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Abstract

High-Performance Computing (HPC) refers to using aggregate compute power of

many small compute nodes to solve large complex problems which cannot be com-

puted in a reasonable time on a single computer. In recent years these HPC clusters

have moved towards using accelerators, such as Graphics Processing Units (GPUs),

to offload computationally intensive portions of applications. Distributed Deep

Learning workloads on these heterogeneous HPC systems has become increasingly

important. These new workloads have been developed upon existing HPC libraries

such as the Message Passing Interface (MPI) and Compute Unified Device Archi-

tecture (CUDA).

MPI communication is critical to distributed Deep Learning applications at scale

as they place a large amount of pressure on the communication subsystem of HPC

clusters. Improving the MPI communication run-time could benefit Deep Learning.

For that, we first investigate the characteristics of Deep Learning applications to

understand how we can propose and design communication mechanisms which solve

some important communication challenges.

We focused on tackling the issues regarding large GPU messages, which we ob-

served with Deep Learning applications. To begin our investigation, we studied

NVLink usage within the context of point-to-point communication. Unified Com-

munication X (UCX) framework, used within the Open MPI library, only utilises

a small portion of the available NVLink bandwidth for intra-socket GPU-to-GPU
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communication. We propose a novel GPU-to-GPU data transfer mechanism that

stripes the message across multiple intra-socket communication channels and mul-

tiple memory regions using multiple GPU streams to utilise all available NVLink

paths. Our approach achieves 1.64x and 1.84x higher bandwidth for both UCX and

Open MPI + UCX, respectively.

Then we propose a 3-stage hierarchical, pipelined MPI Allreduce design that

incorporates the new multi-path NVLink data transfer mechanism for intra-socket

communication in the first and third stages of the collective, and PCIe and X-

bus channels for inter-socket GPU-to-GPU communication in the second stage with

minimal interference. For large messages, our proposed algorithm achieves a large

speedup.

Finally, we evaluate our proposed MPI Allreduce for Deep Learning applica-

tions such as Horovod + TensorFlow with a range of Deep Learning models. For

Horovod + TensorFlow and VGG16, we observe up to 3.42x speedup over other

MPI implementations.
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Chapter 1

Introduction

High-Performance Computing (HPC) often refers to using the aggregate compute

power of many small compute nodes to solve large complex problems. This allows

us to solve problems that would take months or years on commodity workstations.

HPC systems are usually used for solving scientific and engineering problems within

many domains. Recent improvements in HPC technology has resulted in advances

in Artificial Intelligence (AI), Machine Learning, and Deep Learning (DL). Deep

Neural Networks (DNNs) have been used to provide solutions to many problems

within natural language processing, image recognition, autonomous vehicles, cancer

detection, and medical imaging, to name a few. Training of these DNNs are usually

limited by hardware resources which result in long training times and low produc-

tivity from researchers. As the size of data sets and the complexity of DNNs grow,

the requirement for computing resources continues to increase. Scaling of these DL

applications to massively parallel systems is required to continue solving problems

in this domain.

Both HPC and Deep Learning applications place a large amount of pressure on

the communication subsystem of HPC clusters. Their performance is significantly

affected by the underlying hardware and software. Simultaneously, the prevalence

1
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of accelerators has developed a need for system software to adapt to these changes.

General Purpose Graphics Processing Units (GPGPUs) are one of the most popu-

lar accelerators used today. We often see multi-GPU computing nodes with their

own proprietary intra-node interconnects to accommodate communication between

GPUs.

Developing applications on HPC systems relies on programming models designed

for these systems. The Message Passing Interface (MPI) [1] is one of the most

popular programming models used today with multiple implementations such as

MPICH [2], MVAPICH2 [3], and Open MPI [4]. On GPU-based HPC clusters it

is beneficial for MPI to be GPU-Aware and allow for optimised communication

between GPU memory regions. MPI supports point-to-point, collective, and remote

memory access (RMA) communication operations. MPI collectives, in particular,

MPI Allreduce and MPI Bcast, which involve communications among a group of

processes, play a crucial role in the performance of MPI applications, including

Deep Learning workloads.

1.1 Motivation

MPI is the de facto standard for parallel programming within HPC environments.

The MPI standard defines many different API calls to transfer data between pro-

cesses. These data transfers place a lot of pressure on HPC systems as they are more

costly than transferring data within a single process. MPI communication perfor-

mance has been a large problem for HPC applications [5,6]. Therefore, Investigating

MPI communication challenges is incredibly important as it affects many problem

domains.

With the growth of Deep Learning, many frameworks have been developed to

scale existing applications to HPC clusters using MPI. There are many frame-

works available for distributed Deep Learning such as TensorFlow [7], PyTorch [8],
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Horovod [9], CNTK [10], and Deep500 [11]. Some frameworks, such as Horovod,

implement distributed training using MPI but rely on other frameworks such as

TensorFlow or PyTorch for the computation portion of their code. Other frame-

works such as CNTK and Deep500 provide both distributed training tools and the

implementation of Deep Learning models. As all these frameworks use MPI in some

capacity, it is important to understand their usage. Some existing work shows that

these applications use collective communication extensively [12–14] especially with

large GPU messages. The exact usage of MPI collectives themselves is unclear and

whether these applications use collective communication exclusively or a mixture of

point-to-point and collectives. Gaining deep insight into the MPI communication

characteristics such as the frequency of collectives or point-to-point, message sizes,

or data volume, for a variety of DL frameworks, models, and optimisation algorithms

will give us a clearer view of MPI-based Deep Learning.

Whether an application uses point-to-point or collective communication, improv-

ing point-to-point communication should improve most applications as collectives

are often implemented upon point-to-point. The exact relationship between point-

to-point communication and collectives differ between MPI implementations. Im-

proving point-to-point communication for large messages can be achieved by fully

utilising the available bandwidth. A higher bandwidth allows for data to be trans-

ferred in less time. As these Deep Learning applications are GPU-Centric it is

important to investigate methods in which we can improve the available bandwidth

for GPU-to-GPU data transfers.

1.2 Research Objectives

In this work we plan to investigate MPI based Deep Learning frameworks and GPU

MPI communication. We aim to develop a better understanding of a few Deep

Learning frameworks within the context of MPI and the communication character-
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istics that are present during their execution. Our goal is to study both CPU and

GPU-based Deep Learning frameworks to identify their differences and similarities.

As our main interest is in GPU-based Deep Learning, we also investigated GPU com-

munication on Nvidia’s intra-node interconnect NVLink [15]. Finally we try to draw

a connection between the communication characteristics and GPU communication.

In this work we aim to answer the following questions:

• Is MPI communication a major bottleneck to Deep Learning applications? Are

there similar MPI communication problems across different applications or

does each application have unique characteristics? Do we face communication

challenges with data residing in GPU or CPU buffers? Does Deep Learning

depend upon MPI point-to-point or collective communication, or both? Which

MPI communication calls are called more frequently and which are the most

important in regards to improving application run-time?

• Is intra-node communication important for Deep Learning applications? If so,

can we improve GPU point-to-point communication within a single compute

node? Could our improvements in MPI point-to-point communication help

accelerate MPI collectives too?

• If MPI point-to-point or collective communication is problematic in distributed

training of Deep Learning models, can we design communication mechanisms

that have a direct impact on these applications?

1.3 Contributions

In this thesis we make a few observation with regards to Deep Learning frameworks

and a few proposals for the MPI communication run-time. MPI communication is

critical for distributed Deep Learning frameworks. Improving the MPI communi-

cation run-time should yield major performance improvements. We contribute by

providing an improved point-to-point communication mechanism to better utilise
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bandwidth. We then use this mechanism to improve the MPI Allreduce collective

communication performance. Finally we see these MPI communication run-time

improvements impact the application layer by accelerating Deep Learning work-

loads [16].

• We observe that MPI Allreduce is the most prominent collective used by

Horovod + TensorFlow, Horovod + PyTorch, and CNTK. For the CPU version

Horovod + PyTorch, MPI Allreduce takes up to 90% of application run-time

at 512 processes. For both GPU configurations of Horovod, MPI Allreduce

takes up to 73% of application run-time at 64 GPUs. The message sizes used

by both Horovod GPU configurations, resulted in mostly small CPU mes-

sages (less than 32B) and large GPU messages around 64MB. We observed

that point-to-point communication was only used by CNTK and that point-

to-point communication did not generate any message queue problems.

• We propose a novel multi-path GPU-to-GPU data transfer mechanism that

partitions large point-to-point messages across device-to-device and device-

to-host/host-to-device channels to utilise all available NVLink paths using a

UCX one-sided put operation. Our approach achieves 1.69x and 1.84x higher

bandwidth for UCX and Open MPI + UCX, respectively.

• We propose a 3-stage hierarchical, pipelined MPI Allreduce collective design

that utilises the new multi-path copy mechanism for intra-socket data trans-

fers, while dynamically selecting NVLink and PCIe channels for different stages

of the algorithm to minimise interference. Our experimental results show a

speedup of up to 12.25x, 15.63x, 3.72x, 1.48x, and 1.38x against Spectrum

MPI, Open MPI + UCX, Open MPI + HPC-X, MVAPICH2-GDR, and NCCL,

respectively.

• We evaluate the impact of the proposed multi-path copy and MPI Allreduce

design at the application layer. For Horovod with TensorFlow training VGG16,
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we observe up to 2.98x, 3.42x, 3.22x, 1.23x, and 3.24x speedup over Spec-

trum MPI, Open MPI + UCX, Open MPI + HPC-X, MVAPICH2-GDR, and

NCCL, respectively. For ResNet50, we achieve 1.50x, 1.57x, 1.22x, 1.24x,

1.23x speedup over these MPI libraries, respectively.

1.4 Outline

The rest of this thesis is structured as follows: in Chapter 2, we introduce HPC clus-

ters, MPI in greater detail, GPUs and Deep Learning. In Chapter 3 we analyse a few

Deep Learning frameworks and observe their MPI communication characteristics.

Then in Chapter 4, we propose a new multi-path UCX Put operation which better

utilises NVLinks and we observe its impact on the MPI communication run-time.

We then use this multi-path copy in MPI Allreduce in Chapter 5, and evaluate it

against Horovod + TensorFlow while studying a few different Deep Learning models.

