

Analysis and Improvement of Performance and Power Consumption of Chip Multi-

Threading SMP Architectures

By: Ryan Eric Grant

A thesis submitted to the Department of Electrical and Computer Engineering in

conformity with the requirements for the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

August, 2007

Copyright  Ryan E. Grant, 2007

-i-

Abstract

Emerging processor technologies are becoming commercially available that make

multi-processor capabilities affordable for use in a large number of computer systems.

Increasing power consumption by this next generation of processors is a growing concern

as the cost of operating such systems continues to increase.

It is important to understand the characteristics of these emerging technologies in

order to enhance their performance. By understanding the characteristics of high

performance computing workloads on real systems, the overall efficiency with which

such workloads are executed can be increased. In addition, it is important to determine

the best trade-off between system performance and power consumption using the variety

of system configurations that are possible with these new technologies.

This thesis seeks to provide a comprehensive presentation of the performance

characteristics of several real commercially available simultaneous-multithreading multi-

processor architectures and provide recommendations to improve overall system

performance. As well, it will provide solutions to reduce the power consumption of such

systems while minimizing the performance impact of these techniques on the system.

The results of the research conducted show that the new scheduler proposed in this

thesis is capable of providing significant increases in efficiency for traditional and

emerging multi-processor technologies. These findings are confirmed using real system

performance and power measurements.

-ii-

Acknowledgements

I would like to first thank my supervisor Dr. Ahmad Afsahi for his valuable feedback

and support in conducting the research for this thesis and his assistance in assembling this

document. Without his help this work would not have been possible.

Many thanks to the office staff of the ECE Department here at Queen’s, particularly

Ms. Debie Frasier and Ms. Bernice Ison for their invaluable help in administrative

matters during the tenure of my Master’s degree.

To my co-workers in the Parallel Processing Research Laboratory, Reza Zamani,

Mohammad Rashti, and Ying Qian, thank you for your continued support over the last

two years.

Finally, my deepest appreciation goes to my immediate and extended family for their

support throughout the years. A special and heartfelt thanks goes to my loving and

understanding wife Meagan without whom this would not be possible.

-iii-

Table of Contents

Abstract ..i
Acknowledgements ...ii
Table of Contents .. iii
List of Tables...v
List of Figures...vi
Glossary..viii
Chapter 1: Introduction..1
1.1 Motivation... 3

1.2 Contributions .. 4

1.3 Outline .. 6
Chapter 2: Background..7

2.1 Parallel Computing Architecture .. 7

2.1.1 Prior Art ... 9

2.2 Programming Shared Memory Parallel Applications... 10

2.2.1 Prior Art ... 12

2.3 System and Application Characterization... 13

2.3.1 Prior Art ... 14

2.4 Scheduling and Operating System Noise.. 15

2.4.1 Prior Art ... 16

2.5 System Power Consumption... 17

2.5.1 Power Metrics .. 18

2.5.2 Prior Art ... 19

2.6 Summary... 20
Chapter 3: Application Specifications...22

3.1 NAS Parallel Benchmarks .. 22

3.1.1 NAS Simulated CFD Applications .. 22

3.1.1.1 BT ... 22

3.1.1.2 LU ... 23

3.1.1.3 SP .. 23

3.1.2 NAS Kernel Applications .. 23

3.1.2.1 MG .. 23

3.1.2.2 CG... 24

3.1.3 SPEC OpenMP Benchmark Suite.. 24
Chapter 4: Workload Characteristics of SMT-Capable SMPs ..26
4.1 Experimental Setup... 26

4.1.1 Terminology... 27

4.1.2 Application Characterization ... 28

4.2 Experimental Results and Analysis .. 29

4.2.1 EPCC.. 29

4.2.1.1 OpenMP Synchronization... 30

4.2.1.2 OpenMP Scheduling ... 31

4.2.2 Application Performance and Analysis ... 32

4.2.2.1 Trace Cache Analysis ... 34

4.3 Summary... 36
Chapter 5: Characterization and Analysis of Multi-Core SMPs ...38

-iv-

5.1 Experimental Methodology .. 39

5.1.1 Terminology... 40

5.2 Single Application Results.. 42

5.2.1 Cache Performance .. 42

5.2.1.1 TLB Performance.. 45

5.2.2 Stalled Operation ... 45

5.2.3 Branch Prediction... 46

5.2.4 Bus Transactions.. 47

5.2.5 Cycles Per Instruction .. 47

5.2.6 Wall Clock Performance.. 48

5.3 Multi-Application Results... 50

5.3.1 Cache Performance .. 51

5.3.1.1 TLB Performance.. 52

5.3.2 Stalled Operation ... 53

5.3.3 Branch Prediction... 53

5.3.4 Bus Transactions.. 54

5.3.5 Cycles Per Instruction .. 54

5.3.6 Wall Clock Performance.. 55

5.3.7 Cross-Product Multi-Program Results... 56

5.4 Overloaded Configuration Analysis ... 57

5.4.1 Cache Performance .. 58

5.4.2 Stalled Operation ... 59

5.4.3 Branch Prediction... 60

5.4.4 Bus Transactions.. 60

5.4.5 Cycles Per Instruction .. 61

5.4.6 Wall Clock Performance.. 62

5.4.7 Overloaded Overhead .. 63

5.5 Effect of Operating System Noise .. 64

5.5.1 Operating System Noise Effects on Single-Threaded Applications 65

5.5.2 Operating System Noise Effect on Multi-threaded Applications 66

5.6 Summary... 68
Chapter 6: Power Management of Chip Multi-Threading SMPs ..70
6.1 Experimental Framework ... 71

6.1.1 AMP Setup... 71

6.2 PS-Scheduler vs. the Default Linux Scheduler... 73

6.3 Real Power Measurements.. 74

6.3.1 Average Power Consumption .. 74

6.3.2 Slowdown and Energy Savings ... 75

6.3.3 Energy-Delay Analysis .. 78

6.4 AMP Power Consumption Predictions With Future Technology 82

6.4.1 Slowdown and Energy Savings ... 83

6.4.2 Energy-Delay Analysis .. 85

6.4 Summary... 87
Chapter 7: Conclusions and Future Work ...89
7.1 Future Work.. 90

References ...92

-v-

List of Tables

Table 4.1: Configuration Information.. 28

Table 4.2: Average speedup gained by enabling HT for NAS and SPEC Parallel

benchmarks. .. 34

Table 5.1: Configuration Information... 41

Table 5.2. Speedup for architectures... 50

Table 5.3. Percentage degradation for overloaded cases versus non-overloaded cases .. 63

Table 6.1: AMP Naming Convention ... 72

-vi-

List of Figures

Figure 1.1: Server Power Consumption Forecasts... 3

Figure 4.1: Processor numbering for a SMT system with a maximum of 2 processors .. 28

Figure 4.2: Overhead of OpenMP synchronization. .. 30

Figure 4.3: Kernel 2.6.9 vs. 2.4.22 impact on OpenMP synchronization overhead. 31

Figure 4.4: Overhead of OpenMP loop scheduling policies.. 31

Figure 4.5: Kernel 2.6.9 vs. 2.4.22 impact on OpenMP loop scheduling policies. 32

Figure 4.6: Speedup for NAS OpenMP and SPEC OMPM2001 applications under

Kernel 2.6.9 relative to the serial case. ... 33

Figure 4.7: Trace cache misses .. 34

Figure 4.8: Trace cache delivery rate (trace cache fetches per 100 clock cycles) 35

Figure 4.9: 2
nd
 Level Cache Misses. .. 36

Figure 5.1: Intel Xeon Dual-Core Chip Layout ... 40

Figure 5.2: Processor numbering for 2-way Dual-core System....................................... 41

Figure 5.3: (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate 43

Figure 5.4: Trace Cache Miss Rates .. 44

Figure 5.5: (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB

Miss Rate .. 45

Figure 5.6: % of Total Execution Spent in a Stalled State... 46

Figure 5.7: Branch Prediction Rate.. 47

Figure 5.8: Pre-fetching Bus Accesses .. 47

Figure 5.9: Cycles Per Instruction ... 48

Figure 5.10: Speedup for NAS OpenMP applications... 49

Figure 5.11: (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate 51

Figure 5.12: Trace Cache Miss Rate.. 52

Figure 5.13: (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB

Misses ... 52

Figure 5.14: Percentage of Operation Time Spent Stalled .. 53

Figure 5.15: Branch Prediction Rate.. 54

Figure 5.16: Percentage of Pre-fetching Bus Accesses of All Bus Accesses 54

Figure 5.17: Cycles Per Instruction ... 55

Figure 5.18: (a) CG/FT and (b)FT/FT Multi-Application Speedup 56

Figure 5.19: CG/CG Multi-Application Speedup.. 56

Figure 5.20: Multi-programmed speedup of pairs of NAS benchmarks for all

architectures .. 57

Figure 5.21: (a) 1
st
 Level Cache Miss Rates for Overloaded Cases, (b) 2

nd
 Level Cache

Miss Rates for Overloaded Cases ... 58

Figure 5.22: Trace Cache Miss Rates for Overloaded Cases... 59

Figure 5.23: (a) DTLB Load and Store Misses and (b) ITLB Miss Rates for Overloaded

Cases ... 59

Figure 5.24: Percentage of Stalled Operation for Overloaded Cases 60

Figure 5.25: Branch Prediction Rate For Overloaded Configurations 60

Figure 5.26: Percentage of Pre-fetching Bus Accesses For Overloaded Configurations 61

Figure 5.27: CPI For Overloaded Configurations.. 62

Figure 5.28: Overloaded NAS Benchmarks Speedup.. 62

-vii-

Figure 5.29: Improvement in cache hit rate without OS noise .. 65

Figure 5.30: Effect of operating system noise on system performance 66

Figure 5.31: Improvement in Cache Hit Rate Without OS Noise 67

Figure 5.32: Application Run-time Improvement ... 68

Figure 6.1: Processor numbering for 2-way dual-core system .. 72

Figure 6.2: PS-Scheduler vs. default scheduler for SPEC benchmarks........................... 73

Figure 6.3: Average power consumption of HT-enabled configurations 75

Figure 6.4: Average power consumption of HT-disabled configurations 75

Figure 6.5: Slowdown and energy savings for (a) AMP-HTon-1-1 and (b) AMP-HTon-3-1

... 76

Figure 6.6: Slowdown and Energy Savings for (a) AMP-HTon-3-2 and (b) AMP-HTon-7-2

... 77

Figure 6.7: Slowdown and energy savings for (a) AMP-HToff-1-1 and (b) AMP-HToff-1-2

... 77

Figure 6.8: Slowdown and energy savings for AMP-HToff-3-2 78

Figure 6.9: Energy delay for the PS-Scheduler in an HTon-1-1 configuration 79

Figure 6.10: Energy delay for the PS-Scheduler in an HTon-3-1 configuration 79

Figure 6.11: Energy-delay for the PS-Scheduler in an HTon-3-2 configuration 80

Figure 6.12: Energy-delay for the PS-Scheduler in an AMP-HTon-7-2 configuration 80

Figure 6.13: Energy-delay for the PS-Scheduler in an AMP-HToff-1-1 configuration.... 81

Figure 6.14: Energy-delay for the PS-Scheduler in an AMP-HToff-2-1 configuration.... 81

Figure 6.15: Energy-delay for the PS-Scheduler in an AMP-HToff-3-2 configuration.... 82

Figure 6.16: AMP slowdown and energy savings for SPEC benchmarks over HTon-4-2 83

Figure 6.17: AMP slowdown and energy savings for SPEC benchmarks over HTon-8-2 84

Figure 6.18: AMP slowdown and energy savings for SPEC benchmarks over HToff-4-2 85

Figure 6.19: Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-3-2 over

HTon-4-2.. 85

Figure 6.20: Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-7-2 over

HTon-8-2.. 86

Figure 6.21: Normalized Energy-Delay for SPEC benchmarks for AMP-HToff-3-2 over

HToff-4-2 ... 87

-viii-

Glossary

ADI – Alternating Direction Implicit

AMD – American Micro Devices Inc.

AMP – Asymmetric Multi-Processor

API – Application Programming Interface

BT – Block Tri-Diagonal

CFD – Computational Fluid Dynamics

CG – Conjugate Gradient

CMP – Chip Multi-Processor

CMT – Chip Multi-Threading

CPI – Cycles Per Instruction

CPU – Central Processing Unit

DDR – Double Data Rate

DVFS – Dynamic Voltage and Frequency Scaling

EP – Embarrassingly Parallel

EPI – Energy Per Instruction

FORTRAN – “IBM Mathematical FORmula TRANslating System”

FT – Fourier Transform

HPC – High Performance Computing

HT – Hyper-Threading

ITRS – International Technology Roadmap for Silicon Organization

LLP – Loop Level Parallelism

LU – Lower-Upper

MG – Multi-Grid

MPI – Message Passing Interface

OS – Operating System

SDRAM – Synchronous Dynamic Random Access Memory

SMP – Symmetric Multi-Processor

SMT – Simultaneous Multi-Threading

SP – Scalar Pentadiagonal

-ix-

SPEC – Standard Performance Evaluation Corporation

TLP – Thread Level Parallelism

-1-

Chapter 1: Introduction

Recent developments in the computing industry have signaled a shift in

microprocessor design philosophy towards the use of multiple processing cores. This

allows a single device to execute multiple instructions simultaneously. The process by

which multiple instructions are executed in parallel on multiple CPUs is referred to as

parallel processing. There are two distinct types of parallelism, instruction level

parallelism (ILP) and thread level parallelism (TLP). ILP exploits the potential of

individual instructions to be executed simultaneously. ILP requires that the instructions

of a process be executed simultaneously or out of order, and that code not be dependant

on the previously executed instructions. In reality, ILP is of limited use because of the

difficulties in coding algorithms in which there are limited amounts of inter-instruction

dependence. As such, ILP can be very difficult to exploit because many sequential code

sections occur in most algorithms, which lessens the overall effect that ILP can have

upon runtimes.

TLP approaches the parallelization problem in a different way than ILP, by dividing

processes into distinct threads of execution, which contain their own independent

sequential instruction dependencies. This allows for algorithms to be coded in a more

traditional manner and for parallelism to be more logically divided amongst separate

threads. In addition, TLP is not as inherently limited in its upward parallelism potential

as ILP. With ILP, there are only a finite number of instructions that can be executed in

parallel in one time period, where with TLP, one can execute as many instructions as

possible on each CPU during the same time period, given that there are enough threads to

keep all of the processors busy. Because of the advantages of TLP and the larger

potential benefits of exploiting it, the research and commercial sectors have taken an

interest in TLP over ILP.

TLP can be taken advantage of using the concept of multi-threading. Traditionally,

multi-threading has been used for multi-tasking, with a single CPU desktop computer

running multiple processes in a time multiplexed execution that enables operating

systems to perform multi-tasking. All major modern operating systems support multi-

threading, including Microsoft’s Windows operating system, Apple computer’s OS X and

-2-

UNIX/Linux. Multi-threading can also be used in systems with multiple CPUs, as

threads can execute simultaneously on each independent CPU. In addition to running

multiple distinct processes, multi-threading can be used to divide a single computational

task or process into several execution threads that can be run simultaneously for the

purpose of using multiple CPUs to reduce process run times. Multi-processor systems

such as symmetric multi-processors (SMP) which use shared memory have been

available for many years. These systems use multiple traditional central processing units

(CPUs) connected to a shared memory system.

Efforts to take advantage of TLP have been attempted using single-core multi-thread

execution units commonly referred to as simultaneous multi-threading (SMT) [91]

capable platforms. SMT equipped processors can simultaneously execute multiple

threads by sharing processor resources and using a limited number of duplicate resources.

This creates a significant amount of pressure on the memory system which limits the

overall effectiveness of SMT technology. In order to increase the performance of

systems, new designs are incorporating multiple complete independent processors on a

single chip, eliminating the need for any sharing of actual chip architecture.

These new designs, called chip multi-processors (CMP) have been proposed for many

years by the research community [35] but have only begun to appear on the commercial

market in 2006. Both Intel Corp [40] and AMD [1] have released multi-core versions of

their processors, with Intel Corp releasing a multi-core multi-threading CPU design. Sun

Microsystems has taken this trend further with the UltraSparc T1 processor [86], offering

six or eight cores on a single chip with each core capable of executing four threads

simultaneously. These multi-core simultaneous multi-threading processors are referred to

as chip multi-threading (CMT) [83] processors.

The adoption of multi-processor systems in mainstream applications is reinvigorating

interest in parallel computing as more systems move to take advantage of multiple cores

and the performance of future computing systems relies increasingly on their ability to

effectively parallelize complex tasks.

The corresponding increase in transistor density of new systems has also brought

about significant challenges relating to power consumption and heat generation. The

move to multiple cores has been motivated by the inability to increase individual core

-3-

clock speeds due to heat generation. The waste heat produced by processors is directly

related to their power consumption. Therefore, there have been efforts made to reduce

the power consumption of modern systems by introducing dynamic voltage and

frequency scaling (DVFS) [22] as well as low level design revision in order to increase

energy efficiency.

1.1 Motivation

With the trend toward massively parallel computing systems in the future, designers

will conceivably continue to add additional cores and thread support in future designs.

With this emerging trend, the analysis and evaluation of existing multi-threaded systems

is important to better understand the performance benefits of parallel processing on

commercially available platforms. In addition to performance concerns, the increasing

power consumption of modern processors is of great concern to the research community

as well as the commercial sector. Future forecasts of power consumption and thermal

dissipation by the International Technology Roadmap for Silicon Organization (ITRS)

[43] are as high as 100 W/cm
2
 in 2010 and up to 250 W/cm

2
 by 2020. This means that

current design trends cannot continue to be effective as the forecasted power

consumption for devices in the year 2020 is four times the allowable thermal generation

density for future chip packages [43]. In fact, the amount of power consumed by servers

throughout the world is estimated to rise by as much as 76% from 2005 to 2010 [50].

The forecasts for future server system power consumption for the next four years is

detailed in Figure 1.1, with information taken from the 2006 ITRS Roadmap Report [43].

Power Consumption of High-Performance Servers

0

100

200

300

400

500

600

2005 2006 2007 2008 2009 2010 2011

Year

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (
W

)

Figure 1.1: Server Power Consumption Forecasts

-4-

As such, it is important to understand the power consumption characteristics of

existing multi-threading systems and determine the optimal performance/power savings

trade-off point for system execution. The characterization data can then be used to fine

tune existing systems through process scheduling as well as other software techniques

such as compiler optimizations that can increase system performance and power

consumption. This characterization information will also be of use to the semiconductor

industry until the introduction of technologies that can possibly help to reduce the overall

power consumption of integrated circuits, like emerging nano-technology. However,

these technologies are not guaranteed to solve all of the current power consumption

issues, and therefore work such as that presented in this thesis will continue to be of

importance long into the future.

1.2 Contributions

The primary goal of this thesis is to garner some insight into the behaviour of

emerging multi-threaded systems as they relate to power and performance, in order to

help determine the best architecture for different types of system workloads. This

information will aid the research community as well as the commercial sector in the

utilization of such systems for real-world workloads. In addition, this thesis seeks to

provide the basis for a software approach to better manage the power consumption of a

simultaneous multi-threading processor system. It utilizes a program/profile independent

approach designed to minimize the effect of operating system noise [89] for the purpose

of performance/power savings. As such, it is extremely lightweight and useful in an

asymmetric multiprocessor (AMP) [3] system that utilizes SMT. The resulting energy

savings when utilizing this method equate into a significant cost savings when this

method is applied to larger scientific processing systems, potentially saving hundreds of

thousands of dollars in costs per year. Although the resultant energy savings and speedup

may seem small at 5-15%, this is excellent in an HPC context as HPC applications

provide only limited opportunities to increase performance or save energy as they

typically utilize all of the processing systems resources for extended periods of intensive

calculations. The idea of a protected CPU has been explored in a performance sense on

older real-time systems [11] by using a protected CPU to process real-time tasks in order

-5-

to decrease system response time and ensure that tasks are completed before their

deadline. The application of the protected CPU method in relation to non-real-time

power/performance optimization and the use of SMT are to this author’s knowledge,

novel and unique. In addition, this thesis explores the effects of multi-application

workloads and thread overloading on commercial CMP/SMT platforms. Each of these

contributions are outlined below.

• An analysis of OpenMP [69] constructs and their effect on shared memory

programs. This analysis was also conducted using different versions of

the Linux kernel to evaluate the effect that OpenMP constructs have on the

performance of the system using the traditional Linux scheduler and the

recent O(1) scheduler.

• An in depth profiling of single-core multi-processor shared memory

systems. The profiling of the NAS [44] and SPEC [82] benchmark suites

running OpenMP on a shared memory system is a long and complex task.

The collection of the profiling information takes a significant amount of

time, with each benchmark run taking 20-32 hours and multiple runs

required to capture and confirm the results for a single performance

metric. Therefore, the collection of the dozens of metrics required in order

to properly determine the effect of the various architectural elements on

the system’s performance is time consuming and produces an incredibly

large volume of experimental data which must then be collated and

analyzed. The collection and analysis of such data is of great use to the

academic community as it is the basis from which further research can be

performed.

• Profiling of chip-multithreaded SMP systems in multiple architectural

configurations with multi-threaded single and multi-application

workloads. This contribution is a more in depth profiling and analysis of

multi-core systems in multiple configurations, (SMT enabled and SMT

disabled) simulating systems of various sizes and determining the

differences between execution on a single multi-core processor and

-6-

multiple multi-core processors in a shared memory system. Building upon

the knowledge of previous profiles this contribution is significant in its

scope and the lack of good profiling data available on modern multi-core

shared memory systems.

• Development of a power/performance optimizing scheduling algorithm.

The development of a scheduler to reduce the impact of operating system

noise while reducing power consumption and increasing overall system

performance is an excellent proof of concept for illustrating the potential

benefits of intelligent scheduling in reducing the power consumption of

systems while maintaining excellent performance.

