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Abstract 

 

Emerging processor technologies are becoming commercially available that make 

multi-processor capabilities affordable for use in a large number of computer systems.  

Increasing power consumption by this next generation of processors is a growing concern 

as the cost of operating such systems continues to increase.   

It is important to understand the characteristics of these emerging technologies in 

order to enhance their performance.  By understanding the characteristics of high 

performance computing workloads on real systems, the overall efficiency with which 

such workloads are executed can be increased.  In addition, it is important to determine 

the best trade-off between system performance and power consumption using the variety 

of system configurations that are possible with these new technologies. 

This thesis seeks to provide a comprehensive presentation of the performance 

characteristics of several real commercially available simultaneous-multithreading multi-

processor architectures and provide recommendations to improve overall system 

performance.  As well, it will provide solutions to reduce the power consumption of such 

systems while minimizing the performance impact of these techniques on the system. 

The results of the research conducted show that the new scheduler proposed in this 

thesis is capable of providing significant increases in efficiency for traditional and 

emerging multi-processor technologies.  These findings are confirmed using real system 

performance and power measurements. 
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Chapter 1: Introduction 
 
Recent developments in the computing industry have signaled a shift in 

microprocessor design philosophy towards the use of multiple processing cores.  This 

allows a single device to execute multiple instructions simultaneously.  The process by 

which multiple instructions are executed in parallel on multiple CPUs is referred to as 

parallel processing.  There are two distinct types of parallelism, instruction level 

parallelism (ILP) and thread level parallelism (TLP).  ILP exploits the potential of 

individual instructions to be executed simultaneously.  ILP requires that the instructions 

of a process be executed simultaneously or out of order, and that code not be dependant 

on the previously executed instructions.  In reality, ILP is of limited use because of the 

difficulties in coding algorithms in which there are limited amounts of inter-instruction 

dependence.  As such, ILP can be very difficult to exploit because many sequential code 

sections occur in most algorithms, which lessens the overall effect that ILP can have 

upon runtimes.   

TLP approaches the parallelization problem in a different way than ILP, by dividing 

processes into distinct threads of execution, which contain their own independent 

sequential instruction dependencies.  This allows for algorithms to be coded in a more 

traditional manner and for parallelism to be more logically divided amongst separate 

threads.  In addition, TLP is not as inherently limited in its upward parallelism potential 

as ILP.  With ILP, there are only a finite number of instructions that can be executed in 

parallel in one time period, where with TLP, one can execute as many instructions as 

possible on each CPU during the same time period, given that there are enough threads to 

keep all of the processors busy.  Because of the advantages of TLP and the larger 

potential benefits of exploiting it, the research and commercial sectors have taken an 

interest in TLP over ILP. 

TLP can be taken advantage of using the concept of multi-threading.  Traditionally, 

multi-threading has been used for multi-tasking, with a single CPU desktop computer 

running multiple processes in a time multiplexed execution that enables operating 

systems to perform multi-tasking.  All major modern operating systems support multi-

threading, including Microsoft’s Windows operating system, Apple computer’s OS X and 
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UNIX/Linux.  Multi-threading can also be used in systems with multiple CPUs, as 

threads can execute simultaneously on each independent CPU.  In addition to running 

multiple distinct processes, multi-threading can be used to divide a single computational 

task or process into several execution threads that can be run simultaneously for the 

purpose of using multiple CPUs to reduce process run times.  Multi-processor systems 

such as symmetric multi-processors (SMP) which use shared memory have been 

available for many years.  These systems use multiple traditional central processing units 

(CPUs) connected to a shared memory system.   

Efforts to take advantage of TLP have been attempted using single-core multi-thread 

execution units commonly referred to as simultaneous multi-threading (SMT) [91] 

capable platforms.  SMT equipped processors can simultaneously execute multiple 

threads by sharing processor resources and using a limited number of duplicate resources.  

This creates a significant amount of pressure on the memory system which limits the 

overall effectiveness of SMT technology.  In order to increase the performance of 

systems, new designs are incorporating multiple complete independent processors on a 

single chip, eliminating the need for any sharing of actual chip architecture. 

These new designs, called chip multi-processors (CMP) have been proposed for many 

years by the research community [35] but have only begun to appear on the commercial 

market in 2006.  Both Intel Corp [40] and AMD [1] have released multi-core versions of 

their processors, with Intel Corp releasing a multi-core multi-threading CPU design.  Sun 

Microsystems has taken this trend further with the UltraSparc T1 processor [86], offering 

six or eight cores on a single chip with each core capable of executing four threads 

simultaneously.  These multi-core simultaneous multi-threading processors are referred to 

as chip multi-threading (CMT) [83] processors. 

The adoption of multi-processor systems in mainstream applications is reinvigorating 

interest in parallel computing as more systems move to take advantage of multiple cores 

and the performance of future computing systems relies increasingly on their ability to 

effectively parallelize complex tasks.   

The corresponding increase in transistor density of new systems has also brought 

about significant challenges relating to power consumption and heat generation.  The 

move to multiple cores has been motivated by the inability to increase individual core 
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clock speeds due to heat generation.  The waste heat produced by processors is directly 

related to their power consumption.  Therefore, there have been efforts made to reduce 

the power consumption of modern systems by introducing dynamic voltage and 

frequency scaling (DVFS) [22] as well as low level design revision in order to increase 

energy efficiency. 

1.1 Motivation 

 

With the trend toward massively parallel computing systems in the future, designers 

will conceivably continue to add additional cores and thread support in future designs.  

With this emerging trend, the analysis and evaluation of existing multi-threaded systems 

is important to better understand the performance benefits of parallel processing on 

commercially available platforms.  In addition to performance concerns, the increasing 

power consumption of modern processors is of great concern to the research community 

as well as the commercial sector.  Future forecasts of power consumption and thermal 

dissipation by the International Technology Roadmap for Silicon Organization (ITRS) 

[43] are as high as 100 W/cm
2
 in 2010 and up to 250 W/cm

2
 by 2020.  This means that 

current design trends cannot continue to be effective as the forecasted power 

consumption for devices in the year 2020 is four times the allowable thermal generation 

density for future chip packages [43].  In fact, the amount of power consumed by servers 

throughout the world is estimated to rise by as much as 76% from 2005 to 2010 [50].  

The forecasts for future server system power consumption for the next four years is 

detailed in Figure 1.1, with information taken from the 2006 ITRS Roadmap Report [43]. 
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Figure 1.1:  Server Power Consumption Forecasts 
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As such, it is important to understand the power consumption characteristics of 

existing multi-threading systems and determine the optimal performance/power savings 

trade-off point for system execution.  The characterization data can then be used to fine 

tune existing systems through process scheduling as well as other software techniques 

such as compiler optimizations that can increase system performance and power 

consumption.  This characterization information will also be of use to the semiconductor 

industry until the introduction of technologies that can possibly help to reduce the overall 

power consumption of integrated circuits, like emerging nano-technology.  However, 

these technologies are not guaranteed to solve all of the current power consumption 

issues, and therefore work such as that presented in this thesis will continue to be of 

importance long into the future.   

1.2 Contributions 

 

The primary goal of this thesis is to garner some insight into the behaviour of 

emerging multi-threaded systems as they relate to power and performance, in order to 

help determine the best architecture for different types of system workloads.  This 

information will aid the research community as well as the commercial sector in the 

utilization of such systems for real-world workloads.  In addition, this thesis seeks to 

provide the basis for a software approach to better manage the power consumption of a 

simultaneous multi-threading processor system.  It utilizes a program/profile independent 

approach designed to minimize the effect of operating system noise [89] for the purpose 

of performance/power savings.  As such, it is extremely lightweight and useful in an 

asymmetric multiprocessor (AMP) [3] system that utilizes SMT.  The resulting energy 

savings when utilizing this method equate into a significant cost savings when this 

method is applied to larger scientific processing systems, potentially saving hundreds of 

thousands of dollars in costs per year.  Although the resultant energy savings and speedup 

may seem small at 5-15%, this is excellent in an HPC context as HPC applications 

provide only limited opportunities to increase performance or save energy as they 

typically utilize all of the processing systems resources for extended periods of intensive 

calculations.  The idea of a protected CPU has been explored in a performance sense on 

older real-time systems [11] by using a protected CPU to process real-time tasks in order 
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to decrease system response time and ensure that tasks are completed before their 

deadline.  The application of the protected CPU method in relation to non-real-time 

power/performance optimization and the use of SMT are to this author’s knowledge, 

novel and unique.  In addition, this thesis explores the effects of multi-application 

workloads and thread overloading on commercial CMP/SMT platforms.  Each of these 

contributions are outlined below. 

 

• An analysis of OpenMP [69] constructs and their effect on shared memory 

programs.  This analysis was also conducted using different versions of 

the Linux kernel to evaluate the effect that OpenMP constructs have on the 

performance of the system using the traditional Linux scheduler and the 

recent O(1) scheduler. 

• An in depth profiling of single-core multi-processor shared memory 

systems.  The profiling of the NAS [44] and SPEC [82] benchmark suites 

running OpenMP on a shared memory system is a long and complex task.  

The collection of the profiling information takes a significant amount of 

time, with each benchmark run taking 20-32 hours and multiple runs 

required to capture and confirm the results for a single performance 

metric.  Therefore, the collection of the dozens of metrics required in order 

to properly determine the effect of the various architectural elements on 

the system’s performance is time consuming and produces an incredibly 

large volume of experimental data which must then be collated and 

analyzed.  The collection and analysis of such data is of great use to the 

academic community as it is the basis from which further research can be 

performed. 

• Profiling of chip-multithreaded SMP systems in multiple architectural 

configurations with multi-threaded single and multi-application 

workloads.  This contribution is a more in depth profiling and analysis of 

multi-core systems in multiple configurations, (SMT enabled and SMT 

disabled) simulating systems of various sizes and determining the 

differences between execution on a single multi-core processor and 
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multiple multi-core processors in a shared memory system.  Building upon 

the knowledge of previous profiles this contribution is significant in its 

scope and the lack of good profiling data available on modern multi-core 

shared memory systems. 

• Development of a power/performance optimizing scheduling algorithm.  

The development of a scheduler to reduce the impact of operating system 

noise while reducing power consumption and increasing overall system 

performance is an excellent proof of concept for illustrating the potential 

benefits of intelligent scheduling in reducing the power consumption of 

systems while maintaining excellent performance.   

1.3 Outline 

 

This thesis is organized into seven chapters.  The first is this introduction, followed by 

an in depth description of the background work in this area and the most important 

literature in the subject area.  The third chapter describes in detail, the two major 

benchmarking suites for multi-processor shared memory systems that are used throughout 

this thesis. The fourth chapter explores the overhead incurred when running a parallelized 

application using the OpenMP shared memory interface API, and details the performance 

of multi-processor shared memory systems using simultaneous multi-threading.  Chapter 

5 continues the study of multi-processor systems by examining the performance of multi-

core multi-processor systems with multi-threaded single and multi-application workloads, 

and the effect of thread overloading on such architectures.  It concludes by investigating 

the effect of operating system noise on multi-core systems and laying the groundwork for 

the scheduler changes introduced in the next chapter.  Chapter 6 details a study 

performed on the power usage of multi-processor systems and uses an alternative-

scheduling algorithm that takes advantage of an asymmetric multi-processor system.  

Chapter 7 concludes the thesis with a brief summary and closing remarks as well as 

discussing future work to be done in this area. 
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Chapter 2: Background 
 

To aid in understanding the material presented in this publication, the following 

background material provides an introduction to parallel computer architecture, multi-

threading, the OpenMP [69] shared memory application programming interface (API), 

system characterization, operating system noise and power modeling of real systems. 

2.1 Parallel Computing Architecture 

 

Parallel computing can be accomplished using a variety of methods, each with its own 

advantages and disadvantages.  Fundamentally, it is the usage of multiple CPUs working 

together on a given task for the purpose of decreasing the total running time of the task, 

or increasing the throughput of the system for a multi-program workload.  The two basic 

classifications of parallel computing implementations are the shared memory 

multiprocessor and the message passing multiprocessor system.  Shared memory 

processors can be of several types, the most prevalent being symmetric multiprocessors.  

Other types of shared memory systems include non-uniform memory access (NUMA) 

systems, which are most commonly cache coherent non-uniform memory access systems 

(ccNUMA) and cache-only memory architecture (COMA) systems.  Multiple 

independent systems can be linked together to form a parallel processor system using 

methods like message passing, where information relating to the execution of a parallel 

program is passed between systems over a network using standardized message passing 

systems such as MPI [64].  By using such networked systems it is possible to create 

clusters of individual shared memory nodes in an attempt at increased performance.  This 

thesis concerns a shared memory multiprocessor where all of the processing units are 

physically localized within a single system.   

Traditional multi-processor systems require the use of multiple processor chips that 

are integrated onto a single motherboard.  Each processor must share the available system 

memory.  Typically this is done using a shared system bus.  This system bus must then be 

arbitrated to ensure system consistency.  There are a number of arbitration techniques that 

allow for pipelined bus accesses, and other techniques for a split-transaction bus that 

allows for delayed independent memory requests and replies.   
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In addition to bus arbitration, a multi-processor system must ensure cache consistency, 

as each processor typically has independent L1 and L2 caches.  Cache consistency for 

shared memory multiprocessors is typically accomplished via snooping on the shared 

bus.  Snooping involves additional circuitry for each microprocessor that monitors the 

bus for requests that correspond to data held in the local processors L1 or L2 cache.  In 

the event that a request corresponds to a value in memory, the request is examined to 

determine the type of the request.  A request for a read access to the data requires no 

action, while a request for a write to a location requires that the data be flushed from the 

cache.  However, this is further complicated as the data held in the cache may be a more 

current version of the data than that held in memory, as the caches are typically a write-

back cache instead of a write-through cache.  Consequently, the processor may have to 

suppress the main memory response and respond to the request with the data in its cache.  

This will ensure data consistency and enable correct execution of a program when its 

threads are run across several processors in a system. 

Multi-threading is an essential element in the use of parallel computing.  It is a process 

by which a given task is broken down into separate executable units (threads) which can 

then be executed on several processing units at a given time to reduce the overall time of 

execution.  Multi-threading using a time-division scheme has existed for many years.  

This method uses a single CPU and time-shares many threads, providing a multi-program 

environment. 

Simultaneous multi-threading is a technology that allows more than one thread to run 

on a single processing core at one time.  The goal of SMT is to increase the overall 

utilization of a CPU by using as many components of said CPU in a cycle as possible.  

However, numerous complex interactions among the shared resources may affect the 

performance of multi-threaded applications running on SMTs [33, 90].  This can create 

conflicts as multiple threads vie for the use of individual components and as such, the 

proper pairing of threads on an SMT is vital as complimentary threads can perform very 

well, while thread pairs that require the same processing resources in the same execution 

phases can cause slowdowns due to contention.  Hyper-Threading (HT) [61] technology 

is an implementation of SMT on Intel processors.  HT technology replicates essential 

CPU resources to allow the execution of two program threads at a time on the CPU.  
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Using HT technology, each physical processor is divided into two logical processors each 

of which has its own independent run-queue.  These logical processors share the 

resources of the physical CPU including cache, execution units, translation look aside 

buffers, branch prediction unit and load and store buffers.   

Processors are becoming available that have multiple processing cores integrated onto 

a single processor die.  This technology called chip multi-processing [35] has been 

introduced by both AMD and Intel, with Intel also introducing a CMP that is HT enabled, 

creating a chip multi-threading architecture.  The CMP and CMT architectures can then 

be integrated into a traditional SMP interconnect to allow multiple physical CMP or 

CMT chips to be integrated into a single system. 

The amount of interconnectivity between the cores in a CMP can vary between 

implementations.  The UltraSPARC IV’s dual-cores [85] share only off-chip data paths, 

while the dual-cores in IBM Power5 [46] share L2 cache for faster inter-thread 

communications between the cores.  The Intel Xeon [39] dual-core processors studied in 

this thesis are the first generation of dual-core processors from Intel and do not share an 

L2 cache, unlike the latest Intel Core [40] processors that have shared L2 caches.  

 

2.1.1 Prior Art 
 

This section reviews some of the most important publications in the field of parallel 

processing architecture.  It also discusses the most recent publications that are related to 

the work presented in this thesis. 

SMT processors have been studied in academia [91], and have appeared in mainstream 

processors from IBM such as the Power4 and Power5 processors [46], Intel’s Core 2 [40] 

and Xeon [39] processors, and Sun Microsystems UltraSparc IV [85] and T1 [86] 

processors.   