Finally we make our concluding remarks in Chapter 6.



Chapter 2

Background

Parallel computing is a form of computation where a problem is split into smaller

parts which can be solved in parallel. Parallel computing is often applied to com-

pute clusters as they are many small systems connected together with some form

of network. Traditional compute clusters are homogeneous and are CPU based.

Heterogeneous computing is growing evermore important in cluster computing as

we move away from homogeneous systems towards those with accelerators. As of

2021, many forms of accelerators are being researched such as AI ASICs, FPGAs

and GPGPUs. GPGPUs have been one of the most popular accelerators for HPC

systems. From the list of the Top500 supercomputers, 6 out of the top 10 are GPU

based systems [17]. Accelerators allow users to offload highly parallel and compute

intensive portions of their applications using vectorised operations. Accelerator of-

floading usually outperform using the CPU alone. With these new GPU systems

being available to researchers, applications are also moving in a direction to utilise

accelerators. HPC applications have been modified to utilise these compute re-

sources such as HOOMD-blue [18], LAMMPS [19], and many more. As discussed

in [20] we saw the growth of GPU-Centric Deep Learning with [21,22] as they were

one of the first to start utilising their compute power in this domain.

7
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In this section we provide background knowledge of HPC clusters, GPUs in this

context and GPU-Aware MPI point-to-point and collective communication. Then

we introduce parallel and distributed Deep Learning and their relation to the these

HPC technologies.

2.1 Modern Heterogeneous HPC Clusters

A HPC cluster often contains a large number of nodes (individual computers) that

are connected together to aggregate the compute power of the individual nodes. Hav-

ing an aggregate of the compute power allows users to solve large complex problems

which cannot be solved by a single machine in a reasonable time. In homogeneous

systems, generally we have many CPU nodes of the same type. The individual

CPU nodes can consist of one or more CPUs. Heterogeneous clusters are usually

the same as homogeneous clusters but with the addition of hardware components

such as accelerators. Hardware accelerators appear in many forms but their main

purpose is to perform certain computations more efficiently than what can be com-

puted on a CPU. Accelerators usually have certain compute operations implemented

in hardware which often outperform general-purpose units. This usually decreases

run-time and increases throughput of these operations. When working with systems

with accelerators many challenges occur during software developments as we now

need to account for communication time to transfer data to these accelerators.

Currently the most popular accelerator used in heterogeneous HPC systems are

GPGPUs. GPUs were initially designed for hardware acceleration of computer

graphics tasks. As GPUs are highly parallel, they eventually found their way into

scientific computing. GPUs are connected to CPUs via various interconnects such

as Peripheral Component Interconnect express (PCIe) or Nvidia’s NVLink [15]. The

intra-node interconnect topology can vary from system to system. Whether the sys-

tem is homogeneous or heterogeneous, usually one or more Network Interface Cards
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Figure 2.1: Schematic diagram of a modern heterogeneous HPC cluster

(NICs) are present to connect the nodes together using a switched network or fab-

ric. Many network solutions exist such as Cray Aries Network [23], Intel Omni-Path

Architecture [24], and InfiniBand [25].

In Figure 2.1 we can see a schematic diagram of a modern heterogeneous HPC

cluster. The nodes are connected together in a fat tree topology where each node

is connected to a switch. Then a second switch connects the first layer switches

together. The second layer switches have higher bandwidth connections than the

first. The nodes themselves contain a mixture of CPUs, GPUs, and NICs. The

exact arrangement of the network switches and the intra-node topologies vary with

each compute cluster.

2.2 Graphics Processing Units (GPUs)

GPUs are often found in the form of hardware accelerators in HPC systems. They

are used to offload computation that would often be computationally intensive on

CPUs. Within HPC, GPUs are generally used for floating-point operations comput-

ing matrices and vectors. There are many GPU vendors such as Nvidia, AMD, and

Intel. The research conducted in this thesis is not bound to Nvidia GPUs but the

work presented in this thesis will focus on Nvidia’s V100 GPUs.
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2.2.1 GPU Architecture

The V100 GPU is comprised of 84 Streaming Multiprocessors (SMs) [26]. SMs are

the part of the GPU which execute CUDA kernels, but their design is significantly

different than other hardware like CPUs. These GPUs also have a memory hier-

archy; registers allocated to threads inside the SM, local memory to hold thread

variables, shared memory for threads within a block to communicate, and finally

global memory which is accessible by all SMs. The global memory in the V100

GPUs is High Bandwidth Memory 2 (HBM2). The send and receive buffers used in

MPI will be allocated within global memory. We will discuss MPI further in Section

2.4.

2.2.2 Programming Nvidia GPUs

CUDA is a general-purpose parallel programming model that allows users to take

advantage of Nvidia GPU’s parallel compute engines. The CUDA environment al-

lows users to program in C++ but CUDA can be interfaced with other languages such

as C or FORTRAN. CUDA helps solve some of the challenges with transparently

scaling applications in parallel environments. One of the main components of CUDA

programming are kernels. These are similar to traditional functions in C/C++ but

they can be executed in parallel using many CUDA threads. Each CUDA thread

executes a kernel using its own thread ID.

Streams

CUDA applications concurrently transfer data and execute kernel via the concept

of streams. A stream can be thought as a First-In First-Out (FIFO) queue of

operations that will be executed in the order they are placed in the queue. Streams

are in order with respect to themselves but work that is placed on multiple streams

will not be in order relative to each other. Each stream will execute their commands



CHAPTER 2. BACKGROUND 11

concurrently. Streams can be synchronised individually or all streams on a single

device can be synchronised.

CUDA Events

Nvidia devices can asynchronously record events. Recording of events are placed on

streams. Once the stream reaches a record operation in the execution sequence, it

will modify an event object. These event can also be queried to synchronise work

between distinct streams.

CUDA Inter-Process Communication (IPC)

Device pointers are bound to the context that it was created in. Therefore, these

pointers cannot be passed between processes via the usual means such as message

passing or shared memory. To share device pointers and CUDA events between

processes, the CUDA IPC API must be used [27]. Using the IPC API we can create

a handle for a device pointer or an event and pass that handle to another process.

That other process can open the handle to obtain a device pointer or event which

can be used within that context.

2.3 Network Interconnects

GPU compute nodes usually have an interconnect to interface the multiple GPUs

together within a single node. For the work presented in this thesis, we have worked

with systems that use PCIe and/or NVLink. For HPC clusters, there is usually an

interconnect to connect the individual nodes together. Many network solutions exist

such as Cray Aries Network, Intel Omni Path Architecture, and InfiniBand. For the

work in Chapter 3, we use an InfiniBand network.
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2.3.1 PCIe

PCIe [28] is a high-speed interconnect used in compute systems to connect devices

to CPUs. Many devices can be connected to the CPU with this interconnect such

as GPUs, NICs, and SSDs. There are a few physical configurations for PCIe slots

such as x1, x4, x8, and x16. Each configuration provides a different number of PCIe

lanes to the attached device. An increase in lane count results in an increase in

the available bandwidth to the device. GPUs attached via PCIe are often attached

with x16 slots. For a PCIe 3.0 x16 slot, we would have a bi-directional bandwidth

of 32GB/s and for PCIe 4.0 x16 slot we would have 64GB/s.

2.3.2 NVLink

NVLink [15] provides connectivity between Nvidia GPUs on multi-GPU systems.

The main advantage of NVLink over PCIe for Nvidia GPUs is the increased band-

width available for data transfers. The V100 GPUs discussed in this thesis has 6

attached NVLinks providing a total bi-directional bandwidth of 300GB/s (50GB/s

per link). Depending on the system, the NVLinks are arranged in multiple different

topologies. These topologies will be discussed in Chapter 4 when we introduce the

compute systems that we will work with.

2.3.3 InfiniBand

InfiniBand (IB) [25] is a network specification maintained by the InfiniBand Trade

Association. IB is used to connect high-performance compute node together which

provides high throughput and low latency. The IB network used in the this thesis

is Nvidia Mellanox EDR InfiniBand interconnect which provides 100Gb/s of band-

width.
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2.4 The Message Passing Interface (MPI)

The Message Passing Interface [1] is one of the most dominant programming models

within HPC. MPI allows for the transfer of data between distinct processes. One

of the main benefits of using MPI over other alternatives, such as the NVIDIA

Collective Communication Library (NCCL) [29], is MPI’s scalability, ability to use

buffers from different memory regions, and portability. In Figure 2.2 we can see

MPI’s relation to other software libraries in a Deep Learning software stack.

MPI has three modes of communication; point-to-point, one-sided, and collec-

tives. When using point-to-point communication, two processes are active with one

sending data to another who is receiving. These send/recv pairs are matched. MPI

guarantees that every message will arrive in order with no errors from the applica-

tions perspective. With one-sided communication, the data movement is decoupled

from process synchronisation. One process exposes a memory region and another

can read/write from that location. Only one process is active during the data trans-
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Figure 2.2: Software Stack
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fer. Collective communication allows for data to be transferred between multiple

process in a predefined pattern between processes.

2.4.1 Point-To-Point Communication

Point-to-point communication involves two processes which directly transfer data

between them. One process issues a send call and the other issues a receive call.

The sent message contains two parts, the envelope and the data itself. The message

envelope contains data about the message being sent such as the rank, tag and

communicator. MPI provides both blocking (MPI Send and MPI Recv) and non-

blocking (MPI Isend and MPI Irecv) routines for point-to-point communication.

Most MPI implementations have two protocols for sending messages, Eager and

Rendezvous. Generally the Eager protocol is used for small messages and Ren-

dezvous is used for large messages.

Eager: With the Eager protocol, the sender assumes that the destination process

has sufficient allocated to store the incoming message. Therefore the sending process

transfers all of the data to the receiver directly.

Rendezvous : With the Rendezvous protocol, the sender assumes that the desti-

nation process may not have allocated memory to store the incoming message. As

we do not have the guarantee that there is allocated memory, the protocol executes a

handshake to ensure that the data can be sent. The sender sends a Request To Send

(RTS) control message to the receiver. Once the receiver has allocated memory to

receive a message, it notifies the sender with a Clear To Send (CTS) control signal.