1.3 Outline

This thesis is organized into seven chapters. The first is this introduction, followed by

an in depth description of the background work in this area and the most important

literature in the subject area. The third chapter describes in detail, the two major

benchmarking suites for multi-processor shared memory systems that are used throughout

this thesis. The fourth chapter explores the overhead incurred when running a parallelized

application using the OpenMP shared memory interface API, and details the performance

of multi-processor shared memory systems using simultaneous multi-threading. Chapter

5 continues the study of multi-processor systems by examining the performance of multi-

core multi-processor systems with multi-threaded single and multi-application workloads,

and the effect of thread overloading on such architectures. It concludes by investigating

the effect of operating system noise on multi-core systems and laying the groundwork for

the scheduler changes introduced in the next chapter. Chapter 6 details a study

performed on the power usage of multi-processor systems and uses an alternative-

scheduling algorithm that takes advantage of an asymmetric multi-processor system.

Chapter 7 concludes the thesis with a brief summary and closing remarks as well as

discussing future work to be done in this area.

-7-

Chapter 2: Background

To aid in understanding the material presented in this publication, the following

background material provides an introduction to parallel computer architecture, multi-

threading, the OpenMP [69] shared memory application programming interface (API),

system characterization, operating system noise and power modeling of real systems.

2.1 Parallel Computing Architecture

Parallel computing can be accomplished using a variety of methods, each with its own

advantages and disadvantages. Fundamentally, it is the usage of multiple CPUs working

together on a given task for the purpose of decreasing the total running time of the task,

or increasing the throughput of the system for a multi-program workload. The two basic

classifications of parallel computing implementations are the shared memory

multiprocessor and the message passing multiprocessor system. Shared memory

processors can be of several types, the most prevalent being symmetric multiprocessors.

Other types of shared memory systems include non-uniform memory access (NUMA)

systems, which are most commonly cache coherent non-uniform memory access systems

(ccNUMA) and cache-only memory architecture (COMA) systems. Multiple

independent systems can be linked together to form a parallel processor system using

methods like message passing, where information relating to the execution of a parallel

program is passed between systems over a network using standardized message passing

systems such as MPI [64]. By using such networked systems it is possible to create

clusters of individual shared memory nodes in an attempt at increased performance. This

thesis concerns a shared memory multiprocessor where all of the processing units are

physically localized within a single system.

Traditional multi-processor systems require the use of multiple processor chips that

are integrated onto a single motherboard. Each processor must share the available system

memory. Typically this is done using a shared system bus. This system bus must then be

arbitrated to ensure system consistency. There are a number of arbitration techniques that

allow for pipelined bus accesses, and other techniques for a split-transaction bus that

allows for delayed independent memory requests and replies.

-8-

In addition to bus arbitration, a multi-processor system must ensure cache consistency,

as each processor typically has independent L1 and L2 caches. Cache consistency for

shared memory multiprocessors is typically accomplished via snooping on the shared

bus. Snooping involves additional circuitry for each microprocessor that monitors the

bus for requests that correspond to data held in the local processors L1 or L2 cache. In

the event that a request corresponds to a value in memory, the request is examined to

determine the type of the request. A request for a read access to the data requires no

action, while a request for a write to a location requires that the data be flushed from the

cache. However, this is further complicated as the data held in the cache may be a more

current version of the data than that held in memory, as the caches are typically a write-

back cache instead of a write-through cache. Consequently, the processor may have to

suppress the main memory response and respond to the request with the data in its cache.

This will ensure data consistency and enable correct execution of a program when its

threads are run across several processors in a system.

Multi-threading is an essential element in the use of parallel computing. It is a process

by which a given task is broken down into separate executable units (threads) which can

then be executed on several processing units at a given time to reduce the overall time of

execution. Multi-threading using a time-division scheme has existed for many years.

This method uses a single CPU and time-shares many threads, providing a multi-program

environment.

Simultaneous multi-threading is a technology that allows more than one thread to run

on a single processing core at one time. The goal of SMT is to increase the overall

utilization of a CPU by using as many components of said CPU in a cycle as possible.

However, numerous complex interactions among the shared resources may affect the

performance of multi-threaded applications running on SMTs [33, 90]. This can create

conflicts as multiple threads vie for the use of individual components and as such, the

proper pairing of threads on an SMT is vital as complimentary threads can perform very

well, while thread pairs that require the same processing resources in the same execution

phases can cause slowdowns due to contention. Hyper-Threading (HT) [61] technology

is an implementation of SMT on Intel processors. HT technology replicates essential

CPU resources to allow the execution of two program threads at a time on the CPU.

-9-

Using HT technology, each physical processor is divided into two logical processors each

of which has its own independent run-queue. These logical processors share the

resources of the physical CPU including cache, execution units, translation look aside

buffers, branch prediction unit and load and store buffers.

Processors are becoming available that have multiple processing cores integrated onto

a single processor die. This technology called chip multi-processing [35] has been

introduced by both AMD and Intel, with Intel also introducing a CMP that is HT enabled,

creating a chip multi-threading architecture. The CMP and CMT architectures can then

be integrated into a traditional SMP interconnect to allow multiple physical CMP or

CMT chips to be integrated into a single system.

The amount of interconnectivity between the cores in a CMP can vary between

implementations. The UltraSPARC IV’s dual-cores [85] share only off-chip data paths,

while the dual-cores in IBM Power5 [46] share L2 cache for faster inter-thread

communications between the cores. The Intel Xeon [39] dual-core processors studied in

this thesis are the first generation of dual-core processors from Intel and do not share an

L2 cache, unlike the latest Intel Core [40] processors that have shared L2 caches.

2.1.1 Prior Art

This section reviews some of the most important publications in the field of parallel

processing architecture. It also discusses the most recent publications that are related to

the work presented in this thesis.

SMT processors have been studied in academia [91], and have appeared in mainstream

processors from IBM such as the Power4 and Power5 processors [46], Intel’s Core 2 [40]

and Xeon [39] processors, and Sun Microsystems UltraSparc IV [85] and T1 [86]

processors.

Tuck and Tullsen [90] analyzed the Intel Pentium 4 HT processor. They found that up

to a 25% performance improvement on parallel applications could be achieved by using

HT technology. They also confirmed Snavely et al.’s paper [81] by showing that the

Pentium 4 Hyper-Threading technology demonstrates symbiotic behaviour due to cache

and resource conflicts. Research at Intel has focused on Hyper-Threading with

multimedia OpenMP applications [88]. This study found that enabling HT increased

-10-

performance, although it results in an increased demand on the memory system.

However, the benefit gained by increased utilization of other processor resources was

more significant than the penalties incurred in the memory systems.

Researchers at Dell published results for some benchmarks from the Message Passing

Interface (MPI) version of the NAS Parallel Benchmarks running on a cluster of HT-

enabled systems [55]. They conclude that the necessity of doubling the number of

processes for HT can degrade performance by increasing demand on the interconnect

subsystems.

Recent work has also been done on CMP architectures and their emergence in the

commercial sector. Work by De Vuyst et al. [21] and El-Moursy et al. [24] have

examined the effect of scheduling on CMP architectures. They study the performance

and energy optimization possibilities of such architecture. Researchers have also been

examining scheduler performance and support in current operating systems [27, 67] as

well as examining possible methods of increasing overall system throughput using CMPs

[26]. Their investigations differ from the work in this thesis in that they use a simulated

platform for their investigations, while we focus on real commercially available servers.

Work relating to the cache contention and sharing issues brought about by chip

multiprocessors have been studied, mainly focusing on cache sharing and partitioning

[14] as well as the contention effects expected to occur in CMPs [13].

CMPs have also been examined with respect to their abilities executing single-

threaded programs [93], particularly relating to the thread migration effects [16].

Researchers have also investigated the power performance of CMP architectures [56, 58,

77] although they also use simulations and only one of these papers examines the

SMT/CMP architecture [56]. Other publications relating to CMT/CMP architectures

have documented their evolution in the commercial sector [83]

2.2 Programming Shared Memory Parallel Applications

Programming of multi-threaded shared memory applications is normally done using

one of two multi-threading APIs, OpenMP [69] or POSIX [38] threads. The POSIX

threads API is based on the POSIX 1003.1 –1995 standard from ANSI and IEEE. It

defines a set of thread creation and management operations as well as subroutines to

-11-

manage mutually exclusive code sections and communication between individual threads.

POSIX threads are only available for coding in C, but wrappers make it possible to use

POSIX threads in other languages such as FORTRAN with minimal associated overhead.

However, programming with POSIX threads can be significantly more complicated than

programming with OpenMP, as OpenMP does not require explicit thread creation,

joining or destructions, and only uses relatively simple compiler directives for defining

parallel sections of code. Therefore, OpenMP is typically the API of choice when

developing shared memory applications.

The OpenMP API [69] is an industry standard interface that is used to develop shared

memory parallel processing programs in Fortran, C and C++. It is a specification of

compiler flags, environment variables and programming library functions that can be

used to create parallelism on a system using a shared memory interface. OpenMP is an

attempt to standardize shared memory parallel processing interfaces across a wide range

of platforms. The predecessor to OpenMP, ANSI X3H5 [70] was never finalized and as

a draft specification was never able to obtain true portability amongst different vendor’s

platforms due to implementation specific directives that were not portable between all of

the system vendor’s machines. OpenMP overcame this problem by revising the standard

such that proprietary machine hardware implementations were not a prerequisite for any

of the directives.

OpenMP defines a set of compiler directives which determine how threads are

assigned portions of computational loops and directives used to control the execution of

the threads, providing support for mutually exclusive sections of code and thread

synchronization. The most used clauses of the OpenMP specification are the

PARALLEL, DO/FOR, PARALLEL DO/FOR, BARRIER, SINGLE, CRITICAL,

LOCK/UNLOCK, ORDERED and REDUCTION clauses. A description of each is

detailed below [69].

• PARALLEL: Defines a region that should be executed by several threads.

Each thread executes the code within the region unless it is flagged by an

exclusion clause.

-12-

• DO/FOR: The DO/FOR clause is used inside of a PARALLEL region

and defines loops that should be split up amongst the group of executing

threads with each thread executing a portion of the iterations of the loop.

• PARALLEL DO/FOR: A shortcut clause that defines a PARALLEL

region as well as starting a DO/FOR clause.

• BARRIER: A synchronization clause that causes threads to wait at the

BARRIER until all threads have reached the BARRIER clause in code.

• SINGLE: The SINGLE clause prevents all of the executing threads in

a PARALLEL region from executing the code within the SINGLE region.

Only a single thread executes this code while the rest of the threads wait at

the end of the region for the execution to complete, unless the NOWAIT

option is specified.

• CRITICAL: CRITICAL clauses define regions that only one thread may

execute at a time. Threads must wait at the beginning of a CRITICAL

region if another thread is executing the code within the region.

• LOCK/UNLOCK: This clause is an alternative to using a CRITICAL

region, and allows for mutual exclusion locking/unlocking of mutex type

variables.

• ORDERED: ORDERED directives ensure that the code defined by the

ORDERED region is executed in the same order as it would if the

execution loops were run in a sequential manner.

• REDUCTION: This clause can be used within the PARALLEL

region to define the method in which the variables used within the

PARALLEL region are to be combined and returned when the

PARALLEL region’s execution is complete.

2.2.1 Prior Art

The two major programming languages used for parallel programming are C and high-

performance FORTRAN. These languages support a combination of OpenMP and

POSIX threads on many machine types and operating systems. FORTRAN was first

-13-

extended for parallelization in 1973 for the ILLIAC IV, extending its support to include a

parallel do operation [65]. FORTRAN has remained an important language for parallel

computing and has evolved into high performance FORTRAN (HPF), a language with

parallel processing extensions. The High-performance FORTRAN specification [59] was

released in 1993. The specifications were revised throughout the 1990s until the release

of the current HPF 2.0 specifications in 1997.

The OpenMP API [20] standardized a shared memory programming interface for

several computer languages. Researchers have developed compilers to take advantage of

OpenMP instructions for clusters of SMPs [78]. Academia has also used OpenMP to

develop several benchmarks for shared memory systems, the most prominent of them

being the NAS OpenMP benchmark suite [44] and the SPEComp suite [6]. In addition to

these major suites, other benchmarking programs such as EPCC [74] micro benchmarks

and the LNLL benchmarks [54] evaluate the overhead incurred during OpenMP library

calls.

Several publications have dealt with the parallelization of sequential code using

OpenMP, including work by Couturier et al. [17] in which they parallelize a molecular

dynamics program using OpenMP, in addition to work such as that by Renouf et al. [75]

in which they use OpenMP to speed up the computation of the dynamics involved in

large granular materials such as concrete or granular powders. OpenMP has also been

used in conjunction with MPI to develop hybrid OpenMP+MPI programs for intra-node

and inter-node parallelism for parallel jobs such as Monte Carlo simulations [80] and

complex tasks such as high-resolution map visualization [15].

2.3 System and Application Characterization

Characterization of real systems can be a difficult task. Commercial systems are not

released with their design files, or in depth technical details about their circuit layout.

This creates challenges, as it is not possible to perform a low-level circuit analysis on

such systems, and consequently, simulation of such systems is not accurate compared to

the real run-time characterization of the systems. The characterization of such systems

must therefore be accomplished using repeatable benchmark programs, and for the

purposes of this thesis, they must be multi-threaded benchmarks.

-14-

The primary method of obtaining information about the performance of a system is a

profiling tool like Vtune [41] that uses performance counters that are built into the CPU

architecture. These hardware performance counters are system registers that can be set

up to monitor a variety of relevant system events. These registers enable one to obtain

very accurate counts of system events that are relevant to the systems performance, such

as cache hit rates, the number of cycles spent actively executing the code, and a

breakdown of the number of events that have occurred on each CPU, whether logical or

physical in the system. This can lead to difficulty in determining the cause of some

observed trends, as the amount of information that can be obtained from a real system is

by its nature less than that which can be collected using simulation tools at the design file

level. This is not to say that this method cannot provide a significant insight into the real

operation of systems, only that the granularity of such observations can make it difficult

to prove the exact reason behind performance abnormalities. The results obtained from

testing on a real machine are devoid of any errors that could be caused by assumptions

and shortcuts used in simulation software. Therefore, while the results of such real world

tests can sometimes be difficult to explain, the results are an accurate representation of

real world performance.

2.3.1 Prior Art

Several benchmarks have been developed to test the performance of real systems

using OpenMP. Section 2.2.1 introduced the NAS, SPEC, EPCC and LNLL benchmark

suites. We will discuss the most relevant and important publications that have dealt with

shared memory systems and the characterization and evaluation of real systems using

these benchmarks in this section.

Several research publications have been released dealing with the evaluation of shared

memory systems using OpenMP. The evaluation of OpenMP construct overhead has

been performed on large scale systems [9, 12, 28] as well as smaller scale SMPs [57].

Liao et al. [57] evaluated OpenMP on chip multithreading platforms, including the NAS

and SPEC benchmarks for a Sun Fire V490 and a Dell Precision 450 workstation. They

devised several experiments in order to get a better understanding of the behaviour of

OpenMP on such architectures.

-15-

Evaluation of the OpenMP SPEC benchmark suite has been performed on the Fujitsu

PrimePower 2000, SGI Origin 3800, and the HP PA-8700 systems by Saito et al. [76]. In

2001, Aslot et al. [5] evaluated the SPEC OpenMP benchmarks on a Sun Enterprise 450

SMP system. An evaluation of the SPEC OpenMP benchmarks was performed by

Fredrickson et al. [28] in addition to the NAS OpenMP benchmark suite on a Sun Fire

15K SMP.

The NAS OpenMP benchmarks were first evaluated at the time that they were released

by Jin et al.[44]. The NAS OpenMP benchmarks have been further evaluated in [79] on

large scale SMP clusters in order to investigate the causes of performance variability.

Maury et al. [19] evaluated a CMP/SMT hybrid using OpenMP on a 4-way SMT system

and a simulated CMP and found the memory subsystem to be the primary performance

bottleneck.

Several parallel programs such as HMMER have been evaluated in [84] where they

evaluate the performance of bio-informatics programs. HMMER was also evaluated by

Purkayastha et al. [73] on 4, 8 and 16-way Intel Xeon SMP nodes using OpenMP.

2.4 Scheduling and Operating System Noise

Job scheduling is a critical component in modern operating systems. An operating

system’s scheduler has the task of deciding which threads are assigned time on the

CPU(s) of a system. Time periods are usually of fixed length, unless the process finishes

before the end of its time slot. The Linux scheduler works by priority scheduling,

assigning each thread a priority. The priorities of the threads are modified after each time

slot, with threads that have not been executed rising in priority and threads that have just

completed their time slot being of lower priority. The Linux scheduler in the 2.4.x

kernels used a single process queue which held information about all of the active tasks

and their priority. Each time a new task was to be assigned, the queue needed to be

traversed. The scheduler in the 2.5.x and higher kernels was upgraded to the O(1)

scheduler to avoid having to traverse the queue after each time interval. The new

scheduler functions by having many queues, one for each priority. This avoids the need

to traverse all of the active processes each time a scheduling decision must be made, only

the highest priority queues need to be searched.

-16-

Operating system noise is a term describing the overhead caused by running the

requisite daemons and services required by the operating system. This overhead can be a

significant factor in determining the performance of high-intensity workloads. The actual

time devoted to running operating system tasks is typically negligible but the swapping of

such small jobs into a processor group that is running a full workload can cause a job

imbalance which can degrade system performance by delaying some execution threads.

This causes delays to all of the other related program threads when thread

synchronization is necessary. This noise is most significant when the system is running a

multi-threaded process that uses all of the processors in a shared memory system.

2.4.1 Prior Art

The work in [62, 94] has been the only work on devising algorithms for OpenMP loop

scheduling [94], and thread pairing [62]. In [94], the authors focused on altering the

behaviour of OpenMP applications executing on SMPs with SMT processors. They

proposed a self-tuning loop scheduler to react to behaviour caused by inter-thread data

locality, instruction mix and SMT-related load imbalance. McGregor and his colleagues

[62] introduced new scheduling policies that use runtime performance information to

identify the best mix of threads to run across processors and within each processor. They

have achieved a 7% to 28% improvement over the default Linux scheduler. Others have

attempted to develop scheduling methods for improved performance on SMP machines

[72] as well. Methods for scheduling on SMT systems [81] have also been introduced

that attempt to take advantage of the symbiotic nature of some processes when running

on an SMT system. Work by Nikolopoulos et al. [4, 68] has examined scheduling

algorithms that can be used to improve performance by adaptively scheduling processes

while taking into account bus bandwidth and memory pressure issues.

Previous research has shown that system noise may have a dramatic effect on high-

performance computing systems [45, 71]. In [71], Petrini and his colleagues noticed that

their application has superior performance when using three processors per node instead

of the full four. Using a number of methodologies, they discovered that this is due to

neither the MPI implementation nor the network, but the system noise including OS

-17-

daemons, kernel threads, and OS real-time interrupts, among other things. The effect of

system noise on the performance of applications has also been verified in [45, 89].

2.5 System Power Consumption

The process of power modeling is a very in-depth process that can be accomplished

using a wide range of techniques. Primarily, power modeling is done using software

simulation based on the design files used to design the logic circuits in question, with

programs such as HSPICE [87]. The estimation of the power consumption of a given

system can be roughly determined using guidelines that have been found experimentally

by measuring the current consumption of the system under various workloads. A

common power simulation approach is the use of popular power simulation programs

based on the Alpha family of processors such as Wattch [10]. Simulators such as Wattch

use predetermined power consumption values to estimate the approximate energy

consumption of each individual instruction. The power simulation program then

interfaces with a simulator, like SimpleScalar [7]. The major problem with this approach

is that it does not easily translate over to current real commercial systems. Power

modeling of existing commercial systems whose design is not available to the public

presents a much more difficult problem, as the models developed for such systems do not

have enough information about the implementation of the device being modeled to make

the models extremely accurate. The power simulation programs available rely on in

depth circuit information that was available for processors such as the Alpha. Such

detailed information is not available from Intel, which provided the CPUs used in this

investigation. However, measurements from Intel Corp. for their CPUs [3] provide the

basic metrics of power consumption that are used in some of the experiments detailed in

this thesis.

This thesis avoids many of the problems associated with modeling power consumption

by measuring the power consumption of real systems. This provides the most accurate

method of studying power consumption as the power consumption measurements are

within ±3% of the actual system power consumption. The power measurements were

obtained using a digital multi-meter equipped with a data recorder. The measurements

were taken from the power supply side of the machines, which means that the

-18-

measurements taken represent the real power consumption of the system including all of

the power loss associated with inefficiencies in the power supply.

2.5.1 Power Metrics

The following metrics are used to study the power-performance characteristics of

systems.

Performance: High-performance computing has always been concerned with

performance. Performance of an application running on a system is given by wall-clock

execution time, D.

Power: Theory [66] tells us that the power consumed by a CMOS processor, in watts,

is equal to the activity factor of the system (percentage of gates that switch for each

cycle) multiplied by the capacitance of the CPU times the voltage squared times the

frequency. This is shown in Equation 2.1.

fCVP 2α= (2.1)

Note we have ignored the power expended due to short-circuit current, and the power

loss from leakage current, as the dynamic power consumption, αCV
2
f dominates in

CMOS circuits.

Frequency is directly proportional to the supply voltage. Therefore, power is

proportional to the cube of a changing frequency. However, historical data [3] suggests

that power on modern processors is proportional to the square of the duty cycle.

Energy: Power is the consumption at a discrete point in time. Energy is the cost

during the execution time, D, and is shown as:

∫ ×==
D

avg DPPdtE
0

 (2.2)

Power-performance efficiency: This metric allows choosing the operating point at

which maximum energy saving can be achieved with acceptable performance

-19-

degradation. The energy-delay product is used to quantify the power-performance

efficiency, as shown in Equation 2.3:

DEDE ×=. (2.3)

2.5.2 Prior Art

Several architectural proposals have been put forward in an attempt to reduce the

power consumption of processors including proposals to enable the decay of information

in processor caches [37], and a very interesting proposal to allow processor operation at

very low voltages and corresponding error correction [25]. As this thesis is not

concerned with making architectural changes to existing CPU designs, no more details

relating to such proposals will be provided. Instead we will concentrate on methods of

reducing power consumption that are done using software.

