any improvements in our estimations or predictions.

Moreover, we have chosen the MA terms of our ARMAX to be zero throughout this thesis. We

would like to explore more the impact of including MA terms in efficiency of our ARMAX model.

The goal of this thesis has been to facilitate building models and metrics that accurately

represent the current and future state of the system. Power management systems, which have

not been the primary focus of this thesis, are among the objectives that can benefit from a

prediction system like the ARMAX-RLS. Given an accurate prediction of the related metrics to

power saving opportunities, one can trivially change the frequency and voltage of a processor

for saving power with minimal performance degradation. As an extension to this work, we

would like to explore different power saving algorithms that use our prediction system.
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