Now the sender process transfers the data into the buffer of the receiver process.

MPI Message Queues

MPI implementations usually have two message queues to handle communication

when two processes are out of sync. The two message queues are the Unexpected

Message Queue (UMQ) and the Posted Receive Queue (PRQ). When MPI Recv is
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called, the process first checks the UMQ to see if a message has arrived before

MPI Recv was called. If so, the message is removed from the UMQ. In the other

scenario where MPI Recv is called and the UMQ does not contain the message that

the process is looking for, then the receive call is placed on the PRQ. Once the

message arrives from the network, PRQ is checked for a matching receive call. If so,

the receive call is removed from the PRQ and then the data transfer is complete.

When searching for a message on the queue, a comparison is made with the message

envelope that is created by the MPI Recv call. Although this was described using

blocking point-to-point calls the same is true for non-blocking calls.

2.4.2 Collective Communication

Collective communication occurs between a group of processes. This group is defined

by an MPI Comm object which is a communicator. The communicator MPI COMM WORLD

refers to all processes that are present when a parallel job starts. Collective commu-

nication can be placed into four different categories; All-To-All, All-To-One, One-

To-All, and Other [1,30]. Three of the categories can be seen in Figure 2.3. Within

the All-To-All category all processes contribute to the result and all processes re-

ceive the result. This pattern can be seen in MPI Allreduce, MPI Alltoall, and

P0 P1

P2P3

(a) All-To-All

P0

P1

P2

P3

(b) All-To-One

P0

P1

P2

P3

(c) One-To-All

Figure 2.3: Different MPI Collective Communication Patterns
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MPI Allgather. All-To-One is where all processes contribute to the result and one

process receives the result. MPI Reduce and MPI Gather are examples of this. In

One-To-All communication, one process contributes to the result and all processes

receive the result. MPI Bcast and MPI Scatter use this the pattern. MPI calls such

as MPI Scan and MPI Exscan do not fit into the three previously discussed categories

and are placed in the ‘Other’ category. For example, with MPI Scan, P0 receives it

data from a single process but Pn receives its data from all n processes. There-

fore, the communication pattern is different for each process in the communicator

and does not fit in these three categories. For collectives such as MPI Allreduce,

MPI Reduce, MPI Reduce scatter, and MPI Scan, there is a computation that also

occurs along the communication within the collective. This computation can be

defined by the MPI Op parameter.

MPI Allreduce algorithms

This thesis will focus on the MPI Allreduce collective as it is extensively used in

Deep Learning and is a major performance issue for many frameworks. The perfor-

mance issues will be discussed further in Chapter 3. Many different MPI Allreduce

algorithms exists, where they each optimise different metrics such as bandwidth or

latency. Each algorithm performs differently based on process count, message sizes,

and the system. We discuss the four algorithms implemented in Open MPI [4]: Lin-

ear, Ring, Recursive Doubling, and Reduce-Scatter Allgather (RSA). The Ring and

Segmented Ring algorithms will be discussed together as the difference between the

two is small. Diagrams in this section are shown for four processes, as that is what

we use in Chapter 5 but these algorithms work for any process count.

Reduce-Broadcast (Linear): This algorithm is one of the simplest implementa-

tions of MPI Allreduce. It shows the fundamental behaviour of the algorithm in an

easy manner. All processes directly send their data to the root process. In Figure
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Figure 2.4: MPI Allreduce Reduce-Broadcast algorithm for 4 processes

2.4 we show the root process as P0. Once all the data has been received at the root,

the process reduces the data. This reduction can be MPI SUM, MPI MAX or many other

MPI Op parameters. In the diagram the reduce operation is denoted as ⊕. Once the

data has been reduced, the root process then sends a copy of the reduced data to

all other processes in the communicator. The root process also copies the reduced

data into its own receive buffer.

Recursive Doubling (RD): Figure 2.5 illustrates recursive doubling for four pro-

cesses. In the first step processes exchange data with ranks that have a distance of

one. Once each process has a copy of its partner processes data, it reduces the data.

Then in Step 2, each process exchanges its data with ranks that have a distance of

two. Again this received data is reduced. For four processes, this is the last step so

data is then copied to the receive buffer. This algorithm can be generalised for any

process count. Recursive doubling is often used for smaller message sizes.
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Figure 2.5: MPI Allreduce Recursive Doubling algorithm for 4 processes

Reduce-Scatter Allgather (RSA): has two main parts as per its name. In Figure

2.6 we can see that Steps 1 and 2 act as Reduce-Scatter and Steps 3 and 4 act

as Allgather. For the description of this algorithm we have not shown it with the

⊕ operator as this algorithm also divides the buffer during its execution. The red

boxes denote that the data has been reduced. Here we denote the data Drank,chunk

where each rank has four chunks. This algorithm can be generalised for n ranks

which will result in n chunks. In Step 1 we send half of the buffer to processes with

a distance of two. In Step 2 we send one quarter of the buffer to processes with a

distance of one. Then we reduce the data. For each step the data size is halved.

We can see from Figure 2.6 that the buffer chunks are chosen so that by the end of

Step 2 we have executed a reduce-scatter. Now to complete the algorithm, we must

execute Allgather to distribute the reduced data across the processes. In Step 3 we

exchange the reduced data with processes with a distance of one. Then the reduced

data is exchanged with processes with a distance of two. Now each process has a

copy of the reduced data.
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Figure 2.7: MPI Allreduce Ring algorithm for 4 processes
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Ring: Here we will discuss both the ring and segmented ring algorithm as they are

fairly similar with small differences. In Figure 2.7 it can be seen that the processes

are organised in a ring topology where each process sends to only one other process

and receives from a single process. With the ring algorithm, the buffer is split into

N chunks. For the default ring implementation in Open MPI, N = P where P is

the number of ranks. Steps 1-3 act as a ring-based reduce-scatter and Steps 4-6 act

as an allgather. In Figure 2.7 we see the default ring implementation where N = P .

So here the buffer is split into 4 chunks. At each algorithm step one chunk is sent to

the next process. In Step 1 the first chunk is sent. In Step 2 the original data chunk

is reduced with the chunk of data which was received in Step 1 and sent on to the

next process. Step 3 is a repetition of Step 2 but as the rank now has all of the data

the buffer is fully reduced for one chunk. This is shown with the red box. At the

end of Step 3 the reduce-scatter is complete as each process has one quarter of the

buffer that is fully reduced. In Step 4 the reduced data is sent to the adjacent rank.

This is also repeated for Step 5 and Step 6 until every process has a fully reduced

buffer.

In this example there are a total of 6 steps. This can be generalised for P

processes. The first reduce scatter step takes (P − 1) steps, then the allgather step

also takes (P − 1) steps. Therefore the ring algorithm has a total of 2(P − 1) steps.

2.4.3 GPU-Aware MPI

When an MPI implementation is GPU-Aware it usually refers to being able to pass

pointers into the send/recv buffer of GPU memory regions. The MPI implementa-

tion handles the explicit data transfer between GPU and the Host.

2.4.4 MPI Implementations

The Message Passing Interface is a standard which is approved by MPI Forum [1].

There are many implementations which follow this standard, some implementations
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are generic such as MPICH [2] and Open MPI [4] but others are are designed for

specific hardware architectures such as Cray-MPICH [31] or Spectrum MPI [32].

In this thesis, the following implementations were used MVAPICH2, MVAPICH2-

GDR [3], Spectrum MPI [32], Open MPI [4], and Open MPI + HPC-X [33].

MVAPICH2

MVAPICH2 is an MPI-3.1 implementation based on MPICH. MVAPICH2 is an

open source implementation provided by The Network Based Computing Laboratory

(NBCL) at The Ohio State University (OSU). MVAPICH2-GDR is a closed source

implementation which is highly optimised for GPU-based workloads. MVAPICH2

was used in Chapter 3 for the Deep Learning characterisation work. MVAPICH2-

GDR was used in both Chapter 4 and Chapter 5 to compare results with the pro-

posed work in that chapter.

Open MPI + UCX

Open MPI is another open source implementation of MPI. It was used in both

Chapter 4 and Chapter 5. Unified Communication X (UCX) was used for Open

MPI’s Point-to-point Management Layer (PML) component. Open MPI can use

other point-to-point components in the PML, such as ob1, but better performance

was observed when using UCX on the compute systems used in Chapter 4 and

Chapter 5. Open MPI uses UCX’s point-to-point features for its own point-to-

point and collective implementation. When using point-to-point communication

in MPI, we are directly using the point-to-point communication interface of UCX.

For collective communication, UCX is abstracted through the PML layer, as shown

in Figure 2.8. Figure 2.8 provides a slightly more detailed view of Open MPI +

UCX than what was presented in Figure 2.2. Open MPI supports various flat

algorithms for MPI Allreduce, where the algorithm is chosen at run-time based on
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Application

UCX
UCP UCT UCS

Open MPI
COLL PML UCX

Figure 2.8: Simplified Software Stack of Open MPI + UCX

the number of processes and the message size. Flat algorithms are designed in a

non-hierarchical approach and executed across all process in the cluster. In a flat

algorithm, any pair of processes can communicate at the same cost. The following

algorithms are implemented within Open MPI; ring, segmented ring, reduce-scatter-

allgather, recursive doubling, nonoverlapping, and linear. Open MPI provides GPU

support but for collectives with data residing on the GPUs it copies the data to

the host and uses CPU based operations. Open MPI is not well optimised for GPU

workloads.

Nvidia provides an additional component for Open MPI called HCOLL which is

included in their HPC-X package. This component provides accelerated collective

communication for Open MPI. For point-to-point communication, this component

still depends on UCX. We have called this package Open MPI + HPC-X throughout

this thesis.

Unified Communication X (UCX): UCX is an RDMA-based point-to-point com-

munication library for modern low latency, high bandwidth interconnects [34]. It

provides an abstract interface for communication that allows for network accelera-

tion across many interconnects. In Figure 2.8, we see a simplified diagram of UCX

relevant to this thesis.

Unified Communication Protocol (UCP) Layer: The UCP layer of UCX im-

plements high level protocols that are used by other communication libraries such

as MPI. UCP supports Remote Memory Access (RMA), active messages, and tag-
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matching operations, among others. The tag-matching interface is the most relevant

to our work as it supports tag-matching for send-recv semantics of MPI. For this

interface, UCP implements both the Eager and Rendezvous protocols. The UCP

layer uses the UCT layer to implement these different protocols over a wide range

of transports.