There have been quite a number of micro-architectural studies on the subject of energy

reduction of modern day processors. These include dynamically tuning processor

resources with adaptive processing [2], comparison of SMT and chip multiprocessing

[56], and heterogeneous multi-core architectures [52, 53]. Most of this research has been

done with single-threaded applications and through simulations, or analytical methods.

This thesis concentrates on multi-threaded workloads on real systems.

There have been attempts to reduce overall power usage through the use of compiler

optimizations [47] and also by controlling power management systems through compiler

flags and simulation [92]. Recent attempts have used real-time information from

hardware performance counters to attempt to schedule threads for performance and

power consumption [18] on SMT and CMP systems. Additional work has focused on

previous run profiling for creating databases that can suggest configurations for the

system when running certain programs [60].

Dynamic voltage and frequency scaling is known as one of the most effective methods

to reduce CPU power consumption, unfortunately at the expense of performance

degradation. In fact, the semiconductor industry has recently introduced many energy

saving technologies into their chips. The most successful of these have been SpeedStep

technology from Intel as well as PowerNow! and Cool'n'Quiet from AMD. Several

papers have been published on research utilizing such features to reduce power and

-20-

energy consumption, from devising a compiler algorithm for optimizing single-threaded

programs for energy usage on laptops [36] to power and energy management techniques

for servers and data centers [51]. Power consumption has also been studied for high-

performance computing workloads in SMP and AMP servers [3, 8] and in high-performance

clusters [29, 30].

The authors in [3, 8] describe the process of creating an AMP node from a commercial

Intel SMP server. An AMP is a system that contains multiple different processors. The

processors can be different architecures running at the same or different speeds, or be the

same architecture but running at different speeds. In [3], Annavaram et al. analyze the

energy per instruction (EPI) gains that can be obtained from using CPUs operating at

different frequencies. In fact, they determined that by utilizing a setup that consists of

one fast processor to run sequential code, assisted by three slower CPUs to run parallel

code, one could reduce the overall EPI of a system while maintaining a higher speed than

a normal SMP using the fixed power budget of one 2.0GHz Intel Xeon processor. They

used the SPEComp benchmarks as well as several other applications in their study;

however, their work did not address HT-enabled systems [3].

In [8], Balakrishnan et al. investigated the impact of performance asymmetry of

different AMPs on commercial applications as well as SPEComp applications. For

commercial applications, they observed significant performance instability. They were

able to eliminate this for some applications by devising a new kernel scheduler ensuring

faster cores never go idle before slower ones. For SPEComp scientific applications with

tight coupling among different threads, they found stability, but with poor scalability as

the slowest core forces faster ones to idle. To eliminate performance asymmetry, they

changed the static OpenMP loop scheduling used to dynamic scheduling. However, this

resulted in degraded performance. This work also did not address HT-enabled systems.

Although, the work in [8] is only focused on performance asymmetry, they indicate AMP

systems can be effective for power/performance efficiency.

2.6 Summary

Although the area of shared memory multi-processors is a mature field and the

research available for such systems is comprehensive, the study of modern hybrid SMT

-21-

and CMP-based SMPs is still evolving. This thesis explores the characteristics of modern

single and multi-core processors using real machines. The majority of previous work on

similar topics has been performed using simulations and non-SMT architectures. The

study of AMPs is still relatively new, and previous work has focused on fixed power

budgets and performance stability. This thesis expands on this breadth of research by

investigating the power and performance benefits that can be realized using an AMP

architecture. The following chapters investigate the overhead caused by OpenMP

constructs and then profiles single and multi-core processors running multi-threaded

scientific benchmarks. The knowledge gained from the profiling of real system is then

used to implement a new operating system scheduler that increases system performance

while increasing energy efficiency.

-22-

Chapter 3: Application Specifications

This chapter details the benchmarking applications that are used in this thesis. The

NAS OpenMP [44] and SPEC OpenMP [82] benchmarks are considered industry

standards that are updated on a regular basis. The NAS benchmark suite is produced by

the United States National Aeronautics and Space Administration (NASA). The NAS

benchmark suite is available as an open source suite of applications coded in high

performance FORTRAN. The SPEC OpenMP benchmarks were developed by the

Standard Performance Evaluation Corporation in 2001. They are available as a

commercial package and are coded using FORTRAN and C.

3.1 NAS Parallel Benchmarks

The NAS parallel benchmarks [44] are published by NASA and are based upon the

Computational Fluid Dynamics (CFD) calculations that are used in scientific aerospace

computations. The benchmarks consist of two types of application, 5 kernel applications

replicate the behaviour of the main computational loops of CFD applications and 3

simulated computational fluid dynamics applications that replicate the data manipulation

activity of real CFD applications. This thesis studies the behaviour of all 3 of the

simulated CFD applications as well as 2 of the kernel applications. Each application is

discussed in detail in this chapter, and although this information is not strictly necessary

for understanding this thesis, it is included for the interested reader who wishes to have

more insight as to the nature of the benchmarks utilized here.

3.1.1 NAS Simulated CFD Applications

3.1.1.1 BT

The BT benchmark is an application that solves a 3-D matrix of Navier-stokes

equations [44]. The Navier-Stokes equations used are not in a fully compressed form.

The benchmark uses an Alternating Direction Implicit (ADI) approximation factorization

that produces equations that are decoupled from the x, y, and z directions which can then

be solved directly [44]. The majority of the benchmark scales well, but some K

-23-

dimensional operations involve large memory strides, which makes this benchmark less

scalable due to poor cache performance.

3.1.1.2 LU

The LU benchmark solves Navier-Stokes equations in a 3-D system using Symmetric

Successive Over-Relaxation, by splitting the system into block lower and upper triangular

systems [44]. This benchmark uses a pipelined computation where the first processor in

the system provides information necessary for the execution of the thread run by the

second processor and so on. This makes this benchmark especially susceptible to

synchronization issues. The introduction of delay from one of the processors can create a

ripple effect amongst the pipeline which significantly affects the performance of the

benchmark. Consequently this benchmark is best suited to execution on systems with a

small amount of additional system overhead.

3.1.1.3 SP

The SP benchmark uses a factorization to decouple the x, y and z directions and

directly solves the resulting decoupled linear equations [44]. This benchmark is

somewhat scalable. Its scalability is limited primarily due to the same cause as the

scalability of BT, that memory operations in the K direction use large strides and cause a

significant number of cache misses. Therefore, this benchmark is dependent on memory

subsystem performance for good performance.

3.1.2 NAS Kernel Applications

3.1.2.1 MG

MG is a multi-grid solver for processing scalar Poisson equations. Because of the

nature of this multi-grid solver it is an excellent intensive memory test as it requires a

significant amount of data movement [44]. The benchmark projects a fine-grid onto a

coarse grid, solves the coarse grid and projects the result onto a fine grid, then performs a

smoothing operation. This process is repeated several times. Due to the size of the grids,

this benchmark is affected by memory subsystem speeds.

-24-

3.1.2.2 CG

CG stands for conjugate gradient, which this test uses on a sparsely populated

unstructured matrix that is meant to test the system’s ability to perform operations on

such matrices [44]. This is of course memory fetch intensive as the locations of data are

distributed randomly, therefore reducing the effectiveness of pre-fetching. This

benchmark scales well for small numbers of processors but begins to experience poor

scaling between 8 and 16 processors.

3.1.3 SPEC OpenMP Benchmark Suite

The Standard Performance Evaluation Corporation (SPEC) [82] CPU2000 benchmark

suite was adapted to run under OpenMP in 2001. Since that time some modifications

have been made to the suite. The version of the suite used for testing in this publication

was version 3.0, with the Purdue University source code fix for the art benchmark. This

version is almost identical to the only recently released version 3.1 (the Purdue

University modifications were officially included with version 3.1). Eleven benchmarks

are provided with the suite, and six of those benchmarks are used in this paper,

comprising five high performance FORTRAN benchmarks and one C benchmark. The

benchmarks simulate the run-time behaviour of real scientific applications.

The apsi benchmark is a FORTRAN benchmark simulating an air pollution modeler

[6]. It uses primarily floating point arithmetic. It models the effects of temperature,

pressure and wind on pollution particles and tracks the predicted diffusion of pollutants

through the atmosphere. The art benchmark is a C benchmark simulating image

recognition and neural networks tasks [6]. An Adaptive Resonance Theory neural

network is trained to recognize two objects, an airplane and a helicopter and then is used

to find these objects in an image. The fma3d benchmark is a FORTRAN benchmark

based on a crash modeling simulator [6]. The benchmark is floating point operation

intensive as it uses finite element analysis to model the effect of sudden impacts on 3-D

solids. The input files used model an explosive element of a cylinder. The mgrid

benchmark is a FORTRAN benchmark that is a multi-grid solver [6]. This benchmark is

a standard multi-grid solver, a technique that is used in a variety of areas. This

-25-

benchmark uses a constant coefficient equation on a cubical grid. The nature of multi-

grid solvers makes them memory intensive as a large amount of data is moved during the

computational process.

The swim benchmark is a FORTRAN benchmark for modeling shallow water [6]. It

calculates the velocity vectors of a shallow water data representation consisting of a

1335x1335 matrix over a short time span. It uses a significant amount of double floating

point arithmetic. Finally, the wupwise benchmark is a FORTRAN benchmark modeling

quantum chromodynamics [6]. Quantum chromodynamics is the study of sub-atomic

particles like quarks and gluons, and the interactions between them. Wupwise stands for

the Wuppertal Wilson Fermion Solver, which is used to calculate the interactions

between quarks in the area of fundamental physics. This is a very computationally

intensive process.

-26-

Chapter 4: Workload Characteristics of SMT-Capable
SMPs

In this chapter we examine the SMT implementation from Intel called Hyper-

Threading. We examine the performance of HT when used in multi-threaded shared

memory applications. Naturally, multi-threaded applications are very suitable for SMT

systems. However, HT, due to extensive resource sharing may not suitably benefit

OpenMP high performance computing applications.

This chapter first examines the performance of different OpenMP constructs on single-

core dual CPU HT-based Intel Xeon servers running the RedHat’s Linux kernels 2.4.22

and 2.6.9. It is found that the overhead of OpenMP constructs with HT enabled is

significantly larger than when HT is off [33].

This chapter also presents an evaluation of scientific applications in the NAS OpenMP

suite (version 3.2) [44], and SPEC OMPM2001 suite (version 3) [82] with kernel 2.6.9. It

is interesting to discover the impact of SMT-based SMP systems on the performance of

such applications. The effect of resource sharing within the processors on the overall

system performance is evaluated by collecting data from the hardware performance

counters. In addition, the architectural limitations of such a system are pinpointed by

observing its cache performance [33].

This chapter is organized as follows. The experimental setup is described in section

4.1. In section 4.2, the performance results are analyzed. A summary of the findings is

presented in section 4.3.

4.1 Experimental Setup

The experiments in this chapter were conducted on a single-core platform, a Dell

PowerEdge 2850 server. The PowerEdge 2850 server from Dell has two single-core 2.8

GHz Intel Xeon EM64T processors, a 16KB shared execution trace cache, a 16KB L1

shared data cache, a 1MB shared and unified L2 cache, and 2GB of DDR2-SDRAM on a

800 MHz front side bus. The operating system is RedHat’s Enterprise WS 4.1 Linux

kernel version 2.6.9 and kernel 2.4.22. The L1, L2, and main memory latencies of the

-27-

processor are 1.44ns, 10.25ns, and 142.80ns, respectively. The main memory read and

write bandwidths are equal to 3856 MB/s and 1855 MB/s, respectively.

We used two different kernels to evaluate their impact on the performance. Both

kernels support Hyper-Threading; however, the task scheduler has undergone a complete

rewrite in the 2.6.9 kernel. The new scheduler is known as the O(1) scheduler, since it

can make a scheduling decision in constant time and independent of the number of

processors or the number of active tasks. This is accomplished by using multiple priority

queues and a scheduling algorithm that is priority aware such that it can quickly decide

between processes based upon which priority queue they reside in. The previous version

of the scheduler was also priority aware, but used a unified process queue which

necessitated stepping through the entire queue for each scheduling period in order to

make its next scheduling decision.

The number of active processors was limited using the maxcpus=X boot option of the

kernel. This option causes the kernel to only initialize and use X logical processors. This

method of disabling additional processors is preferable to running fewer threads when

determining scalability since it better emulates a smaller system.

4.1.1 Terminology

Figure 4.1 and Table 4.1 describe the naming convention for specifying the

configuration of the two machines. Figure 4.1 shows the naming of each of the

processors in an SMT-capable SMP system for up to 2 processors.

The basic terminology used to describe these configurations is comprised of three

parts. The first part is either HToff or HTon, which describes the state of Hyper-Threading

in the system. The second term indicates the total number of application threads that

were used. The third term represents the number of physical processor chips used in the

tests (either 1 or 2).

-28-

Figure 4.1: Processor numbering for a SMT system with a maximum of 2 processors

Table 4.1: Configuration Information

Terminology Hardware Contexts Corresponding Architecture
Serial B0 Serial

HTon-2-1 A0, A1 SMT

HToff-2-2 B0, B1 2-way SMP

HTon-4-2 A0, A1, A2, A3 SMT-capable 2- way SMP

4.1.2 Application Characterization

Application characteristics were gathered at run-time using the hardware performance

counters available on the Intel Xeon processors. We collected data using the Intel VTune

Performance Analyzer version 7.2 [41]. The Intel Fortran and C/C++ compilers (version

8.1) were used to build the benchmark applications.

Collecting profiles of real systems can be a very time consuming process. The number

of performance counters available for use is extremely limited requiring multiple runs of

a single application to collect all of the required profiling information. This is further

exasperated by using large data set benchmarks which require a significant amount of

time to finish execution. In order to collect the most comprehensive profile possible, the

data collected must be collected for the entire runtime of the application, and all of the

application runs must be confirmed by running the same tests multiple times. For

example, in order to collect 13 performance metrics for a system configuration using the

SPEC benchmark suite used in this thesis one has to run at least 26 iterations of the

benchmark, 13 for collecting the data and at least 13 to confirm the data, not including

runs which are not properly confirmed and must be thrown away. With each iteration of

the SPEC benchmarks taking many hours, a single configuration profile can easily take

an entire month of processing time to complete successfully.

-29-

4.2 Experimental Results and Analysis

This section describes the results and analysis of our experiments on the PowerEdge

2850 server. We first present the overhead of OpenMP constructs. Then, we evaluate the

performance of applications and metrics that may point to potential architectural

bottleneck due to resource sharing on HT processors. We are particularly interested in the

effects of sibling logical processors. Particular attention is paid to the performance gaps

in the HTon-4-2 and HTon-2-1 cases. Results are shown for kernel 2.6.9, unless otherwise

noted.

4.2.1 EPCC

Overhead due to synchronization and loop scheduling is an important factor in the

performance of shared-memory parallel programs written in OpenMP. The EPCC

OpenMP microbenchmarks (version 2.0) [74] were used to measure the overhead of

synchronization and loop scheduling calls in the OpenMP runtime library.

The synchronization benchmark measures the overhead incurred by work-sharing and

mutual exclusion directives. The work-sharing directives include PARALLEL, DO/FOR,

PARALLEL DO/FOR, and BARRIER. The mutual exclusion directives include SINGLE,

CRITICAL, LOCK/UNLOCK, ORDERED, and ATOMIC.

The loop scheduling benchmark compares the scheduling policies available with

OpenMP. Specifically, it compares the overhead of the For directive when used with

three scheduling policies: STATIC, DYNAMIC, and GUIDED. The STATIC policy

determines scheduling at compile time and is well suited for programs with static

workloads that can be easily divided among threads. The DYNAMIC and GUIDED

scheduling policies are intended for programs with dynamic workloads that must be

balanced between threads at runtime. All three policies have an additional parameter,

chunk size, which specifies the size of a single work unit in terms of loop iterations. A

smaller chunk size allows for finer-grained scheduling at the cost of more scheduling

overhead. The GUIDED policy attempts to balance this trade-off by dynamically

decreasing the chunk size.

-30-

4.2.1.1 OpenMP Synchronization

The EPCC synchronization benchmark was used to find the overhead of OpenMP

directives with varying a number of threads, with and without Hyper-Threading. Figure

4.2 depicts the overhead of different OpenMP synchronization directives for the C

version (the Fortran directives are not shown but have slightly larger overhead).

Interestingly, the synchronization overhead with Hyper-Threading enabled is

significantly greater than the same number of threads on an HT-disabled system.

OpenMP Synchronization Overhead

Kernel 2.6.9

0

5

10

15

20

25

30

PAR
A
LL

EL

FO
R

PA
R
ALL

EL
FO

R

BA
R
R
IE

R

S
IN

G
LE

C
R
IT

IC
AL

LO
C
K
/U

N
LO

C
K

O
R
D
E
R
ED

R
E
D
U
C
TIO

N

Operation

O
v
e
rh

e
a
d
 T

im
e
 (
µ
s
)

HTon-2-1 HToff-2-2 HTon-4-2

Figure 4.2: Overhead of OpenMP synchronization.

Figure 4.3 compares the impact of different kernels on OpenMP synchronization

directives. Overall, the new Linux kernel 2.6.9 performed on par with the Linux kernel

2.4.22 in terms of synchronization overhead for the HT-disabled case (not shown here).

However, the Linux kernel 2.4.22 was found to be superior when using HT as shown in

Figure 4.3. The difference between the 2.4.22 kernel overhead and the 2.6.9 kernel

overhead is most likely the result of the extra processing required to assign the newly

created threads to their respective priority queues in the 2.6.9 kernel. The 2.4.22 kernel

does not have this overhead as all processes are simply inserted into a single process

queue.

-31-

OpenMP Synchronization Overhead

Linux kernel 2.6.9 vs 2.4.22

0

5

10

15

20

25

30

PAR
ALL

E
L

FO
R

PAR
ALL

EL
FO

R

B
AR

R
IE

R

SIN
G
LE

C
R
IT

IC
A
L

LO
C
K/U

N
LO

C
K

O
R
D
ER

ED

R
ED

U
C
TIO

N

Operation

O
v
e
rh

e
a
d
(µ

s
)

HTon-2-1 (2.4.22) HTon-2-1 (2.6.9)
HTon-4-2 (2.4.22) HTon-4-2 (2.6.9)

Figure 4.3: Kernel 2.6.9 vs. 2.4.22 impact on OpenMP synchronization overhead.

4.2.1.2 OpenMP Scheduling

OpenMP provides three options for scheduling loop iterations among threads:

STATIC, DYNAMIC, and GUIDED. Figure 4.4 shows the loop scheduling overheads for

HToff-4-4 and HTon-8-4. As can be seen, the overhead of different OpenMP loop

scheduling schemes is 2.5 to 8 times larger for Hyper-Threading than for an HT-disabled

system.

OpenMP Loop Scheduling Overhead (2.6.9)

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128

Chunk Size

O
v
e
rh

e
a
d
 (
µ
s
)

HToff-2-2 STATIC HToff-2-2 STATIC(n)
HToff-2-2 DYNAMIC(n) HToff-2-2 GUIDED(n)
HTon-4-2 STATIC HTon-4-2 STATIC(n)
HTon-4-2 DYNAMIC(n) HTon-4-2 GUIDED(n)

Figure 4.4: Overhead of OpenMP loop scheduling policies.

-32-

The STATIC scheduling is approximately as fast as DYNAMIC scheduling for larger

groups, but of course does not have the benefit of dynamic load balancing. It is clear that

if the workload is large enough that large chunks are possible, DYNAMIC scheduling

with its low overhead but load balancing benefits is clearly the best choice. However, if

the workload is dynamic and unbalanced as well as large, then GUIDED scheduling

would be an excellent choice. The overhead of STATIC(n) scheduling is nearly constant

across all chunk sizes, n. The overhead of STATIC(n) matches the overhead of STATIC.

For both HT-enabled and HT-disabled cases, the overhead of GUIDED(n) is close to that

of DYNAMIC(n). Figure 4.5 compares the impact of two kernels on synchronization

directives. Except for the some Dynamic strategies and one occurrence of the Guided

policy, kernel 2.4.22 is better than the 2.6.9 kernel.

OpenM P Scheduing Overhead Kernel 2.6.9 vs.

2.4.22

0

10

20

30

40

50

60

70

80

S
T

A
T

IC

S
T

A
T

IC
 1

S
T

A
T

IC
 2

S
T

A
T

IC
 4

S
T

A
T

IC
 8

S
T

A
T

IC
 1

6

S
T

A
T

IC
 3

2

S
T

A
T

IC
 6

4

S
T

A
T

IC
 1

2
8

D
Y

N
A

M
IC

 1

D
Y

N
A

M
IC

 2

D
Y

N
A

M
IC

 4

D
Y

N
A

M
IC

 8

D
Y

N
A

M
IC

 1
6

D
Y

N
A

M
IC

 3
2

D
Y

N
A

M
IC

 6
4

D
Y

N
A

M
IC

 1
2

8

G
U

ID
E

D
 1

G
U

ID
E

D
 2

G
U

ID
E

D
 4

G
U

ID
E

D
 8

G
U

ID
E

D
 1

6

Scheduling Strategy

O
v
e
rh

e
a
d
 (
µ
s
)

HTon-2-1 (2.4.22) HTon-2-1 (2.6.9)
HTon-4-2 (2.4.22) HTon-4-2 (2.6.9)

Figure 4.5: Kernel 2.6.9 vs. 2.4.22 impact on OpenMP loop scheduling policies.