Tuck and Tullsen [90] analyzed the Intel Pentium 4 HT processor. They found that up 

to a 25% performance improvement on parallel applications could be achieved by using 

HT technology. They also confirmed Snavely et al.’s paper [81] by showing that the 

Pentium 4 Hyper-Threading technology demonstrates symbiotic behaviour  due to cache 

and resource conflicts.  Research at Intel has focused on Hyper-Threading with 

multimedia OpenMP applications [88]. This study found that enabling HT increased 
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performance, although it results in an increased demand on the memory system. 

However, the benefit gained by increased utilization of other processor resources was 

more significant than the penalties incurred in the memory systems. 

Researchers at Dell published results for some benchmarks from the Message Passing 

Interface (MPI) version of the NAS Parallel Benchmarks running on a cluster of HT-

enabled systems [55].  They conclude that the necessity of doubling the number of 

processes for HT can degrade performance by increasing demand on the interconnect 

subsystems. 

Recent work has also been done on CMP architectures and their emergence in the 

commercial sector.  Work by De Vuyst et al. [21] and El-Moursy et al. [24] have 

examined the effect of scheduling on CMP architectures.  They study the performance 

and energy optimization possibilities of such architecture.  Researchers have also been 

examining scheduler performance and support in current operating systems [27, 67] as 

well as examining possible methods of increasing overall system throughput using CMPs 

[26].  Their investigations differ from the work in this thesis in that they use a simulated 

platform for their investigations, while we focus on real commercially available servers. 

Work relating to the cache contention and sharing issues brought about by chip 

multiprocessors have been studied, mainly focusing on cache sharing and partitioning 

[14] as well as the contention effects expected to occur in CMPs [13]. 

CMPs have also been examined with respect to their abilities executing single-

threaded programs [93], particularly relating to the thread migration effects [16].  

Researchers have also investigated the power performance of CMP architectures [56, 58, 

77] although they also use simulations and only one of these papers examines the 

SMT/CMP architecture [56].  Other publications relating to CMT/CMP architectures 

have documented their evolution in the commercial sector [83] 

2.2 Programming Shared Memory Parallel Applications 

 

Programming of multi-threaded shared memory applications is normally done using 

one of two multi-threading APIs, OpenMP [69] or POSIX [38] threads.  The POSIX 

threads API is based on the POSIX 1003.1 –1995 standard from ANSI and IEEE.  It 

defines a set of thread creation and management operations as well as subroutines to 
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manage mutually exclusive code sections and communication between individual threads.  

POSIX threads are only available for coding in C, but wrappers make it possible to use 

POSIX threads in other languages such as FORTRAN with minimal associated overhead.  

However, programming with POSIX threads can be significantly more complicated than 

programming with OpenMP, as OpenMP does not require explicit thread creation, 

joining or destructions, and only uses relatively simple compiler directives for defining 

parallel sections of code.  Therefore, OpenMP is typically the API of choice when 

developing shared memory applications. 

The OpenMP API [69] is an industry standard interface that is used to develop shared 

memory parallel processing programs in Fortran, C and C++.  It is a specification of 

compiler flags, environment variables and programming library functions that can be 

used to create parallelism on a system using a shared memory interface.  OpenMP is an 

attempt to standardize shared memory parallel processing interfaces across a wide range 

of platforms.  The predecessor to OpenMP, ANSI X3H5 [70] was never finalized and as 

a draft specification was never able to obtain true portability amongst different vendor’s 

platforms due to implementation specific directives that were not portable between all of 

the system vendor’s machines.  OpenMP overcame this problem by revising the standard 

such that proprietary machine hardware implementations were not a prerequisite for any 

of the directives. 

OpenMP defines a set of compiler directives which determine how threads are 

assigned portions of computational loops and directives used to control the execution of 

the threads, providing support for mutually exclusive sections of code and thread 

synchronization.  The most used clauses of the OpenMP specification are the 

PARALLEL, DO/FOR, PARALLEL DO/FOR, BARRIER, SINGLE, CRITICAL, 

LOCK/UNLOCK, ORDERED and REDUCTION clauses.  A description of each is 

detailed below [69]. 

• PARALLEL: Defines a region that should be executed by several threads.  

Each thread executes the code within the region unless it is flagged by an 

exclusion clause. 
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• DO/FOR: The DO/FOR clause is used inside of a PARALLEL region 

and defines loops that should be split up amongst the group of executing 

threads with each thread executing a portion of the iterations of the loop. 

• PARALLEL DO/FOR: A shortcut clause that defines a PARALLEL 

region as well as starting a DO/FOR clause. 

• BARRIER: A synchronization clause that causes threads to wait at the 

BARRIER until all threads have reached the BARRIER clause in code. 

• SINGLE: The SINGLE clause prevents all of the executing threads in 

a PARALLEL region from executing the code within the SINGLE region.  

Only a single thread executes this code while the rest of the threads wait at 

the end of the region for the execution to complete, unless the NOWAIT 

option is specified. 

• CRITICAL: CRITICAL clauses define regions that only one thread may 

execute at a time.  Threads must wait at the beginning of a CRITICAL 

region if another thread is executing the code within the region. 

• LOCK/UNLOCK: This clause is an alternative to using a CRITICAL 

region, and allows for mutual exclusion locking/unlocking of mutex type 

variables. 

• ORDERED: ORDERED directives ensure that the code defined by the 

ORDERED region is executed in the same order as it would if the 

execution loops were run in a sequential manner. 

• REDUCTION: This clause can be used within the PARALLEL 

region to define the method in which the variables used within the 

PARALLEL region are to be combined and returned when the 

PARALLEL region’s execution is complete.  

 

2.2.1 Prior Art 
 

The two major programming languages used for parallel programming are C and high-

performance FORTRAN.  These languages support a combination of OpenMP and 

POSIX threads on many machine types and operating systems.  FORTRAN was first 
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extended for parallelization in 1973 for the ILLIAC IV, extending its support to include a 

parallel do operation [65].  FORTRAN has remained an important language for parallel 

computing and has evolved into high performance FORTRAN (HPF), a language with 

parallel processing extensions.  The High-performance FORTRAN specification [59] was 

released in 1993.  The specifications were revised throughout the 1990s until the release 

of the current HPF 2.0 specifications in 1997. 

The OpenMP API [20] standardized a shared memory programming interface for 

several computer languages.  Researchers have developed compilers to take advantage of 

OpenMP instructions for clusters of SMPs [78].  Academia has also used OpenMP to 

develop several benchmarks for shared memory systems, the most prominent of them 

being the NAS OpenMP benchmark suite [44] and the SPEComp suite [6].  In addition to 

these major suites, other benchmarking programs such as EPCC [74] micro benchmarks 

and the LNLL benchmarks [54] evaluate the overhead incurred during OpenMP library 

calls. 

Several publications have dealt with the parallelization of sequential code using 

OpenMP, including work by Couturier et al. [17] in which they parallelize a molecular 

dynamics program using OpenMP, in addition to work such as that by Renouf et al. [75] 

in which they use OpenMP to speed up the computation of the dynamics involved in 

large granular materials such as concrete or granular powders.  OpenMP has also been 

used in conjunction with MPI to develop hybrid OpenMP+MPI programs for intra-node 

and inter-node parallelism for parallel jobs such as Monte Carlo simulations [80] and 

complex tasks such as high-resolution map visualization [15]. 

2.3 System and Application Characterization 

 

Characterization of real systems can be a difficult task.  Commercial systems are not 

released with their design files, or in depth technical details about their circuit layout.  

This creates challenges, as it is not possible to perform a low-level circuit analysis on 

such systems, and consequently, simulation of such systems is not accurate compared to 

the real run-time characterization of the systems.  The characterization of such systems 

must therefore be accomplished using repeatable benchmark programs, and for the 

purposes of this thesis, they must be multi-threaded benchmarks.   



-14- 

The primary method of obtaining information about the performance of a system is a 

profiling tool like Vtune [41] that uses performance counters that are built into the CPU 

architecture.  These hardware performance counters are system registers that can be set 

up to monitor a variety of relevant system events.  These registers enable one to obtain 

very accurate counts of system events that are relevant to the systems performance, such 

as cache hit rates, the number of cycles spent actively executing the code, and a 

breakdown of the number of events that have occurred on each CPU, whether logical or 

physical in the system.  This can lead to difficulty in determining the cause of some 

observed trends, as the amount of information that can be obtained from a real system is 

by its nature less than that which can be collected using simulation tools at the design file 

level.  This is not to say that this method cannot provide a significant insight into the real 

operation of systems, only that the granularity of such observations can make it difficult 

to prove the exact reason behind performance abnormalities.  The results obtained from 

testing on a real machine are devoid of any errors that could be caused by assumptions 

and shortcuts used in simulation software.  Therefore, while the results of such real world 

tests can sometimes be difficult to explain, the results are an accurate representation of 

real world performance. 

 

2.3.1 Prior Art 
 

Several benchmarks have been developed to test the performance of real systems 

using OpenMP.  Section 2.2.1 introduced the NAS, SPEC, EPCC and LNLL benchmark 

suites.  We will discuss the most relevant and important publications that have dealt with 

shared memory systems and the characterization and evaluation of real systems using 

these benchmarks in this section.   

Several research publications have been released dealing with the evaluation of shared 

memory systems using OpenMP.  The evaluation of OpenMP construct overhead has 

been performed on large scale systems [9, 12, 28] as well as smaller scale SMPs [57].  

Liao et al. [57] evaluated OpenMP on chip multithreading platforms, including the NAS 

and SPEC benchmarks for a Sun Fire V490 and a Dell Precision 450 workstation. They 

devised several experiments in order to get a better understanding of the behaviour of 

OpenMP on such architectures.   
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Evaluation of the OpenMP SPEC benchmark suite has been performed on the Fujitsu 

PrimePower 2000, SGI Origin 3800, and the HP PA-8700 systems by Saito et al. [76].  In 

2001, Aslot et al. [5] evaluated the SPEC OpenMP benchmarks on a Sun Enterprise 450 

SMP system.  An evaluation of the SPEC OpenMP benchmarks was performed by 

Fredrickson et al. [28] in addition to the NAS OpenMP benchmark suite on a Sun Fire 

15K SMP.   

The NAS OpenMP benchmarks were first evaluated at the time that they were released 

by Jin et al.[44].  The NAS OpenMP benchmarks have been further evaluated in [79] on 

large scale SMP clusters in order to investigate the causes of performance variability.  

Maury et al. [19] evaluated a CMP/SMT hybrid using OpenMP on a 4-way SMT system 

and a simulated CMP and found the memory subsystem to be the primary performance 

bottleneck. 

Several parallel programs such as HMMER have been evaluated in [84] where they 

evaluate the performance of bio-informatics programs.  HMMER was also evaluated by 

Purkayastha et al. [73] on 4, 8 and 16-way Intel Xeon SMP nodes using OpenMP. 

2.4 Scheduling and Operating System Noise 

 

Job scheduling is a critical component in modern operating systems.  An operating 

system’s scheduler has the task of deciding which threads are assigned time on the 

CPU(s) of a system.  Time periods are usually of fixed length, unless the process finishes 

before the end of its time slot.  The Linux scheduler works by priority scheduling, 

assigning each thread a priority.  The priorities of the threads are modified after each time 

slot, with threads that have not been executed rising in priority and threads that have just 

completed their time slot being of lower priority.  The Linux scheduler in the 2.4.x 

kernels used a single process queue which held information about all of the active tasks 

and their priority.  Each time a new task was to be assigned, the queue needed to be 

traversed.  The scheduler in the 2.5.x and higher kernels was upgraded to the O(1) 

scheduler to avoid having to traverse the queue after each time interval.  The new 

scheduler functions by having many queues, one for each priority.  This avoids the need 

to traverse all of the active processes each time a scheduling decision must be made, only 

the highest priority queues need to be searched. 
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Operating system noise is a term describing the overhead caused by running the 

requisite daemons and services required by the operating system.  This overhead can be a 

significant factor in determining the performance of high-intensity workloads.  The actual 

time devoted to running operating system tasks is typically negligible but the swapping of 

such small jobs into a processor group that is running a full workload can cause a job 

imbalance which can degrade system performance by delaying some execution threads.  

This causes delays to all of the other related program threads when thread 

synchronization is necessary.  This noise is most significant when the system is running a 

multi-threaded process that uses all of the processors in a shared memory system. 

 

2.4.1 Prior Art 
 

The work in [62, 94] has been the only work on devising algorithms for OpenMP loop 

scheduling [94], and thread pairing [62]. In [94], the authors focused on altering the 

behaviour of OpenMP applications executing on SMPs with SMT processors. They 

proposed a self-tuning loop scheduler to react to behaviour caused by inter-thread data 

locality, instruction mix and SMT-related load imbalance. McGregor and his colleagues 

[62] introduced new scheduling policies that use runtime performance information to 

identify the best mix of threads to run across processors and within each processor. They 

have achieved a 7% to 28% improvement over the default Linux scheduler.  Others have 

attempted to develop scheduling methods for improved performance on SMP machines 

[72] as well. Methods for scheduling on SMT systems [81] have also been introduced 

that attempt to take advantage of the symbiotic nature of some processes when running 

on an SMT system.  Work by Nikolopoulos et al. [4, 68] has examined scheduling 

algorithms that can be used to improve performance by adaptively scheduling processes 

while taking into account bus bandwidth and memory pressure issues. 

Previous research has shown that system noise may have a dramatic effect on high-

performance computing systems [45, 71].  In [71], Petrini and his colleagues noticed that 

their application has superior performance when using three processors per node instead 

of the full four.  Using a number of methodologies, they discovered that this is due to 

neither the MPI implementation nor the network, but the system noise including OS 
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daemons, kernel threads, and OS real-time interrupts, among other things.  The effect of 

system noise on the performance of applications has also been verified in [45, 89].  

2.5 System Power Consumption 

 

The process of power modeling is a very in-depth process that can be accomplished 

using a wide range of techniques.  Primarily, power modeling is done using software 

simulation based on the design files used to design the logic circuits in question, with 

programs such as HSPICE [87].  The estimation of the power consumption of a given 

system can be roughly determined using guidelines that have been found experimentally 

by measuring the current consumption of the system under various workloads.  A 

common power simulation approach is the use of popular power simulation programs 

based on the Alpha family of processors such as Wattch [10].  Simulators such as Wattch 

use predetermined power consumption values to estimate the approximate energy 

consumption of each individual instruction.  The power simulation program then 

interfaces with a simulator, like SimpleScalar [7].  The major problem with this approach 

is that it does not easily translate over to current real commercial systems.  Power 

modeling of existing commercial systems whose design is not available to the public 

presents a much more difficult problem, as the models developed for such systems do not 

have enough information about the implementation of the device being modeled to make 

the models extremely accurate.  The power simulation programs available rely on in 

depth circuit information that was available for processors such as the Alpha.  Such 

detailed information is not available from Intel, which provided the CPUs used in this 

investigation.  However, measurements from Intel Corp. for their CPUs [3] provide the 

basic metrics of power consumption that are used in some of the experiments detailed in 

this thesis.   

This thesis avoids many of the problems associated with modeling power consumption 

by measuring the power consumption of real systems.  This provides the most accurate 

method of studying power consumption as the power consumption measurements are 

within ±3% of the actual system power consumption.  The power measurements were 

obtained using a digital multi-meter equipped with a data recorder.  The measurements 

were taken from the power supply side of the machines, which means that the 
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measurements taken represent the real power consumption of the system including all of 

the power loss associated with inefficiencies in the power supply. 

 

2.5.1 Power Metrics 
  

The following metrics are used to study the power-performance characteristics of 

systems. 

  

Performance:  High-performance computing has always been concerned with 

performance.  Performance of an application running on a system is given by wall-clock 

execution time, D. 

  

Power:  Theory [66] tells us that the power consumed by a CMOS processor, in watts, 

is equal to the activity factor of the system (percentage of gates that switch for each 

cycle) multiplied by the capacitance of the CPU times the voltage squared times the 

frequency.  This is shown in Equation 2.1. 

fCVP 2α=                                  (2.1) 

Note we have ignored the power expended due to short-circuit current, and the power 

loss from leakage current, as the dynamic power consumption, αCV
2
f dominates in 

CMOS circuits.  

Frequency is directly proportional to the supply voltage.  Therefore, power is 

proportional to the cube of a changing frequency.  However, historical data [3] suggests 

that power on modern processors is proportional to the square of the duty cycle.   