Unified Communication Transport (UCT) Layer: The UCT layer is a trans-

port layer that abstracts the data movement across different memory regions. This

layer uses low-level driver APIs such as InfiniBand Verbs, libfabrics, GDRCopy, and

CUDA IPC to allow for efficient access to hardware with minimal overhead. This

layer defines interfaces for small messages (short), buffered copy-and-send (bcopy),

and zero-copy (zcopy) operations. In Chapter 3, it was shown that large GPU mes-

sages are important for Deep Learning workloads. Therefore, the zcopy operation

for the CUDA IPC component of the UCT layer is important as this is where large

GPU messages are transferred. This component handles GPU-to-GPU communica-

tion semantics via the usage of CUDA IPC. First, the receiver process places the

CUDA IPC memory handle into shared memory. Then, the sender opens the handle

and uses a Put operation to place the data into the remote process.

2.5 Distributed Deep Learning

Deep Learning is a subset of Machine Learning which often learns representations

of data using Artificial Neural Networks (ANN). Deep Learning uses Deep Neural

Networks (DNN) which is an ANN with many layers between its inputs and outputs.

DNNs usually use convolution operations throughout a model architecture for many

different models.

2.5.1 Distributed Training

There are two main methods of distributed training; data parallelism and model

parallelism. At the time of writing this thesis, data parallelism seems to be the more



CHAPTER 2. BACKGROUND 25

popular method as its ecosystem is more mature. Model parallelism still appears to

be in the research stage of development [35,36].

Data Parallelism

Training using the data parallel method involves having multiple processes, where

each process has an instance of the Deep Learning model. Here the data set is

split between the different processes and each process trains independently on that

subset of data. This is useful for scenarios where the batch size cannot fit into

GPU memory so that batch is split among processes. After a process trains its

model, it must average the model parameters across all the processes to create a

consistent global model. Usually a parameter server average the gradients across the

different processes. If a single parameter server is used on rank 0, then all processes

send their gradient to rank 0, and then average is calculated. Finally the average

is broadcasted to all other processes. A parameter server can be centralised and

have a single instance, as per the previous example, or it can be implemented in a

decentralised manner where it is distributed across the processes. A decentralised

parameter server is shown in Figure 2.9.

Model Model Model

Parameter 
Server

P0 P1 P2

Figure 2.9: Schematic diagram of distributed training using data parallelism
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Model Parallelism

Model Parallelism is where the Deep Learning model itself is parallelised. In Figure

2.10 we see that a model can be split among processes. Each process performs a part

of the computation. This is usually used when a single model cannot fit into GPU

memory or to create pipelining with computationally intensive layers. As Model

Parallelism is not used in this thesis, this section is brief.

2.5.2 Deep Learning Frameworks

Programming Deep Learning models using language primitives is often a complex

task. To simplify this process, many frameworks exist to provide high-level APIs

containing the basic operations used in Deep Learning. In this thesis we will look at

four popular frameworks: TensorFlow [7], PyTorch [8], Horovod [9], and CNTK [10].

These frameworks are built in mostly C/C++ and Python and they also provide their

high-level APIs in those languages. CNTK also provides API in binding BrainScript.

P0 P1 P2 P3

In
pu

t

O
ut
pu

t

Figure 2.10: Schematic diagram displaying an example of model parallelism using 4
processes
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TensorFlow

TensorFlow is an open source Machine Learning framework, supported by Google,

which allows for using symbolic math operations for data-flow and differentiable

programming [7]. TensorFlow provides tools to deploy Machine Learning models

in the web browser, mobile and IOT devices, and in production environments such

as data centres. Although there was some work into using distributed TensorFlow

using MPI [37], as of TensorFlow version 2.0, it no longer uses MPI for distributed

training. For our work we are predominately interested in its implementation of

GPU accelerated Deep Learning models, such as ResNet-50, which will be used

with Horovod.

PyTorch

PyTorch is a an open source Machine Learning framework which is built upon Caffe

[38] and developed by FaceBook AI Research Lab (FAIR) [8]. PyTorch allows for

multiple communication backends for distributed training such as: NCCL, MPI, and

GLOO. It is also possible to train PyTorch models using a single process.

Horovod

Models built using TensorFlow and PyTorch can be trained in a distributed fashion

using Horovod [9]. Horovod does not have the tools to build the models themselves

and relies on third party libraries. Horovod uses the data parallel approach to

scaling DL models. The data set is split across multiple GPUs and are processed

independently. Then an allreduce algorithm is used to average the gradient and

distribute the results [9]. This allreduce can be from NCCL, MPI, or a mixture of

both libraries.

Horovod has a feature called Tensor Fusion which enables the overlap of commu-

nication and computation by batching data for MPI Allreduce operations. Tensor
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Fusion first determines which tensors are ready to be reduced. Then it allocates the

fusion buffer, whose size is determined by the run-time parameter HOROVOD FUSION TH-

REASHOLD. The default size of the buffer is 64MB. Finally, the buffer is populated

with the selected tensors and the reduction is executed. These steps are repeated

until all tensors have been reduced.

CNTK

The Microsoft Cognitive Toolkit (CNTK) is an open-source distributed Deep Learn-

ing toolkit [10]. This toolkit is commercial grade. CNTK allows users to create many

different models such as DNNs, CNNs, etc. Alongside the models, CNTK also im-

plements a distributed Stochastic Gradient Descent (SGD) which is an iterative

method for optimising an objective functions used in distributed training. CNTK

uses MPI for its distributed training. CNTK is flexible in that it allows users to

program an application in multiple different languages: Python, C#, C++ or Brain-

Script. As of 2019, CNTK has been deprecated. It was included in this thesis as the

work had been completed before the deprecation. That said, studying it still has

its own merit from a research perspective as it is important to study many different

Deep Learning applications.



Chapter 3

Communication Characterisation

of Distributed Deep Learning

Frameworks

In recent years there has been an increase in the popularity of Deep Learning appli-

cations, both to solve tradition problems in HPC and in new areas. However, the

behaviour of these applications still have some degree of unknown characteristics

from a system software perspective. In this chapter, we study the characteristics of

distributed Deep Learning frameworks to find opportunities for optimisation.

As discussed in Chapter 2, distributed Deep Learning using MPI is an effective

method to train these applications at scale. MPI usage can vary greatly from ap-

plication to application. The behaviour of the MPI run-time is very dependent on

which API calls are made. Depending on which portion of the library that an appli-

cation uses, largely dictates which research areas could improve their performance.

In this chapter, we characterise a few Deep Learning applications using the PMPI

profiling interface of MPI. Application level profiling will allow for various metrics

to be gathered such as frequency, time, and message sizes used by each API call.

29
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Such metrics can guide research into the MPI run-time by determining potential

performance problems. In this chapter we make the following contributions:

• We profiled two popular distributed Deep Learning frameworks, Horovod and

CNTK. With Horovod we looked at using the framework with both Tensor-

Flow and PyTorch for both CPU and GPU-based Deep Learning models. For

CNTK, we investigated four different training algorithms.

• We measured the frequency of MPI point-to-point and collective communica-

tion calls made by both frameworks to determine which MPI API calls are of

merit. From this, we measure the impact of MPI on application run-time for

these calls. For the most used MPI calls, we collected and analysed the most

frequently used message sizes.

• We also investigated a configuration of Horovod which uses a mixture of NCCL

and MPI at run-time to see how NCCL can be used to offload MPI communi-

cation.

• For CNTK, we measured how long is spent in MPI message queues and its

impact on application run-time.

3.1 Related Work

MPI communication characterisation has previously been studied in great depth for

traditional HPC applications. A recent survey on US exascale computing projects

showed that 73% of projects use MPI [39]. Application developers expect 89% of

point-to-point communication and 93% collective communication to be performance

critical for the exascale version of their applications. They also expect for applica-

tions to use multiple threads per process in 86% of their projects. A study on MPI

usage on a production supercomputer showed that currently 30% of MPI jobs use

multiple threads per process [40]. Although there is a large discrepancy in these

values, it still shows that multi-threaded MPI is becoming more prominent.
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MPI often contributes to large application performance bottlenecks as 15% of

jobs spend over 80% of application run-time in MPI. Collective communication

accounts for around 60% of total MPI time [40]. Five or fewer MPI calls ac-

count for 90% or more of the total communication calls for a particular applica-

tion [6]. MPI Allreduce and MPI Bcast are the most frequently used collectives.

MPI Allreduce, MPI Alltoall, and MPI Bcast transfer the largest volume of data.

Applications which use collectives often send messages smaller than 2KB while those

which use point-to-point often send larger messages [6]. Chunduri et al. found that

40% MPI jobs used messages less than 256B for reduction operations. In [41], most

of the applications which they studied showed that smaller message sizes (<1KB)

are more prominent. Each study shows slightly different results which suggests that

this type of work is tightly coupled to the applications under test.

The communication pattern of point-to-point messages used by applications gives

some insight into the network utilisation. Kamil et al. measured the topological de-

gree of connectivity and found most applications have a low degree of connectivity

and do not take advantage of the fully connected network that exists in many HPC

systems [6]. Similar results were shown by Zamani and Afashi, and they also noted

that some applications have a substantially higher frequency of sends/recvs to pro-

cess 0 [41]. Frequent communication to a single process often results in applications

developing long message queues [42].

None of the above works study Deep Learning workloads; as previously noted

these results are application dependent. We were only able to find a two papers which

characterised MPI communication for Deep Learning applications [13, 43]. Only

a few metrics were gathered and they were specific to Horovod’s MPI Allreduce.

They measured the latency of each message size used by the application. They

also investigated Horovod’s fusion buffer by presenting results on how message sizes

change with enabling and disabling it. This paper did not look into the other
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collectives used by this framework and how MPI impacts the application’s total

run-time.