4.2.2 Application Performance and Analysis

When determining the performance of an application, execution time is the most

practical performance metric. In this section, we present the performance of NAS and

SPEC applications on our PowerEdge 2850 platform under the 2.6.9 kernel. Figure 4.6

shows the speedup for each of the NAS and SPEC application benchmarks on a variety of

system configurations. The speedup results are calculated using application runtime

relative to the serial case. For each application, the four columns can be considered as

-33-

two pairs. The first pair is for one physical processor, with and without HT-enabled. The

second pair is for two physical processors.

NAS OpenMP Speedup

0

0.5

1

1.5

2

2.5

BT CG LU MG SP

S
p
e
e
d
u
p

Serial HTon-2-1 HToff-2-2 HTon-4-2

SPEC OMPM2001 Speedup

0

0.5

1

1.5

2

2.5

3

3.5

apsi art fma3d mgrid swim wupwise

S
p
e
e
d
u
p

Serial HTon-2-1 HToff-2-2 HTon-4-2

Figure 4.6: Speedup for NAS OpenMP and SPEC OMPM2001 applications under Kernel 2.6.9

relative to the serial case.

The goal of these tests is to understand if scientific multi-threaded applications can

benefit from HT on real, commercial SMT-based SMP servers; and if they do not benefit,

what architectural limitations exist in such processors. In fact, it is not always clear if it

is better to run two threads or one thread on each processor. For instance, although BT,

LU, MG, SP, and wupwise benefit from having two threads in one-processor execution,

they suffer somewhat in the two-processor execution. CG and swim perform the other

way around. Applications such as mgrid, apsi, and fma3d always benefit from HT.

Interestingly, in art and LU, HTon-2-1 not only outperforms the serial case, but also

outperforms HToff-2-2. This means that a pair of hyper-threaded logical processors is

able to outperform two real physical processors. Swim is the poorest application. It does

not scale with either HT or SMP. This lack of scalability has traditionally been the case

for the OpenMP version of swim on platforms similar to the ones used here.

BT, CG, LU, MG, and SP attain an average speedup of 35%, 6%, 10%, 9%, and 19%,

respectively, when HT is enabled. For the SPEC suite of applications, wupwise, mgrid,

apsi, and fma3d achieve an average speedup of 37%, 68%, 31%, 49%, and 26%,

respectively. While swim is the only application with a slowdown of 4%, art has the best

average speedup of all applications, equal to 115%. Overall, applications achieve a 33%

speedup on average.

-34-

Table 4.2 summarizes the average performance gain when logical processors are

enabled. It is evident that the HT implementation of SMT cannot provide a performance

gain for 2-processor executions, at least for our multi-threaded applications.

Table 4.2: Average speedup gained by enabling HT for NAS and SPEC Parallel benchmarks.

Physical Processors NAS OMP SPEC OMP Overall

1 34% 92% 63%

2 -2.2% 3.3% 0.55%

4.2.2.1 Trace Cache Analysis

In this section, we investigate the reasons behind the possible flaws of Hyper-

Threading. Using hardware performance counters of Intel Xeon EM64T, we studied the

behaviour of the trace cache for NAS applications as well as art, apsi, and swim from

SPEC. Figure 4.7 presents trace cache misses, while Figure 4.8 depicts trace cache

delivery rate for these applications.

Trace Cache Misses

0

50

100

150

200

250

300

350

400

BT CG LU MG SP apsi art swim

T
ra

c
e
 C

a
c
h
e
 M

is
s
e
s

(M
il
li
o
n
s
)

Serial HTon-2-1 HToff-2-2 HTon-4-2

Figure 4.7: Trace cache misses

Compared to the baseline single processor system without HT, the HT-enabled system

outperforms it on almost every task. The exception to this is when the increased

processing of the HT system causes a bottleneck in the trace cache, causing performance

to suffer. Therefore, except for programs that create a large number of trace cache misses

-35-

that are also very bus bandwidth dependent, HT provides improvements over the single

processor system.

Trace Cache Delivery Rate

0

200

400

600

800

1000

1200

1400

1600

BT CG LU MG SP apsi art swim

T
ra

c
e
 C

a
c
h
e
 D

e
li
v
e
ry

 R
a
te

Serial HTon-2-1 HToff-2-2 HTon-4-2

Figure 4.8: Trace cache delivery rate (trace cache fetches per 100 clock cycles)

It can be observed in Figure 4.7 that when the number of trace cache misses increases,

and due to memory bandwidth constraints the trace cache delivery cannot be increased,

the performance of the HT system suffers. This implies that memory intensive

applications are more likely to suffer from trace cache starvation, decreasing the

effectiveness of HT when used with such applications. This can be understood by

comparing Figure 4.6 to Figure 4.7 and Figure 4.8. For instance, when performance is

significantly worse for the CG on HTon-2-1 compared to the HToff-2-2 and HTon-4-2

cases, one can observe a marked increase in the trace cache misses from the HTon-2-1

system. This also occurs for the SP benchmark, but it can be observed that SP’s

performance does not suffer because there is a corresponding increase in the trace cache

delivery rate. Only in the case when the trace cache misses increase and the cache

delivery rate drops, does the performance suffer. The HTon-4-2 system is able to avoid

this problem by its increased system resources, which significantly reduce the trace cache

miss rate, avoiding the pitfalls seen in the HTon-2-1 case. For the case of diminishing

performance at the HTon-4-2 level, one can observe that the main performance bottleneck

is the cache memory bandwidth. In Figure 4.9, the increased number of 2
nd
 level cache

-36-

misses over the serial case corresponds to the decreased performance of the swim

benchmark illustrated in Figure 4.6.

2nd Level Cache Misses

0

5

10

15

20

25

30

35

40

45

50

BT CG LU MG SP apsi art swim

C
a
c
h
e
 M

is
s
e
s
 (
B

il
li
o
n
s
)

Serial HTon-2-1 HToff-2-2 HTon-4-2

Figure 4.9: 2

nd
 Level Cache Misses.

4.3 Summary

In this chapter the overhead due to OpenMP constructs has been examined, comparing

the 2.4.22 Linux scheduler with the O(1) 2.6.9 Linux scheduler. It was found that overall

the STATIC loop scheduling was a good choice for small chunk size applications while

DYANMIC and GUIDED are the best choices as chunk size increases. It was also found

that the 2.4.22 scheduler exhibited slightly less OpenMP overhead than the 2.6.9

scheduler. In addition, the implementation of SMT from Intel, Hyper-Threading was

analyzed to determine its potential benefits in increasing system performance. It was

determined that HT can only be of benefit for a small number of applications for a 2-way

system, although it can be of benefit in a single processor system. The cause of this lack

of speedup when enabling HT was identified as being a memory system limitation. The

increased memory pressure caused by doubling the number of running threads (by

turning on HT) causes an overall system slowdown that cannot be offset by the increase

in the number of simultaneously executing threads.

Liao et al. [57] have previously studied OpenMP overhead and we find that our results

are consistent with their findings on a Dell 450 Precision workstation. Their NAS and

SPEComp benchmark results are fairly consistent with our findings. However, their

-37-

testing methodology involved using two physical processors running 2 threads for HTon-

2-1 tests, resulting in a partial load situation, while our results were performed with the

load entirely on a single HT-enabled processor. In addition, our newer system has lead to

some performance improvements over the system used by Liao et al.

With the information that was gathered in this chapter, we can now focus on the most

relevant metrics for determining the optimal configuration of modern multi-processor

systems. The work illustrated here on single-core processors can be extended to multi-

core processors within similar environments. Therefore, the prime metrics discussed in

this chapter such as memory bandwidth and cache miss rates can be compared to newly

emerging commercial multi-core processor systems. In the next chapter we examine

multi-core systems in a similar yet more in depth method to determine if the traditional

performance metrics are suitable for judging the performance of such new systems.

-38-

Chapter 5: Characterization and Analysis of Multi-Core
SMPs

The placement of multiple cores on a single processor die is an emerging technology

in today’s commercial market. As the design of new processors with consistently higher

clock speeds has slowed due to cooling concerns, the attention of industry has shifted

from faster individual processors to groups of processors in order to increase the overall

performance of CPUs. The emergence of chip multi-processing and the hybridization of

this technology with SMT and SMP technology creates an interesting platform from

which we can determine the optimal operating environment for these emerging

technologies.

This chapter investigates dual-core two-way systems available with Intel’s Hyper-

Threading technology and examines the reasons behind the performance of such systems

under various configurations and workloads [31].

The first generation of Intel Xeon CMT processors have two distinct cores with

separate 2MB L2 caches. Each core has two hardware contexts, when enabled. The

introduction of dual-channel main memory further complicates the situation with chip

multi-threaded SMPs, where a number of CMT processors are used in a conventional n-

way SMP configuration. This can create further bottlenecks as each individual physical

chip shares a memory controller between its two cores, and therefore the two physical

chips require a method of ensuring memory consistency and bus arbitration while taking

into account that there are two channels to main memory. As a result, the competition for

shared resources is intense.

CMT-based SMPs present new challenges as well as new opportunities to maximize

performance. Given a set of applications and a number of CMT processors there are

ample opportunities to control how many threads, and which threads, to co-schedule on

different cores or contexts in order to achieve performance. It is our intention in this

chapter to identify the shared resources that might become a bottleneck to performance

under different configurations.

Traditionally, OpenMP applications have been developed for flat SMP systems. With

the availability of modern CMT processors, hybrid SMP configurations may perform

-39-

differently due to workload characteristics of applications. They also present new

challenges to the systems software to accommodate inter- and intra- parallelism among

threads. Greater demand on cache subsystem, increased bus transactions, and stall cycles

may significantly affect the performance of OpenMP applications [69].

The first contribution of this chapter is the performance evaluation of scientific

applications in the NAS OpenMP suite [31] in section 5.2. It is interesting to discover the

impact of multi-core SMT-based SMP systems on the performance of such applications.

We consider the effects of resource sharing within the processors on the performance by

collecting data from hardware performance counters. We attempt to pinpoint architectural

limitations of such a system by observing its overall cache performance, cycles per

instruction (CPI), branch prediction rates, bus transactions, ITLB and DTLB hit rates and

number of stalled cycles. In section 5.3, an investigation is performed into the

performance of the different configurations using a variety of multi-application

workloads. The performance of the systems while overloaded with twice as many

execution threads for a given benchmark as are available in hardware is then investigated

in section 5.4. Finally, an investigation into the effects of operating system noise is

detailed in section 5.5

5.1 Experimental Methodology

The experiments were conducted on a Dell PowerEdge 2850 SMP server. The

PowerEdge 2850 has two dual-core 2.8GHz Intel Xeon EM64T processors with 12KB

shared execution trace cache, and 16KB L1 shared data cache on each core. A 2x2MB

L2 cache is allocated with one 2MB L2 cache for each core on a chip. There are 4GB of

DDR-2 SDRAM on an 800 MHz Front Side Bus. The chip’s core is the Paxville core,

whose basic architecture is described in Figure 5.1. The operating system is Red Hat

Linux Enterprise WS 4.1 with Kernel 2.6.9-11. Using LMbench [63] we have measured

the L1, L2, and main memory latencies of the processor as 1.43ns, 10.61 ns, and

136.85ns, respectively. The main memory read and write bandwidths are 3.57 GB/s and

1.77 GB/s, respectively.

The system was tested using the LMbench benchmark to determine if any memory

bandwidth differences existed between the operation of threads on a single physical chip

-40-

and the operation of those same threads spread out to both physical chips. The main

memory read and write bandwidths when using two physical chips are 5.43 GB/s and

1.61 GB/s respectively. This emphasizes the utilization of the secondary memory access

controller in the second chip as well as the dual channel memory architecture available.

The decreased write bandwidth is most likely due to consistency requirements with

respect to the two memory access controllers.

To test the system in a variety of configurations, some of the tests were run by

masking off some of the available processors in the system such that they could not be

used by our application threads. This enabled us to test the performance of the system

using different thread distributions between the existing resources. The default Linux

scheduler was used for assigning the individual threads amongst the specified processors.

Figure 5.1: Intel Xeon Dual-Core Chip Layout

5.1.1 Terminology

The test results detailed in the next section show the results for the testing on a variety

of different configurations. Our intention is to find the best set of architectures for each

application under study running with a given number of threads. Figure 5.2 presents the

labeling used for the hardware contexts in the HT-enabled and HT-disabled systems.

Such labeling will help understand the hardware contexts available for use in each

configuration.

-41-

Figure 5.2: Processor numbering for 2-way Dual-core System

Table 5.1 shows the different configurations used in our study. The basic terminology

used to describe these configurations is comprised of three parts (four parts for the

overloaded cases). The first part is either HToff or HTon, which describes the state of

Hyper-Threading in the system. The second term indicates the total number of

application threads that were used. The third term represents the number of physical

processor chips used in the tests. The first three terms are identical to the system

terminology in Chapter 4. For the overloaded tests, the fourth item is the number of

hardware contexts available for use. There is no need for a fourth item for non-

overloaded cases as there are as many hardware contexts available as the number of

application threads.

Table 5.1: Configuration Information

Terminology Hardware Contexts Corresponding Architecture

Serial D0 Serial Uni-processor

HTon -2-1 C0, C1 SMT

HToff -2-1 D0, D1 CMP

HTon -4-1 C0, C1, C2, C3 CMT

HToff -2-2 D0, D2 SMP

HTon -4-2 C0, C1, C4, C5 SMT-based SMP

HToff -4-2 D0, D1, D2, D3 CMP-based SMP

HTon -8-2 C0, C1, C2, C3, C4, C5, C6,

C7, C8

CMT-based SMP

HTon -4-1-2 C0, C1 Overloaded SMT
HToff -4-1-2 D0, D1 Overloaded CMP

HToff -4-2-2 D0, D2 Overloaded SMP

HTon -8-1-4 C0, C1, C2, C3 Overloaded CMT

-42-

5.2 Single Application Results

In order to present these results in a fair manner, the configurations must be divided

into several groups, such that the configurations can be compared to configurations with

similar amounts of resources. The HTon-2-1 configuration must be examined separately

from the rest of the data as it has by far the smallest amount of resources available to it.

In this configuration it shares a trace cache between executing threads along with several

functional units on the CPU, in addition to having only one 2MB L2 cache available for

use.

The second group is much larger in that the HToff-2-1 configuration can be compared

directly to the HTon-4-1 configuration, the only difference between the two being the

presence of HT. The third group comprises the HTon-4-2 and HToff-2-2 configurations,

which can also be compared to the second group, as the difference between these two

groups is the use of both physical chips, although only at 50% usage to create resources

similar to those available to the second group. The fourth and final group is the HToff-4-2

and HTon-8-2 group. This group utilizes all of the resources available in our platform

with HT on and off. Sometimes, comparisons may also be made between groups, but

only in the context of performance per resources available to help determine the

configurations that make the best use of the resources available to them.

5.2.1 Cache Performance

The performance of the cache is very important to overall system performance, and

can illustrate potential benefits and drawbacks of certain system configurations. The L1

and L2 cache miss rates are presented in Figure 5.3(a) and 5.3(b). The first observation

that can be made by examining the graphs, is that the L1 cache miss rates are flat across

the different configurations. This seems counter-intuitive, but is a byproduct of the

benchmark applications themselves, as they use a large amount of infrequently changing

variables in their calculations, and only a small number of new variables for each loop.

This means that a large number of L1 cache requests are hits, while only a small number

are misses, requesting the few new variables required for the next loop. This leads to a

good L1 cache miss percentage due to the large number of requests.

-43-

Examining the HTon-2-1 configuration, we can see that it has relatively good trace

cache performance and excellent overall hit rates within each level of cache for all of the

applications with the exception of the L2 miss rate for the LU benchmark. The excellent

cache performance can be attributed to several factors, one being that there is relatively

little contention for the cache resources, and the limited computational resources

available mean that the memory bus is free for pre-fetching operations during execution.

The second group is similar to the third group in term of the trends in memory

performance, with the HTon configurations having a higher miss rate than the HToff

configurations. This is not unexpected as the HTon configurations have less memory

available to the system per execution thread, thereby causing more cache evictions, which

are not offset by the sharing of data between the threads.

The final group of HToff-4-2 and HTon-8-2 have fairly comparable memory

performances, with the HTon-8-2 having the advantage in terms of its trace cache

performance for the CG benchmark, while the HToff-4-2 configuration has an advantage

for the L2 miss rate on the LU benchmark.

L1 Cache Miss Rate

0

10

20

30

40

50

60

BT CG MG LU SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

L2 Cache Miss Rate

0

5

10

15

20

25

30

35

40

BT CG MG LU SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

(a) (b)

Figure 5.3: (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate

The effect of enabling HT on the different architectures leads to a 2.8% increase in L1

miss rate for group 1, a 0.01% increase on group 2, and a 3.4% and 11.0% decrease for

groups 3 and 4, respectively. The average first level cache miss rate is 20.1% across all

applications for all HToff configurations, while the average first level cache miss rate for

HTon configurations is 17.9%. The CG benchmark has a small perturbation, most likely

caused by interference with the executing computational loops.

-44-

The second level cache miss rates fluctuate between the different applications, but the

changes in the LU benchmark are quite significant; therefore, the results detailed here

neglect the LU miss rates. The effect of enabling HT on the different architectures leads

to a 105.5% increase for group 1, a 55.9% increase on group 2, a 150.5% increase for

group 3 and a 37.2% decrease for group 4. The average second level cache miss rate is

2.35% across all applications for all HToff configurations, while the average second level

cache miss rate for HTon configurations is 5.35%.

The LU benchmark spans a large memory area throughout its execution and its

memory access patterns require that previous computational results be present in memory

for use in future computation, leading to a disadvantage for computationally limited

configurations, as they cannot perform in large parallel batches, and old results are

evicted from the cache before they are needed again. This leads to a much larger increase

in L2 cache miss rate when enabling HT, with a 7260% increase for group 1, a 2121%

increase for group 2, a 177% increase for group 3 and a 1242% increase for group 4.

The trace cache miss rate of each of the architectures is detailed in Figure 5.4. It

shows that the enabling of HT has an effect on the trace cache miss rates of the different

architectures, leading to a 101.5% increase for group 1, a 20.9% increase on group 2, a

12.9% decrease for group 3 and a 5.1% decrease for group 4.

Trace Cache Miss Rate

0

20

40

60

80

100

BT CG MG LU SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.4: Trace Cache Miss Rates

The average trace cache miss rate is 59.5% across all applications for all HToff

configurations, while the average trace level cache miss rate for HTon configurations is

56.8%. The high increase in trace cache miss rate for group 1 is most likely due to its

-45-

direct comparison to the serial case, where the trace cache of the Intel processor has a

significant efficiency advantage over a multi-threaded workload, in which it must predict

the behavior of several threads instead of a single active thread.

5.2.1.1 TLB Performance

By examining the Figures 5.5(a) and 5.5(b), we can see that the number of ITLB

misses rises between the different groups. The number of ITLB misses increases as the

complexity and resources of the architectures increase. This is true for group 1, group 2,

and if CG and LU are excluded it is also true for group 3. For group 4 the ITLB misses

see a decrease between the HToff and HTon configurations across all of the benchmarks

except for CG. DTLB misses are relatively flat across all groups (except for HTon-8-2 for

BT and LU) indicating that the increases in complexity do not significantly impact the

performance of the DTLB.

Normalized DTLB Load and Store Misses

0

0.4

0.8

1.2

1.6

BT CG MG LU SP

N
o
rm

a
li
z
e
d
 o

v
e
r

S
e
ri

a
l

Hton-2-1 Htoff-2-1 Hton-4-1 HToff-2-2

Hton-4-2 Htoff-4-2 HTon-8-2

ITLB Miss Rate

0

20

40

60

80

100

BT CG MG LU SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

(a) (b)

Figure 5.5: (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB Miss Rate

5.2.2 Stalled Operation

The examination of the number of cycles spent stalled due to memory order clearing,

mis-predicted branches, lack of instructions in the trace cache, or the delay caused by the

need to load data in from memory can help to determine why some of the configurations

are behaving the way that they do. Figure 5.6 illustrates the percentage of run time that

the system spends in the halt state for a variety of architectures.

-46-

The number of cycles spent in a stalled state for the HTon-2-1 configuration is poor

relative to the other configuration groups. This is an indication of thread contention for

shared resources in the cores. Group 2, 3 and 4 show similar patterns once again, with

the HTon configurations having more stalled cycles than the HToff configurations.

Interestingly, the configurations from group 3 are worse in terms of percentage of stalled

cycles throughout all of the tests compared to group 2. The average percentage of stalled

cycles for the HToff configurations is 0.83%, while the average for the HTon

configurations is 1.62%.

% Stalled Operation

0

1

2

3

4

5

BT CG MG LU SP

S
ta

ll
e
d
 O

p
e
ra

ti
o
n
 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.6: % of Total Execution Spent in a Stalled State

5.2.3 Branch Prediction

Figure 5.7 shows the branch prediction rate for each of the architectures for all five

benchmarks. We can see that the branch prediction rates are excellent for almost all

benchmarks across all configurations, with the exception of two of the HTon

configurations from groups 2 and 3 for CG and HTon-8-2 for MG. The branch prediction

rate does have an effect on the total number of stall cycles that an architecture incurs, as a

mis-predicted branch can cause a memory order clear event and may affect the relevance

of data in the trace cache. This helps to explain the number of stalled cycles and

consequently, the high CPI that the HTon configurations in groups 2 and 3 have for the

CG benchmark.

-47-

Branch Prediction Rate

80

85

90

95

100

BT CG MG LU SP

B
ra

n
c
h
 P

re
d
ic

ti
o
n
 R

a
te

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.7: Branch Prediction Rate

5.2.4 Bus Transactions

When examining the bus transaction characteristics of the configurations presented in

Figure 5.8, it is clear that group 1 is the only group that has the memory bandwidth

capacity left over to perform any kind of pre-fetching activities. Group 1 spends ~50% of

its time in 4 of 5 of the benchmarks pre-fetching data into the cache. The only other

instance of significant pre-fetching is the HTon-8-2 configuration for the CG benchmark.