  

Energy:   Power is the consumption at a discrete point in time.  Energy is the cost 

during the execution time, D, and is shown as: 

∫ ×==
D

avg DPPdtE
0

                    (2.2) 

  

Power-performance efficiency:  This metric allows choosing the operating point at 

which maximum energy saving can be achieved with acceptable performance 
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degradation.  The energy-delay product is used to quantify the power-performance 

efficiency, as shown in Equation 2.3:  

DEDE ×=.                                 (2.3) 

  

2.5.2 Prior Art 
 

Several architectural proposals have been put forward in an attempt to reduce the 

power consumption of processors including proposals to enable the decay of information 

in processor caches [37], and a very interesting proposal to allow processor operation at 

very low voltages and corresponding error correction [25].  As this thesis is not 

concerned with making architectural changes to existing CPU designs, no more details 

relating to such proposals will be provided.  Instead we will concentrate on methods of 

reducing power consumption that are done using software. 

There have been quite a number of micro-architectural studies on the subject of energy 

reduction of modern day processors.  These include dynamically tuning processor 

resources with adaptive processing [2], comparison of SMT and chip multiprocessing 

[56], and heterogeneous multi-core architectures [52, 53].  Most of this research has been 

done with single-threaded applications and through simulations, or analytical methods.  

This thesis concentrates on multi-threaded workloads on real systems. 

There have been attempts to reduce overall power usage through the use of compiler 

optimizations [47] and also by controlling power management systems through compiler 

flags and simulation [92].  Recent attempts have used real-time information from 

hardware performance counters to attempt to schedule threads for performance and 

power consumption [18] on SMT and CMP systems.  Additional work has focused on 

previous run profiling for creating databases that can suggest configurations for the 

system when running certain programs [60]. 

Dynamic voltage and frequency scaling is known as one of the most effective methods 

to reduce CPU power consumption, unfortunately at the expense of performance 

degradation.  In fact, the semiconductor industry has recently introduced many energy 

saving technologies into their chips.  The most successful of these have been SpeedStep 

technology from Intel as well as PowerNow! and Cool'n'Quiet from AMD.  Several 

papers have been published on research utilizing such features to reduce power and 
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energy consumption, from devising a compiler algorithm for optimizing single-threaded 

programs for energy usage on laptops [36] to power and energy management techniques 

for servers and data centers [51]. Power consumption has also been studied for high-

performance computing workloads in SMP and AMP servers [3, 8] and in high-performance 

clusters [29, 30].   

The authors in [3, 8] describe the process of creating an AMP node from a commercial 

Intel SMP server.  An AMP is a system that contains multiple different processors.  The 

processors can be different architecures running at the same or different speeds, or be the 

same architecture but running at different speeds.  In [3], Annavaram et al. analyze the 

energy per instruction (EPI) gains that can be obtained from using CPUs operating at 

different frequencies.  In fact, they determined that by utilizing a setup that consists of 

one fast processor to run sequential code, assisted by three slower CPUs to run parallel 

code, one could reduce the overall EPI of a system while maintaining a higher speed than 

a normal SMP using the fixed power budget of one 2.0GHz Intel Xeon processor.  They 

used the SPEComp benchmarks as well as several other applications in their study; 

however, their work did not address HT-enabled systems [3].   

In [8], Balakrishnan et al. investigated the impact of performance asymmetry of 

different AMPs on commercial applications as well as SPEComp applications.  For 

commercial applications, they observed significant performance instability.  They were 

able to eliminate this for some applications by devising a new kernel scheduler ensuring 

faster cores never go idle before slower ones.  For SPEComp scientific applications with 

tight coupling among different threads, they found stability, but with poor scalability as 

the slowest core forces faster ones to idle.  To eliminate performance asymmetry, they 

changed the static OpenMP loop scheduling used to dynamic scheduling.  However, this 

resulted in degraded performance.  This work also did not address HT-enabled systems.  

Although, the work in [8] is only focused on performance asymmetry, they indicate AMP 

systems can be effective for power/performance efficiency.  

2.6 Summary 

 

Although the area of shared memory multi-processors is a mature field and the 

research available for such systems is comprehensive, the study of modern hybrid SMT 
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and CMP-based SMPs is still evolving.  This thesis explores the characteristics of modern 

single and multi-core processors using real machines.  The majority of previous work on 

similar topics has been performed using simulations and non-SMT architectures.  The 

study of AMPs is still relatively new, and previous work has focused on fixed power 

budgets and performance stability.  This thesis expands on this breadth of research by 

investigating the power and performance benefits that can be realized using an AMP 

architecture.  The following chapters investigate the overhead caused by OpenMP 

constructs and then profiles single and multi-core processors running multi-threaded 

scientific benchmarks.  The knowledge gained from the profiling of real system is then 

used to implement a new operating system scheduler that increases system performance 

while increasing energy efficiency. 
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Chapter 3: Application Specifications 
 

This chapter details the benchmarking applications that are used in this thesis.  The 

NAS OpenMP [44] and SPEC OpenMP [82] benchmarks are considered industry 

standards that are updated on a regular basis.  The NAS benchmark suite is produced by 

the United States National Aeronautics and Space Administration (NASA).  The NAS 

benchmark suite is available as an open source suite of applications coded in high 

performance FORTRAN.  The SPEC OpenMP benchmarks were developed by the 

Standard Performance Evaluation Corporation in 2001.  They are available as a 

commercial package and are coded using FORTRAN and C. 

3.1 NAS Parallel Benchmarks 

 

The NAS parallel benchmarks [44] are published by NASA and are based upon the 

Computational Fluid Dynamics (CFD) calculations that are used in scientific aerospace 

computations.  The benchmarks consist of two types of application, 5 kernel applications 

replicate the behaviour of the main computational loops of CFD applications and 3 

simulated computational fluid dynamics applications that replicate the data manipulation 

activity of real CFD applications.  This thesis studies the behaviour of all 3 of the 

simulated CFD applications as well as 2 of the kernel applications.  Each application is 

discussed in detail in this chapter, and although this information is not strictly necessary 

for understanding this thesis, it is included for the interested reader who wishes to have 

more insight as to the nature of the benchmarks utilized here. 

 
3.1.1 NAS Simulated CFD Applications 

3.1.1.1 BT 

 

The BT benchmark is an application that solves a 3-D matrix of Navier-stokes 

equations [44].  The Navier-Stokes equations used are not in a fully compressed form.  

The benchmark uses an Alternating Direction Implicit (ADI) approximation factorization 

that produces equations that are decoupled from the x, y, and z directions which can then 

be solved directly [44].  The majority of the benchmark scales well, but some K 
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dimensional operations involve large memory strides, which makes this benchmark less 

scalable due to poor cache performance. 

3.1.1.2 LU 

 

The LU benchmark solves Navier-Stokes equations in a 3-D system using Symmetric 

Successive Over-Relaxation, by splitting the system into block lower and upper triangular 

systems [44].  This benchmark uses a pipelined computation where the first processor in 

the system provides information necessary for the execution of the thread run by the 

second processor and so on.  This makes this benchmark especially susceptible to 

synchronization issues.  The introduction of delay from one of the processors can create a 

ripple effect amongst the pipeline which significantly affects the performance of the 

benchmark.  Consequently this benchmark is best suited to execution on systems with a 

small amount of additional system overhead. 

3.1.1.3 SP 

 

The SP benchmark uses a factorization to decouple the x, y and z directions and 

directly solves the resulting decoupled linear equations [44].  This benchmark is 

somewhat scalable.  Its scalability is limited primarily due to the same cause as the 

scalability of BT, that memory operations in the K direction use large strides and cause a 

significant number of cache misses.  Therefore, this benchmark is dependent on memory 

subsystem performance for good performance. 

 

3.1.2 NAS Kernel Applications 

3.1.2.1 MG 

 

MG is a multi-grid solver for processing scalar Poisson equations.  Because of the 

nature of this multi-grid solver it is an excellent intensive memory test as it requires a 

significant amount of data movement [44].  The benchmark projects a fine-grid onto a 

coarse grid, solves the coarse grid and projects the result onto a fine grid, then performs a 

smoothing operation.  This process is repeated several times.  Due to the size of the grids, 

this benchmark is affected by memory subsystem speeds. 
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3.1.2.2 CG 

 

CG stands for conjugate gradient, which this test uses on a sparsely populated 

unstructured matrix that is meant to test the system’s ability to perform operations on 

such matrices [44].  This is of course memory fetch intensive as the locations of data are 

distributed randomly, therefore reducing the effectiveness of pre-fetching.  This 

benchmark scales well for small numbers of processors but begins to experience poor 

scaling between 8 and 16 processors. 

 

3.1.3 SPEC OpenMP Benchmark Suite 
 

The Standard Performance Evaluation Corporation (SPEC) [82] CPU2000 benchmark 

suite was adapted to run under OpenMP in 2001.  Since that time some modifications 

have been made to the suite.  The version of the suite used for testing in this publication 

was version 3.0, with the Purdue University source code fix for the art benchmark.  This 

version is almost identical to the only recently released version 3.1 (the Purdue 

University modifications were officially included with version 3.1).  Eleven benchmarks 

are provided with the suite, and six of those benchmarks are used in this paper, 

comprising five high performance FORTRAN benchmarks and one C benchmark.  The 

benchmarks simulate the run-time behaviour of real scientific applications.   

The apsi benchmark is a FORTRAN benchmark simulating an air pollution modeler 

[6].  It uses primarily floating point arithmetic.  It models the effects of temperature, 

pressure and wind on pollution particles and tracks the predicted diffusion of pollutants 

through the atmosphere.  The art benchmark is a C benchmark simulating image 

recognition and neural networks tasks [6].  An Adaptive Resonance Theory neural 

network is trained to recognize two objects, an airplane and a helicopter and then is used 

to find these objects in an image.  The fma3d benchmark is a FORTRAN benchmark 

based on a crash modeling simulator [6].  The benchmark is floating point operation 

intensive as it uses finite element analysis to model the effect of sudden impacts on 3-D 

solids.  The input files used model an explosive element of a cylinder.  The mgrid 

benchmark is a FORTRAN benchmark that is a multi-grid solver [6].  This benchmark is 

a standard multi-grid solver, a technique that is used in a variety of areas.  This 
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benchmark uses a constant coefficient equation on a cubical grid.  The nature of multi-

grid solvers makes them memory intensive as a large amount of data is moved during the 

computational process. 

The swim benchmark is a FORTRAN benchmark for modeling shallow water [6].  It 

calculates the velocity vectors of a shallow water data representation consisting of a 

1335x1335 matrix over a short time span.  It uses a significant amount of double floating 

point arithmetic.  Finally, the wupwise benchmark is a FORTRAN benchmark modeling 

quantum chromodynamics [6].  Quantum chromodynamics is the study of sub-atomic 

particles like quarks and gluons, and the interactions between them.  Wupwise stands for 

the Wuppertal Wilson Fermion Solver, which is used to calculate the interactions 

between quarks in the area of fundamental physics.  This is a very computationally 

intensive process. 
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Chapter 4: Workload Characteristics of SMT-Capable 
SMPs 
 

In this chapter we examine the SMT implementation from Intel called Hyper-

Threading.  We examine the performance of HT when used in multi-threaded shared 

memory applications.  Naturally, multi-threaded applications are very suitable for SMT 

systems.  However, HT, due to extensive resource sharing may not suitably benefit 

OpenMP high performance computing applications.  

This chapter first examines the performance of different OpenMP constructs on single-

core dual CPU HT-based Intel Xeon servers running the RedHat’s Linux kernels 2.4.22 

and 2.6.9. It is found that the overhead of OpenMP constructs with HT enabled is 

significantly larger than when HT is off [33].   

This chapter also presents an evaluation of scientific applications in the NAS OpenMP 

suite (version 3.2) [44], and SPEC OMPM2001 suite (version 3) [82] with kernel 2.6.9. It 

is interesting to discover the impact of SMT-based SMP systems on the performance of 

such applications. The effect of resource sharing within the processors on the overall 

system performance is evaluated by collecting data from the hardware performance 

counters. In addition, the architectural limitations of such a system are pinpointed by 

observing its cache performance [33].   

This chapter is organized as follows.  The experimental setup is described in section 

4.1.  In section 4.2, the performance results are analyzed. A summary of the findings is 

presented in section 4.3.   

4.1 Experimental Setup 
 

The experiments in this chapter were conducted on a single-core platform, a Dell 

PowerEdge 2850 server. The PowerEdge 2850 server from Dell has two single-core 2.8 

GHz Intel Xeon EM64T processors, a 16KB shared execution trace cache, a 16KB L1 

shared data cache, a 1MB shared and unified L2 cache, and 2GB of DDR2-SDRAM on a 

800 MHz front side bus. The operating system is RedHat’s Enterprise WS 4.1 Linux 

kernel version 2.6.9 and kernel 2.4.22. The L1, L2, and main memory latencies of the 
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processor are 1.44ns, 10.25ns, and 142.80ns, respectively. The main memory read and 

write bandwidths are equal to 3856 MB/s and 1855 MB/s, respectively.  

We used two different kernels to evaluate their impact on the performance. Both 

kernels support Hyper-Threading; however, the task scheduler has undergone a complete 

rewrite in the 2.6.9 kernel. The new scheduler is known as the O(1) scheduler, since it 

can make a scheduling decision in constant time and independent of the number of 

processors or the number of active tasks. This is accomplished by using multiple priority 

queues and a scheduling algorithm that is priority aware such that it can quickly decide 

between processes based upon which priority queue they reside in.  The previous version 

of the scheduler was also priority aware, but used a unified process queue which 

necessitated stepping through the entire queue for each scheduling period in order to 

make its next scheduling decision.   

The number of active processors was limited using the maxcpus=X boot option of the 

kernel. This option causes the kernel to only initialize and use X logical processors.  This 

method of disabling additional processors is preferable to running fewer threads when 

determining scalability since it better emulates a smaller system. 

 
4.1.1 Terminology 
 

Figure 4.1 and Table 4.1 describe the naming convention for specifying the 

configuration of the two machines.  Figure 4.1 shows the naming of each of the 

processors in an SMT-capable SMP system for up to 2 processors. 

The basic terminology used to describe these configurations is comprised of three 

parts.  The first part is either HToff or HTon, which describes the state of Hyper-Threading 

in the system.  The second term indicates the total number of application threads that 

were used.  The third term represents the number of physical processor chips used in the 

tests (either 1 or 2). 
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Figure 4.1:  Processor numbering for a SMT system with a maximum of 2 processors 

Table 4.1:  Configuration Information 

Terminology Hardware Contexts Corresponding Architecture 
Serial B0 Serial 

HTon-2-1 A0, A1 SMT 

HToff-2-2 B0, B1 2-way SMP 

HTon-4-2 A0, A1, A2, A3 SMT-capable 2- way SMP 

 
4.1.2 Application Characterization 
 

Application characteristics were gathered at run-time using the hardware performance 

counters available on the Intel Xeon processors. We collected data using the Intel VTune 

Performance Analyzer version 7.2 [41].  The Intel Fortran and C/C++ compilers (version 

8.1) were used to build the benchmark applications. 

Collecting profiles of real systems can be a very time consuming process.  The number 

of performance counters available for use is extremely limited requiring multiple runs of 

a single application to collect all of the required profiling information.  This is further 

exasperated by using large data set benchmarks which require a significant amount of 

time to finish execution.  In order to collect the most comprehensive profile possible, the 

data collected must be collected for the entire runtime of the application, and all of the 

application runs must be confirmed by running the same tests multiple times.  For 

example, in order to collect 13 performance metrics for a system configuration using the 

SPEC benchmark suite used in this thesis one has to run at least 26 iterations of the 

benchmark, 13 for collecting the data and at least 13 to confirm the data, not including 

runs which are not properly confirmed and must be thrown away.  With each iteration of 

the SPEC benchmarks taking many hours, a single configuration profile can easily take 

an entire month of processing time to complete successfully. 
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4.2 Experimental Results and Analysis 

 

This section describes the results and analysis of our experiments on the PowerEdge 

2850 server.  We first present the overhead of OpenMP constructs. Then, we evaluate the 

performance of applications and metrics that may point to potential architectural 

bottleneck due to resource sharing on HT processors. We are particularly interested in the 

effects of sibling logical processors. Particular attention is paid to the performance gaps 

in the HTon-4-2 and HTon-2-1 cases. Results are shown for kernel 2.6.9, unless otherwise 

noted. 