The few papers which look into collective optimisation for Deep Learning ap-

plications do give some insight into what would be the expected behaviour of MPI

communication. The performance of CNTK was improved by up to 47% by focus-

ing on MPI Bcast for large message sizes. Also, a modified CUDA-Aware CNTK

with an optimised MPI Bcast used message sizes up to 250MB [12, 44, 45]. They

discussed different Deep Learning models but did not state which SGD algorithm

they used for their evaluation, therefore it is somewhat unclear where these large

message sizes occur. Other work focused on the improvement of MPI Allreduce for

large messages [46] but this was mostly a performance evaluation of TensorFlow.

Although it is clear that “large” messages are used for Deep Learning workloads,

to our knowledge no work exists that directly quantifies the fine-grained details of

MPI communication such as frequency of collectives or point-to-point, message sizes,

or data volume for a variety of Deep Learning frameworks, models, and optimisation

algorithms.

3.2 Motivation

Due to the popularity of Deep Learning, many frameworks exist for scientist to

develop Deep Learning models. Each framework has a unique set of features, but

to HPC researchers their MPI functionality is important. Without gaining a better

understanding of an application’s behaviour with respect to the MPI run-time, it is

difficult to determine what could be potential performance problems.

Existing work indicates that the latency of MPI Bcast and MPI Allreduce are

both problematic in Deep Learning workloads, as described in the related work

section of this chapter. Although some existing work exists in this area, it is not

at the level of granularity that is required for our study and of interest to the



CHAPTER 3. COMMUNICATION CHARACTERISATION 33

research community. Gathering metrics related to these applications at run-time

using the PMPI profiling interface will allow us to observe the API entry points to the

MPI library and speculate what can be done to improve Deep Learning workloads.

Alongside the MPI calls that are made, we would like to know their frequency and

their impact on application run-time. Also, understanding which messages sizes

are used and from which memory regions could direct the design and development

of proposed methodologies to improve communication performance. These metrics

could help focus which MPI calls to target and and what performance issues could

yield the best outcome if they are resolved.

3.3 Dynamic Analysis of Deep Learning Frame-

works

3.3.1 Experimental Setup

Béluga GPU Cluster

Béluga is a GPU cluster located at École de Technologie Supérieure in Montréal,

Canada. This cluster is one of Compute Canada’s super-computing research facili-

ties. Béluga has four Nvidia V100SMX2 (16G HMB2 memory) GPUs per node. The

GPUs are all connected to each other via NVLink; each GPU is one hop to every

other GPU. It is populated with two 20-Core Intel Xeon Gold 6148 (Skylake) at 2.4

GHz where all four GPUs are connected to a single socket. Each node has 186GB

of RAM. The nodes are connected using Mellanox EDR (100Gb/s) InfiniBand in-

terconnect. Béluga uses the GNU/Linux distribution CentOS 7.3. This cluster has

a total of 172 GPU nodes.
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Niagara CPU Cluster

Niagara is a homogeneous CPU Compute Canada cluster hosted by the University

of Toronto. It is populated with two Intel Xeon Gold 5115 (Skylake) at 2.4GHz

for a total of 40 cores per node. Hyper-threading is enabled on this cluster with

two threads per CPU core. Each node has 188GB of RAM. The nodes are con-

nected via Mellanox EDR (100Gb/s) with a Dragonfly+ topology. Niagara uses

the GNU/Linux distribution CentOS 7.4. This cluster has a total of 2024 compute

nodes.

Software Platform

For both clusters and all frameworks, we are using MVAPICH2-2.3 and everything

has been compiled using gcc 7.3.0. On Béluga, our MPI implementation is CUDA-

Aware using CUDA 10.0.130. For our NCCL tests, we are using version 2.5.6-1.

Since GPU Direct RDMA is not available on Béluga, we have not conducted any

tests using MVAPICH2-GDR. We have used CNTK 2.6 compiled from source as we

found some compatibility issues with the default pip packages on CentOS. Horovod

(0.18.0) has been compiled to use TensorFlow (1.13.0) and PyTorch (1.2.0). The

CPU and GPU versions of TensorFlow and PyTorch are used for the appropriate

platforms.

For CNTK, we used ResNet-20 from the example folder. Slight modifications

were made to use the four of the distributed training methods offered by CNTK. We

ran the models for one epoch of training using CIFAR-10 to approximate a workload

for this framework. For CNTK, we used one process per GPU with the CPU cores

distributed evenly between processes.

The Horovod synthetic benchmarks measure the image classification throughput

(images/sec). This benchmark runs ten batches for ten iterations per process to

roughly emulate training of 1 epoch. The default configuration with a batch size of
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32 is used for both CPU and GPU versions. Although throughput measurements

would benefit from an increased batch size [46] we chose to keep the batch size as

a constant variable in our tests. This decision was made so that the comparison

between CPU and GPU workloads could be consistent. The usage of synthetic data

removes I/O as a variable from our results which is important as we are focusing on

MPI communication time. For the GPU version we have assigned the default one

process per GPU and for the CPU version we have used the four process per node

configuration outlined in [47]. For both platforms, we have distributed the available

number of CPU cores evenly between processes when working with Horovod.

A custom MPI profiler is used to obtain the results. The profiler design uses the

PMPI and MPI T interfaces [1]. Using PMPI we gather data from the application layer

such as message size, count, type, frequency, and the time spent in each MPI call.

The MPI T interface was used to profile message queues from inside MVAPICH2. Our

profiler has an overhead of approximately 1% at 64 GPUs. The complete software

stack was introduced in Chapter 2 and can be seen in Figure 2.2. The profiler stores

all measured values into memory and prints the traces into files in MPI Finalize.

All characteristics results are obtained from analysing the traces.

3.3.2 Frequency of MPI API calls

Figures 3.1-3.4 show the frequency of various MPI calls made per process at the

application layer for CNTK, TensorFlow, and PyTorch, respectively. When pro-

filing CNTK we looked at four distributed training methods: DataParallelSGD,

BlockMomentumSGD, ModelAveragingSGD, and DataParallelASGD. For both Horovod

and CNTK we noticed that there was only a single communicator and that MPI Allg-

ather is called exactly once per process, suggesting that it is used for initialisation.

For CNTK, MPI Allreduce and MPI Bcast are the most frequently called collectives

in terms of frequency across all our tests.
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Figure 3.1: Frequency of MPI calls used in different configurations of CNTK for
ResNet-20
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We noticed that DataParallelASGD seldomly uses collectives and relies heavily

on point-to-point communication; almost 10x more than other methods used by

CNTK. All of CNTK’s training algorithms use non-blocking sends and a mixture

of blocking and non-blocking receives apart from DataParallelSGD which only uses

non-blocking. As expected, increasing the number of GPUs results in an increase in

the frequency of point-to-point communication. The frequency of MPI Irecv seems

to be constant but the increase in frequency of point-to-points stem from an increase

in MPI Recv. The frequency of MPI Recv is highest in DataParallelASGD tests.

Unlike CNTK, Horovod does not use point-to-point communication at the ap-

plication layer and relies heavily on collectives. We looked at both the CPU and

GPU versions of Horovod in Figures 3.2 and 3.3. When looking at all configurations

of Horovod we saw similar collective usage between CPU and GPU versions of the

framework, only the NCCL configurations differ. Regardless of scale and platform,

MPI Allreduce has the highest frequency, with MPI Bcast in second place. A total

of five MPI collectives were present but MPI Allgather has been omitted from the

figure. Like CNTK, Horovod called MPI Allgather exactly once per process for

all configurations. Again, this suggests that it is used for initialisation purposes.

Our profiling shows that MPI Bcast is used at start-up but MPI Allreduce is used

for the majority of training. This is expected as MPI Bcast is used to initialise

the global model state and that Horovod uses the All-Reduce method of averaging

gradients. MPI Allreduce is used significantly more in the CPU version than the

GPU although the workload per processes is fixed. We suspect that this is due

to the packing of the fusion buffer and that there is a 10x longer run-time for the

benchmark on CPUs.

For our NCCL profiling we did not repeat the tests for PyTorch as we saw

minimal difference in frequency between PyTorch and TensorFlow. In these two

configurations the tensor reductions are offloaded to NCCL.
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Figure 3.2: Frequency of MPI collectives used in CPU and GPU configurations of
Horovod + TensorFlow for ResNet-50
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Figure 3.3: Frequency of MPI collectives used in the CPU and GPU configurations
of Horovod + PyTorch for ResNet-50
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Figure 3.4: Frequency of MPI and NCCL collectives used in the NCCL configura-
tions of Horovod + TensorFlow for ResNet-50

When looking at the NCCL configurations we can enable and disable the environ-

ment variable HOROVOD HIERARCHICAL ALLREDUCE. For the flat allreduce (when the

environment variable is set to 0) we see that only ncclAllReduce is used directly.

In this scenario, all tensor reductions are computed using ncclAllReduce. For the

hierarchical NCCL configuration, we see ncclAllGather and ncclReduceScatter.

Here, Horovod initially uses an intra-node ncclReduceScatter, then an inter-node

MPI Allreduce, and finally an intra-node ncclAllGather.

When looking at Figure 3.4a we see that even though tensor reductions are

isolated to NCCL we still have very high frequency of MPI Allreduce. This could

be the MPI Allreduce bottleneck noted in [48].
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3.3.3 Impact of MPI Communication on Application Time

Figure 3.5 shows the percentage of run-time spent in different collectives and point-

to-point at 64 GPUs for CNTK. The time spent in the non-blocking point-to-point

calls and MPI Wait were measured. Less than 1% of application run-time was spent

in two types of calls for all training methods. From our profiling method it was dif-

ficult to match an MPI Isend to its corresponding MPI Wait as multiple MPI Isend

may be made before MPI Wait is called. Therefore, in Figure 3.5 we only see how

much time was spent in a specific function call from the application’s perspective.

We can see that for all training methods around 8-21% of run-time is spent in-

side MPI Bcast. DataParallelSGD differs from the other algorithms as it does

not rely heavily on MPI Bcast (≈8%) while it spends around 72% of run-time in

MPI Allreduce.
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Figure 3.5: Percentage of Run-Time Spent in MPI for CNTK’s Training Methods
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Figure 3.6: Impact of MPI Communication on Application Run-Time for Different
Process Counts of Horovod using ResNet-50

The impact of MPI on run-time for the CPU and GPU versions of Horovod can

be seen in Figure 3.6. For the most part, the time spent in these collectives correlate

with their frequency. As the number of GPUs or CPU processes increase, so does

the percentage of MPI communication. Generally, TensorFlow spends slightly more

time in communication than PyTorch on GPUs but the inverse is true for CPUs.