% Prefetching Bus Accesses

0

20

40

60

80

100

BT CG MG LU SP

%
 P

re
fe

tc
h
in

g
 B

u
s

A
c
c
e
s
s
e
s

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.8: Pre-fetching Bus Accesses

5.2.5 Cycles Per Instruction

When examining the CPI of the different configurations presented in Figure 5.9, many

of the observations made in the previous sections can be observed impacting the

efficiency of the system. One can see a direct correlation between the results in the

previous sections and the higher than average CPIs of some configurations when running

-48-

some of the benchmarks. It is interesting to note that the high CPIs of the HTon

configurations from groups 2 and 3 running the CG benchmark correlate directly to very

poor branch prediction rates and relatively high L2 cache miss rates, which combine to

give these two configurations higher CPIs than those in their respective groups. The poor

CPI of the HTon-8-2 configuration executing MG also corresponds to a poor branch

prediction rate but without the high L2 cache miss rate. This makes sense as a high

branch mis-prediction rate would cause many flushes of the execution pipeline and

therefore reduce overall efficiency.

CPI

0

1

2

3

4

5

6

7

8

9

10

BT CG MG LU SP

C
P
I

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.9: Cycles Per Instruction

5.2.6 Wall Clock Performance

The NAS benchmarks were run through a series of ten independent trials, with

minimal variance between tests (<~1-5%). The results are detailed in Figure 5.10. The

runtimes of the NAS benchmarks show an interesting trend that is new to the dual-core

Intel Xeon architecture. Specifically, that the use of SMT on a CMT core can be

extremely beneficial to the performance of a system. Of particular interest are the results

for the 4 threaded HTon case utilizing both cores on a dual-core chip in HTon mode (HTon-

4-1). In this case the overall performance of a single SMT dual-core chip is comparable

to the performance of two dual-core processors operating with HToff. Despite the single

HTon-4-1 chip having half as many available computational resources, the appreciable

slowdown over the dual processor dual-core SMP case is only 13.6%.

Overall, the HToff-4-2 configuration has the best wall clock times, with the exception

of CG, and has the highest average speedup across all of the applications. This follows

-49-

the same trend found for the HTon-4-1 case, in that despite the fact that the CMT

architecture has half as many available computational resources, the appreciable

slowdown over the CMP-based SMP case is only 12.8%.

NAS OpenMP Benchmark Speedup

0

0.5

1

1.5

2

2.5

3

3.5

BT CG MG LU SP

S
p
e
e
d
u
p

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.10: Speedup for NAS OpenMP applications.

When overall processor resources are increased to utilize two dual-core processors

with HTon (HTon-8-2), the results are different to previously observed HT-related

behavior in that the overall effect on performance is minimal, in contradiction to previous

work on single-core HT architectures in chapter 4. However, it should be noted that in

the case of applications in which there is a significant amount of data sharing, HT has

excellent speedup (such as in the case of the application CG) which offsets its poorer

performance on the other benchmarks.

The overall average speedup for group 1 for the HT-enabled architectures versus the

HT-disabled case is 1.81 versus speedup of 1 for the serial case. The average speedup for

group 2 was 1.86 for the HTon case and 1.42 for the HToff case. Groups 3 and 4 had

average speedups of 1.43 and 2.10 for the HTon architectures and speedups of 1.83 and

2.10 for the HToff cases, respectively.

Except for the CG case, the performance of the HTon-8-2 case is worse than the HToff-

4-2 case. To better understand the reasons behind this, we examine the CG application in

detail. In general, the HTon-8-2 setup results in less total bus accesses than the HToff-4-2

case, with an L1 cache miss rate of 47.1% versus 56.2% for the HToff-4-2 case. This,

coupled with an L2 cache miss rate of 1% versus 9.6% translates into a higher number of

non-pre-fetching bus accesses from the HToff-4-2 case. The HToff-4-2 case has a lower

-50-

CPI of 1.04 versus the HTon-8-2’s CPI of 5.02 which would imply that the performance

of the HToff-4-2 case should be superior, but a large number of bus transactions in the

HTon-8-2 case are speculative pre-fetching (51.2% of all bus accesses) while the vast

majority of bus transactions for the HToff-4-2 case are not the result of pre-fetching. This

leads to much more speculative execution in the HTon-8-2 case which is not accounted for

in the CPI as it is counted as cycles per instruction committed. The trace cache

performance of the HTon-8-2 system is worse than the HToff-4-2 case for all of the

benchmarks with the exception of CG and MG, with the HTon-8-2 configuration having a

major advantage of 35.6% miss rate versus the HToff-4-2’s miss rate of 87.3% for CG.

The average speedup of each of the architectures is detailed in Table 5.2.

Table 5.2. Speedup for architectures

SMT
(HTon-2-1)

CMP
(HToff-2-1)

CMT
(HTon-4-1)

SMP
(HToff-2-2)

SMT
based
SMP

(HTon-4-2)

CMP
based
SMP

(HToff-4-2)

CMT
based
SMP

(HTon-8-2)

1.81 1.42 1.87 1.83 1.43 2.11 2.10

5.3 Multi-Application Results

The performance of the given architectural configurations is also of interest in a multi-

programmed environment. The following results were collected using the same

configurations as in section 5.2, but utilized more than one concurrent program execution

at a time to examine the ability of the architectures to handle complimentary and

uncomplimentary workloads of multiple programs. As such, these results are not directly

comparable to those in the previous section. The goal of these multi-application tests is

to determine the performance of the different available system configurations in a variety

of multi-application workloads. All of the workloads used for testing fully load the

system, using all of the system resources in a balanced way between the applications; for

example, the HToff-4-2 configuration uses four threads, two for the first application and

two for the second application, while HToff-2-1 uses two threads, one for the first

application and one for the second application.

Two NAS benchmarks were selected for this task, the FT benchmark, which is a

Fourier transform application requiring mostly computational resources and limited

memory resources, and the CG benchmark, which requires significant memory resources.

-51-

Three separate tests were conducted; the first used a combination of CG and FT for a

computationally demanding application paired with a memory intensive program. The

second used two copies of FT to determine the system’s performance with mostly

computationally intense workloads, and the third used two copies of CG to determine the

system’s performance under a memory intensive workload. The maximum number of

execution threads available to each system configuration was used, with the threads being

distributed evenly between the executing programs. The threads were not tied to any

specific processor, and the scheduler was free to relocate threads amongst the available

processors.

5.3.1 Cache Performance

By studying the L1 and L2 cache miss rates of the different architectures presented in

Figure 5.11(a) and 5.11(b) we can observe that the 1
st
 level cache miss rates are relatively

stable across the different configurations. However, the 2
nd
 level cache miss rates show

that the HTon-2-1 configuration has difficulty achieving a high hit rate for the CG

benchmark, as does the HTon-8-2 configuration.

L1 Cache Miss Rate

0

10

20

30

40

50

60

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

L2 Cache Miss Rate

0

5

10

15

20

25

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

(a) (b)

Figure 5.11: (a) L1 Cache Miss Rate and (b) L2 Cache Miss Rate

In general, all of the HTon configurations have a worse L2 miss rate than their HToff

equivalents. This is most likely due to cache contention as the two programs cause cache

evictions of important data belonging to the other program. This also explains why CG is

affected to a greater degree by the system sharing than the FT benchmark as it uses a

much larger data set and is more memory intensive than the FT benchmark.

-52-

The trace cache miss rates shown in Figure 5.12 illustrate that the HToff configurations

for both group 2 and group 3 are better than the HTon configurations for both the CG/FT

and CG/CG workloads, with the HTon configurations having an advantage in the FT/FT

workload. The advantage for the HTon configurations for the FT/FT workload for group

2 is fairly significant, but the advantage is even greater for the HTon configuration in

group 3. Finally, group 4 shows that there is no advantage to the HTon configuration in

terms of trace cache misses in any of the workload configurations.

Trace Cache Miss Rate

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.12: Trace Cache Miss Rate

5.3.1.1 TLB Performance

Figures 5.13(a) and 5.13(b) show that the HTon configurations suffer from excessive

ITLB misses in both groups 2 and 3 when running the CG benchmark.

Normalized DTLB Load and Store

Misses

0

0.5

1

1.5

2

2.5

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

N
o
rm

a
li
z
e
d
 o

v
e
r
S
e
ri
a
l

HTon-2-1 HToff-2-1 HTon-4-1 HToff-2-2

HTon-4-2 HToff-4-2 HTon-8-2

ITLB Miss Rate

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

M
is

s
 R

a
te

 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

(a) (b)

Figure 5.13: (a) DTLB Load and Store Misses Normalized to the Serial Case (b) ITLB Misses

-53-

The HTon configuration from group 3 also has difficulties with its DTLB for the

FT/FT and CG/CG workloads. This implies that the execution units are potentially being

starved of instructions, but further investigation into the amount of stalling that occurs

due to these misses is required to determine the real effect of this finding.

5.3.2 Stalled Operation

The percentages of the total run time that the system spends in a stalled state are

presented in Figure 5.14. Upon examination, the amount of total execution cycles spent

in a stalled state for this multi application workload is surprising. When running a

supposedly complimentary workload (CG/FT), we can see that a significant amount of

time is spent in a stalled state. From this we can infer that the system is having a very

difficult time providing the programs with the required resources, possibly switching the

processors on which the programs are running frequently.

% Stalled Operation

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

S
ta

ll
e
d
 O

p
e
ra

ti
o
n
 (
%

)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.14: Percentage of Operation Time Spent Stalled

5.3.3 Branch Prediction

When examining the branch prediction rate detailed in Figure 5.15, we can see that the

HToff configurations from groups 2 and 3 are both worse than the HTon configurations for

all of the tests except for the CG/CG workload. Group 1 has relatively good branch

prediction across the workloads, and group 4 shows that there is only a marginal

difference between the branch prediction rates between the HTon and HToff

configurations.

-54-

Branch Prediction Rate

90

92

94

96

98

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CGB
ra

n
c
h
 P

re
d
ic

ti
o
n
 R

a
te

(%
)

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.15: Branch Prediction Rate

5.3.4 Bus Transactions

The pre-fetching activities being undertaken by each of the configurations presented in

Figure 5.16 reinforce the stalled operation results examined earlier in this section. The

configurations spend a significant amount of time pre-fetching when running the CG/FT

workload. From this we can infer that the source of the stalling is not due to memory

bandwidth issues, but instead can be attributed to other factors such as pipeline flushes.

% Prefetching Bus Accesses

0

20

40

60

80

100

CG (CG/FT) FT (CG/FT) FT/FT CG/CG%
 P

re
fe

tc
h
in

g
 B

u
s
 A

c
c
e
s
s
e
s

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.16: Percentage of Pre-fetching Bus Accesses of All Bus Accesses

5.3.5 Cycles Per Instruction

The CPI results in Figure 5.17 indicate that despite the high number of execution

cycles in which the systems are stalled for the CG/FT workload, the actual CPI of the

HTon configurations does not suffer significantly. With the exception of the CG/CG

-55-

workload, the HTon configurations for groups 2 and 3 are better than the HToff

configurations in terms of CPI. Group 4 shows that the HTon configuration is worse than

the HToff configuration for all workloads.

CPI

0

5

10

15

20

25

30

CG (CG/FT) FT (CG/FT) FT/FT CG/CG

C
P

I

Serial HTon-2-1 HToff-2-1 HTon-4-1

HToff-2-2 HTon-4-2 HToff-4-2 HTon-8-2

Figure 5.17: Cycles Per Instruction

5.3.6 Wall Clock Performance

The results examining multi-application performance are presented below in Figures

5.18(a), 5.18(b) and 5.19. The goal of these multi-application tests was to determine the

performance of the different available system configurations in a variety of multi-

application workloads. All of the workloads used for testing fully load the system, using

all of the system resources in a balanced way between the applications, for example, the

HToff-4-2 configuration uses four threads, two for the first application and two for the

second application, while HToff-2-1 uses two threads, one for the first application and one

for the second application. The applications were specifically chosen because CG is

typically memory bound, while FT is compute bound. Thus, the performance numbers

presented in the Figure 5.18(a) directly correlate to running half of a system with

compute bound threads and half with memory bound threads. Figure 5.18(b)

demonstrates the system performance for an entirely compute bound workload, while

Figure 5.19 demonstrates the performance of a fully memory bound workload. The

results clearly indicate that there is a tangible performance benefit to running compute

bound and memory bound applications in parallel, as the performance of both

applications is better in such a balanced environment than a system running alike

applications.

-56-

CG/FT Multiprogrammed Speedup Over Serial

0

0.5

1

1.5

2

HTon-

2-1

HToff-

2-1

HTon-

4-1

HToff-

2-2

HTon-

4-2

HToff-

4-2

HTon-

8-2

S
p
e
e
d
u
p

CG FT

FT/FT Multiprogrammed Speedup Over Serial

0

0.5

1

1.5

2

HTon-

2-1

HToff-

2-1

HTon-

4-1

HToff-

2-2

HTon-

4-2

HToff-

4-2

HTon-

8-2

S
p
e
e
d
u
p

FT FT

(a) (b)

Figure 5.18: (a) CG/FT and (b)FT/FT Multi-Application Speedup

The speedups show that by a small margin, the applications enjoy running with

themselves, but small variances occur that make it difficult to make strong generalized

conclusions. The overall best performer of any configuration is HTon-4-2, which is the

fastest overall for two of the three configurations. The HTon-8-2 configuration is the

fastest for the CG/FT test but only by a small margin. This indicates that for multi-

application workloads, HT offers a tangible performance benefit, whether the system is

balanced in its workload or not. In addition, it indicates that for multi-application

workloads, clever scheduler design could achieve optimal performance of the system by

utilizing HT and varying the number of threads for the active applications running on the

system.

CG/CG Multiprogrammed Speedup Over Serial

0

0.5

1

1.5

2

2.5

3

HTon-

2-1

HToff-

2-1

HTon-

4-1

HToff-

2-2

HTon-

4-2

HToff-

4-2

HTon-

8-2

S
p
e
e
d
u
p

CG CG

Figure 5.19: CG/CG Multi-Application Speedup

5.3.7 Cross-Product Multi-Program Results

The different architectural configurations were tested using a pair of applications, and

completed for all possible two-program pairs in all configurations. The program pairs

were run with enough evenly distributed threads as to fully load the architecture under

-57-

test. The results are shown in a box and whiskers plot in Figure 5.20. The boxes in the

figure represent the ranges of data (the 25
th
 and 75

th
 percentile of the data falls within the

box), while the whiskers represent the maximum and minimum of the data.

From these results we can conclude that the HToff-4-2 (CMP- based SMP) architecture

provides the overall best performance for the majority of program pairs across all of the

benchmarking programs. However, for certain program pairs, the HTon architectures can

provide better overall performance. The performance of the CG benchmark when

running with the BT benchmark on the HTon architectures is significantly better than on

the HToff architectures, which accounts for the large whiskers on the CG results for the

HTon architectures. However, BT does not see significant speedup when run in

conjunction with CG on HTon architectures.

Multi-Programmed Speedup of NAS Benchmark Pairs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

B
T

C
G

M
G

L
U

S
P

~
~

S
p
e
e
d
u
p

H
Ton

-2
-1

H
Tof

f-2
-1

H
Ton

-4
-1

H
Tof

f-2
-2

H
Ton

-4
-2

H
Tof

f-4
-2

H
Ton

-8
-2

Configuration

Figure 5.20: Multi-programmed speedup of pairs of NAS benchmarks for all architectures

5.4 Overloaded Configuration Analysis

The four configurations presented in Figures 5.21 to 5.28 represent balanced yet

overloaded workloads for the processors. All four cases have twice as many threads as

they do execution contexts in which to run them. The LU benchmark has been omitted

-58-

from these tests as it suffers from incredibly high runtimes when the system is

overloaded.

5.4.1 Cache Performance

In Figure 5.21(a) and 5.21(b) we can see that the cache performance of the overloaded

cases is excellent given their intensive workload. The L1 cache miss rates stay relatively

stable across all of the configurations, with a small increase in the HTon-8-1-4 case for

CG. L2 cache miss rates are similar to those for the non-overloaded cases, rising by a

significant but not overwhelming amount given the increased workload, with the majority

of the increase in miss rate occurring from the SP benchmark.

L1 Cache Miss Rate - Overloaded

0

10

20

30

40

50

60

BT CG MG SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

L2 Cache Miss Rate - Overloaded

0

5

10

15

20

25

BT CG MG SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

(a) (b)

Figure 5.21: (a) 1
st
 Level Cache Miss Rates for Overloaded Cases, (b) 2

nd
 Level Cache Miss Rates for

Overloaded Cases

The trace cache miss rates for the overloaded cases are shown in Figure 5.22. The

best trace cache performance for the overloaded cases occurs with both of the HTon

configurations, both having much better cache miss rates than their HToff alternatives.

This illustrates that the HTon configurations are benefiting from their shared trace cache.

This means that the system is fairly well balanced in terms of program synchronization if

the HTon configurations are able to exploit their shared trace cache.

-59-

Trace Cache Miss Rate - Overloaded

0

20

40

60

80

100

BT CG MG SP
M

is
s
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.22: Trace Cache Miss Rates for Overloaded Cases

The DTLB miss performance of the overloaded cases in Figure 5.23(a) is similar to

that for the non-overloaded cases in Figure 5.5, seeing no significant increase due to the

thread overloading. The ITLB performance of the overloaded cases in Figure 5.23(b)

shows an increase for most of the configurations with the exception HTon-8-1-4, which

sees a real benefit to its ITLB miss rate when overloaded.

Normalized DTLB Load and Store

Misses - Overloaded

0.8

0.85

0.9

0.95

1

1.05

1.1

BT CG MG SP

N
o
rm

a
li
z
e
d
 o

v
e
r

S
e
ri

a
l

HTon-4-1-2 HToff-4-1-2
HToff-4-2-2 HTon-8-1-4

ITLB Misses - Overloaded

0

10

20

30

40

50

60

70

80

90

100

BT CG MG SP

M
is

s
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

(a) (b)

Figure 5.23: (a) DTLB Load and Store Misses and (b) ITLB Miss Rates for Overloaded Cases

5.4.2 Stalled Operation

The percentage of the total number of execution clockticks in which the system was

stalled is presented in Figure 5.24. We can see that it is slightly higher for an overloaded

configuration than for a non-overloaded configuration in Figure 5.6, rising by as much as

3.9% over the non-overloaded configuration, with HTon-4-1-2 seeing the highest

increases. This is to be expected as we overload the system, as it will require more

-60-

memory order clear instructions and in general require the flushing of the pipeline more

often, especially when switching contexts to a new execution thread.

% Stalled Operation - Overloaded

0

1

2

3

4

5

6

BT CG MG SP

S
ta

ll
e
d
 O

p
e
ra

ti
o
n
 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.24: Percentage of Stalled Operation for Overloaded Cases

5.4.3 Branch Prediction

The branch prediction rate for the overloaded cases detailed in Figure 5.25 is

excellent. The branch prediction problems that occurred with the HTon-4-1 non-

overloaded configuration (Figure 5.7) are no longer occurring and overall the

configurations are doing well compared to their non-overloaded configurations.

Branch Prediction Rate - Overloaded

95

96

97

98

99

100

BT CG MG SP

B
ra

n
c
h
 P

re
d
ic

ti
o
n
 R

a
te

 (
%

)

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.25: Branch Prediction Rate For Overloaded Configurations

5.4.4 Bus Transactions

The percentage of bus accesses that are for pre-fetching activities is shown in Figure

5.26. It can be seen that for both of our HTon configurations, the limiting factor to

performance appears to be the computation resources available to the system, while the

-61-

HToff configurations are still limited by memory performance. This is keeping in line

with the observations made for the configurations in their non-overloaded states as shown

in Figure 5.8.

% Prefetching Bus Accesses - Overloaded

0

10

20

30

40

50

60

BT CG MG SP

%
 P

re
fe

tc
h
in

g
 A

c
c
e
s
s
e
s

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.26: Percentage of Pre-fetching Bus Accesses For Overloaded Configurations

For the majority of the applications, this advantage in pre-fetching does not

necessarily lead to a performance increase as the cache hit rates are still very comparable

to the HToff cases which rely on less overall pre-fetching activities as illustrated in Figure

5.8. This explains why the HTon cases do not gain a significant performance advantage

over the SMP cases, as the HTon cases also have less total available cache memory to

them as more threads share a smaller overall cache area.

5.4.5 Cycles Per Instruction

Comparing the CPI of the overloaded configurations in Figure 5.27 with the non-

overloaded configurations in Figure 5.9, we find that the CPIs are not greatly affected by

overloading. The overall impact for all of the cases is an average increase in CPI by

1.35%, with the best performance being a drop of 46.3% in CPI for the HTon-8-1-4

configuration for the BT benchmark, and the worst being a CPI rise of 48.8% for the

HTon-4-1-2 configuration for the SP benchmark.

-62-

CPI - Overloaded

0
1
2
3
4
5

6
7
8
9

10

BT CG MG SP

C
P

I

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.27: CPI For Overloaded Configurations

5.4.6 Wall Clock Performance

The behaviour of the HT for the overloaded case of HTon-8-1-4, where 8 threads are

executing on a single dual-core processor with HT shows interesting results. With the

exception of BT, the HTon-8-1-4 case is one of the fastest of all of the tested

configurations. Overall, it results in a slowdown of only 7.6% versus the HToff-4-2 case.

This is 0.9% slower than the slowdown seen by the HTon-4-1 configuration. However,

when you consider the best case for each benchmark between the HTon-8-1-4 and HTon-4-

1 the overall result is a speedup over the HToff-4-2 case of 3.25%. This implies that there

are future opportunities for performance better than that of a system with twice the

computational resources by using intelligent scheduling techniques with HT-enabled on a

single dual-core processor.