 

4.2.1 EPCC  
 

Overhead due to synchronization and loop scheduling is an important factor in the 

performance of shared-memory parallel programs written in OpenMP. The EPCC 

OpenMP microbenchmarks (version 2.0) [74] were used to measure the overhead of 

synchronization and loop scheduling calls in the OpenMP runtime library. 

The synchronization benchmark measures the overhead incurred by work-sharing and 

mutual exclusion directives. The work-sharing directives include PARALLEL, DO/FOR, 

PARALLEL DO/FOR, and BARRIER. The mutual exclusion directives include SINGLE, 

CRITICAL, LOCK/UNLOCK, ORDERED, and ATOMIC.  

The loop scheduling benchmark compares the scheduling policies available with 

OpenMP. Specifically, it compares the overhead of the For directive when used with 

three scheduling policies: STATIC, DYNAMIC, and GUIDED. The STATIC policy 

determines scheduling at compile time and is well suited for programs with static 

workloads that can be easily divided among threads. The DYNAMIC and GUIDED 

scheduling policies are intended for programs with dynamic workloads that must be 

balanced between threads at runtime. All three policies have an additional parameter, 

chunk size, which specifies the size of a single work unit in terms of loop iterations. A 

smaller chunk size allows for finer-grained scheduling at the cost of more scheduling 

overhead. The GUIDED policy attempts to balance this trade-off by dynamically 

decreasing the chunk size.  
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4.2.1.1 OpenMP Synchronization 

 

The EPCC synchronization benchmark was used to find the overhead of OpenMP 

directives with varying a number of threads, with and without Hyper-Threading.  Figure 

4.2 depicts the overhead of different OpenMP synchronization directives for the C 

version (the Fortran directives are not shown but have slightly larger overhead). 

Interestingly, the synchronization overhead with Hyper-Threading enabled is 

significantly greater than the same number of threads on an HT-disabled system.  
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Figure 4.2:  Overhead of OpenMP synchronization. 

Figure 4.3 compares the impact of different kernels on OpenMP synchronization 

directives.  Overall, the new Linux kernel 2.6.9 performed on par with the Linux kernel 

2.4.22 in terms of synchronization overhead for the HT-disabled case (not shown here). 

However, the Linux kernel 2.4.22 was found to be superior when using HT as shown in 

Figure 4.3.  The difference between the 2.4.22 kernel overhead and the 2.6.9 kernel 

overhead is most likely the result of the extra processing required to assign the newly 

created threads to their respective priority queues in the 2.6.9 kernel.  The 2.4.22 kernel 

does not have this overhead as all processes are simply inserted into a single process 

queue. 
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OpenMP Synchronization Overhead
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Figure 4.3:  Kernel 2.6.9 vs. 2.4.22 impact on OpenMP synchronization overhead. 

4.2.1.2 OpenMP Scheduling 

 

OpenMP provides three options for scheduling loop iterations among threads: 

STATIC, DYNAMIC, and GUIDED.  Figure 4.4 shows the loop scheduling overheads for 

HToff-4-4 and HTon-8-4. As can be seen, the overhead of different OpenMP loop 

scheduling schemes is 2.5 to 8 times larger for Hyper-Threading than for an HT-disabled 

system.  
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Figure 4.4:  Overhead of OpenMP loop scheduling policies. 
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The STATIC scheduling is approximately as fast as DYNAMIC scheduling for larger 

groups, but of course does not have the benefit of dynamic load balancing.  It is clear that 

if the workload is large enough that large chunks are possible, DYNAMIC scheduling 

with its low overhead but load balancing benefits is clearly the best choice.  However, if 

the workload is dynamic and unbalanced as well as large, then GUIDED scheduling 

would be an excellent choice.  The overhead of STATIC(n) scheduling is nearly constant 

across all chunk sizes, n.  The overhead of STATIC(n) matches the overhead of STATIC.  

For both HT-enabled and HT-disabled cases, the overhead of GUIDED(n) is close to that 

of DYNAMIC(n).  Figure 4.5 compares the impact of two kernels on synchronization 

directives.  Except for the some Dynamic strategies and one occurrence of the Guided 

policy, kernel 2.4.22 is better than the 2.6.9 kernel. 
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Figure 4.5:  Kernel 2.6.9 vs. 2.4.22 impact on OpenMP loop scheduling policies. 

4.2.2 Application Performance and Analysis 
 

When determining the performance of an application, execution time is the most 

practical performance metric.  In this section, we present the performance of NAS and 

SPEC applications on our PowerEdge 2850 platform under the 2.6.9 kernel.  Figure 4.6 

shows the speedup for each of the NAS and SPEC application benchmarks on a variety of 

system configurations.  The speedup results are calculated using application runtime 

relative to the serial case.  For each application, the four columns can be considered as 
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two pairs.  The first pair is for one physical processor, with and without HT-enabled.  The 

second pair is for two physical processors. 
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Figure 4.6:  Speedup for NAS OpenMP and SPEC OMPM2001 applications under Kernel 2.6.9 

relative to the serial case. 

The goal of these tests is to understand if scientific multi-threaded applications can 

benefit from HT on real, commercial SMT-based SMP servers; and if they do not benefit, 

what architectural limitations exist in such processors.  In fact, it is not always clear if it 

is better to run two threads or one thread on each processor.  For instance, although BT, 

LU, MG, SP, and wupwise benefit from having two threads in one-processor execution, 

they suffer somewhat in the two-processor execution.  CG and swim perform the other 

way around.  Applications such as mgrid, apsi, and fma3d always benefit from HT.  

Interestingly, in art and LU, HTon-2-1 not only outperforms the serial case, but also 

outperforms HToff-2-2.  This means that a pair of hyper-threaded logical processors is 

able to outperform two real physical processors.  Swim is the poorest application.  It does 

not scale with either HT or SMP.  This lack of scalability has traditionally been the case 

for the OpenMP version of swim on platforms similar to the ones used here.   

BT, CG, LU, MG, and SP attain an average speedup of 35%, 6%, 10%, 9%, and 19%, 

respectively, when HT is enabled. For the SPEC suite of applications, wupwise, mgrid, 

apsi, and fma3d achieve an average speedup of 37%, 68%, 31%, 49%, and 26%, 

respectively. While swim is the only application with a slowdown of 4%, art has the best 

average speedup of all applications, equal to 115%. Overall, applications achieve a 33% 

speedup on average.  
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Table 4.2 summarizes the average performance gain when logical processors are 

enabled.  It is evident that the HT implementation of SMT cannot provide a performance 

gain for 2-processor executions, at least for our multi-threaded applications. 

Table 4.2: Average speedup gained by enabling HT for NAS and SPEC Parallel benchmarks. 

Physical Processors NAS OMP SPEC OMP Overall 

1 34% 92% 63% 

2 -2.2% 3.3% 0.55% 

 

4.2.2.1 Trace Cache Analysis 

 

In this section, we investigate the reasons behind the possible flaws of Hyper-

Threading.  Using hardware performance counters of Intel Xeon EM64T, we studied the 

behaviour of the trace cache for NAS applications as well as art, apsi, and swim from 

SPEC.  Figure 4.7 presents trace cache misses, while Figure 4.8 depicts trace cache 

delivery rate for these applications. 
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Figure 4.7:  Trace cache misses 

Compared to the baseline single processor system without HT, the HT-enabled system 

outperforms it on almost every task.  The exception to this is when the increased 

processing of the HT system causes a bottleneck in the trace cache, causing performance 

to suffer.  Therefore, except for programs that create a large number of trace cache misses 
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that are also very bus bandwidth dependent, HT provides improvements over the single 

processor system.  
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Figure 4.8:  Trace cache delivery rate (trace cache fetches per 100 clock cycles) 

It can be observed in Figure 4.7 that when the number of trace cache misses increases, 

and due to memory bandwidth constraints the trace cache delivery cannot be increased, 

the performance of the HT system suffers.  This implies that memory intensive 

applications are more likely to suffer from trace cache starvation, decreasing the 

effectiveness of HT when used with such applications. This can be understood by 

comparing Figure 4.6 to Figure 4.7 and Figure 4.8.  For instance, when performance is 

significantly worse for the CG on HTon-2-1 compared to the HToff-2-2 and HTon-4-2 

cases, one can observe a marked increase in the trace cache misses from the HTon-2-1 

system.  This also occurs for the SP benchmark, but it can be observed that SP’s 

performance does not suffer because there is a corresponding increase in the trace cache 

delivery rate.  Only in the case when the trace cache misses increase and the cache 

delivery rate drops, does the performance suffer.  The HTon-4-2 system is able to avoid 

this problem by its increased system resources, which significantly reduce the trace cache 

miss rate, avoiding the pitfalls seen in the HTon-2-1 case.  For the case of diminishing 

performance at the HTon-4-2 level, one can observe that the main performance bottleneck 

is the cache memory bandwidth.  In Figure 4.9, the increased number of 2
nd
 level cache 
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misses over the serial case corresponds to the decreased performance of the swim 

benchmark illustrated in Figure 4.6.  
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Figure 4.9:  2

nd
 Level Cache Misses. 

4.3 Summary 

 

In this chapter the overhead due to OpenMP constructs has been examined, comparing 

the 2.4.22 Linux scheduler with the O(1) 2.6.9 Linux scheduler.  It was found that overall 

the STATIC loop scheduling was a good choice for small chunk size applications while 

DYANMIC and GUIDED are the best choices as chunk size increases.  It was also found 

that the 2.4.22 scheduler exhibited slightly less OpenMP overhead than the 2.6.9 

scheduler.  In addition, the implementation of SMT from Intel, Hyper-Threading was 

analyzed to determine its potential benefits in increasing system performance.  It was 

determined that HT can only be of benefit for a small number of applications for a 2-way 

system, although it can be of benefit in a single processor system.  The cause of this lack 

of speedup when enabling HT was identified as being a memory system limitation.  The 

increased memory pressure caused by doubling the number of running threads (by 

turning on HT) causes an overall system slowdown that cannot be offset by the increase 

in the number of simultaneously executing threads. 

Liao et al. [57] have previously studied OpenMP overhead and we find that our results 

are consistent with their findings on a Dell 450 Precision workstation. Their NAS and 

SPEComp benchmark results are fairly consistent with our findings.  However, their 



-37- 

testing methodology involved using two physical processors running 2 threads for HTon-

2-1 tests, resulting in a partial load situation, while our results were performed with the 

load entirely on a single HT-enabled processor. In addition, our newer system has lead to 

some performance improvements over the system used by Liao et al. 

With the information that was gathered in this chapter, we can now focus on the most 

relevant metrics for determining the optimal configuration of modern multi-processor 

systems.  The work illustrated here on single-core processors can be extended to multi-

core processors within similar environments.  Therefore, the prime metrics discussed in 

this chapter such as memory bandwidth and cache miss rates can be compared to newly 

emerging commercial multi-core processor systems.  In the next chapter we examine 

multi-core systems in a similar yet more in depth method to determine if the traditional 

performance metrics are suitable for judging the performance of such new systems. 
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Chapter 5: Characterization and Analysis of Multi-Core 
SMPs 
 

The placement of multiple cores on a single processor die is an emerging technology 

in today’s commercial market.  As the design of new processors with consistently higher 

clock speeds has slowed due to cooling concerns, the attention of industry has shifted 

from faster individual processors to groups of processors in order to increase the overall 

performance of CPUs.  The emergence of chip multi-processing and the hybridization of 

this technology with SMT and SMP technology creates an interesting platform from 

which we can determine the optimal operating environment for these emerging 

technologies. 

This chapter investigates dual-core two-way systems available with Intel’s Hyper-

Threading technology and examines the reasons behind the performance of such systems 

under various configurations and workloads [31]. 

The first generation of Intel Xeon CMT processors have two distinct cores with 

separate 2MB L2 caches.  Each core has two hardware contexts, when enabled.  The 

introduction of dual-channel main memory further complicates the situation with chip 

multi-threaded SMPs, where a number of CMT processors are used in a conventional n-

way SMP configuration.  This can create further bottlenecks as each individual physical 

chip shares a memory controller between its two cores, and therefore the two physical 

chips require a method of ensuring memory consistency and bus arbitration while taking 

into account that there are two channels to main memory.  As a result, the competition for 

shared resources is intense.   

CMT-based SMPs present new challenges as well as new opportunities to maximize 

performance.  Given a set of applications and a number of CMT processors there are 

ample opportunities to control how many threads, and which threads, to co-schedule on 

different cores or contexts in order to achieve performance.  It is our intention in this 

chapter to identify the shared resources that might become a bottleneck to performance 

under different configurations. 

Traditionally, OpenMP applications have been developed for flat SMP systems.  With 

the availability of modern CMT processors, hybrid SMP configurations may perform 
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differently due to workload characteristics of applications.  They also present new 

challenges to the systems software to accommodate inter- and intra- parallelism among 

threads.  Greater demand on cache subsystem, increased bus transactions, and stall cycles 

may significantly affect the performance of OpenMP applications [69]. 

The first contribution of this chapter is the performance evaluation of scientific 

applications in the NAS OpenMP suite [31] in section 5.2. It is interesting to discover the 

impact of multi-core SMT-based SMP systems on the performance of such applications. 

We consider the effects of resource sharing within the processors on the performance by 

collecting data from hardware performance counters. We attempt to pinpoint architectural 

limitations of such a system by observing its overall cache performance, cycles per 

instruction (CPI), branch prediction rates, bus transactions, ITLB and DTLB hit rates and 

number of stalled cycles.  In section 5.3, an investigation is performed into the 

performance of the different configurations using a variety of multi-application 

workloads.  The performance of the systems while overloaded with twice as many 

execution threads for a given benchmark as are available in hardware is then investigated 

in section 5.4.  Finally, an investigation into the effects of operating system noise is 

detailed in section 5.5 

5.1 Experimental Methodology 

 

The experiments were conducted on a Dell PowerEdge 2850 SMP server.  The 

PowerEdge 2850 has two dual-core 2.8GHz Intel Xeon EM64T processors with 12KB 

shared execution trace cache, and 16KB L1 shared data cache on each core.  A 2x2MB 

L2 cache is allocated with one 2MB L2 cache for each core on a chip.  There are 4GB of 

DDR-2 SDRAM on an 800 MHz Front Side Bus.  The chip’s core is the Paxville core, 

whose basic architecture is described in Figure 5.1.  The operating system is Red Hat 

Linux Enterprise WS 4.1 with Kernel 2.6.9-11.  Using LMbench [63] we have measured 

the L1, L2, and main memory latencies of the processor as 1.43ns, 10.61 ns, and 

136.85ns, respectively.  The main memory read and write bandwidths are 3.57 GB/s and 

1.77 GB/s, respectively. 

The system was tested using the LMbench benchmark to determine if any memory 

bandwidth differences existed between the operation of threads on a single physical chip 
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and the operation of those same threads spread out to both physical chips.  The main 

memory read and write bandwidths when using two physical chips are 5.43 GB/s and 

1.61 GB/s respectively.  This emphasizes the utilization of the secondary memory access 

controller in the second chip as well as the dual channel memory architecture available.  

The decreased write bandwidth is most likely due to consistency requirements with 

respect to the two memory access controllers. 

To test the system in a variety of configurations, some of the tests were run by 

masking off some of the available processors in the system such that they could not be 

used by our application threads.  This enabled us to test the performance of the system 

using different thread distributions between the existing resources.  The default Linux 

scheduler was used for assigning the individual threads amongst the specified processors. 

 

Figure 5.1:  Intel Xeon Dual-Core Chip Layout 

5.1.1 Terminology 
 

The test results detailed in the next section show the results for the testing on a variety 

of different configurations.  Our intention is to find the best set of architectures for each 

application under study running with a given number of threads.  Figure 5.2 presents the 

labeling used for the hardware contexts in the HT-enabled and HT-disabled systems.  

Such labeling will help understand the hardware contexts available for use in each 

configuration. 
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Figure 5.2:  Processor numbering for 2-way Dual-core System 

Table 5.1 shows the different configurations used in our study.  The basic terminology 

used to describe these configurations is comprised of three parts (four parts for the 

overloaded cases).  The first part is either HToff or HTon, which describes the state of 

Hyper-Threading in the system.  The second term indicates the total number of 

application threads that were used.  The third term represents the number of physical 

processor chips used in the tests.  The first three terms are identical to the system 

terminology in Chapter 4.  For the overloaded tests, the fourth item is the number of 

hardware contexts available for use.  There is no need for a fourth item for non-

overloaded cases as there are as many hardware contexts available as the number of 

application threads.   