In terms of frequency MPI Gather and MPI Gatherv contribute a similar amount to

MPI Bcast but its impact on run-time is significantly less. On the CPU version of

Horovod, less than 1% of run-time is spent in MPI Bcast. The impact of collectives

such as MPI Allgather, MPI Gather, and MPI Gatherv are negligible. Regardless

of scale or framework MPI Allreduce has the largest impact on run-time. Up to
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97% and 73% of runtime for CPU and GPU versions of these frameworks is spent

in this one collective, respectively. For the GPU frameworks up to 6% is spent in

MPI Bcast.

As the default configuration of Horovod uses MPI THREAD MULTIPLE, it is possible

for multiple threads to concurrently make MPI calls within a single process. At 64

GPUs a maximum of 2 MPI calls overlap and approximately 0.15% of all MPI

calls overlap in their execution time. This suggests that Horovod uses at least 2

threads for communication. It is important to note that when looking at Figure 3.6,

although blocking MPI collectives can take up to 97% of an application’s run-time,

it seems that Horovod provides good computation/communication overlap within a

single process. Therefore, some computation could also occur in this time period.

In Table 3.1 we can see the percentage of run-time spent in ResNet50 for the GPU

configurations of TensorFlow. Table 3.2 shows the associated throughput measure-

ments. Entries have been left blank if the collective was not used. 0.00 denotes that

a collective has been used but its impact on run-time was not measurable at two deci-

mal points. The usage of MPI Allgather, MPI Bcast, MPI Gather, and MPI Gatherv

are fairly consistent between the different configurations as these calls are not of-

floaded to NCCL. The largest difference is with MPI Allreduce and the NCCL

collectives. As expected, the NCCL versions spend less time in MPI Allreduce

than the MPI-only implementation. We observe in the flat NCCL implementation

that the decrease in MPI Allreduce communication results in the increased usage

of ncclAllReduce. It appears that Horovod has simply offloaded the reductions

using GPU buffers to NCCL. With the hierarchical NCCL we see that some of

that MPI Allreduce time is offloaded to ncclAllGather and ncclReduceScatter.

We know the hierarchical NCCL approach also uses MPI Allreduce for inter-node

communication.

From these results we can see the reduction in MPI Allreduce needs to be further
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Table 3.1: Percentage of Run-time Spent in Communication for ResNet50 on 64
GPUs using Horovod + TensorFlow

Collective
Percentage of Run time

MPI NCCL NCCL (Hierarchical)
MPI Allgather 0.00 0.00 0.01
MPI Allreduce 87.10 80.94 75.64

MPI Bcast 4.36 5.59 5.38
MPI Gather 0.20 0.28 0.23
MPI Gatherv 0.04 0.04 0.05
ncclAllReduce - 2.35 -
ncclAllGather - - 0.01

ncclReduceScatter - - 0.01

Table 3.2: Throughput for ResNet50 on 64 GPUs using Horovod + TensorFlow

Library for Tensor Reductions Throughput (Images/Sec)
MPI 7024.2

NCCL 12439.3
NCCL (Hierarchical) 12704.9

investigated to see if there are any changes in regards to message size when using

NCCL. That said, we do see a correlation between the reduction in time spent in

MPI Allreduce with an increase in throughput. Our results shows that hierarchical

NCCL performs better than the default NCCL at 64 GPUs, however it has been

shown in [48] that the NCCL-only version performs significantly better at scale

(27000 GPUs).

3.3.4 Message Sizes used by Collectives

Figures 3.7 to 3.10 show the message sizes used in CNTK and Horovod. Message

sizes for a particular collective were binned on intervals of (2n−1, 2n] bytes where 2n

is the message size displayed on the x-axis. When profiling CNTK, we were unable

to find ‘large’ MPI Bcast messages which were present in other works [12, 44, 45].

Our profiling shows that CNTK only uses messages in the 8-64B range for all of the

distributed training methods we looked at. We think that this could have occurred
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Figure 3.7: CNTK’s Message sizes used in Different Distributed Training Algorithms
for ResNet-20 with CIFAR-10

for a few reasons: 1) they have used a modified CNTK framework; 2) and their

work was before CNTK v2.0 was released whereas we have used v2.6; and 3) they

could have been using different distributed training method that we have not studied

in this thesis. We do not think our results are incorrect as the DataParallelSGD

method was verified with the artefacts of [14] which were available on GitHub.

CNTK uses a wide variety of message sizes for MPI Allreduce in the 4B to 256KB



CHAPTER 3. COMMUNICATION CHARACTERISATION 45

range for three of the algorithms we studied. The DataParallelSGD differs as there

are many in the (1MB, 2MB] range and at 4B, but not elsewhere. When looking

at the impact that these training methods have on run-time, in Figure 3.5, we see

that DataParallelSGD has spent significantly more time in MPI Allreduce. This is

reflected in the nearly 100x increase of the 2MB messages compared to other sizes.

For brevity we have not presented plots of the message sizes used by MPI Bcast in

Horovod, but we found that the most frequently used message size is 4B. We observed

a maximum of 6% of run-time is spent inside MPI Bcast as seen in Figure 3.6c and

3.6d. MPI Bcast is mostly used to initialise global variable inside the training script.

This includes the model and optimiser state. It is likely that improving MPI Bcast

would have a smaller impact on performance than MPI Allreduce.

For both platforms and configurations of Horovod, there exists a peak in the

8-32B message size range for MPI Allreduce, as seen in Figure 3.9 and Figure 3.8.

Messages in this range nearly always used MPI BAND for the MPI Op parameter. The

main difference between messages in this range is the count parameter. We found

these small messages to be allocated on host memory. We believe the small messages

here are Horovod’s synchronisation mechanism involving the MPI BAND operation

[48]. The environment variable HOROVOD CYCLE TIME controls the frequency of these

messages. Keeping the size of the fusion buffer constant and increasing the cycle

time resulted in a decrease in the frequency of the 8B messages. We were able

to reduce the frequency of this message 30x on Béluga but but we saw minimal

improvement in application performance. It was also shown in [47] that increasing

the cycle time often results in a degradation in performance. Since this message is

a control message, to synchronise workers, we speculate that it is sent in a separate

thread to the main computation. Thus, it may not dramatically impact performance

at this scale.
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Figure 3.8: Message sizes used by different collectives in PyTorch for CPU and GPU
configurations
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Figure 3.9: Message sizes used by different collectives in TensorFlow for CPU and
GPU configurations
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The maximum message size we see for MPI Allreduce on both frameworks corre-

sponds to the default value of the HOROVOD FUSION THRESHOLD. Although the fusion

buffer can be disabled [13] and varied in size to improve performance, we chose to

keep it constant for our tests. We see that the CPU version has a more uniform dis-

tribution of message sizes for MPI Allreduce compared to the GPU versions. The

GPU frameworks cluster towards the upper limit of 64MB. When measuring the

end-to-end performance of these benchmarks CPUs have a lower throughput than

GPUs. We think that the fusion buffer is less packed before the reduction opera-

tion as the cycle time (3.5ms) is fixed between tests. This results in many smaller

messages than a few large messages closer to the fusion buffer size.

Although more time is spent in the 8B message for MPI Allreduce, we were able

to dramatically decrease the total communication frequency. However, we were not

able to improve overall application performance. Since Horovod spends approxi-

mately 20-30% of run-time in the 8MB-64MB range for MPI Allreduce, improving

latency at this range could yield some application performance improvement. We

see in Table 3.1 and Table 3.2 that offloading this workload to NCCL does improve

throughput.

In Figure 3.10a we present the message sizes used by the configuration which

uses only NCCL for tensor reductions. As the process count is increased very little

changes. We see a distinct split between message sizes and how they are sent between

MPI and NCCL. For messages less than 32B, MPI Allreduce is used. For large

messages in the 1KB to 64MB range, ncclAllReduce is used. In Figure 3.10b we

see the message sizes used by the hierarchical NCCL implementation of Horovod.

Only the frequency of training with 64 GPUs have been shown here for clarity of

the figure. We see consistent frequency of MPI Allreduce, ncclAllGather, and

ncclReduceScatter for large messages. This shows the hierarchical algorithm in

action. Messages do not reach the maximum buffer size.
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Figure 3.10: Message sizes used by AllReduce for different NCCL configuration for
TensorFlow training ResNet50

Changing the HOROVOD FUSION THRESHOLD would allow messages to reach 64MB

but we have not modified the parameter to keep things consistent between different

communication back-ends. Again, there is a peak for MPI Allreduce in the 8-32B

range. The peak occurs regardless of the configuration of Horovod we use. This

reinforces the claim that these 8B messages are not for tensor computation. Also

we see that improving the latency of large messages (i.e., offloading them to NCCL)
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results in a significant performance improvement. Therefore, large messages on

GPUs are important.

3.3.5 Point-To-Point Communication Pattern

Figure 3.11 shows the source/destination pairs for all point-to-point communication

at the application layer for the different configurations of CNTK that we studied.

All methods apart from DataParallelSGD communicate with each other at least

once. This is not very visible in Figure 3.11b and Figure 3.11c as only around 2-4

messages per pair of processes are sent to non-zero ranks. In Figure 3.11d the
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Figure 3.11: Communication Partners of Point-To-Point Calls in different configu-
rations of CNTK for ResNet-20
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fully connected communication is more visible. This is mainly due to the increased

point-to-point communication we see with DataParallelASGD in Figure 3.1d.

Regardless of which algorithm we look at, the most communication occurs by all

processes communicating with process one. Traditional HPC applications such as

the Fire Dynamics Simulator (FDS) exhibit long message queue traversals due to

multiple processes communicating to a single process [42]. This is often a bottleneck

in MPI applications designed in this manner. Therefore we studied this further by

measuring the message queues.