NAS OpenMP Benchmark Speedup -

Overloaded

0

1

2

3

4

BT CG MG SP

S
p
e
e
d
u
p

Serial HTon-4-1-2 HToff-4-1-2

HToff-4-2-2 HTon-8-1-4

Figure 5.28: Overloaded NAS Benchmarks Speedup

-63-

It is interesting to examine the performance numbers from the CG benchmark,

specifically the overloaded HTon-8-1-4 case versus the HToff-4-2 case. In general, this

benchmark benefits from additional execution threads that are located on physically close

cores. Interestingly, the best performance on this benchmark comes from the HTon-8-1-4

case, even though the cache hit rates and trace cache hit rates are lower than other

configurations. However, the overloaded cases have a slight advantage in terms of

efficiency of bus usage over the non-overloaded cases, as the HTon-8-1-4 case executes

significantly more pre-fetch operations than do the non-overloaded cases. The

percentage of operations that were pre-fetching on the HTon-8-1-4 configuration was only

49.5% versus a 0.08% value for the HToff-4-2 case, as illustrated in Figure 5.10. The

HTon configurations have an advantage in terms of executing more pre-fetching

operations than the HToff configurations throughout all of the tests, but in benchmarks,

this pre-fetching is not beneficial to overall system performance. In the case of the CG

benchmark, the pre-fetching significantly improves the performance of the application.

5.4.7 Overloaded Overhead

Table 5.3 provides a comparison of the overloaded cases with their architectural

equivalent non-overloaded case from section 5.2.

Table 5.3. Percentage degradation for overloaded cases versus non-overloaded cases

 SMT CMP CMT SMP

L1 31.7 -0.5 14.6 0.2

L2 317.8 -35.9 -38.8 574.6

Trace cache -12.3 12.6 -8.2 -0.3

ITLB 96.5 1.2 -31.8 20.4

DTLB -7.1 0.9 -5.3 -2.2

Stalled
Operation 57.6 4.0 575.8 303.5

Branch
Prediction -0.6 0.9 4.0 -0.4

Bus
Transactions

33.0 0.7 3510.6 -29.3

CPI 20.4 0.9 -17.8 -6.7

Speedup -4.2 -24.8 -14.8 25.7

-64-

One can observe that overloading the architectures has beneficial effect on speedup,

particularly CMP and CMT, when neglecting the LU benchmark. The SMT

configuration has increased cache miss rates for all levels of cache and sees a large

increase in CPI. The CMP architecture sees a drop in L1 and L2 cache and marginal

increases for its TLBs, with only minor increases in stalls and CPI. CMT sees mostly

increasing cache miss rates, but also has a significant increase in stalls and pre-fetching

activities. SMP sees increases in cache miss rates and stalls, but enjoys higher pre-

fetching rates and a lower CPI.

5.5 Effect of Operating System Noise

Operating systems have been shown to have an effect on the performance of intensive

workloads in multi-processor systems [45, 71]. The overhead required to maintain OS

services does not represent a large portion of the system’s overall computational load, but

the time spent providing system services can cause the greater computational workload to

lose synchronicity which creates slowdowns, as the workload must wait at

synchronization barriers. As the number of simultaneously executing threads increases

so does the penalty that is incurred at barriers, as more threads wait for a small proportion

of threads that are lagging behind the average threads in the workload. These effects

have been observed in large cluster systems using MPI applications and real-time

systems, so it is reasonable to investigate multi-core systems to determine the extent to

which operating system noise affects the performance of such platforms running multi-

threaded applications in OpenMP.

While there have been some effective techniques proposed in [45, 71] to reduce the

impact of system noise, such as removing unnecessary OS daemons and kernel threads

(or moving them to another processor), lowering tick rate, and co-scheduling, leaving one

processor for OS tasks is still a simple, viable option to effectively separate system noise

from the computation [89]. Meanwhile, past work on real-time processing with Linux

schedulers [11] has found that reserving a CPU specifically to respond to real-time

priority threads significantly decreases the latency for real-time threads as well as the

interrupt response time. These solutions have all addressed the performance impact of

OS noise, and as such it is pertinent to attempt such an approach with our system in an

-65-

attempt to increase performance. This is a useful approach as it helps alleviate unwanted

cache evictions caused by OS threads that adversely impact our HPC applications.

5.5.1 Operating System Noise Effects on Single-Threaded Applications

In order to verify that operating system noise has an effect on smaller SMP systems a

preliminary test of five NAS benchmark applications was run on a system using a single

execution thread. The Linux processor affinity mask was used to ensure that processes

were bound to a specific CPU. One test was performed with all threads in the system

bound to a single processor (using the affinity mask), including the benchmark thread. A

second test was performed on the same machine with the benchmark execution thread on

a secondary processor while all operating system tasks were assigned to the primary

processor. Each application was run several times in order to ensure accurate and

reportable results. The results of these tests are detailed in Figures 5.29 and 5.30. Figure

5.29 illustrates the effect of operating system noise on the cache performance of the

system. The effect of operating system noise on the cache performance of the LU

benchmark is noteworthy, resulting in an increase in cache hit rate of 20.6%. The

remainder of the applications show a minor improvement or no change in their cache hit

rates.

Cache Hit Rate Improvements Without OS Noise

-5

0

5

10

15

20

25

L1 Hit Impr. L2 Hit Impr. Average Impr.

Im
p
ro

v
e
m

e
n
t
(%

)

BT CG MG LU SP

Figure 5.29: Improvement in cache hit rate without OS noise

The results in Figure 5.30 indicate that the system can experience up to a 9.1%

performance impact due to operating system noise, and all applications show some

-66-

decrease in performance due to the noise. The LU benchmark has seen a decrease in

runtime corresponding to its increased cache hit rate, as have BT and CG. SP and MG

have also both seen a decrease in runtime when OS noise is removed, indicating that the

technique is effective for the entire range of benchmark tests.

Percentage Improvement in Application Run

Time Without OS Noise

0

1

2

3

4

5

6

7

8

9

10

BT CG MG LU SP

Im
p
ro

v
e
m

e
n
t
(%

)

Figure 5.30: Effect of operating system noise on system performance

5.5.2 Operating System Noise Effect on Multi-threaded Applications

Given the findings of the serial case research, a comprehensive study of the system

under many different configurations was performed. Operating system noise was isolated

on the system by masking off a single processor (logical or physical depending on the

configuration), and assigning OS tasks to that processor. The resulting data, shown in

Figure 5.31, indicates that the effect of OS noise can be significant with modern multi-

core processors. OS noise almost always results in an increase in L1 and L2 cache

misses, seeing an average degradation of 1.07% for the L1 cache hit rate and 3.02% for

the L2 cache across all configurations and applications of the NAS benchmarks.

The average improvement in cache hit rate for each configuration is shown in Figure

5.31 for the NAS benchmarks. The improvement percentages for each architecture

correspond to the average improvement in L1 and L2 cache hit rates across all five of the

NAS benchmarks. The increase of cache hit rates is of particular importance, as the

bottleneck to performance for such applications is most typically the memory access

latencies and memory bandwidth.

-67-

Average Improvement in Cache Hit Rates

for the NAS Benchmarks

-2

0

2

4

6

8

10

HTon-

2-1

HToff-

2-1

HTon-

4-1

HToff-

2-2

HTon-

4-2

HToff-

3-2

HTon-

7-2

Im
p
ro

v
e
m

e
n
t
(%

)

L1 Cache Hit Rate Imprv . L2 Cache Hit Rate Imprv .

Figure 5.31: Improvement in Cache Hit Rate Without OS Noise

For each of the configurations, the trend is that the degradation of cache hit rates is

inversely proportional to the total number of processors in the system. This is expected

as the more processors that are in the system, the less overall impact occurs when a single

processor is assigned to an OS task. This corresponds with a resulting decrease in

application runtimes, particularly for programs that are significantly impacted by OS

noise, resulting in significant gains in terms of wall clock execution time.

Two of the configurations presented here are special cases in that they were tested

using one thread less than their operating system loaded counterparts. This was

unavoidable for testing these configurations, as the OS noise requires a free processor to

offload its overhead onto, and for the fully utilized system configurations, this is

impossible. This means that although the HTon-7-2 and HToff-3-2 configurations may

show a slowdown versus their operating system loaded partners, the systems operating

without operating system noise have fewer overall resources available to them. Despite

this handicap they still manage to have gains in their respective cache hit rates for the

benchmarks. The HTon-7-2 and HToff-3-2 configurations show negligible improvement

for their L1 cache hit rates, but have an improvement of 1.27 and 2.43% respectively for

their L2 cache hit rates. Despite having fewer resources available to it, the HTon-7-2

configuration sees an 8.3% improvement in runtimes over all of the applications, with

only one application seeing an increase in runtime resulting in a slowdown of 3.64% for

the BT benchmark. The HToff-3-2 configuration sees a much larger increase in wall

-68-

clock execution times seeing an average slowdown of 16.5% across all of the

applications, with only one application, CG, showing an improvement of 1.55%.

The effect of operating system noise on the runtime of such scientific applications is

visible, with an average percentage decrease in wall clock times of 3.8% for all of the

applications across all of the configurations. If the results for the two configurations that

have less overall system resources available to them due to the isolation of operating

system noise (HToff-3-2 and HTon-7-2) are removed from the group, the results improve

to an average percentage decrease in wall clock time of 7.0%. All of the configurations

(except for HToff-3-2) see a decrease in wall clock run times, ranging from 0.3% to

13.5%. The improvements in runtimes are detailed in Figure 5.32.

Percentage Im prov em ent in Application Run

Tim e W ithout OS Noise

-40

-30

-20

-10

0

10

20

30

40

50

BT CG M G LU SP

Im
p
ro

v
e
m

e
n
t
(%

)

HTon-2-1 HToff-2-1 HTon-4-1 HToff-2-2
HTon-4-2 HToff-3-2 HTon-7-2

Figure 5.32: Application Run-time Improvement

5.6 Summary

In this chapter, we presented performance of scientific applications from the NAS

OpenMP suite on a range of system configurations with kernel 2.6.9 on a 2-way dual-

core Hyper-Threaded SMP. Our performance results indicate that the majority of

applications could benefit from using a single dual-core processor with HT enabled, in

terms of total computing power per system resources available. However, only one

application enjoyed performance gain of due to HT on both dual-core processors.

By collecting data from hardware performance counters, we analyzed the effect of HT

on the various system configurations as well as the effect of thread overloading on the

-69-

system. When utilizing all of the available system resources, most applications suffer

from the increasing number of cache misses when both dual-core processors are enabled

with HT enabled.

The decisions made by the scheduler are crucial to the performance of HT. With the

optimization of the scheduler the performance of a single processor could be increased

for scientific applications to almost the same performance level of a system with twice as

many non-HT processors.

In addition, it has been determined that operating system noise may cause significant

performance degradation and could be a potential source of optimization for small scale

multi-core SMPs. The next chapter uses the findings of this chapter to propose a method

of improving system performance, and takes advantage of an opportunity to reduce

system power consumption at the same time.

-70-

Chapter 6: Power Management of Chip Multi-Threading
SMPs

Power consumption is an important design constraint in modern day servers and high-

performance server clusters. This chapter explores the power-performance efficiency of

Hyper-Threaded AMP servers, and proposes a scheduling algorithm that can be used to

reduce the overall power consumption of a server while maintaining a high level of

performance. An AMP is a system that has a heterogeneous collection of processors.

The processors can be of different types and/or operate at different speeds. The AMP

presented here has identical processors, running at different speeds.

This chapter proposes a modification to the Linux scheduler as a method of potentially

reducing the power consumption of a system, while producing less of a performance

impact on the system than would have been otherwise achieved using the default process

scheduler [32, 34]. Previous research has shown that system noise, including operating

system (OS) interference with the application, has a dramatic effect on high-performance

computing [71]. Using static clock throttling and processor affinity, we bind all OS

activities to logical processor zero (or physical processor zero) that runs at a lower

frequency than the rest of processors in the AMP. In order to sustain the performance for

the parallel OpenMP threads, all other processors run at their maximum frequency.

The results in the previous chapter concerning the effect of operating system noise on

system performance have been the motivation behind this method to offload system noise

onto a single processor. This reduced noise should correspond to an increased

performance of the user threads such that the impact of reserving the CPU for system

tasks is minimized. In the event of a system load that does not correspond to a full load

for a single processor, there exists an opportunity to reduce the frequency of the reserved

CPU such that its load is as close to 100% as possible. This clock throttling of the

reserved CPU has a power savings effect.

The rest of this chapter is organized as follows. In Section 6.1, we describe the

experimental framework including the AMP setup. Section 6.2 examines the

performance increase that is possible using the proposed scheduler over the default

scheduler. Section 6.3 describes the real power consumption measurements for a dual-

-71-

core 2-way CMP/SMT hybrid that uses clock throttling. Finally, we predict the effect

that true frequency scaling would have on the power consumption of a dual-core 2-way

CMP/SMT hybrid system in section 6.4.

6.1 Experimental Framework

The experiments in section 6.2 & 6.3 were conducted on a dual-core Dell PowerEdge

2850 server. The specifications of this platform can be found in section 5.1.

6.1.1 AMP Setup

To evaluate the power-performance efficiency of AMP over SMP systems, we created

static AMP configurations on our 2-way dual-core platform through clock throttling and

affinity control. In clock throttling, one can set the duty cycle to one of the seven

available levels. Clock throttling has a similar impact on performance as reducing the

frequency [3], but is not as ideal a solution as true frequency scaling, which should

further increase the potential energy savings of the approach detailed in this chapter.

This effect is predicted in Section 6.3.

The Linux 2.6.9 kernel supports clock throttling through a sysfs interface with

appropriate drivers. The system was configured to enable CPU frequency scaling using

clock throttling. The p4-clockmod driver was built into the kernel and the standard sysfs

interface was used. The frequency governor was set to user-space control, creating a

static operating point for clock throttling. By static setup, we mean the duty cycle is set

only once before the application run.

We have implemented a new Linux scheduler, to be called power-saving scheduler

(PS-Scheduler), by modifying the Linux scheduler to reserve a single CPU that runs only

kernel threads, leaving the rest of the CPUs in the system to execute all user threads at

maximum frequency. This is accomplished by using the processor affinity properties

available in the Linux 2.6.9 that allow processes to be bound to a specific set of

processors, or an individual processor.

The available operating points for the 2-way dual-core platform were 2.8GHz,

2.4GHz, 2.1GHz, 1.8GHz, 1.5GHZ, 1.2GHz, 900MHz, 600MHz, and 300MHz. The

CPU frequency of the first physical processor was adjusted throughout the available

-72-

operating points for the execution of system activities, while the rest of processors in the

system remained at the highest available clock frequency to run the application threads.

However, our experimentation with the application benchmarks revealed the performance

of the AMPs decreased significantly when the clock speed was reduced to under two

times the front side bus (main memory pathway) speed of the machine, so only results

from the operating points above two times the front side bus of each machine are

reported.

It should be mentioned that the duty cycle can only be set on a per physical processor

basis on Intel multiprocessors. Therefore, in the case of an HT-enabled system, this

creates an asymmetrical imbalance among the logical processors executing the user

threads (the benchmarks). This can have a negative effect on the system performance.

In order to differentiate between the possible configurations of our platform, a naming

convention similar to the one used in chapter 5 is presented in Table 6.1. Figures 6.1 is

provided as a reference to help understand the different configurations. The system is

identical to the system in chapter 5 with the expression of AMP to indicate that the

system is operating as an AMP followed by its HT status, either on or off, followed by

the number of threads used and finally the number of physical processors in use.

Figure 6.1: Processor numbering for 2-way dual-core system

Table 6.1: AMP Naming Convention

Terminology Hardware Contexts Corresponding Architecture

AMP-HTon-1-1 C0 used for OS, C1 AMP-SMT

AMP-HToff –1-1 D0 used for OS, D1 AMP-CMP
AMP-HTon –3-1 C0 used for OS, C1, C2, C3 AMP-CMT
AMP-HToff –1-2 D0 used for OS, D2 AMP-SMP
AMP-HTon –3-2 C0 used for OS, C1, C4, C5 AMP-SMT-based SMP
AMP-HToff –3-2 D0 used for OS, D1, D2, D3 AMP-CMP-based SMP
AMP-HTon –7-2 C0 used for OS, C1, C2, C3, C4,

C5, C6, C7, C8
AMP-CMT-based SMP

-73-

6.2 PS-Scheduler vs. the Default Linux Scheduler

The main motivation behind the proposed scheduler is to sustain an SMP’s

performance with the original O(1) scheduler, while providing energy savings. Our

intention in this section is to see if the new scheduler performs on par with the default

scheduler in both HT-enabled and HT-disabled configurations. The configurations in this

section have all processors running at full clock speed, so they use the naming convention

introduced in chapter 5 instead of that in section 6.1.

Figure 6.2 compares the baseline performance of the PS-Scheduler with the default

scheduler for the SPEC benchmarks for both HT-disabled and HT-enabled systems. The

performance of the PS-Scheduler compared to the default scheduler is promising, with

almost all configurations and benchmarks seeing an improvement in performance. The

HTon-3-1 and HTon-3-2 configurations show the best speedup of the configurations at an

average of 14.4% and 16.2% respectively. The HTon-1-1 configuration shows the worst

speedup, with a slowdown of 11.8%. Only the HTon-1-1 and HToff-3-2 configurations

show a decrease in performance with the new scheduler.

Overall, the performance gain of the PS-Scheduler of the HT-enabled configurations

with the original scheduler ranges from –11.8% to +16.2%, with an average performance

gain of 5.3%. For the HT-disabled case, the performance gain ranges from –9.1% to

+4.4%, with an average performance gain of –0.9%.

Speedup of PS-Sched over Default Scheduler

0

0.2

0.4

0.6

0.8

1

1.2

1.4

apsi art fma3d mgrid swim wupwise

S
p
e
e
d
u
p

HTon-1-1 HToff-1-1 HTon-3-1 HToff-1-2

HTon-3-2 HToff-3-2 HTon-7-2

 Figure 6.2: PS-Scheduler vs. default scheduler for SPEC benchmarks

-74-

6.3 Real Power Measurements

An experiment was setup in order to determine the actual power consumption of a real

system utilizing the different schedulers. A Dell PowerEdge 2850 Dual-Core 2.8GHz

SMP was used for the testing, whose details are described in section 5.1. The system was

connected to a Keithley 2701 Digital Multimeter [49] with a Keithley 7700 data

acquisition unit [48] installed. The overall power consumption of the system was

measured using a resistive element attached to the power cable leading into the system.

Due to the nature of the rack-mounted system, power measurements on the output of the

power supply inside the machine were impractical. Therefore, the power consumption

numbers presented here are affected by the power supply losses and take into account all

components of the system fed by the main power supply.

The SPEComp benchmark suite was used for real-world power measurement due to its

longer run times, which enabled us to obtain consistent stable power measurements. The

power measurement equipment was validated through the use of a Wattsup EPS Pro

power meter [23], and found to be within the acceptable error range of the two devices,

with the Keithley meter having an error range of +/-1%.

6.3.1 Average Power Consumption

The average instantaneous power measurements for each of the configurations at the

varying operating frequencies are presented in Figure 6.3 and Figure 6.4. The power

consumption of the system using the new scheduler is surprising. In many cases, the new

scheduler has higher instantaneous power consumption than the original scheduler. The

highest average instantaneous power consumption of either scheduler occurs with the PS-

Scheduler with a high of 337.4 W for the AMP-HTon-7-2 configuration running mgrid at

2.8GHz. This compares to the maximum value for the default scheduler of 320.9 W for

the HTon-8-2 configuration running mgrid at 2.8GHz. However, the average power

consumption for all of the operating frequencies and configurations across all of the

applications is lower for the PS-Scheduler at 262.4 W versus the default scheduler’s

average of 272.1 W. Given that the PS-Scheduler has faster runtimes than the default

-75-

scheduler, the higher instantaneous power readings do not necessarily translate into worse

overall energy efficiency, as will be discussed later in this chapter.

Power Comparision for PS-Sched Vs

Default Scheduler for HT-Enabled Systems

0
50

100
150
200

250
300

350
400

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

2.4GHz 2.1GHz 1.8GHz

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (
W

)

AMP-HTon-1-1 HTon-2-1 AMP-HTon-3-1 HTon-4-1

AMP-HTon-3-2 HTon-4-2 AMP-HTon-7-2 HTon-8-2

Figure 6.3: Average power consumption of HT-enabled configurations

Power Comparision for PS-Sched Vs

Default Scheduler For HT-Disabled Systems

0

50

100

150

200

250

300

350

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

a
p
s
i

a
rt

fm
a
3
d

m
g
ri
d

s
w

im

w
u
p
w

is
e

2.4GHz 2.1GHz 1.8GHz

P
o
w

e
r
C

o
n
s
u
m

p
ti
o
n
 (
W

)

AMP-HToff-1-1 HToff-2-1 AMP-HToff-1-2
HToff-2-2 AMP-HToff-3-2 HToff-4-2

Figure 6.4: Average power consumption of HT-disabled configurations

6.3.2 Slowdown and Energy Savings

This section presents the actual slowdown in wall clock time that occurs when using

the PS-Scheduler and the corresponding energy savings that occur. The AMP frequency

-76-

in the figures in this section correspond to the CPU frequency of the first physical

processor in the system. The remaining physical processors are running at maximum

frequency. In the case of the HT-enabled processors, it should be noted that the first two

logical processors are scaled in frequency. Therefore, one logical CPU that is executing

the user threads has a reduced frequency in addition to the reserved CPU.

The results presented in Figure 6.5(a) show that the AMP-HTon-1-1 configuration on

average does not perform well, with significant slowdowns occurring that yield almost a

1:1 relationship between slowdown and energy savings, with the exception of the swim

benchmark which sees both a speedup and a reduction in corresponding energy usage.

This is contrasted by the AMP-HTon-3-1 results, where speedup occurs for both the 2.4

GHz and 2.1 GHz operating points, providing energy savings of between 18 to 32%

while simultaneously reducing execution time for all applications with the exception of

the swim benchmark.