Table 5.1: Configuration Information 

Terminology Hardware Contexts Corresponding Architecture 

Serial D0 Serial Uni-processor 

HTon -2-1 C0, C1 SMT 

HToff -2-1 D0, D1 CMP 

HTon -4-1 C0, C1, C2, C3 CMT 

HToff -2-2 D0, D2 SMP 

HTon -4-2 C0, C1, C4, C5 SMT-based SMP 

HToff -4-2 D0, D1, D2, D3 CMP-based SMP 

HTon -8-2 C0, C1, C2, C3, C4, C5, C6, 

C7, C8  

CMT-based SMP 

HTon -4-1-2 C0, C1 Overloaded SMT 
HToff -4-1-2 D0, D1 Overloaded CMP 

HToff -4-2-2 D0, D2 Overloaded SMP 

HTon -8-1-4  C0, C1, C2, C3 Overloaded CMT 
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5.2 Single Application Results 

 

In order to present these results in a fair manner, the configurations must be divided 

into several groups, such that the configurations can be compared to configurations with 

similar amounts of resources.  The HTon-2-1 configuration must be examined separately 

from the rest of the data as it has by far the smallest amount of resources available to it.  

In this configuration it shares a trace cache between executing threads along with several 

functional units on the CPU, in addition to having only one 2MB L2 cache available for 

use.   

The second group is much larger in that the HToff-2-1 configuration can be compared 

directly to the HTon-4-1 configuration, the only difference between the two being the 

presence of HT.  The third group comprises the HTon-4-2 and HToff-2-2 configurations, 

which can also be compared to the second group, as the difference between these two 

groups is the use of both physical chips, although only at 50% usage to create resources 

similar to those available to the second group.  The fourth and final group is the HToff-4-2 

and HTon-8-2 group.  This group utilizes all of the resources available in our platform 

with HT on and off.  Sometimes, comparisons may also be made between groups, but 

only in the context of performance per resources available to help determine the 

configurations that make the best use of the resources available to them. 

 

5.2.1 Cache Performance 
 

The performance of the cache is very important to overall system performance, and 

can illustrate potential benefits and drawbacks of certain system configurations.  The L1 

and L2 cache miss rates are presented in Figure 5.3(a) and 5.3(b).  The first observation 

that can be made by examining the graphs, is that the L1 cache miss rates are flat across 

the different configurations.  This seems counter-intuitive, but is a byproduct of the 

benchmark applications themselves, as they use a large amount of infrequently changing 

variables in their calculations, and only a small number of new variables for each loop.  

This means that a large number of L1 cache requests are hits, while only a small number 

are misses, requesting the few new variables required for the next loop.  This leads to a 

good L1 cache miss percentage due to the large number of requests. 
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Examining the HTon-2-1 configuration, we can see that it has relatively good trace 

cache performance and excellent overall hit rates within each level of cache for all of the 

applications with the exception of the L2 miss rate for the LU benchmark.  The excellent 

cache performance can be attributed to several factors, one being that there is relatively 

little contention for the cache resources, and the limited computational resources 

available mean that the memory bus is free for pre-fetching operations during execution.   

The second group is similar to the third group in term of the trends in memory 

performance, with the HTon configurations having a higher miss rate than the HToff 

configurations.  This is not unexpected as the HTon configurations have less memory 

available to the system per execution thread, thereby causing more cache evictions, which 

are not offset by the sharing of data between the threads. 

The final group of HToff-4-2 and HTon-8-2 have fairly comparable memory 

performances, with the HTon-8-2 having the advantage in terms of its trace cache 

performance for the CG benchmark, while the HToff-4-2 configuration has an advantage 

for the L2 miss rate on the LU benchmark.  
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(a)       (b) 

Figure 5.3:  (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate 

The effect of enabling HT on the different architectures leads to a 2.8% increase in L1 

miss rate for group 1, a 0.01% increase on group 2, and a 3.4% and 11.0% decrease for 

groups 3 and 4, respectively.  The average first level cache miss rate is 20.1% across all 

applications for all HToff configurations, while the average first level cache miss rate for 

HTon configurations is 17.9%.  The CG benchmark has a small perturbation, most likely 

caused by interference with the executing computational loops. 
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The second level cache miss rates fluctuate between the different applications, but the 

changes in the LU benchmark are quite significant; therefore, the results detailed here 

neglect the LU miss rates.  The effect of enabling HT on the different architectures leads 

to a 105.5% increase for group 1, a 55.9% increase on group 2, a 150.5% increase for 

group 3 and a 37.2% decrease for group 4.  The average second level cache miss rate is 

2.35% across all applications for all HToff configurations, while the average second level 

cache miss rate for HTon configurations is 5.35%. 

The LU benchmark spans a large memory area throughout its execution and its 

memory access patterns require that previous computational results be present in memory 

for use in future computation, leading to a disadvantage for computationally limited 

configurations, as they cannot perform in large parallel batches, and old results are 

evicted from the cache before they are needed again.  This leads to a much larger increase 

in L2 cache miss rate when enabling HT, with a 7260% increase for group 1, a 2121% 

increase for group 2, a 177% increase for group 3 and a 1242% increase for group 4. 

The trace cache miss rate of each of the architectures is detailed in Figure 5.4.  It 

shows that the enabling of HT has an effect on the trace cache miss rates of the different 

architectures, leading to a 101.5% increase for group 1, a 20.9% increase on group 2, a 

12.9% decrease for group 3 and a 5.1% decrease for group 4.   
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Figure 5.4:  Trace Cache Miss Rates 

The average trace cache miss rate is 59.5% across all applications for all HToff 

configurations, while the average trace level cache miss rate for HTon configurations is 

56.8%.  The high increase in trace cache miss rate for group 1 is most likely due to its 
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direct comparison to the serial case, where the trace cache of the Intel processor has a 

significant efficiency advantage over a multi-threaded workload, in which it must predict 

the behavior of several threads instead of a single active thread. 

5.2.1.1 TLB Performance 

 

By examining the Figures 5.5(a) and 5.5(b), we can see that the number of ITLB 

misses rises between the different groups.  The number of ITLB misses increases as the 

complexity and resources of the architectures increase.  This is true for group 1, group 2, 

and if CG and LU are excluded it is also true for group 3.  For group 4 the ITLB misses 

see a decrease between the HToff and HTon configurations across all of the benchmarks 

except for CG.  DTLB misses are relatively flat across all groups (except for HTon-8-2 for 

BT and LU) indicating that the increases in complexity do not significantly impact the 

performance of the DTLB. 
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Figure 5.5:  (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB Miss Rate 

 

5.2.2 Stalled Operation 
 

The examination of the number of cycles spent stalled due to memory order clearing, 

mis-predicted branches, lack of instructions in the trace cache, or the delay caused by the 

need to load data in from memory can help to determine why some of the configurations 

are behaving the way that they do.  Figure 5.6 illustrates the percentage of run time that 

the system spends in the halt state for a variety of architectures. 
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The number of cycles spent in a stalled state for the HTon-2-1 configuration is poor 

relative to the other configuration groups.  This is an indication of thread contention for 

shared resources in the cores.  Group 2, 3 and 4 show similar patterns once again, with 

the HTon configurations having more stalled cycles than the HToff configurations.  

Interestingly, the configurations from group 3 are worse in terms of percentage of stalled 

cycles throughout all of the tests compared to group 2.  The average percentage of stalled 

cycles for the HToff configurations is 0.83%, while the average for the HTon 

configurations is 1.62%. 
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Figure 5.6:  % of Total Execution Spent in a Stalled State 

5.2.3 Branch Prediction 
 

Figure 5.7 shows the branch prediction rate for each of the architectures for all five 

benchmarks.  We can see that the branch prediction rates are excellent for almost all 

benchmarks across all configurations, with the exception of two of the HTon 

configurations from groups 2 and 3 for CG and HTon-8-2 for MG.  The branch prediction 

rate does have an effect on the total number of stall cycles that an architecture incurs, as a 

mis-predicted branch can cause a memory order clear event and may affect the relevance 

of data in the trace cache. This helps to explain the number of stalled cycles and 

consequently, the high CPI that the HTon configurations in groups 2 and 3 have for the 

CG benchmark. 
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Figure 5.7:  Branch Prediction Rate 

5.2.4 Bus Transactions 
 

When examining the bus transaction characteristics of the configurations presented in 

Figure 5.8, it is clear that group 1 is the only group that has the memory bandwidth 

capacity left over to perform any kind of pre-fetching activities.  Group 1 spends ~50% of 

its time in 4 of 5 of the benchmarks pre-fetching data into the cache.  The only other 

instance of significant pre-fetching is the HTon-8-2 configuration for the CG benchmark.  
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Figure 5.8:  Pre-fetching Bus Accesses 

5.2.5 Cycles Per Instruction 
 
When examining the CPI of the different configurations presented in Figure 5.9, many 

of the observations made in the previous sections can be observed impacting the 

efficiency of the system.  One can see a direct correlation between the results in the 

previous sections and the higher than average CPIs of some configurations when running 
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some of the benchmarks.  It is interesting to note that the high CPIs of the HTon 

configurations from groups 2 and 3 running the CG benchmark correlate directly to very 

poor branch prediction rates and relatively high L2 cache miss rates, which combine to 

give these two configurations higher CPIs than those in their respective groups.  The poor 

CPI of the HTon-8-2 configuration executing MG also corresponds to a poor branch 

prediction rate but without the high L2 cache miss rate.  This makes sense as a high 

branch mis-prediction rate would cause many flushes of the execution pipeline and 

therefore reduce overall efficiency.    
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Figure 5.9:  Cycles Per Instruction 

5.2.6 Wall Clock Performance 

 
The NAS benchmarks were run through a series of ten independent trials, with 

minimal variance between tests (<~1-5%).  The results are detailed in Figure 5.10.  The 

runtimes of the NAS benchmarks show an interesting trend that is new to the dual-core 

Intel Xeon architecture.  Specifically, that the use of SMT on a CMT core can be 

extremely beneficial to the performance of a system.  Of particular interest are the results 

for the 4 threaded HTon case utilizing both cores on a dual-core chip in HTon mode (HTon-

4-1).  In this case the overall performance of a single SMT dual-core chip is comparable 

to the performance of two dual-core processors operating with HToff.  Despite the single 

HTon-4-1 chip having half as many available computational resources, the appreciable 

slowdown over the dual processor dual-core SMP case is only 13.6%. 

Overall, the HToff-4-2 configuration has the best wall clock times, with the exception 

of CG, and has the highest average speedup across all of the applications.  This follows 
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the same trend found for the HTon-4-1 case, in that despite the fact that the CMT 

architecture has half as many available computational resources, the appreciable 

slowdown over the CMP-based SMP case is only 12.8%. 
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Figure 5.10:  Speedup for NAS OpenMP applications. 

When overall processor resources are increased to utilize two dual-core processors 

with HTon (HTon-8-2), the results are different to previously observed HT-related 

behavior in that the overall effect on performance is minimal, in contradiction to previous 

work on single-core HT architectures in chapter 4.  However, it should be noted that in 

the case of applications in which there is a significant amount of data sharing, HT has 

excellent speedup (such as in the case of the application CG) which offsets its poorer 

performance on the other benchmarks. 

The overall average speedup for group 1 for the HT-enabled architectures versus the 

HT-disabled case is 1.81 versus speedup of 1 for the serial case.  The average speedup for 

group 2 was 1.86 for the HTon case and 1.42 for the HToff case.  Groups 3 and 4 had 

average speedups of 1.43 and 2.10 for the HTon architectures and speedups of 1.83 and 

2.10 for the HToff cases, respectively. 

Except for the CG case, the performance of the HTon-8-2 case is worse than the HToff-

4-2 case.  To better understand the reasons behind this, we examine the CG application in 

detail.  In general, the HTon-8-2 setup results in less total bus accesses than the HToff-4-2 

case, with an L1 cache miss rate of 47.1% versus 56.2% for the HToff-4-2 case.  This, 

coupled with an L2 cache miss rate of 1% versus 9.6% translates into a higher number of 

non-pre-fetching bus accesses from the HToff-4-2 case.  The HToff-4-2 case has a lower 
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CPI of 1.04 versus the HTon-8-2’s CPI of 5.02 which would imply that the performance 

of the HToff-4-2 case should be superior, but a large number of bus transactions in the 

HTon-8-2 case are speculative pre-fetching (51.2% of all bus accesses) while the vast 

majority of bus transactions for the HToff-4-2 case are not the result of pre-fetching.  This 

leads to much more speculative execution in the HTon-8-2 case which is not accounted for 

in the CPI as it is counted as cycles per instruction committed.  The trace cache 

performance of the HTon-8-2 system is worse than the HToff-4-2 case for all of the 

benchmarks with the exception of CG and MG, with the HTon-8-2 configuration having a 

major advantage of 35.6% miss rate versus the HToff-4-2’s miss rate of 87.3% for CG.  

The average speedup of each of the architectures is detailed in Table 5.2. 

Table 5.2. Speedup for architectures 

SMT 
(HTon-2-1) 

CMP 
(HToff-2-1) 

CMT 
(HTon-4-1) 

SMP 
(HToff-2-2) 

SMT 
based 
SMP 

(HTon-4-2) 

CMP 
based 
SMP 

(HToff-4-2) 

CMT 
based 
SMP 

(HTon-8-2) 

1.81 1.42 1.87 1.83 1.43 2.11 2.10 

 

5.3 Multi-Application Results 
 

The performance of the given architectural configurations is also of interest in a multi-

programmed environment.  The following results were collected using the same 

configurations as in section 5.2, but utilized more than one concurrent program execution 

at a time to examine the ability of the architectures to handle complimentary and 

uncomplimentary workloads of multiple programs.  As such, these results are not directly 

comparable to those in the previous section.  The goal of these multi-application tests is 

to determine the performance of the different available system configurations in a variety 

of multi-application workloads.  All of the workloads used for testing fully load the 

system, using all of the system resources in a balanced way between the applications; for 

example, the HToff-4-2 configuration uses four threads, two for the first application and 

two for the second application, while HToff-2-1 uses two threads, one for the first 

application and one for the second application.   

Two NAS benchmarks were selected for this task, the FT benchmark, which is a 

Fourier transform application requiring mostly computational resources and limited 

memory resources, and the CG benchmark, which requires significant memory resources.  
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Three separate tests were conducted; the first used a combination of CG and FT for a 

computationally demanding application paired with a memory intensive program.  The 

second used two copies of FT to determine the system’s performance with mostly 

computationally intense workloads, and the third used two copies of CG to determine the 

system’s performance under a memory intensive workload.  The maximum number of 

execution threads available to each system configuration was used, with the threads being 

distributed evenly between the executing programs.  The threads were not tied to any 

specific processor, and the scheduler was free to relocate threads amongst the available 

processors. 

 
5.3.1 Cache Performance 
 

By studying the L1 and L2 cache miss rates of the different architectures presented in 

Figure 5.11(a) and 5.11(b) we can observe that the 1
st
 level cache miss rates are relatively 

stable across the different configurations.  However, the 2
nd
 level cache miss rates show 

that the HTon-2-1 configuration has difficulty achieving a high hit rate for the CG 

benchmark, as does the HTon-8-2 configuration.   
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(a)      (b) 

Figure 5.11:  (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate 

In general, all of the HTon configurations have a worse L2 miss rate than their HToff 

equivalents.  This is most likely due to cache contention as the two programs cause cache 

evictions of important data belonging to the other program.  This also explains why CG is 

affected to a greater degree by the system sharing than the FT benchmark as it uses a 

much larger data set and is more memory intensive than the FT benchmark. 
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The trace cache miss rates shown in Figure 5.12 illustrate that the HToff configurations 

for both group 2 and group 3 are better than the HTon configurations for both the CG/FT 

and CG/CG workloads, with the HTon configurations having an advantage in the FT/FT 

workload.  The advantage for the HTon configurations for the FT/FT workload for group 

2 is fairly significant, but the advantage is even greater for the HTon configuration in 

group 3.  Finally, group 4 shows that there is no advantage to the HTon configuration in 

terms of trace cache misses in any of the workload configurations.   
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Figure 5.12:  Trace Cache Miss Rate  

5.3.1.1 TLB Performance 

 

Figures 5.13(a) and 5.13(b) show that the HTon configurations suffer from excessive 

ITLB misses in both groups 2 and 3 when running the CG benchmark.   
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Figure 5.13:  (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB Misses 
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The HTon configuration from group 3 also has difficulties with its DTLB for the 

FT/FT and CG/CG workloads.  This implies that the execution units are potentially being 

starved of instructions, but further investigation into the amount of stalling that occurs 

due to these misses is required to determine the real effect of this finding. 