3.3.6 MPI Message Queues

Using the MPI T interface we measured the performance variables (pvars) labelled as

time matching unexpectedq and time failed matching postedq which measure

the total time and the number of searches in the UMQ and PRQ respectively. Very

little time was spent in both of the message queues for all of the algorithms apart

from DataParallelASGD configuration. Here a significant amount of time is spent
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in the time matching unexpectedq pvar. The time spent in this pvar is plotted in

Figure 3.12. Measuring this pvar varied greatly between runs, therefore minimum,

mean, and maximum are shown. We see that up to 22% run-time is spent in this

pvar. To determine if message matching is an issue with CNTK we directly profiled

the message queue functions to determine the issue. Our results showed that this

large amount of time spent in the message queue was due to MPI Iprobe. We can

see the impact of MPI Iprobe on run-time in Figure 3.5. MPI Iprobe was frequently

called but usually the message queue was empty. This suggested that traditional

HPC message matching techniques could not be applied here and this would be

better resolved in the application layer.

3.4 Summary

Similar to traditional HPC applications, Deep Learning applications use a mixture

of point-to-point and collectives. MPI Allreduce and MPI Bcast continue to be the

dominant collectives for MPI applications at scale. The majority of application

run-time is spent inside MPI Allreduce.

The introduction of NCCL to MPI applications poses new challenges as com-

munication is split between these two libraries. We saw that communication can

be offloaded from MPI Allreduce to ncclAllReduce with some performance gain.

When investigating how performance improvements can be made to these Deep

Learning frameworks, it is important to note how messages are split between these

libraries at run-time, whether it is by message size or by splitting between intra and

inter-node communication.

For both MPI and NCCL the message sizes we have seen are much larger than

what we have seen with traditional HPC workloads. This reflects an increased

bandwidth we see with new interconnects such as NVLink. We saw two message

ranges which should be focused on for MPI Allreduce; 8-32B and 2MB-64MB.
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Although we measured that some time is spent in polling the message queues of

CNTK, the application was checking an empty message queue rather than travers-

ing a long message queue. As long message queues are not present, we will not

investigate message matching for Deep Learning. We will continue working with

these Deep Learning applications but most of our focus will be on MPI Allreduce

for large message sizes as we think this is the best direction to move in to improve

these workloads.



Chapter 4

Multi-Path Point-to-Point GPU

Communication

GPU communication is in the critical path of many HPC and Deep Learning ap-

plications. In Chapter 3, we saw that GPU-based MPI communication is a major

bottleneck for Horovod and CNTK. These are not the only applications which ex-

hibit the usage of GPU communication but these are examples of applications which

are frequently used by parallel and distributed Deep Learning researchers. Horovod

and CNTK use a mixture of point-to-point and collective communication. For this

chapter we will be focusing on GPU versions of the frameworks profiled in Chapter

3. Not every communication call uses GPU buffers but a large portion do.

MPI’s collective communication is implemented directly upon point-to-point

communication. Therefore, improving point-to-point communication should also

benefit collectives. Tackling GPU-based point-to-point communication will allow

us to have largest impact on the MPI library. GPU point-to-point communication

transfers data residing on GPU global memory between two processes. The two

data regions can be on the same or different GPUs. The data transfer can be direct

between the two regions or they can be staged in host or NIC memory.

54
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In this chapter we plan to investigate data transfers between two GPUs while

using multiple different copy mechanisms. Although some work in this area exists for

collective communication [49], to our knowledge, none apply this to point-to-point

communication for a single data transfer. In this chapter we make the following

contributions [16]:

• We propose a multi-path copy mechanism for UCX Put operations using si-

multaneous data transfers via host memory and CUDA IPC. We study the

optimal number of CUDA streams and the ratio of data sent via each path to

see how they impact performance.

• The design was tested with micro-benchmarks at the UCX Put layer and at

the MPI point-to-point layer, and significant performance improvement was

observed at each layer.

• The design was evaluated on two platforms, one with PCIe to the host and

NVLinks connecting the GPUs, and the other with NVLink for both paths.

4.1 Related Work

With the emergence of modern high-bandwidth interconnects such as NVLink, re-

search has focused on their impact on communication performance. In [50], Pearson

et al. evaluated the characteristics of CUDA communication primitives on high-

bandwidth interconnects to understand memory transfer behaviour across different

memory regions. Tallent et al. presented the impact of NVLink and PCIe intercon-

nects on Deep Learning workloads [51]. In [52], Li et al. evaluated such interconnects

with a multi-GPU benchmark suite.

Proposals to integrate compute accelerators within the context of MPI has ex-

isted for a long time [53]. In recent years, workloads have began to rely much more on

accelerators such as GPUs. Nvidia introduced Inter-Process Communication (IPC)
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with CUDA 4.1. This is a fairly old feature of the CUDA Runtime library but today

it is still one of the prominent methods of transferring data between GPU buffers

allocated in different address spaces within the same compute node. In [27], Potluri

et al. explored using CUDA IPC features within MVAPICH2-GDR. They saw sig-

nificant performance improvement using CUDA IPC when compared to transferring

data between GPUs via host memory. They presented up to 74% improvement in

latency for 4MB messages. Today many MPI libraries provide CUDA-Aware MPI

communication and they often use these CUDA IPC features to allow for good

performance on GPU workloads.

CUDA IPC is not the only communication mechanism in which data can be

transferred between GPUs, host memory can also be utilised. Faraji and Afsahi ex-

plored using a combination of CUDA IPC copies with host stage copies in [49]. They

were able to show that using multiple communication channels allow for the accel-

eration of MPI collectives. In [54], Chu et al. presented that using a combination

of host memory with GPU global memory to accelerate MPI Allreduce and Deep

Learning workloads. As such, using a combination of host and GPU memory has

mostly been focused on improving GPU collectives. We would like to understand if

such mechanisms can be effectively designed to point-to-point communication per-

formance. To the best of our knowledge, studying point-to-point communication

within this context has yet to be investigated. In this chapter, we explore weather

using a mixture of CUDA IPC copies and host-staged copies can accelerate GPU

point-to-point communication.

4.2 Motivation

To start our study we first investigated the potential of using a mixture of host

memory based data transfers with peer to peer copies using CUDA IPC. This would

allow us to see what the maximum performance we could gain when using these
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Figure 4.1: UCX Put bandwidth measurement taken using ucx perftest. Using
peer copies is compared to using host staged copies with a different number of
streams. Results from Mist are shown.

two communication channels simultaneously.

We first investigated the bandwidth we could achieve when transferring the data

through the host alone. In these results, when copying data from GPU0 to GPU1,

we copied data from GPU0 to pinned host memory and then from host memory to

GPU1. We split the data into chunks when executing the device-to-host (D2H) and

host-to-device (H2D) copies. This was based off of the number of streams which

we used. For example, when using four streams we partitioned the buffer into 4

chunks and assigned one stream per chunk. In Figure 4.1 we can see that varying

the number of streams modifies observable bandwidth. Generally, larger messages

benefit from more streams and small messages perform better with a single stream.

Regardless of the number of streams that we use, we are not able to reach the

bandwidth achieved by a device-to-device (D2D) copy. On Mist, shown in Figure

4.2, we have six NVLinks to the CPU and in theory we should be able to achieve

75GB/s for intra-socket copies. We speculate that the reason as to why we do not

achieve this is due to the delay induced by storing data in host memory before

passing it into the destination GPU. Using multiple streams allowed us to minimise

this delay for large messages. This is because we can overlap the D2H and H2D
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copies between streams.

From this study it is clear that we cannot use host-stage copies alone for opti-

mal bandwidth usage. We will need to combine this with the existing D2D copy

mechanism used by UCX. Therefore, from these results we expect to achieve a peak

bandwidth of 130GB/s once fully implemented on Mist.

4.3 Design and Implementation

The goal of our design is to send messages through multiple communication paths

which may be underutilised. We plan to split the send buffer and transfer the data

via two independent data transfer paths. In Figure 4.2, we can see the paths in which

we plan to send messages on Cedar and Mist. For a point-to-point communication

when sending data from GPU0 to GPU1 data would usually be transferred directly

between the two GPUs via the NVLink. On Cedar we will send one part of the data

via PCIe and another via NVLink. On Mist we will only use NVLink channels as

we have NVLink directly connected to the CPUs.

NVLink (25GB/s) PCIe 3.0 (16GB/s)

CPU0 CPU1

GPU0

GPU1

GPU3

GPU2

UPI (20.8GB/s)

(a) Cedar

GPU0

GPU1

CPU0

GPU3

CPU1

GPU2

NVLink (25GB/s) X-Bus (32GB/s)

(b) Mist

Figure 4.2: Single node physical typologies of Compute Canada systems. Uni-
directional bandwidth is labelled for each system. The path of the multi-path copies
are shown in red.
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4.3.1 Host Staged Data Transfers

As we intend to send a portion of the data via the links connecting to the CPU, we

must stage the data in host memory. To our knowledge there is no mechanism to

transfer data between GPUs via the links connected to the CPU without staging in

host memory. Therefore, we must implement this ourselves. We used the CUDA

Driver API call cuMemAllocHost() to allocate a region of host memory that is

page-locked and accessible to the GPU. Using this API, instead of the standard

malloc() which we have in the C standard library, allows the Nvidia GPU driver to

track the virtual memory ranges allocated and automatically accelerates cuMemcpy()

operations. Using pined memory allows for read and writes with a much higher

bandwidth as the memory will never be paged by the operating system.

When sending data via the host we plan to further split the portion of data

that is going to be sent via this channel. By splitting the data it will allow for

pipelining between D2H and H2D copies. We will place each cuMemcpyAsync()

for each chunk of data on its own CUDA stream to implement this overlap. The

number of chunks which we further subdivide the data is different for each message

size. During the implementation we tested 1-8 chunks. The impact of the different

number of subdivisions can be seen in Figure 4.1. Then we chose the optimal number

of chunks to use for each message size in the form of a static tuning table.

Although this chunking idea is simple we had to add a few extra lines of code

for the data transfers to behave as expected. We use the CUDA Runtime API call

cudaSetDevice() before creating the streams to correctly associate stream with

the desired device. We also call cudafree(0) as the CUDA Runtime API uses lazy

initialisation to create the GPU context. Without this call the streams would not

be created correctly. cudafree(0) was chosen as we required a function call which

does not modify anything in our environment. Finally when creating the stream we

used the CU STREAM NON BLOCKING flag to ensure that these streams would not
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0 cudaSetDevice ( remote GPU) ;
1 r e s u l t = cuIpcOpenMemHandle ( po inter , memory handle
2 CU IPC MEM LAZY ENABLE PEER ACCESS) ;
3 cudaSetDevice ( local GPU ) ;

Listing 4.1: Opening CUDA IPC Memory Handle Pseudo-code

synchronise with the default CUDA stream.