AMP-HTon-1-1 Slowdown and Energy

Savings Over HTon-2-1

-15

-10

-5

0

5

10

15

20

25

30

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-1-1 @2.4GHz Slowdown AMP-HTon-1-1 @2.4GHz Savings

AMP-HTon-1-1 @2.1GHz Slowdown AMP-HTon-1-1 @2.1GHz Savings

AMP-HTon-1-1 @1.8GHz Slowdown AMP-HTon-1-1 @1.8GHz Savings

AMP-HTon-3-1 Slowdown and Energy

Savings Over HTon-4-1

-80

-60

-40

-20

0

20

40

60

80

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-3-1 @2.4GHz Slowdown AMP-HTon-3-1 @2.4GHz Savings
AMP-HTon-3-1 @2.1GHz Slowdown AMP-HTon-3-1 @2.1GHz Savings
AMP-HTon-3-1 @1.8GHz Slowdown AMP-HTon-3-1 @1.8GHz Savings

(a) (b)

Figure 6.5: Slowdown and energy savings for (a) AMP-HTon-1-1 and (b) AMP-HTon-3-1

The results for the AMP-HTon-3-2 configuration presented in Figure 6.6 are similar in

pattern to those of the AMP-HTon-3-1 configuration with speedup occurring for the

applications between 2.4 GHz and 2.1 GHz and good resultant energy savings, with the

exception of the swim benchmark, which sees some marginal improvement for the first

two operating frequencies. The AMP-HTon-3-2 configuration does lag behind the AMP-

HTon-3-1 configuration in total speedup and as a result shows lower potential energy

savings. The AMP-HTon-7-2 configuration shows good results for the apsi benchmark,

-77-

but the remaining benchmarks show a combination of slowdown and poor energy

savings. The apsi, mgrid and swim benchmarks benefit from the PS-Scheduler in terms

of runtime, but mgrid and swim fall behind in terms of energy consumption. The

remainder of the applications suffer from both slowdown and increased energy

consumption.

AMP-HTon-3-2 Slowdown and Energy

Savings Over HTon-4-2

-60

-40

-20

0

20

40

60

80

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-3-2 @2.4GHz Slowdown AMP-HTon-3-2 @2.4GHz Savings
AMP-HTon-3-2 @2.1GHz Slowdown AMP-HTon-3-2 @2.1GHz Savings
AMP-HTon-3-2 @1.8GHz Slowdown AMP-HTon-3-2 @1.8GHz Savings

AMP-HTon-7-2 Slowdown and Energy

Savings Over HTon-8-2

-20

-10

0

10

20

30

40

50

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-7-2 @2.4GHz Slowdown AMP-HTon-7-2 @2.4GHz Savings
AMP-HTon-7-2 @2.1GHz Slowdown AMP-HTon-7-2 @2.1GHz Savings
AMP-HTon-7-2 @1.8GHz Slowdown AMP-HTon-7-2 @1.8GHz Savings

(a) (b)

Figure 6.6: Slowdown and Energy Savings for (a) AMP-HTon-3-2 and (b) AMP-HTon-7-2

The results for slowdown and energy savings for the HT-disabled architectures in

Figure 6.7, show that the AMP-HToff-1-1 and AMP-HToff-1-2 configurations show good

slowdown/savings for the 2.4 GHz operating point. With the exception of swim for the

AMP-HToff-1-2 configuration, the 2.1 GHz and 1.8 GHz operating points see too much

slowdown to be able to realize any significant energy savings.

AMP-HToff-1-1 Slowdown and Energy

Savings Over HToff-2-1

-30

-20

-10

0

10

20

30

40

apsi art fma3d mgrid swim wupwise

%

AMP-HToff-1-1 @2.4GHz Slowdown AMP-HToff-1-1 @2.4GHz Savings
AMP-HToff-1-1 @2.1GHz Slowdown AMP-HToff-1-1 @2.1GHz Savings
AMP-HToff-1-1 @1.8GHz Slowdown AMP-HToff-1-1 @1.8GHz Savings

AMP-HToff-1-2 Slowdown and Energy

Savings Over HToff-2-2

-15

-10

-5

0

5

10

15

20

25

30

apsi art fma3d mgrid swim wupwise

%

AMP-HToff-1-2 @2.4GHz Slowdown AMP-HToff-2-2 @2.4GHz Savings
AMP-HToff-2-2 @2.1GHz Slowdown AMP-HToff-2-2 @2.1GHz Savings
AMP-HToff-2-2 @1.8GHz Slowdown AMP-HToff-2-2 @1.8GHz Savings

(a) (b)

Figure 6.7: Slowdown and energy savings for (a) AMP-HToff-1-1 and (b) AMP-HToff-1-2

-78-

The final architecture that was examined, AMP-HToff-3-2, has its slowdown and

energy savings illustrated in Figure 6.8. The results are varied, with apsi and mgrid

showing excellent results, while art exhibits terrible slowdown and consequently poor

energy savings numbers. The fma3d and wupwise applications show some energy

savings are possible, but the resulting slowdown is slightly greater than the potential

energy savings. The swim benchmark shows some speedup, and some potential for

energy savings as well.

AMP-HToff-3-2 Slowdown and Energy

Savings Over HToff-4-2

-20

-10

0

10

20

30

40

apsi art fma3d mgrid swim wupwise

%

AMP-HToff-3-2 @2.4GHz Slowdown AMP-HToff-3-2 @2.4GHz Savings
AMP-HToff-3-2 @2.1GHz Slowdown AMP-HToff-3-2 @2.1GHz Savings
AMP-HToff-3-2 @1.8GHz Slowdown AMP-HToff-3-2 @1.8GHz Savings

Figure 6.8: Slowdown and energy savings for AMP-HToff-3-2

6.3.3 Energy-Delay Analysis

To compare the schedulers fairly one must also take into account the speed of each

scheduler in addition to the energy savings that can be obtained. To this end, the energy-

delay analysis is presented in Figures 6.9 to 6.14 for the PS-Scheduler normalized to the

default scheduler. Energy-delay is a metric used to determine whether a trade-off

between energy usage and the delay that is causes is beneficial or not. Energy-delay

products of less than 1 indicate a beneficial trade-off.

The energy-delay of the HTon-1-1 configuration is presented in Figure 6.9. We can

observe that the energy-delay of the system operating at 2.4GHz is mediocre. However,

the efficiency at the 2.1GHz and 1.8GHz operating points is excellent with all of the

applications having energy delays below 1. Of course, this represents the significant

energy savings that a single processor has over the baseline system with four physical

-79-

processors. As such the HTon-1-1 configuration has good energy-delay products but is

not very useful due to the loss of performance that it incurs.

Energy-Delay for AMP-HTon-1-1 Normalized to

HTon-2-1

0

0.5

1

1.5

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
 D

e
la

y
apsi art fma3d mgrid swim wupwise

Figure 6.9: Energy delay for the PS-Scheduler in an HTon-1-1 configuration

The energy delay figures for AMP-HTon-3-1 configuration in Figure 6.10 are very

promising. The AMP-HTon-3-1 configuration has a majority of the applications with

energy delays of less than 1 for both the 2.4 GHz and 2.1 GHz operating points, but

shows a significant increase in energy delay for the 1.8 GHz operating point. Overall, its

average energy delay for the 2.4GHz operating point is 0.75.

Energy Delay for AMP-HTon-3-1 Normalized to

HTon-4-1

0

0.5

1

1.5

2

2.5

3

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
 D

e
la

y

apsi art fma3d mgrid swim wupwise

Figure 6.10: Energy delay for the PS-Scheduler in an HTon-3-1 configuration

The AMP-HTon-3-2 configuration’s energy-delay products are illustrated in Figure

6.11. The AMP-HTon-3-2 configuration is the best of all of the configurations, with none

-80-

of the applications having an energy-delay of above 1 for the first two operating points,

and energy delays within the 0.6-0.8 range. In addition, its performance is excellent,

giving it both good energy consumption and performance.

Energy-Delay for AM P-HTon-3-2

Normalized to HTon-4-2

0

0.5

1

1.5

2

2.5

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
 D

e
la

y

apsi art fma3d mgrid swim wupwise

Figure 6.11: Energy-delay for the PS-Scheduler in an HTon-3-2 configuration

For the AMP-HTon-7-2 configuration presented in Figure 6.12, the majority of

applications do not see an energy-delay of less than one until the operating point is

lowered to 2.1GHz or lower. Half of the applications see a benefit to using the PS-

Scheduler. The AMP-HTon-7-2 configuration with the PS-Scheduler can be beneficial

but it is dependant on the type of applications which are being run.

Energy De lay AMP-HTon-7-2 Normalized to

HTon-8-2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
-D

e
la

y

apsi art fma3d mgrid swim wupwise

Figure 6.12: Energy-delay for the PS-Scheduler in an AMP-HTon-7-2 configuration

The AMP-HToff-1-1 configuration in Figure 6.13 shows that an energy delay of less

than one can be achieved for the upper operating points with the PS-Scheduler, for all

-81-

applications. This behaviour abruptly ceases when the operating point is lowered below

2.4GHz. All of the applications have energy-delay products greater than 1 for all of the

operating points below 2.4GHz.

Energy Delay for AMP-HToff-1-1 Normalized

to HToff-2-1

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
-d

e
la

y
apsi art fma3d mgrid swim wupwise

Figure 6.13: Energy-delay for the PS-Scheduler in an AMP-HToff-1-1 configuration

The energy-delay products for the AMP-HToff-1-2 configuration are shown in Figure

6.14. One can observe that the energy-delay products for the 2.4GHz operating point are

all below 1, indicating that the PS-Scheduler can provide a significant increase in

efficiency for all of the benchmarks in the suite. The efficacy of the PS-Scheduler

technique quickly fades as the delay incurred at the lower operating frequencies

outweighs any energy savings.

Energy-Delay for AM P-HT off-1-2

Normalized to HT off-2-2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2.4GHz 2.1GHz 1.8GHz
Operating Poin t

E
n
e
rg

y
-D

e
la

y

apsi art fma3d m grid sw im w upw ise

Figure 6.14: Energy-delay for the PS-Scheduler in an AMP-HToff-2-1 configuration

We can see that the energy-delay of the PS-Scheduler is on the whole mediocre for the

AMP-HToff-3-2 case in Figure 6.15, with no significant overall savings. Although art,

-82-

mgrid and swim benefit from using the scheduler, the majority of applications do not. In

fact, with the SPEC benchmarks, the system sees a general improvement of wall clock

times but higher power consumption. This leads to poor energy-delay products as the

increase in speed does not offset the increase in energy consumption.

Energy Delay AM P-HT off-3 -2 Normalized to

HT off-4 -2

0

0.5

1

1.5

2

2.5

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
-D

e
la

y

apsi art fma3d mgrid sw im w upw ise

Figure 6.15: Energy-delay for the PS-Scheduler in an AMP-HToff-3-2 configuration

6.4 AMP Power Consumption Predictions With Future
Technology

Using a method similar to that in [3], we can estimate the effect that true frequency

scaling would have on a dual-core system. The power consumption of a 2.8GHz dual-

core Xeon processor is 135W when active and 32W when idle [42]. The authors in [3]

provide a method based on historical data, where for a changing frequency, the power

consumption is proportional to the square of the duty cycle. Therefore, if a 2-way

2.8GHz dual-core Intel Xeon processor system consumes 270W when highly active, the

system at 2.4GHz would be expected to consume 198.3W (270W × (2.4/2.8)
2
) when

highly active. This corresponds to an energy consumption of 49.575W per core. When

CPUs are in an idle state the power consumption of the system is 64W, corresponding to

16W per core. Applying the same scaling as used for the active case, we determine that

the idle energy consumption for a single core at 2.4GHz is 11.75W. Using the same

methodology, one can easily find the highly active power consumption of an AMP with

one CPU operating at 2.4GHz and the other three CPUs operating at 2.8GHz to be 252W.

Knowing the approximate energy consumption of our AMP systems, when highly active

-83-

or idle, allows us to estimate the power consumption while executing the SPEC OpenMP

benchmarks.

6.4.1 Slowdown and Energy Savings

The energy savings and slowdown due to frequency scaling of the system while

executing the SPEC benchmarks are presented in Figures 6.16 to 6.18.

A prediction of the performance of the best configuration from the previous section is

pertinent. Therefore, the results for the AMP-HTon-3-2 configuration are presented in

Figure 6.16. Every application demonstrates a performance increase for the 2.4GHz and

2.1GHz operating points. The resulting energy savings for the AMP-HTon-3-2

configuration for the 2.4GHz and 2.1GHz operating points, on average, across all of the

benchmarks are 27.6% and 27.8% respectively. This corresponds to an average speedup

of 16.2% and 13.7% for the 2.4GHz and 2.1GHZ operating points. The 1.8GHz

operating point sees a slowdown of 32.4% and an energy loss of 5.33%.

When comparing the frequency scaling estimates with the previously measured results

in figure 6.6(a), we find that the energy savings using frequency scaling improve the

results from 11.38%, 19.0% and –19.0% for the 2.4GHz, 2.1GHz and 1.8GHz operating

points to 27.6%, 27.8% and –5.33%. Obviously, the use of true frequency scaling should

significantly improve the effectiveness of the PS-Scheduler for this configuration.

AMP-HTon-3-2 Slowdown and Energy

Savings Over HTon-4-2

-40

-20

0

20

40

60

80

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-3-2 @2.4GHz Slowdown AMP-HTon-3-2 @2.4GHz Savings

AMP-HTon-3-2 @2.1GHz Slowdown AMP-HTon-3-2 @2.1GHz Savings

AMP-HTon-3-2 @1.8GHz Slowdown AMP-HTon-3-2 @1.8GHz Savings

Figure 6.16: AMP slowdown and energy savings for SPEC benchmarks over HTon-4-2

-84-

In the HTon-7-2 case in Figure 6.17, we can observe that frequency scaling would

improve the energy savings of the system by 21.3% on average over the PS-Scheduler

results that were measured in Figure 6.6(b).

AMP-HTon-7-2 Slowdown and Energy

Savings Over HTon-8-2

-15

-10

-5

0

5

10

15

20

25

30

apsi art fma3d mgrid swim wupwise

%

AMP-HTon-7-2 @2.4GHz Slowdown AMP-HTon-7-2 @2.4GHz Savings
AMP-HTon-7-2 @2.1GHz Slowdown AMP-HTon-7-2 @2.1GHz Savings
AMP-HTon-7-2 @1.8GHz Slowdown AMP-HTon-7-2 @1.8GHz Savings

Figure 6.17: AMP slowdown and energy savings for SPEC benchmarks over HTon-8-2

Overall, the average range of energy savings of the AMP-HTon-7-2 configuration for

the benchmarks is +8.13% to +27.5%. Swim, mgrid and apsi are the applications that

benefit the most from the new scheduler, seeing an improvement in both performance and

power consumption. However, all of the applications see an improvement in power

consumption.

The slowdown and energy savings of the AMP-HToff-3-2 system are presented in

Figure 6.18. The apsi, mgird and swim benchmarks see the greatest benefit from the PS-

Scheduler with all three benchmarks experiencing a decrease in runtime as well as energy

savings. The swim benchmark exhibits the best behaviour showing an average speedup

of 5.74% and energy savings of 26.5%. The swim benchmark is a memory intensive

benchmark [33], and is well known for its poor scalability. Therefore, the energy savings

can be attributed to two factors, the reduction of system noise and a smaller number of

overall execution threads.

Overall, the AMP-HToff-3-2 configuration has an average energy savings of 14.9%

across all three frequencies and all of the benchmarks. It has an average slowdown of

9.1%. A comparison to the previous results in Figure 6.8 show that energy savings

-85-

improve by 8.84%, 7.79% and 0.26% for the 2.4GHz, 2.1GHz and 1.8GHz operating

points respectively for a true frequency scaling system.

AMP-HToff-3-2 Slowdown and Energy

Savings Over HToff-4-2

-10

-5

0

5

10

15

20

25

30

35

40

apsi art fma3d mgrid swim wupwise

%

AMP-HToff-3-2 @2.4GHz Slowdown AMP-HToff-3-2 @2.4GHz Savings
AMP-HToff-3-2 @2.1GHz Slowdown AMP-HToff-3-2 @2.1GHz Savings
AMP-HToff-3-2 @1.8GHz Slowdown AMP-HToff-3-2 @1.8GHz Savings

Figure 6.18: AMP slowdown and energy savings for SPEC benchmarks over HToff-4-2

6.4.2 Energy-Delay Analysis

First, we examine the predicted energy-delay product of the most efficient

configuration from section 6.3. The energy-delay products for the AMP-HTon-3-2

configuration are presented in Figure 6.19.

Energy-Delay for AMP-HTon-3-2

Normalized to HTon-4-2

0

0.5

1

1.5

2

2.5

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
 D

e
la

y

apsi art fma3d mgrid swim wupwise

Figure 6.19: Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-3-2 over HTon-4-2

-86-

When Figure 6.19 is compared with Figure 6.11 we can see that the energy-delay

products of the predictive case are reduced. This leads to a new average energy-delay of

0.61 for the 2.4GHz operating point over the measured average energy-delay of 0.74.

Overall, the performance of the PS-Scheduler with a system configured as an AMP-HTon-

3-2 is excellent and the energy savings are substantial.

Figure 6.20 presents the energy-delay of the AMP running the PS-Scheduler

normalized to the original scheduler for the HTon-8-4 case. An energy-delay of less than

one shows that the savings in energy consumption outpace the corresponding increase in

execution speed. Comparing Figure 6.20 with Figure 6.12 we can observe that energy-

delays have dropped by approximately 0.2 for the applications. The average energy-

delay for the 2.4GHz operating point has dropped from 1.0 to 0.82. Both the 2.4GHz and

2.1GHz operating points now have all of the SPEC applications with energy-delays of

below 1. This indicates that the future applications of the PS-Scheduler are expected to

improve as technology advances.

Energy Delay AMP-HTon-7-2 PS-Sched

Normalized to HTon-8-2

0

0.2

0.4

0.6

0.8

1

1.2

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
-D

e
la

y

apsi art fma3d mgrid swim wupwise

Figure 6.20: Normalized Energy-Delay for SPEC benchmarks for AMP-HTon-7-2 over HTon-8-2

The results of the energy-delay analysis of the AMP-HToff-3-2 configuration are

presented in Figure 6.21. When comparing Figure 6.21 with Figure 6.15 we find that the

energy-delays have improved but a number of applications still have energy delay

products significantly higher than 1. However, art, mgrid and swim have shown a further

improvement to their efficiency with the PS-Scheduler and receive a significant benefit

-87-

from utilizing it. From this we can conclude that the PS-Scheduler has a potential for use

on non-HT systems for some applications.

Energy Delay AMP-HToff-3-2 PS-Sched

Normalized to HToff-4-2

0

0.5

1

1.5

2

2.5

2.4GHz 2.1GHz 1.8GHz

Operating Point

E
n
e
rg

y
-D

e
la

y
apsi art fma3d mgrid swim wupwise

Figure 6.21: Normalized Energy-Delay for SPEC benchmarks for AMP-HToff-3-2 over HToff-4-2

6.4 Summary

In this chapter, the lessons learned from the previous chapters were used to design a

new operating system task scheduler in an attempt to increase system performance and

save energy.

The power consumption of a real dual-core system was measured. It was found that

performance improvements could be made using the new scheduler on dual-core systems.

In addition, total consumed energy could be reduced despite a higher instantaneous

power usage using the new scheduler. The best platforms for such a scheduler were

determined to be the AMP-HTon-3-1, AMP-HTon-3-2 and AMP-HToff-2-2 architectures.

The modified scheduler was then tested and its energy usage was estimated on several

different computing platforms to determine the power consumption of an identical system

with true frequency scaling. These results indicated that the new scheduler could achieve

good energy conservation on systems with very little performance impact.

The new scheduler does a good job at reducing the energy consumption of AMPs

running the SPEComp applications while having a minimal impact on the performance of

the system. The performance results using real power measurements indicate on average

-88-

15.6% energy savings and 6.1% slowdown for the HT-disabled case, and 7.1% energy

savings and 4.8% slowdown for the HT-enabled case across all applications studied in

this chapter.

-89-

Chapter 7: Conclusions and Future Work

This thesis has explored the behaviour of single-core and dual-core symmetric

multiprocessor systems using the OpenMP interface and the effect of Intel’s Hyper-

Threading technology. The overhead incurred by using the OpenMP API was examined

and it was determined that the 2.6.9 Linux kernel causes more OpenMP overhead than

the 2.4.22 kernel for SMT architectures. The behaviour of single-core architectures, in

relation to their performance executing well-known high profile scientific benchmarking

suites, has been examined in detail. It was found that the memory system and CPU

caches are the performance bottlenecks of the systems. The trace cache performance was

found to be a source of performance degradation as well.

This thesis has performed an in depth exploration of the performance characteristics of

multi-core processors equipped with SMT capabilities and investigated the effect of

overloaded workloads on system performance. From this investigation, it seems clear

that the optimal platform for high performance computing on such systems lies in

utilizing the SMT features available in the dual-core architecture. This thesis has

demonstrated that the performance of SMT technologies in multi-core processor designs

can perform as well or better than SMP or CMP architectures by showing that a single

multi-core processor with SMT capabilities can closely match the performance of a SMP

or CMP machine with twice as many processors. Therefore we can conclude that HT

technology can be of use in the HPC domain, and in fact can provide tangible efficiency

benefits over the non-HT alternatives when used in architectures that are composed of a

single dual-core CPU or two single-core CPUs. However, the benefits of utilizing HT

have been negligible when the number of logical cores in the system rises above four. By

operating the systems with workloads creating two times as many threads as the number

of available execution contexts, it has been shown that significant performance

improvements can be achieved for some applications.

The effect of operating system noise on such systems was explored, and found to be a

potential area of improvement for such SMP/SMT systems. These findings initiated

research into methods of reducing operating system noise, and optimizing systems to

increase performance as well as investigating the potential power savings that could be

-90-

realized using such schemes. In addition, the possible power consumption benefit of

SMT technologies has been explored, particularly as it relates to AMPs. It has been

shown that by reserving a CPU in a multi-processor system, both performance gains and

power savings are possible for real systems. This was demonstrated by measuring the

power consumption of a real 2-way dual core system. From this experimental data, the

power consumption of a true frequency scaling system was predicted, showing that the

energy savings of the proposed scheduler could be increased significantly when such

scaling techniques are available for Xeon processors.