 

5.3.2 Stalled Operation 
 

The percentages of the total run time that the system spends in a stalled state are 

presented in Figure 5.14.  Upon examination, the amount of total execution cycles spent 

in a stalled state for this multi application workload is surprising.  When running a 

supposedly complimentary workload (CG/FT), we can see that a significant amount of 

time is spent in a stalled state.  From this we can infer that the system is having a very 

difficult time providing the programs with the required resources, possibly switching the 

processors on which the programs are running frequently.   
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Figure 5.14:  Percentage of Operation Time Spent Stalled 

5.3.3 Branch Prediction 
 

When examining the branch prediction rate detailed in Figure 5.15, we can see that the 

HToff configurations from groups 2 and 3 are both worse than the HTon configurations for 

all of the tests except for the CG/CG workload.  Group 1 has relatively good branch 

prediction across the workloads, and group 4 shows that there is only a marginal 

difference between the branch prediction rates between the HTon and HToff 

configurations.  
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Figure 5.15:  Branch Prediction Rate 

5.3.4 Bus Transactions 
 

The pre-fetching activities being undertaken by each of the configurations presented in 

Figure 5.16 reinforce the stalled operation results examined earlier in this section.  The 

configurations spend a significant amount of time pre-fetching when running the CG/FT 

workload.  From this we can infer that the source of the stalling is not due to memory 

bandwidth issues, but instead can be attributed to other factors such as pipeline flushes. 
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Figure 5.16:  Percentage of Pre-fetching Bus Accesses of All Bus Accesses 

5.3.5 Cycles Per Instruction 
 

The CPI results in Figure 5.17 indicate that despite the high number of execution 

cycles in which the systems are stalled for the CG/FT workload, the actual CPI of the 

HTon configurations does not suffer significantly.  With the exception of the CG/CG 



-55- 

workload, the HTon configurations for groups 2 and 3 are better than the HToff 

configurations in terms of CPI.  Group 4 shows that the HTon configuration is worse than 

the HToff configuration for all workloads. 
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Figure 5.17:  Cycles Per Instruction 

5.3.6 Wall Clock Performance 
 

The results examining multi-application performance are presented below in Figures 

5.18(a), 5.18(b) and 5.19.  The goal of these multi-application tests was to determine the 

performance of the different available system configurations in a variety of multi-

application workloads.  All of the workloads used for testing fully load the system, using 

all of the system resources in a balanced way between the applications, for example, the 

HToff-4-2 configuration uses four threads, two for the first application and two for the 

second application, while HToff-2-1 uses two threads, one for the first application and one 

for the second application.  The applications were specifically chosen because CG is 

typically memory bound, while FT is compute bound.  Thus, the performance numbers 

presented in the Figure 5.18(a) directly correlate to running half of a system with 

compute bound threads and half with memory bound threads.  Figure 5.18(b) 

demonstrates the system performance for an entirely compute bound workload, while 

Figure 5.19 demonstrates the performance of a fully memory bound workload.  The 

results clearly indicate that there is a tangible performance benefit to running compute 

bound and memory bound applications in parallel, as the performance of both 

applications is better in such a balanced environment than a system running alike 

applications. 
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(a)      (b) 

Figure 5.18:  (a) CG/FT and (b)FT/FT Multi-Application Speedup 

The speedups show that by a small margin, the applications enjoy running with 

themselves, but small variances occur that make it difficult to make strong generalized 

conclusions.  The overall best performer of any configuration is HTon-4-2, which is the 

fastest overall for two of the three configurations.  The HTon-8-2 configuration is the 

fastest for the CG/FT test but only by a small margin.  This indicates that for multi-

application workloads, HT offers a tangible performance benefit, whether the system is 

balanced in its workload or not.  In addition, it indicates that for multi-application 

workloads, clever scheduler design could achieve optimal performance of the system by 

utilizing HT and varying the number of threads for the active applications running on the 

system.   
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Figure 5.19:  CG/CG Multi-Application Speedup 

5.3.7 Cross-Product Multi-Program Results 
 

The different architectural configurations were tested using a pair of applications, and 

completed for all possible two-program pairs in all configurations.  The program pairs 

were run with enough evenly distributed threads as to fully load the architecture under 
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test.  The results are shown in a box and whiskers plot in Figure 5.20.  The boxes in the 

figure represent the ranges of data (the 25
th
 and 75

th
 percentile of the data falls within the 

box), while the whiskers represent the maximum and minimum of the data. 

From these results we can conclude that the HToff-4-2 (CMP- based SMP) architecture 

provides the overall best performance for the majority of program pairs across all of the 

benchmarking programs.  However, for certain program pairs, the HTon architectures can 

provide better overall performance.  The performance of the CG benchmark when 

running with the BT benchmark on the HTon architectures is significantly better than on 

the HToff architectures, which accounts for the large whiskers on the CG results for the 

HTon architectures.  However, BT does not see significant speedup when run in 

conjunction with CG on HTon architectures. 

Multi-Programmed Speedup of NAS Benchmark Pairs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

S
p
e
e
d
u
p

H
Ton

-2
-1

H
Tof

f-2
-1

H
Ton

-4
-1

H
Tof

f-2
-2

H
Ton

-4
-2

H
Tof

f-4
-2

H
Ton

-8
-2

Configuration

 

Figure 5.20:  Multi-programmed speedup of pairs of NAS benchmarks for all architectures 

 

5.4 Overloaded Configuration Analysis 
 

The four configurations presented in Figures 5.21 to 5.28 represent balanced yet 

overloaded workloads for the processors.  All four cases have twice as many threads as 

they do execution contexts in which to run them.  The LU benchmark has been omitted 



-58- 

from these tests as it suffers from incredibly high runtimes when the system is 

overloaded. 

 

5.4.1 Cache Performance 
 

In Figure 5.21(a) and 5.21(b) we can see that the cache performance of the overloaded 

cases is excellent given their intensive workload.  The L1 cache miss rates stay relatively 

stable across all of the configurations, with a small increase in the HTon-8-1-4 case for 

CG.  L2 cache miss rates are similar to those for the non-overloaded cases, rising by a 

significant but not overwhelming amount given the increased workload, with the majority 

of the increase in miss rate occurring from the SP benchmark.   
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Figure 5.21:  (a) 1
st
 Level Cache Miss Rates for Overloaded Cases, (b) 2

nd
 Level Cache Miss Rates for 

Overloaded Cases 

The trace cache miss rates for the overloaded cases are shown in Figure 5.22.  The 

best trace cache performance for the overloaded cases occurs with both of the HTon 

configurations, both having much better cache miss rates than their HToff alternatives.  

This illustrates that the HTon configurations are benefiting from their shared trace cache.  

This means that the system is fairly well balanced in terms of program synchronization if 

the HTon configurations are able to exploit their shared trace cache. 
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Figure 5.22:  Trace Cache Miss Rates for Overloaded Cases 

The DTLB miss performance of the overloaded cases in Figure 5.23(a) is similar to 

that for the non-overloaded cases in Figure 5.5, seeing no significant increase due to the 

thread overloading.  The ITLB performance of the overloaded cases in Figure 5.23(b) 

shows an increase for most of the configurations with the exception HTon-8-1-4, which 

sees a real benefit to its ITLB miss rate when overloaded. 

Normalized DTLB Load and Store 

Misses - Overloaded

0.8

0.85

0.9

0.95

1

1.05

1.1

BT CG MG SP

N
o
rm

a
li
z
e
d
 o

v
e
r 

S
e
ri

a
l

HTon-4-1-2 HToff-4-1-2
HToff-4-2-2 HTon-8-1-4

ITLB Misses - Overloaded

0

10

20

30

40

50

60

70

80

90

100

BT CG MG SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

 
(a)      (b) 

Figure 5.23:  (a) DTLB Load and Store Misses and (b) ITLB Miss Rates for Overloaded Cases  

5.4.2 Stalled Operation 
 

The percentage of the total number of execution clockticks in which the system was 

stalled is presented in Figure 5.24.  We can see that it is slightly higher for an overloaded 

configuration than for a non-overloaded configuration in Figure 5.6, rising by as much as 

3.9% over the non-overloaded configuration, with HTon-4-1-2 seeing the highest 

increases.  This is to be expected as we overload the system, as it will require more 
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memory order clear instructions and in general require the flushing of the pipeline more 

often, especially when switching contexts to a new execution thread. 
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Figure 5.24:  Percentage of Stalled Operation for Overloaded Cases 

5.4.3 Branch Prediction 
 

The branch prediction rate for the overloaded cases detailed in Figure 5.25 is 

excellent.  The branch prediction problems that occurred with the HTon-4-1 non-

overloaded configuration (Figure 5.7) are no longer occurring and overall the 

configurations are doing well compared to their non-overloaded configurations. 
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Figure 5.25:  Branch Prediction Rate For Overloaded Configurations 

 

5.4.4 Bus Transactions 
 

The percentage of bus accesses that are for pre-fetching activities is shown in Figure 

5.26.  It can be seen that for both of our HTon configurations, the limiting factor to 

performance appears to be the computation resources available to the system, while the 
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HToff configurations are still limited by memory performance.  This is keeping in line 

with the observations made for the configurations in their non-overloaded states as shown 

in Figure 5.8. 
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Figure 5.26:  Percentage of Pre-fetching Bus Accesses For Overloaded Configurations 

 

For the majority of the applications, this advantage in pre-fetching does not 

necessarily lead to a performance increase as the cache hit rates are still very comparable 

to the HToff cases which rely on less overall pre-fetching activities as illustrated in Figure 

5.8.  This explains why the HTon cases do not gain a significant performance advantage 

over the SMP cases, as the HTon cases also have less total available cache memory to 

them as more threads share a smaller overall cache area. 

 

5.4.5 Cycles Per Instruction 
 

Comparing the CPI of the overloaded configurations in Figure 5.27 with the non-

overloaded configurations in Figure 5.9, we find that the CPIs are not greatly affected by 

overloading.  The overall impact for all of the cases is an average increase in CPI by 

1.35%, with the best performance being a drop of 46.3% in CPI for the HTon-8-1-4 

configuration for the BT benchmark, and the worst being a CPI rise of 48.8% for the 

HTon-4-1-2 configuration for the SP benchmark. 
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Figure 5.27:  CPI For Overloaded Configurations 

 

5.4.6 Wall Clock Performance 
 

The behaviour of the HT for the overloaded case of HTon-8-1-4, where 8 threads are 

executing on a single dual-core processor with HT shows interesting results.  With the 

exception of BT, the HTon-8-1-4 case is one of the fastest of all of the tested 

configurations.  Overall, it results in a slowdown of only 7.6% versus the HToff-4-2 case.  

This is 0.9% slower than the slowdown seen by the HTon-4-1 configuration.  However, 

when you consider the best case for each benchmark between the HTon-8-1-4 and HTon-4-

1 the overall result is a speedup over the HToff-4-2 case of 3.25%.  This implies that there 

are future opportunities for performance better than that of a system with twice the 

computational resources by using intelligent scheduling techniques with HT-enabled on a 

single dual-core processor. 
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Figure 5.28:  Overloaded NAS Benchmarks Speedup 
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It is interesting to examine the performance numbers from the CG benchmark, 

specifically the overloaded HTon-8-1-4 case versus the HToff-4-2 case.  In general, this 

benchmark benefits from additional execution threads that are located on physically close 

cores.  Interestingly, the best performance on this benchmark comes from the HTon-8-1-4 

case, even though the cache hit rates and trace cache hit rates are lower than other 

configurations.  However, the overloaded cases have a slight advantage in terms of 

efficiency of bus usage over the non-overloaded cases, as the HTon-8-1-4 case executes 

significantly more pre-fetch operations than do the non-overloaded cases.  The 

percentage of operations that were pre-fetching on the HTon-8-1-4 configuration was only 

49.5% versus a 0.08% value for the HToff-4-2 case, as illustrated in Figure 5.10.  The 

HTon configurations have an advantage in terms of executing more pre-fetching 

operations than the HToff configurations throughout all of the tests, but in benchmarks, 

this pre-fetching is not beneficial to overall system performance.  In the case of the CG 

benchmark, the pre-fetching significantly improves the performance of the application. 

 

5.4.7 Overloaded Overhead 
 

Table 5.3 provides a comparison of the overloaded cases with their architectural 

equivalent non-overloaded case from section 5.2.   

Table 5.3.  Percentage degradation for overloaded cases versus non-overloaded cases 

 SMT CMP CMT SMP 

L1 31.7 -0.5 14.6 0.2 

L2 317.8 -35.9 -38.8 574.6 

Trace cache -12.3 12.6 -8.2 -0.3 

ITLB 96.5 1.2 -31.8 20.4 

DTLB -7.1 0.9 -5.3 -2.2 

Stalled 
Operation 57.6 4.0 575.8 303.5 

Branch 
Prediction -0.6 0.9 4.0 -0.4 

Bus 
Transactions

33.0 0.7 3510.6 -29.3 

CPI 20.4 0.9 -17.8 -6.7 

Speedup -4.2 -24.8 -14.8 25.7 
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One can observe that overloading the architectures has beneficial effect on speedup, 

particularly CMP and CMT, when neglecting the LU benchmark.  The SMT 

configuration has increased cache miss rates for all levels of cache and sees a large 

increase in CPI.  The CMP architecture sees a drop in L1 and L2 cache and marginal 

increases for its TLBs, with only minor increases in stalls and CPI.  CMT sees mostly 

increasing cache miss rates, but also has a significant increase in stalls and pre-fetching 

activities.  SMP sees increases in cache miss rates and stalls, but enjoys higher pre-

fetching rates and a lower CPI. 

5.5 Effect of Operating System Noise 

 

Operating systems have been shown to have an effect on the performance of intensive 

workloads in multi-processor systems [45, 71].  The overhead required to maintain OS 

services does not represent a large portion of the system’s overall computational load, but 

the time spent providing system services can cause the greater computational workload to 

lose synchronicity which creates slowdowns, as the workload must wait at 

synchronization barriers.  As the number of simultaneously executing threads increases 

so does the penalty that is incurred at barriers, as more threads wait for a small proportion 

of threads that are lagging behind the average threads in the workload.  These effects 

have been observed in large cluster systems using MPI applications and real-time 

systems, so it is reasonable to investigate multi-core systems to determine the extent to 

which operating system noise affects the performance of such platforms running multi-

threaded applications in OpenMP. 

While there have been some effective techniques proposed in [45, 71] to reduce the 

impact of system noise, such as removing unnecessary OS daemons and kernel threads 

(or moving them to another processor), lowering tick rate, and co-scheduling, leaving one 

processor for OS tasks is still a simple, viable option to effectively separate system noise 

from the computation [89].  Meanwhile, past work on real-time processing with Linux 

schedulers [11] has found that reserving a CPU specifically to respond to real-time 

priority threads significantly decreases the latency for real-time threads as well as the 

interrupt response time.  These solutions have all addressed the performance impact of 

OS noise, and as such it is pertinent to attempt such an approach with our system in an 
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attempt to increase performance.  This is a useful approach as it helps alleviate unwanted 

cache evictions caused by OS threads that adversely impact our HPC applications. 

 

5.5.1 Operating System Noise Effects on Single-Threaded Applications 
 

In order to verify that operating system noise has an effect on smaller SMP systems a 

preliminary test of five NAS benchmark applications was run on a system using a single 

execution thread.  The Linux processor affinity mask was used to ensure that processes 

were bound to a specific CPU.  One test was performed with all threads in the system 

bound to a single processor (using the affinity mask), including the benchmark thread.  A 

second test was performed on the same machine with the benchmark execution thread on 

a secondary processor while all operating system tasks were assigned to the primary 

processor.  Each application was run several times in order to ensure accurate and 

reportable results.  The results of these tests are detailed in Figures 5.29 and 5.30.  Figure 

5.29 illustrates the effect of operating system noise on the cache performance of the 

system.  The effect of operating system noise on the cache performance of the LU 

benchmark is noteworthy, resulting in an increase in cache hit rate of 20.6%.  The 

remainder of the applications show a minor improvement or no change in their cache hit 

rates. 
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Figure 5.29:  Improvement in cache hit rate without OS noise  

The results in Figure 5.30 indicate that the system can experience up to a 9.1% 

performance impact due to operating system noise, and all applications show some 
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decrease in performance due to the noise.  The LU benchmark has seen a decrease in 

runtime corresponding to its increased cache hit rate, as have BT and CG.  SP and MG 

have also both seen a decrease in runtime when OS noise is removed, indicating that the 

technique is effective for the entire range of benchmark tests. 

Percentage Improvement in Application Run 

Time Without OS Noise

0

1

2

3

4

5

6

7

8

9

10

BT CG MG LU SP

Im
p
ro

v
e
m

e
n
t 
(%

)

 
Figure 5.30:  Effect of operating system noise on system performance 

 

5.5.2  Operating System Noise Effect on Multi-threaded Applications 
 

Given the findings of the serial case research, a comprehensive study of the system 

under many different configurations was performed.  Operating system noise was isolated 

on the system by masking off a single processor (logical or physical depending on the 

configuration), and assigning OS tasks to that processor.  The resulting data, shown in 

Figure 5.31, indicates that the effect of OS noise can be significant with modern multi-

core processors.  OS noise almost always results in an increase in L1 and L2 cache 

misses, seeing an average degradation of 1.07% for the L1 cache hit rate and 3.02% for 

the L2 cache across all configurations and applications of the NAS benchmarks.   

The average improvement in cache hit rate for each configuration is shown in Figure 

5.31 for the NAS benchmarks.  The improvement percentages for each architecture 

correspond to the average improvement in L1 and L2 cache hit rates across all five of the 

NAS benchmarks.  The increase of cache hit rates is of particular importance, as the 

bottleneck to performance for such applications is most typically the memory access 

latencies and memory bandwidth. 
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Figure 5.31:  Improvement in Cache Hit Rate Without OS Noise 

For each of the configurations, the trend is that the degradation of cache hit rates is 

inversely proportional to the total number of processors in the system.  This is expected 

as the more processors that are in the system, the less overall impact occurs when a single 

processor is assigned to an OS task.  This corresponds with a resulting decrease in 

application runtimes, particularly for programs that are significantly impacted by OS 

noise, resulting in significant gains in terms of wall clock execution time.   

Two of the configurations presented here are special cases in that they were tested 

using one thread less than their operating system loaded counterparts.  This was 

unavoidable for testing these configurations, as the OS noise requires a free processor to 

offload its overhead onto, and for the fully utilized system configurations, this is 

impossible.  This means that although the HTon-7-2 and HToff-3-2 configurations may 

show a slowdown versus their operating system loaded partners, the systems operating 

without operating system noise have fewer overall resources available to them.  Despite 

this handicap they still manage to have gains in their respective cache hit rates for the 

benchmarks.  The HTon-7-2 and HToff-3-2 configurations show negligible improvement 

for their L1 cache hit rates, but have an improvement of 1.27 and 2.43% respectively for 

their L2 cache hit rates.  Despite having fewer resources available to it, the HTon-7-2 

configuration sees an 8.3% improvement in runtimes over all of the applications, with 

only one application seeing an increase in runtime resulting in a slowdown of 3.64% for 

the BT benchmark.  The HToff-3-2 configuration sees a much larger increase in wall 
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clock execution times seeing an average slowdown of 16.5% across all of the 

applications, with only one application, CG, showing an improvement of 1.55%. 

The effect of operating system noise on the runtime of such scientific applications is 

visible, with an average percentage decrease in wall clock times of 3.8% for all of the 

applications across all of the configurations.  If the results for the two configurations that 

have less overall system resources available to them due to the isolation of operating 

system noise (HToff-3-2 and HTon-7-2) are removed from the group, the results improve 

to an average percentage decrease in wall clock time of 7.0%.  All of the configurations 

(except for HToff-3-2) see a decrease in wall clock run times, ranging from 0.3% to 

13.5%.  The improvements in runtimes are detailed in Figure 5.32. 
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Figure 5.32:  Application Run-time Improvement  

5.6 Summary  

 

In this chapter, we presented performance of scientific applications from the NAS 

OpenMP suite on a range of system configurations with kernel 2.6.9 on a 2-way dual-

core Hyper-Threaded SMP.  Our performance results indicate that the majority of 

applications could benefit from using a single dual-core processor with HT enabled, in 

terms of total computing power per system resources available. However, only one 

application enjoyed performance gain of due to HT on both dual-core processors.  

By collecting data from hardware performance counters, we analyzed the effect of HT 

on the various system configurations as well as the effect of thread overloading on the 
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system. When utilizing all of the available system resources, most applications suffer 

from the increasing number of cache misses when both dual-core processors are enabled 

with HT enabled.  

The decisions made by the scheduler are crucial to the performance of HT.  With the 

optimization of the scheduler the performance of a single processor could be increased 

for scientific applications to almost the same performance level of a system with twice as 

many non-HT processors. 

In addition, it has been determined that operating system noise may cause significant 

performance degradation and could be a potential source of optimization for small scale 

multi-core SMPs.  The next chapter uses the findings of this chapter to propose a method 

of improving system performance, and takes advantage of an opportunity to reduce 

system power consumption at the same time. 
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Chapter 6: Power Management of Chip Multi-Threading 
SMPs 
  

Power consumption is an important design constraint in modern day servers and high-

performance server clusters.  This chapter explores the power-performance efficiency of 

Hyper-Threaded AMP servers, and proposes a scheduling algorithm that can be used to 

reduce the overall power consumption of a server while maintaining a high level of 

performance.  An AMP is a system that has a heterogeneous collection of processors.  

The processors can be of different types and/or operate at different speeds.  The AMP 

presented here has identical processors, running at different speeds. 

This chapter proposes a modification to the Linux scheduler as a method of potentially 

reducing the power consumption of a system, while producing less of a performance 

impact on the system than would have been otherwise achieved using the default process 

scheduler [32, 34].  Previous research has shown that system noise, including operating 

system (OS) interference with the application, has a dramatic effect on high-performance 

computing [71].  Using static clock throttling and processor affinity, we bind all OS 

activities to logical processor zero (or physical processor zero) that runs at a lower 

frequency than the rest of processors in the AMP.  In order to sustain the performance for 

the parallel OpenMP threads, all other processors run at their maximum frequency.   

The results in the previous chapter concerning the effect of operating system noise on 

system performance have been the motivation behind this method to offload system noise 

onto a single processor.  This reduced noise should correspond to an increased 

performance of the user threads such that the impact of reserving the CPU for system 

tasks is minimized.  In the event of a system load that does not correspond to a full load 

for a single processor, there exists an opportunity to reduce the frequency of the reserved 

CPU such that its load is as close to 100% as possible.  This clock throttling of the 

reserved CPU has a power savings effect.  

The rest of this chapter is organized as follows.  In Section 6.1, we describe the 

experimental framework including the AMP setup.  Section 6.2 examines the 

performance increase that is possible using the proposed scheduler over the default 

scheduler.  Section 6.3 describes the real power consumption measurements for a dual-
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core 2-way CMP/SMT hybrid that uses clock throttling.  Finally, we predict the effect 

that true frequency scaling would have on the power consumption of a dual-core 2-way 

CMP/SMT hybrid system in section 6.4.   

6.1 Experimental Framework 

  

The experiments in section 6.2 & 6.3 were conducted on a dual-core Dell PowerEdge 

2850 server.  The specifications of this platform can be found in section 5.1.   

 
6.1.1 AMP Setup 
  

To evaluate the power-performance efficiency of AMP over SMP systems, we created 

static AMP configurations on our 2-way dual-core platform through clock throttling and 

affinity control.  In clock throttling, one can set the duty cycle to one of the seven 

available levels.  Clock throttling has a similar impact on performance as reducing the 

frequency [3], but is not as ideal a solution as true frequency scaling, which should 

further increase the potential energy savings of the approach detailed in this chapter.  

This effect is predicted in Section 6.3. 

The Linux 2.6.9 kernel supports clock throttling through a sysfs interface with 

appropriate drivers.  The system was configured to enable CPU frequency scaling using 

clock throttling.  The p4-clockmod driver was built into the kernel and the standard sysfs 

interface was used.  The frequency governor was set to user-space control, creating a 

static operating point for clock throttling.  By static setup, we mean the duty cycle is set 

only once before the application run. 

We have implemented a new Linux scheduler, to be called power-saving scheduler 

(PS-Scheduler), by modifying the Linux scheduler to reserve a single CPU that runs only 

kernel threads, leaving the rest of the CPUs in the system to execute all user threads at 

maximum frequency.  This is accomplished by using the processor affinity properties 

available in the Linux 2.6.9 that allow processes to be bound to a specific set of 

processors, or an individual processor. 

The available operating points for the 2-way dual-core platform were 2.8GHz, 

2.4GHz, 2.1GHz, 1.8GHz, 1.5GHZ, 1.2GHz, 900MHz, 600MHz, and 300MHz.  The 

CPU frequency of the first physical processor was adjusted throughout the available 
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operating points for the execution of system activities, while the rest of processors in the 

system remained at the highest available clock frequency to run the application threads.  

However, our experimentation with the application benchmarks revealed the performance 

of the AMPs decreased significantly when the clock speed was reduced to under two 

times the front side bus (main memory pathway) speed of the machine, so only results 

from the operating points above two times the front side bus of each machine are 

reported. 

It should be mentioned that the duty cycle can only be set on a per physical processor 

basis on Intel multiprocessors.  Therefore, in the case of an HT-enabled system, this 

creates an asymmetrical imbalance among the logical processors executing the user 

threads (the benchmarks).  This can have a negative effect on the system performance. 

In order to differentiate between the possible configurations of our platform, a naming 

convention similar to the one used in chapter 5 is presented in Table 6.1.  Figures 6.1 is 

provided as a reference to help understand the different configurations.  The system is 

identical to the system in chapter 5 with the expression of AMP to indicate that the 

system is operating as an AMP followed by its HT status, either on or off, followed by 

the number of threads used and finally the number of physical processors in use. 

 
Figure 6.1:  Processor numbering for 2-way dual-core system 

Table 6.1: AMP Naming Convention 

Terminology Hardware Contexts Corresponding Architecture 

AMP-HTon-1-1 C0 used for OS, C1 AMP-SMT 

AMP-HToff –1-1 D0 used for OS, D1  AMP-CMP 
AMP-HTon –3-1 C0 used for OS, C1, C2, C3  AMP-CMT 
AMP-HToff –1-2 D0 used for OS, D2  AMP-SMP 
AMP-HTon –3-2 C0 used for OS, C1, C4, C5  AMP-SMT-based SMP 
AMP-HToff –3-2 D0 used for OS, D1, D2, D3  AMP-CMP-based SMP 
AMP-HTon –7-2 C0 used for OS, C1, C2, C3, C4, 

C5, C6, C7, C8  
AMP-CMT-based SMP 
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6.2 PS-Scheduler vs. the Default Linux Scheduler 

 

The main motivation behind the proposed scheduler is to sustain an SMP’s 

performance with the original O(1) scheduler, while providing energy savings.  Our 

intention in this section is to see if the new scheduler performs on par with the default 

scheduler in both HT-enabled and HT-disabled configurations.  The configurations in this 

section have all processors running at full clock speed, so they use the naming convention 

introduced in chapter 5 instead of that in section 6.1. 

Figure 6.2 compares the baseline performance of the PS-Scheduler with the default 

scheduler for the SPEC benchmarks for both HT-disabled and HT-enabled systems.  The 

performance of the PS-Scheduler compared to the default scheduler is promising, with 

almost all configurations and benchmarks seeing an improvement in performance.  The 

HTon-3-1 and HTon-3-2 configurations show the best speedup of the configurations at an 

average of 14.4% and 16.2% respectively.  The HTon-1-1 configuration shows the worst 

speedup, with a slowdown of 11.8%.  Only the HTon-1-1 and HToff-3-2 configurations 

show a decrease in performance with the new scheduler. 

Overall, the performance gain of the PS-Scheduler of the HT-enabled configurations 

with the original scheduler ranges from –11.8% to +16.2%, with an average performance 

gain of 5.3%.  For the HT-disabled case, the performance gain ranges from –9.1% to 

+4.4%, with an average performance gain of –0.9%. 
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 Figure 6.2:  PS-Scheduler vs. default scheduler for SPEC benchmarks 
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6.3 Real Power Measurements 

 

An experiment was setup in order to determine the actual power consumption of a real 

system utilizing the different schedulers.  A Dell PowerEdge 2850 Dual-Core 2.8GHz 

SMP was used for the testing, whose details are described in section 5.1.  The system was 

connected to a Keithley 2701 Digital Multimeter [49] with a Keithley 7700 data 

acquisition unit [48] installed.  The overall power consumption of the system was 

measured using a resistive element attached to the power cable leading into the system.  

Due to the nature of the rack-mounted system, power measurements on the output of the 

power supply inside the machine were impractical.  Therefore, the power consumption 

numbers presented here are affected by the power supply losses and take into account all 

components of the system fed by the main power supply. 

The SPEComp benchmark suite was used for real-world power measurement due to its 

longer run times, which enabled us to obtain consistent stable power measurements.  The 

power measurement equipment was validated through the use of a Wattsup EPS Pro 

power meter [23], and found to be within the acceptable error range of the two devices, 

with the Keithley meter having an error range of +/-1%. 

 

6.3.1 Average Power Consumption 
 

The average instantaneous power measurements for each of the configurations at the 

varying operating frequencies are presented in Figure 6.3 and Figure 6.4.  The power 

consumption of the system using the new scheduler is surprising.  In many cases, the new 

scheduler has higher instantaneous power consumption than the original scheduler.  The 

highest average instantaneous power consumption of either scheduler occurs with the PS-

Scheduler with a high of 337.4 W for the AMP-HTon-7-2 configuration running mgrid at 

2.8GHz.  This compares to the maximum value for the default scheduler of 320.9 W for 

the HTon-8-2 configuration running mgrid at 2.8GHz.  However, the average power 

consumption for all of the operating frequencies and configurations across all of the 

applications is lower for the PS-Scheduler at 262.4 W versus the default scheduler’s 

average of 272.1 W.  Given that the PS-Scheduler has faster runtimes than the default 
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scheduler, the higher instantaneous power readings do not necessarily translate into worse 

overall energy efficiency, as will be discussed later in this chapter. 

Power Comparision for PS-Sched Vs 
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Figure 6.3:  Average power consumption of HT-enabled configurations 

Power Comparision for PS-Sched Vs 
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Figure 6.4:  Average power consumption of HT-disabled configurations 

6.3.2 Slowdown and Energy Savings 
 

This section presents the actual slowdown in wall clock time that occurs when using 

the PS-Scheduler and the corresponding energy savings that occur.  The AMP frequency 
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in the figures in this section correspond to the CPU frequency of the first physical 

processor in the system.  The remaining physical processors are running at maximum 

frequency.  In the case of the HT-enabled processors, it should be noted that the first two 

logical processors are scaled in frequency.  Therefore, one logical CPU that is executing 

the user threads has a reduced frequency in addition to the reserved CPU. 

The results presented in Figure 6.5(a) show that the AMP-HTon-1-1 configuration on 

average does not perform well, with significant slowdowns occurring that yield almost a 

1:1 relationship between slowdown and energy savings, with the exception of the swim 

benchmark which sees both a speedup and a reduction in corresponding energy usage.  