Therefore, we can conclude that significant performance benefits can be realized, in

addition to power savings, over the traditional SMP/CMP architectures. CMP/CMT

hybrid technology can be leveraged to provide performance levels equivalent to those of

systems with twice as many computational resources. CMT technology is a promising

new architecture that when utilized correctly will be able to provide great benefit to the

HPC scientific community in terms of both power and performance. Coupled with the

use of the scheduling method described in this thesis, the effect that such architectures

can have within the HPC community is a positive one. The increase in overall machine

efficiency that can be achieved using such approaches offers the possibility of increased

system throughput at a lower operating cost than previous generations of systems.

7.1 Future Work

In the future, this work can be improved upon by adapting the scheduler to take

advantage of online performance monitor counter data. This would allow an AMP to

dynamically adjust itself according to the current processor workload. In addition, using

the power monitor data collection system developed for this thesis, it is technically

possible to integrate a real time power consumption reporting system that can report the

system’s power consumption during system operation and this data can be used to further

refine the efficiency of the scheduler. The online power system reporting could also be

integrated into an API for use within the programs themselves to make them power

aware. All of these future research options should further increase the efficiency of the

scheduler developed in this thesis, making the technique more beneficial for executing

scientific applications.

-91-

The PS-Scheduler could be extended to work with emerging quad-core processors and

tested with a larger group of scientific applications. It could also be tested and developed

for use with commercial applications, particularly in a data center context. The concepts

behind the PS-Scheduler could also be applied to processor design, creating a slow low

power processing core specifically to handle OS activity.

-92-

References

[1] Advanced Micro Devices. AMD athlon X2 dual core. Available:

http://www.amd.com/us-

en/Processors/ProductInformation/0,,30_118_9485_13041,00.html

[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, F. G. Friedman,

M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, P. Bose, A.

Buyuktosunoglu, P. W. Cook and S. E. Schuster, "Dynamically tuning processor

resources with adaptive processing," IEEE Computer, vol. 36, pp. 49-58, 2003.

[3] M. Annavaram, E. Grochowski and J. Shen, "Mitigating amdahl's law through EPI

throttling," in ISCA '05: Proceedings of the 32nd Annual International Symposium on

Computer Architecture, 2005, pp. 298-309.

[4] C. D. Antonopoulos, D. S. Nikolopoulos and T. S. Papatheodorou, "Scheduling

algorithms with bus bandwidth considerations for SMPs," in ICPP '03: Proceedings of

the International Conference on Parallel Processing, 2003, pp. 547-554.

[5] V. Aslot and R. Eigenmann, "Performance characteristics of the SPEC OMP2001

benchmarks," in EWOMP '01: Proceedings of the European Workshop on OpenMP,

2001,

[6] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones and B. Parady,

"SPEComp: A new benchmark suite for measuring parallel computer performance," in

WOMPAT '01: Proceedings of the Workshop on OpenMP Applications and Tools, 2001,

pp. 10.

[7] T. Austin, E. Larson and D. Ernst, "SimpleScalar: an infrastructure for computer

system modeling," IEEE Computer, vol. 35, pp. 59-67, 2002.

[8] S. Balakrishnan, R. Rajwar, M. Upton and K. Lai, "The impact of performance

asymmetry in emerging multicore architectures," in ISCA '05: Proceedings of the 32nd

Annual International Symposium on Computer Architecture, 2005, pp. 506-517.

[9] R. Berrendorf and G. Nieken, "Performance characteristics for OpenMP constructs on

different parallel computer architectures," Concurrency Practice and Experience, vol.

12, pp. 1261-1273, 2000.

[10] D. Brooks, V. Tiwari and M. Martonosi, "Wattch: A framework for architectural-

level power analysis and optimizations," in ISCA '00: Proceedings of the 27th

International Symposium on Computer Architecture, 2000, pp. 83-94.

[11] S. Brosky. Shielded CPUs: Real-time performance in standard linux. Available:

http://www.linuxjournal.com

-93-

[12] J. M. Bull, "Measuring synchronisation and scheduling overheads in OpenMP," in

EWOMP '99: Proceedings of First European Workshop on OpenMP, 1999, pp. 99-105.

[13] D. Chandra, F. Guo, S. Kim and Y. Solihin, "Predicting inter-thread cache

contention on a chip multi-processor architecture," in HPCA '05: Proceedings of the 11th

International Symposium on High-Performance Computer Architecture, 2005, pp. 340-

351.

[14] J. Chang and G. S. Sohi, "Cooperative Caching for Chip Multiprocessors," IEEE

Network, vol. 1, pp. L1D,

[15] L. Chen, I. Fujishiro and K. Nakajima, "Parallel performance optimization of large-

scale unstructured data visualization for the earth simulator," in EGPGV '02: Proceedings

of the Fourth Eurographics Workshop on Parallel Graphics and Visualization, 2002, pp.

133-140.

[16] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis and A. Seznec, "Performance

implications of single thread migration on a chip multi-core," ACM SIGARCH Computer

Architecture News, vol. 33, pp. 80-91, 2005.

[17] R. Couturier and C. Chipot, "Parallel molecular dynamics using OpenMP on a

shared memory machine," Comput. Phys. Commun., vol. 124, pp. 49-59, Jan. 2000.

[18] M. Curtis-Maury, J. Dzierwa, D. Antonopoulos and D. S. Nikolopoulos, "Online

strategies for high-performance power-aware thread execution on emerging

multiprocessors," in HP-PAC '06: 2nd Worksop on High-Performance, Power-Aware

Computing in the Proceedings of the 21st International Parallel and Distributed

Processing Symposium, 2006,

[19] M. Curtis-Maury, X. Ding, C. D. Antonopoulos and D. S. Nikolopoulos, "An

evaluation of OpenMP on current and emerging Multithreaded/Multicore processors," in

IWOMP '05: Proceedings of the International Workshop on OpenMP, 2005,

[20] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory

programming," IEEE Computational Science and Engineering, vol. 5, pp. 46-55, 1998.

[21] M. De Vuyst, R. Kumar and D. M. Tullsen, "Exploiting unbalanced thread

scheduling for energy and performance on a CMP of SMT processors," in IPDPS '06:

Proceedings of the 20th International Parallel and Distributed Processing Symposium,

2006, pp. 10.

[22] M. J. DeLuca and M. A. Rivas, "Computing system with selective operating voltage

and bus speed," U.S.A. 5086501, 1992, 1989.

[23] Electronic Educational Devices. (2007, Jan.). Wattsup pro EPS power meter.

2007(May 1), pp. 2. Available: https://www.doubleed.com/watts_up__es.pdf

-94-

[24] A. El-Moursy, R. Garg, D. H. Albonesi and S. Dwarkadas, "Compatible phase co-

scheduling on a CMP of multi-threaded processors," in IPDPS '06: Proceedings of the

20th International Parallel and Distributed Processing Symposium, 2006, pp. 10.

[25] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

Austin, K. Flautner and T. Mudge, "Razor: A low-power pipeline based on circuit-level

timing speculation," in MICRO 36: Proceedings of the 36th Annual IEEE/ACM

International Symposium on Microarchitecture, 2003, pp. 7.

[26] A. Fedorova, M. Seltzer, C. Small and D. Nussbaum, "Throughput-Oriented

Scheduling On Chip Multithreading Systems," Technical Report TR-17-04, Harvard

University, August, 2004.

[27] A. Fedorova, C. Small, D. Nussbaum and M. Seltzer, "Chip multithreading systems

need a new operating system scheduler," in EW '04: Proceedings of the 11th Workshop

on ACM SIGOPS European Workshop: Beyond the PC, 2004, pp. 9.

[28] N. R. Fredrickson, A. Afsahi and Y. Qian, "Performance characteristics of openMP

constructs, and application benchmarks on a large symmetric multiprocessor," in ICS '03:

Proceedings of the 17th Annual International Conference on Supercomputing, 2003, pp.

140-149.

[29] V. W. Freeh and D. K. Lowenthal, "Using multiple energy gears in MPI programs

on a power-scalable cluster," in PPoPP '05: Proceedings of the Tenth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2005, pp. 164-173.

[30] R. Ge, X. Feng and K. W. Cameron, "Improvement of power-performance

efficiency for high-end computing," in IPDPS '05: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium, 2005, pp. 8.

[31] R. E. Grant and A. Afsahi, "A comprehensive analysis of multithreaded OpenMP

applications on dual-core intel xeon SMPs," in MTAAP '07: Workshop on Multithreaded

Architectures and Applications in the Proceedings of the 21
St
 International Parallel and

Distributed Processing Symposium (IPDPS 2007), 2007, pp. 365.

[32] R. E. Grant and A. Afsahi. Power-performance efficiency of asymmetric

multiprocessors for multi-threaded scientific applications. Presented at HPPAC '06: 2nd

Workshop on High-Performance, Power-Aware Computing in the Proceedings of the

20th International Parallel and Distributed Processing Symposium (IPDPS 2006).

[33] R. E. Grant and A. Afsahi, "Characterization of multi-threaded scientific workloads

on simultaneous multithreading intel processors," in IOSCA '05: Proceedings of the

Workshop on Interaction between Operating System and Computer Architecture, 2005,

pp. 13-19.

[34] R. E. Grant and A. Afsahi, "Improving Power and Performance of Chip-

Multiprocessors by Exploiting the Effects of Operating System Noise," To be submitted.

-95-

[35] L. Hammond, B. A. Nayfeh and K. Olukotun, "A Single-Chip Multiprocessor,"

IEEE Computer, vol. 30, pp. 79-85, 1997.

[36] C. Hsu and U. Kremer, "The design, implementation, and evaluation of a compiler

algorithm for CPU energy reduction," in PLDI '03: Proceedings of the ACM SIGPLAN

2003 Conference on Programming Language Design and Implementation, 2003, pp. 38-

48.

[37] Z. Hu, S. Kaxiras and M. Martonosi, "Let caches decay: reducing leakage energy via

exploitation of cache generational behavior," ACM Transactions on Computer Systems,

vol. 20, pp. 161-190, 2002.

[38] IEEE, "Information Technology-Portable Operating System Interface (POSIX)

Standard," vol. IEEE Std. 1003.1: 2001, 2001.

[39] Intel Corp. (2006, Intel xeon processor.

[http://www.intel.com/products/processor/xeon/index.htm]. 2006Available:

http://www.intel.com/products/processor/xeon/index.htm

[40] Intel Corp. Intel core 2 processor family. Available:

http://www.intel.com/products/processor/core2/index.htm

[41] Intel Corp. (2007, Intel VTune performance analyzer. Available:

http://www.intel.com/software/products/vtune

[42] Intel Corp. (2005, Oct.). Dual-core intel xeon processor 2.8GHz datasheet.

[[online]]. Available: http://download.intel.com/design/Xeon/datashts/30915801.pdf

[43] ITRS. International technology roadmap for silicon organization. Available:

www.itrs.net

[44] H. Jin, M. Frumkin and J. Yan. (1999, Oct.). The OpenMP implementation of NAS

parallel benchmarks and its performance. NASA Ames Research Center, U.S.A.

[45] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Blackmore, P.

Caffrey, B. Maskell, P. Tomlinson and M. Roberts, "Improving the scalability of parallel

jobs by adding parallel awareness to the operating system," in SC '03: Proceedings of the

2003 ACM/IEEE Conference on Supercomputing, 2003, pp. 10.

[46] R. Kalla, B. Sinharoy and J. M. Tendler, "IBM Power5 chip: a dual-core

multithreaded processor," IEEE Micro, vol. 24, pp. 40-47, 2004.

[47] M. Kandemir, N. Vijaykrishnan, M. J. Irwin and W. Ye, "Influence of compiler

optimizations on system power," in DAC '00: Proceedings of the 37th Design Automation

Conference, 2000, pp. 304-307.

-96-

[48] Keithley Instruments Inc. (2007, Digital multimeters and data Acquisition/Switching

systems - 7700. 2007(April 20, 2007), Available:

http://www.keithley.com/products/dmm/?mn=7700

[49] Keithley Instruments Inc. (2007, Digital multimeters and data Acquisition/Switching

systems - 2701. 2007(April 20, 2007), Available:

http://www.keithley.com/products/dmm/?mn=2701

[50] J. G. Koomey. (2005, Jan.). Estimating total power consumption by servers in the

U.S. and the world. Available:

http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf

[51] R. Kotla, S. Ghiasi, T. Keller and F. Rawson, "Scheduling processor voltage and

frequency in server and cluster systems," in IPDPS '05: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium, 2005, pp. 8.

[52] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan and D. M. Tullsen, "Single-ISA

heterogeneous multi-core architectures: The potential for processor power reduction," in

MICRO '36: Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, 2003, pp. 81.

[53] R. Kumar, D. M. Tullsen, N. P. Jouppi and P. Ranganathan, "Heterogeneous chip

multiprocessors," IEEE Computer, vol. 38, pp. 32-38, 2005.

[54] Lawrence Livermore National Laboratory. LLNL OpenMP benchmarks. Available:

www.llnl.gov/CASC/RTS Report/openmp perf.html

[55] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi and R. Rooholamini, "An empirical study

of hyper-threading in high performance computing clusters," in The Proceedings of the

Third LCI International Conference on Linux Clusters: The HPC Revolution, 2002,

[56] Y. Li, K. Skadron, D. Brooks and Z. Hu, "Performance, energy, and thermal

considerations for SMT and CMP architectures," in HPCA '05: Proceedings of the 11th

International Symposium on High-Performance Computer Architecture, 2005, pp. 71-82.

[57] C. Liao, Z. Liu, L. Huang and B. Chapman, "Evaluating OpenMP on chip

MultiThreading platforms," in IWOMP '05: Proceedings of the First International

Workshop on OpenMP, 2005,

[58] C. Liu, A. Sivasubramaniam, M. Kandemir and M. J. Irwin, "Exploiting barriers to

optimize power consumption of CMPs," in IPDPS '05: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium, 2005, pp. 5a-5a.

[59] D. B. Loveman, "High Performance Fortran," IEEE Parallel & Distributed

Technology: Systems & Technology, vol. 1, pp. 25-42, 1993.

[60] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi and S. Dropsho, "Profile-

based dynamic voltage and frequency scaling for a multiple clock domain

-97-

microprocessor," in ISCA '03: Proceedings of the 30th Annual International Symposium

on Computer Architecture, 2003, pp. 14-25.

[61] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller and M.

Upton. (Feb. 2002, Hyper-threading technology architecture and microarchitecture. Intel

Technology Journal 6(1),

[62] R. L. McGregor, C. D. Antonopoulos and D. S. Nikolopoulos, "Scheduling

algorithms for effective thread pairing on hybrid multiprocessors," in IPDPS '05:

Proceedingsof the 19th IEEE International Parallel and Distributed Processing

Symposium, 2005, pp. 28a.

[63] L. W. McVoy and C. Staelin, "Lmbench: Portable tools for performance analysis,"

in USENIX Annual Technical Conference, 1996, pp. 279-294.

[64] Message Passing Interface Forum. (1997, MPI, A message passing interface

standard. 1.2

[65] R. E. Millstein, "Control structures in Illiac IV Fortran," Communications of the

ACM, vol. 16, pp. 621-627, 1973.

[66] T. Mudge, "Power: A First Class Design Constraint," IEEE Computer, vol. 34, pp.

52-52-57, Apr. 2001.

[67] D. Nellans, R. Balasubramonian and E. Brunvand, "A case for increased operating

system support in chip multi-processors," in P=ac2 '05: Proceedings of the 2nd IBM

Watson Conference on Interaction between Architecture, Circuits, and Compilers, 2005,

[68] D. S. Nikolopoulos and C. D. Polychronopoulos, "Adaptive scheduling under

memory pressure on multiprogrammed SMPs," in IPDPS '02: Proceedings of the

International Parallel and Distributed Processing Symposium, 2002, pp. 11-16.

[69] OpenMP Architecture Review Board, "OpenMP Specification Version 2.5," 2005.

[70] Openmp.org. Open MP - simple, portable, scalable SMP programming. Available:

www.openmp.org

[71] F. Petrini, D. J. Kerbyson and S. Pakin, "The case of the missing supercomputer

performance: Achieving optimal performance on the 8,192 processors of ASCI Q," in SC

'03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, 2003, pp. 55.

[72] E. D. Polychronopoulos, D. S. Nikolopoulos, T. S. Papatheodorou, X. Martorell, J.

Labarta and N. Navarro, "An efficient kernel-level scheduling methodology for

multiprogrammed shared memory multiprocessors," in PDCS ’99: Proceedings of the

12th International Conference on Parallel and Distributed Computing Systems, pp. 148-

155.

-98-

[73] A. Purkayastha, C. Guiang, K. Schulz, T. Minyard, K. Milfeld, W. Barth, P. Hurley

and J. Boisseau, "Performance characteristics of dual-processor HPC cluster nodes based

on 64-bit commodity processors," in IISWC '05: Proceedings of the IEEE International

Symposium on Workload Characterization, 2005, pp. 87-98.

[74] F. J. L. Reid and J. M. Bull, "OpenMP microbenchmarks version 2.0," in EWOMP

'04: Proceedings of 6th European Workshop on OpenMP, 2004,

[75] M. Renouf, F. Dubois and P. Alart, "A parallel version of the non smooth contact

dynamics algorithm applied to the simulation of granular media," J. Comput. Appl.

Math., vol. 168, pp. 375-382, 2004.

[76] H. Saito, G. Gaertner, W. Jones, R. Eigenmann, H. Iwashita, R. Lieberman, M. van

Waveren and B. Whitney, "Large system performance of SPEC OMP2001 benchmarks,"

in WOMPAT '02: Workshop on OpenMP: Experiences and Implementation in the

Proceedings of the International Workshop on OpenMP (IWOMP), 2002,

[77] R. Sasanka, S. V. Adve, Y. Chen and E. Debes, "The energy efficiency of CMP vs.

SMT for multimedia workloads," in ICS '04: Proceedings of the 18th Annual

International Conference on Supercomputing, 2004, pp. 196-206.

[78] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, "Design of OpenMP compiler for an

SMP cluster," in EWOMP '99: Proceedings of the European Workshop on OpenMP,

1999, pp. 32–39.

[79] D. Skinner and W. Kramer, "Understanding the causes of performance variability in

HPC workloads," in IISWC '05: Proceedings of the IEEE International Symposium on

Workload Characterization, 2005, pp. 137-149.

[80] L. Smith and P. Kent, "Development and performance of a mixed OpenMP/MPI

quantum Monte Carlo code," Concurrency Practice and Experience, vol. 12, pp. 1121-

1129, 2000.

[81] A. Snavely, D. M. Tullsen and G. Voelker, "Symbiotic jobscheduling with priorities

for a simultaneous multithreading processor," in The Proceedings of the ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems, 2002, pp. 66-76.

[82] SPEC. (2005, SPEC OMP benchmark suite. Available: http://www.spec.org/omp/.

[83] L. Spracklen and S. G. Abraham, "Chip multithreading: Opportunities and

challenges," in HPCA '05: Proceedings of the International Symposium on High-

Performance Computer Architecture, 2005, pp. 248-252.

[84] U. Srinivasan, P. S. Chen, Q. Diao, C. C. Lim, E. Li, Y. Chen, R. Ju and Y. Zhang,

"Characterization and analysis of HMMER and SVM-RFE parallel bioinformatics

applications," in IISWC '05: Proceedings of the IEEE International Symposium on

Workload Characterization, 2005, pp. 87-98.

-99-

[85] Sun Microsystems. (2006, UltraSPARC IV. 2006Available:

http://www.sun.com/processors/UltraSPARC-IVplus/index.xml

[86] Sun Microsystems. T1 processor. Available:

http://www.sun.com/processors/UltraSPARC-T1/index.xml

[87] Synopsys. HSPICE - circuit simulation software. Available:

http://www.synopsys.com/products/mixedsignal/hspice/hspice.html

[88] X. Tian, Y. Chen, M. Girkar, S. Ge, R. Lienhart and S. Shah, "Exploring the use of

hyper-threading technology for multimedia applications with intel OpenMP compiler," in

IPDPS '03: Proceedings of the International Parallel and Distributed Processing

Symposium, 2003, pp. 8.

[89] D. Tsafrir, Y. Etsion, D. G. Feitelson and S. Kirkpatrick, "System noise, OS clock

ticks, and fine-grained parallel applications," in ICS '05: Proceedings of the 19th Annual

International Conference on Supercomputing, 2005, pp. 303-312.

[90] N. Tuck and D. M. Tullsen, "Initial observations of the simultaneous multithreading

pentium 4 processor," in PACT '03: Proceedings of the 12th International Conference on

Parallel Architectures and Compilation Techniques, 2003, pp. 26-34.

[91] D. M. Tullsen, S. J. Eggers and H. M. Levy, "Simultaneous multithreading:

Maximizing on-chip parallelism," in ISCA '95: Proceedings of the 22nd Annual

International Symposium on Computer Architecture, 1995, pp. 392-403.

[92] O. S. Unsal, I. Koren, C. M. Krishna and C. A. Moritz, "Cool-Fetch: Compiler-

Enabled Power-Aware Fetch Throttling," IEEE Computer Architecture Letters, vol. 1,

pp. 100-103, 2002.

[93] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August and D. Connors,

"Chip multi-processor scalability for single-threaded applications," ACM SIGARCH

Computer Architecture News, vol. 33, pp. 44-53, 2005.

[94] Y. Zhang, M. Burcea, V. Cheng, R. Ho, V. Cheng and M. Voss, "An adaptive

OpenMP loop scheduler for hyperthreaded SMPs," in IPDPS '04: Proceedings of 16th

International Conference on Parallel and Distributed Computing Systems, 2004,