This is contrasted by the AMP-HTon-3-1 results, where speedup occurs for both the 2.4 

GHz and 2.1 GHz operating points, providing energy savings of between 18 to 32% 

while simultaneously reducing execution time for all applications with the exception of 

the swim benchmark. 
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Figure 6.5:  Slowdown and energy savings for (a) AMP-HTon-1-1 and (b) AMP-HTon-3-1 

The results for the AMP-HTon-3-2 configuration presented in Figure 6.6 are similar in 

pattern to those of the AMP-HTon-3-1 configuration with speedup occurring for the 

applications between 2.4 GHz and 2.1 GHz and good resultant energy savings, with the 

exception of the swim benchmark, which sees some marginal improvement for the first 

two operating frequencies.  The AMP-HTon-3-2 configuration does lag behind the AMP-

HTon-3-1 configuration in total speedup and as a result shows lower potential energy 

savings.  The AMP-HTon-7-2 configuration shows good results for the apsi benchmark, 
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but the remaining benchmarks show a combination of slowdown and poor energy 

savings.  The apsi, mgrid and swim benchmarks benefit from the PS-Scheduler in terms 

of runtime, but mgrid and swim fall behind in terms of energy consumption.  The 

remainder of the applications suffer from both slowdown and increased energy 

consumption. 
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Figure 6.6: Slowdown and Energy Savings for (a) AMP-HTon-3-2 and (b) AMP-HTon-7-2 

The results for slowdown and energy savings for the HT-disabled architectures in 

Figure 6.7, show that the AMP-HToff-1-1 and AMP-HToff-1-2 configurations show good 

slowdown/savings for the 2.4 GHz operating point.  With the exception of swim for the 

AMP-HToff-1-2 configuration, the 2.1 GHz and 1.8 GHz operating points see too much 

slowdown to be able to realize any significant energy savings. 
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Figure 6.7: Slowdown and energy savings for (a) AMP-HToff-1-1 and (b) AMP-HToff-1-2 
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The final architecture that was examined, AMP-HToff-3-2, has its slowdown and 

energy savings illustrated in Figure 6.8.  The results are varied, with apsi and mgrid 

showing excellent results, while art exhibits terrible slowdown and consequently poor 

energy savings numbers.  The fma3d and wupwise applications show some energy 

savings are possible, but the resulting slowdown is slightly greater than the potential 

energy savings.  The swim benchmark shows some speedup, and some potential for 

energy savings as well. 
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Figure 6.8:  Slowdown and energy savings for AMP-HToff-3-2 

 
6.3.3 Energy-Delay Analysis 
 

To compare the schedulers fairly one must also take into account the speed of each 

scheduler in addition to the energy savings that can be obtained.  To this end, the energy-

delay analysis is presented in Figures 6.9 to 6.14 for the PS-Scheduler normalized to the 

default scheduler.  Energy-delay is a metric used to determine whether a trade-off 

between energy usage and the delay that is causes is beneficial or not.  Energy-delay 

products of less than 1 indicate a beneficial trade-off. 

The energy-delay of the HTon-1-1 configuration is presented in Figure 6.9.  We can 

observe that the energy-delay of the system operating at 2.4GHz is mediocre.  However, 

the efficiency at the 2.1GHz and 1.8GHz operating points is excellent with all of the 

applications having energy delays below 1.  Of course, this represents the significant 

energy savings that a single processor has over the baseline system with four physical 
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processors.  As such the HTon-1-1 configuration has good energy-delay products but is 

not very useful due to the loss of performance that it incurs. 
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Figure 6.9:  Energy delay for the PS-Scheduler in an HTon-1-1 configuration 

The energy delay figures for AMP-HTon-3-1 configuration in Figure 6.10 are very 

promising.  The AMP-HTon-3-1 configuration has a majority of the applications with 

energy delays of less than 1 for both the 2.4 GHz and 2.1 GHz operating points, but 

shows a significant increase in energy delay for the 1.8 GHz operating point.  Overall, its 

average energy delay for the 2.4GHz operating point is 0.75. 
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Figure 6.10:  Energy delay for the PS-Scheduler in an HTon-3-1 configuration 

The AMP-HTon-3-2 configuration’s energy-delay products are illustrated in Figure 

6.11.  The AMP-HTon-3-2 configuration is the best of all of the configurations, with none 
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of the applications having an energy-delay of above 1 for the first two operating points, 

and energy delays within the 0.6-0.8 range.  In addition, its performance is excellent, 

giving it both good energy consumption and performance. 
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Figure 6.11:  Energy-delay for the PS-Scheduler in an HTon-3-2 configuration 

For the AMP-HTon-7-2 configuration presented in Figure 6.12, the majority of 

applications do not see an energy-delay of less than one until the operating point is 

lowered to 2.1GHz or lower.  Half of the applications see a benefit to using the PS-

Scheduler.  The AMP-HTon-7-2 configuration with the PS-Scheduler can be beneficial 

but it is dependant on the type of applications which are being run. 
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Figure 6.12:  Energy-delay for the PS-Scheduler in an AMP-HTon-7-2 configuration 

The AMP-HToff-1-1 configuration in Figure 6.13 shows that an energy delay of less 

than one can be achieved for the upper operating points with the PS-Scheduler, for all 
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applications.  This behaviour abruptly ceases when the operating point is lowered below 

2.4GHz.  All of the applications have energy-delay products greater than 1 for all of the 

operating points below 2.4GHz. 
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Figure 6.13:  Energy-delay for the PS-Scheduler in an AMP-HToff-1-1 configuration 

The energy-delay products for the AMP-HToff-1-2 configuration are shown in Figure 

6.14.  One can observe that the energy-delay products for the 2.4GHz operating point are 

all below 1, indicating that the PS-Scheduler can provide a significant increase in 

efficiency for all of the benchmarks in the suite.  The efficacy of the PS-Scheduler 

technique quickly fades as the delay incurred at the lower operating frequencies 

outweighs any energy savings. 
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Figure 6.14:  Energy-delay for the PS-Scheduler in an AMP-HToff-2-1 configuration 

We can see that the energy-delay of the PS-Scheduler is on the whole mediocre for the 

AMP-HToff-3-2 case in Figure 6.15, with no significant overall savings.  Although art, 
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mgrid and swim benefit from using the scheduler, the majority of applications do not.  In 

fact, with the SPEC benchmarks, the system sees a general improvement of wall clock 

times but higher power consumption.  This leads to poor energy-delay products as the 

increase in speed does not offset the increase in energy consumption. 
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Figure 6.15:  Energy-delay for the PS-Scheduler in an AMP-HToff-3-2 configuration 

6.4 AMP Power Consumption Predictions With Future 
Technology 

  

Using a method similar to that in [3], we can estimate the effect that true frequency 

scaling would have on a dual-core system.  The power consumption of a 2.8GHz dual-

core Xeon processor is 135W when active and 32W when idle [42].  The authors in [3] 

provide a method based on historical data, where for a changing frequency, the power 

consumption is proportional to the square of the duty cycle.  Therefore, if a 2-way 

2.8GHz dual-core Intel Xeon processor system consumes 270W when highly active, the 

system at 2.4GHz would be expected to consume 198.3W (270W × (2.4/2.8)
2
) when 

highly active.  This corresponds to an energy consumption of 49.575W per core.  When 

CPUs are in an idle state the power consumption of the system is 64W, corresponding to 

16W per core.  Applying the same scaling as used for the active case, we determine that 

the idle energy consumption for a single core at 2.4GHz is 11.75W.  Using the same 

methodology, one can easily find the highly active power consumption of an AMP with 

one CPU operating at 2.4GHz and the other three CPUs operating at 2.8GHz to be 252W.  

Knowing the approximate energy consumption of our AMP systems, when highly active 
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or idle, allows us to estimate the power consumption while executing the SPEC OpenMP 

benchmarks. 

 

6.4.1 Slowdown and Energy Savings 
  

The energy savings and slowdown due to frequency scaling of the system while 

executing the SPEC benchmarks are presented in Figures 6.16 to 6.18.   

A prediction of the performance of the best configuration from the previous section is 

pertinent.  Therefore, the results for the AMP-HTon-3-2 configuration are presented in 

Figure 6.16.  Every application demonstrates a performance increase for the 2.4GHz and 

2.1GHz operating points.  The resulting energy savings for the AMP-HTon-3-2 

configuration for the 2.4GHz and 2.1GHz operating points, on average, across all of the 

benchmarks are 27.6% and 27.8% respectively.  This corresponds to an average speedup 

of 16.2% and 13.7% for the 2.4GHz and 2.1GHZ operating points.  The 1.8GHz 

operating point sees a slowdown of 32.4% and an energy loss of 5.33%. 

When comparing the frequency scaling estimates with the previously measured results 

in figure 6.6(a), we find that the energy savings using frequency scaling improve the 

results from 11.38%, 19.0% and –19.0% for the 2.4GHz, 2.1GHz and 1.8GHz operating 

points to 27.6%, 27.8% and –5.33%.  Obviously, the use of true frequency scaling should 

significantly improve the effectiveness of the PS-Scheduler for this configuration.  
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Figure 6.16: AMP slowdown and energy savings for SPEC benchmarks over HTon-4-2 
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In the HTon-7-2 case in Figure 6.17, we can observe that frequency scaling would 

improve the energy savings of the system by 21.3% on average over the PS-Scheduler 

results that were measured in Figure 6.6(b).   
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Figure 6.17: AMP slowdown and energy savings for SPEC benchmarks over HTon-8-2  

Overall, the average range of energy savings of the AMP-HTon-7-2 configuration for 

the benchmarks is +8.13% to +27.5%.  Swim, mgrid and apsi are the applications that 

benefit the most from the new scheduler, seeing an improvement in both performance and 

power consumption.  However, all of the applications see an improvement in power 

consumption. 

The slowdown and energy savings of the AMP-HToff-3-2 system are presented in 

Figure 6.18.  The apsi, mgird and swim benchmarks see the greatest benefit from the PS-

Scheduler with all three benchmarks experiencing a decrease in runtime as well as energy 

savings.  The swim benchmark exhibits the best behaviour showing an average speedup 

of 5.74% and energy savings of 26.5%.  The swim benchmark is a memory intensive 

benchmark [33], and is well known for its poor scalability.  Therefore, the energy savings 

can be attributed to two factors, the reduction of system noise and a smaller number of 

overall execution threads. 

Overall, the AMP-HToff-3-2 configuration has an average energy savings of 14.9% 

across all three frequencies and all of the benchmarks.  It has an average slowdown of 

9.1%.  A comparison to the previous results in Figure 6.8 show that energy savings 
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improve by 8.84%, 7.79% and 0.26% for the 2.4GHz, 2.1GHz and 1.8GHz operating 

points respectively for a true frequency scaling system. 
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Figure 6.18: AMP slowdown and energy savings for SPEC benchmarks over HToff-4-2 

6.4.2 Energy-Delay Analysis 
 

First, we examine the predicted energy-delay product of the most efficient 

configuration from section 6.3.  The energy-delay products for the AMP-HTon-3-2 

configuration are presented in Figure 6.19.   
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Figure 6.19:  Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-3-2 over HTon-4-2 
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When Figure 6.19 is compared with Figure 6.11 we can see that the energy-delay 

products of the predictive case are reduced.  This leads to a new average energy-delay of 

0.61 for the 2.4GHz operating point over the measured average energy-delay of 0.74.  

Overall, the performance of the PS-Scheduler with a system configured as an AMP-HTon-

3-2 is excellent and the energy savings are substantial. 

Figure 6.20 presents the energy-delay of the AMP running the PS-Scheduler 

normalized to the original scheduler for the HTon-8-4 case.  An energy-delay of less than 

one shows that the savings in energy consumption outpace the corresponding increase in 

execution speed.  Comparing Figure 6.20 with Figure 6.12 we can observe that energy-

delays have dropped by approximately 0.2 for the applications.  The average energy-

delay for the 2.4GHz operating point has dropped from 1.0 to 0.82.  Both the 2.4GHz and 

2.1GHz operating points now have all of the SPEC applications with energy-delays of 

below 1.  This indicates that the future applications of the PS-Scheduler are expected to 

improve as technology advances. 
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Figure 6.20:  Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-7-2 over HTon-8-2 

The results of the energy-delay analysis of the AMP-HToff-3-2 configuration are 

presented in Figure 6.21.  When comparing Figure 6.21 with Figure 6.15 we find that the 

energy-delays have improved but a number of applications still have energy delay 

products significantly higher than 1.  However, art, mgrid and swim have shown a further 

improvement to their efficiency with the PS-Scheduler and receive a significant benefit 
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from utilizing it.  From this we can conclude that the PS-Scheduler has a potential for use 

on non-HT systems for some applications. 
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Figure 6.21:  Normalized Energy-Delay for SPEC benchmarks for AMP-HToff-3-2 over HToff-4-2 

 

6.4 Summary 

 

In this chapter, the lessons learned from the previous chapters were used to design a 

new operating system task scheduler in an attempt to increase system performance and 

save energy.   

The power consumption of a real dual-core system was measured.  It was found that 

performance improvements could be made using the new scheduler on dual-core systems.  

In addition, total consumed energy could be reduced despite a higher instantaneous 

power usage using the new scheduler.  The best platforms for such a scheduler were 

determined to be the AMP-HTon-3-1, AMP-HTon-3-2 and AMP-HToff-2-2 architectures. 

The modified scheduler was then tested and its energy usage was estimated on several 

different computing platforms to determine the power consumption of an identical system 

with true frequency scaling.  These results indicated that the new scheduler could achieve 

good energy conservation on systems with very little performance impact.   

The new scheduler does a good job at reducing the energy consumption of AMPs 

running the SPEComp applications while having a minimal impact on the performance of 

the system.  The performance results using real power measurements indicate on average 
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15.6% energy savings and 6.1% slowdown for the HT-disabled case, and 7.1% energy 

savings and 4.8% slowdown for the HT-enabled case across all applications studied in 

this chapter. 
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Chapter 7: Conclusions and Future Work 
 

This thesis has explored the behaviour of single-core and dual-core symmetric 

multiprocessor systems using the OpenMP interface and the effect of Intel’s Hyper-

Threading technology.  The overhead incurred by using the OpenMP API was examined 

and it was determined that the 2.6.9 Linux kernel causes more OpenMP overhead than 

the 2.4.22 kernel for SMT architectures.  The behaviour of single-core architectures, in 

relation to their performance executing well-known high profile scientific benchmarking 

suites, has been examined in detail.  It was found that the memory system and CPU 

caches are the performance bottlenecks of the systems.  The trace cache performance was 

found to be a source of performance degradation as well.   

This thesis has performed an in depth exploration of the performance characteristics of 

multi-core processors equipped with SMT capabilities and investigated the effect of 

overloaded workloads on system performance.  From this investigation, it seems clear 

that the optimal platform for high performance computing on such systems lies in 

utilizing the SMT features available in the dual-core architecture.  This thesis has 

demonstrated that the performance of SMT technologies in multi-core processor designs 

can perform as well or better than SMP or CMP architectures by showing that a single 

multi-core processor with SMT capabilities can closely match the performance of a SMP 

or CMP machine with twice as many processors.  Therefore we can conclude that HT 

technology can be of use in the HPC domain, and in fact can provide tangible efficiency 

benefits over the non-HT alternatives when used in architectures that are composed of a 

single dual-core CPU or two single-core CPUs.  However, the benefits of utilizing HT 

have been negligible when the number of logical cores in the system rises above four.  By 

operating the systems with workloads creating two times as many threads as the number 

of available execution contexts, it has been shown that significant performance 

improvements can be achieved for some applications.  

The effect of operating system noise on such systems was explored, and found to be a 

potential area of improvement for such SMP/SMT systems.  These findings initiated 

research into methods of reducing operating system noise, and optimizing systems to 

increase performance as well as investigating the potential power savings that could be 
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realized using such schemes.  In addition, the possible power consumption benefit of 

SMT technologies has been explored, particularly as it relates to AMPs.  It has been 

shown that by reserving a CPU in a multi-processor system, both performance gains and 

power savings are possible for real systems.  This was demonstrated by measuring the 

power consumption of a real 2-way dual core system.  From this experimental data, the 

power consumption of a true frequency scaling system was predicted, showing that the 

energy savings of the proposed scheduler could be increased significantly when such 

scaling techniques are available for Xeon processors. 

Therefore, we can conclude that significant performance benefits can be realized, in 

addition to power savings, over the traditional SMP/CMP architectures.  CMP/CMT 

hybrid technology can be leveraged to provide performance levels equivalent to those of 

systems with twice as many computational resources.  CMT technology is a promising 

new architecture that when utilized correctly will be able to provide great benefit to the 

HPC scientific community in terms of both power and performance.  Coupled with the 

use of the scheduling method described in this thesis, the effect that such architectures 

can have within the HPC community is a positive one.  The increase in overall machine 

efficiency that can be achieved using such approaches offers the possibility of increased 

system throughput at a lower operating cost than previous generations of systems. 

7.1 Future Work 

 

In the future, this work can be improved upon by adapting the scheduler to take 

advantage of online performance monitor counter data.  This would allow an AMP to 

dynamically adjust itself according to the current processor workload.  In addition, using 

the power monitor data collection system developed for this thesis, it is technically 

possible to integrate a real time power consumption reporting system that can report the 

system’s power consumption during system operation and this data can be used to further 

refine the efficiency of the scheduler.  The online power system reporting could also be 

integrated into an API for use within the programs themselves to make them power 

aware.  All of these future research options should further increase the efficiency of the 

scheduler developed in this thesis, making the technique more beneficial for executing 

scientific applications. 
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The PS-Scheduler could be extended to work with emerging quad-core processors and 

tested with a larger group of scientific applications.  It could also be tested and developed 

for use with commercial applications, particularly in a data center context.  The concepts 

behind the PS-Scheduler could also be applied to processor design, creating a slow low 

power processing core specifically to handle OS activity. 
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