The CUDA IPC code was already implemented within UCX but we also had

to make a small change in how we open the IPC handle. We would have to set

the device context to the destination of our PUT operation, open the IPC handle

as normal, then finally set the device context back to original context. This is not

required when transferring data directly between GPUs but we noticed that this

was required to get our host staged copy to correctly pipeline. The pseudo-code can

be seen in Listing 4.1.

4.3.2 Using Multiple Paths - Host Staged and Device To

Device Copies

The final stage of our design is to combine the host staged data transfer described

in Section 4.3.1 with the existing device to device copy implemented by UCX. Al-

gorithm 4.1 shows how we can use the host staged copy in conjunction with the

original device to device copy. Initially, we must calculate the percentage of data

which we send via the host and directly to the other GPU, this is shown in Lines

1 to 3. The percentages sent over each path are predetermined from experiments

where we varied how the message size was split across the two channels. We found

the maximum aggregate bandwidth for each message size and stored it in another

static tuning table.

Once we determine the size of data which we are sending to the host we then

further subdivided across the streams. Then in parallel we copy the data from

our source GPU to our destination GPU, from our source GPU to host memory,
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Algorithm 4.1 Multi-Path Copy Algorithm

Input: sbuf, host buf, data size, host share, n host streams

Output: dbuf

1 host dsize = data size * host share; host chunk dsize = host dsize /

n host streams; d2d dsize = data size - host dsize; do in parallel

2 Copy d2d dsize bytes from sbuf to dbuf;

3 for i← 0 to n host streams by 1 do in parallel

4 Copy host chunk size bytes from sbuf to host buf[i]; Wait for data in

host buf[i]; Copy host chunk size bytes from host buf[i] to dbuf;

5 end

6 end

and from host memory to our destination GPU as seen in Lines 5 to 9. When

copying from host memory to our destination GPU we wait for the data to be

stored in memory before executing the data transfer. Although not discussed in the

algorithm, we offset the source, host, and destination pointers by the appropriate

amount to ensure that the data is numerically consistent.

4.4 Performance Evaluation and Analysis

We evaluated our design on two HPC nodes, Cedar and Mist. Results were collected

for UCX and Open MPI point-to-point communication using micro-benchmarks.

micro-benchmarks are controlled environments and they do not accurately represent

what would happen if the same algorithm was applied to an application. With micro-

benchmarks all processes synchronise, messages are perfect power of 2 sizes, and it

allows for caches to have the optimal values as for each iteration of the benchmark

as we repeatedly use the same data values. Although these limitation of micro-

benchmarks are true, they provide an upper bound on performance and scalability.
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4.4.1 Experimental Setup

The Mist compute cluster is located at the SciNet HPC Consortium. Mist is an

IBM POWER9 AC922 machine with two sockets for a total of 32 cores and 382GB

of memory. Each node has four Nvidia V100 (32GB) GPUs per node, with three

NVLinks between intra-socket GPUs and to the host processors, as shown in Figure

5.1. Mist uses the GNU/Linux distribution REHL 7.6. For our studies, we have

used Open MPI 4.0.4rc2 with UCX 1.8.0, Spectrum-MPI 10.3.1, MVAPICH2-GDR

2.3.5.

The Cedar is a heterogeneous cluster located at Simon Fraser University. Cedar

is a DELL C4140M with two sockets each with a 32-Core Intel Silver 4216 Cascade

Lake CPU clocked at 2.1GHz. Each node has four Nvidia V100 (32GB) GPUs using

the SMX2 package. The GPUs are fully-connected with two NVLinks between each

GPU. These GPUs connect to the host using PCIe 3.0. Cedar uses the GNU/Linux

distribution REHL 7.9 and for our studies we have used Open MPI 4.0.4rc2 with

UCX 1.8.0.

4.4.2 UCX Put Results

As MPI point-to-point communication is implemented using UCX we first obtained

results at the lowest software layer before scaling to MPI. The lowest layer would

be the Put operation which send/recvs are implemented upon.

UCX Put Bandwidth Results

In this subsection we observe the results of UCX zero-copy Put operation for D2D

transfers. In the previous section we saw that varying the number of streams had

an impact on bandwidth measurements. Now that we are going to use a mixture

of host-staged copies and D2D copies, the ratio in which we split the buffer will

have an impact on bandwidth. We can see from Figure 4.1 that we achieve lower
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Table 4.1: Example Tuning Table for Optimising UCX Put Bandwidth Results for
Intra-Socket Multi-Path Transfers. For brevity only messages from 1M-1G is shown.
All values were obtained but we only see performance improvement around the 1M
mark.

Message Size (B)
Percentage of Data

Sent to Host
Number of

Host Streams
1M 25 1
2M 25 1
4M 25 1
8M 25 1
16M 25 1
32M 30 2
64M 30 2
128M 30 3
256M 30 6
512M 30 6

1G 30 6

bandwidth when using host-staged copies. Therefore, when partitioning the buffer

we will send a smaller percentage of data via the host. For optimal performance in

any of the benchmarks in this section, we will need to vary the percentage of data

sent to the host and the number of streams used to copy to the host. Many tests

were run and optimal values were found for each messages size. For each benchmark

in this chapter we must generate a different static tuning table. An example tuning

table is shown in Table 4.1. Within the UCX library this tuning table was placed

and optimal values were used for each message size. A new tuning table must also

be created for each benchmark in this chapter.

In Figure 4.3 and Figure 4.4 we observe the performance of the multi-path (MP)

copy on both Cedar and Mist for intra and inter-socket data transfers. For intra-

socket transfers on Mist we see peak bandwidth increase from around 72GB/s to

120GB/s (1.67x) when using this mechanism. We do not see a similar result for

inter-socket bandwidth on Mist. This is due to two reasons. The X-Bus is the

limiting factor when transferring data between sockets so our results are capped to
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Figure 4.3: Intra-Socket UCX Put bandwidth measurement taken using
ucx perftest.
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Figure 4.4: Inter-Socket UCX Put bandwidth measurement taken using
ucx perftest.

64GB/s bandwidth. The second reason is that, although we can run the same code

with the splitting of data and the use of multiple streams we do not see the same

behaviour for inter-socket communication because the underlying hardware only has

a single path. Thus the labels on Figure 4.4a state ‘multi-path’ but in reality it is

not.

On Cedar we see some performance improvements for intra-socket and inter-

socket transfers as we always have two paths which we can transfer data through.
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The increased peak bandwidth we see on this platform is much smaller than Mist as

we are using a mixture of PCIe and NVLink. We see a smaller performance increase

from 46GB/s to 54GB/s (1.17x).

4.4.3 MPI Point-to-Point Results

After observing performance improvement for the UCX Put operation, the investiga-

tion was extended to MPI. For our MPI tests we are using the Ohio State University

Micro-benchmarking Suite (OMB) [55] as the standard set of MPI tests used in our

field. We have collected uni-directional and bi-directional bandwidth results. On

Mist we have compared our results with MVAPICH2-GDR and Spectrum MPI. We

did not do the same comparison on Cedar as Spectrum MPI is only for Open Power

systems and cannot be used on Intel platforms. MVAPICH2-GDR was not used as

the Cedar did not have the correct drivers or GDRCopy installed.

Uni-Directional Bandwidth Results

In Figure 4.5 and Figure 4.6 we present uni-directional bandwidth tests between

two GPUs on the same socket for Mist and Cedar. On both platforms we see a

good performance improvement in using this mechanism. In these figures we display

bandwidth measurements for both a window size of one and 64. The default window

size of ucx perftest is one whereas with OMB it is 64. Changing OMB’s window

size allows us to directly correlate the performance we see with the Put operation

with MPI point-to-point communication.

We see on both platforms, with a window size of one, very similar results to the

ucx perftest. This shows that we have a direct impact on Mist as we can achieve

close to the 122GB/s (1.69x) peak bandwidth and 56GB/s (1.18x) on Cedar. When

increasing the window size to 64 we obtain a slightly higher bandwidth of 59GB/s

(1.23x) on Cedar and 134GB/s (1.84x) on Mist. This is because the increased
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Figure 4.5: Intra-socket uni-directional bandwidth measurement taken using OMB
on Mist
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Figure 4.6: Intra-socket uni-directional bandwidth measurement taken using OMB
on Cedar

window size allows us to better saturate the NVLinks.

In Figure 4.7 we see the same benchmarks but for inter-socket communication.

Results for Mist have been omitted as we saw in Figure 4.4 that this multi-path copy

does not improve performance for inter-socket transfer. On Cedar we see that we

are able to gain some performance improvement by using this mechanism for inter-

socket communication. This occurs because we have two paths to send messages:

GPU to host via PCIe and across the QPI interconnect then back to the GPU and

the other path would be using the NVLinks themselves. For a window size of 1, we
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Figure 4.7: Inter-socket uni-directional bandwidth measurement taken using OMB
on Cedar

see the same speedup of 1.18x to a peak bandwidth of 56GB/s. We also observe the

same improvement as intra socket with a window size of 64: a speedup of 1.23x and

a peak bandwidth of 59GB/s.

Bi-Directional Bandwidth Results

As we saw performance improvements using the multi-path copy for uni-directional

bandwidth tests, the study is extended to investigate bi-directional bandwidth tests.

The reasoning for this is that our end goal is to apply this multi-path copy to

collectives. Collectives frequently use bi-directional data transfers, therefore this

may give some insight into the feasibility of using the mechanism in collectives.

In Figure 4.9, for both window sizes of 1 and 64, we see bandwidth increase from

92GB/s to 108Gb/s (1.18x) on Cedar for bi-directional bandwidth tests. We see a

slight performance drop from 1.23x to 1.18x compared to the uni-directional tests.

For Mist in Figure 4.8, we see a larger performance improvement than Cedar. This

is expected due to the NVLinks to the Host. For a window size of 1 we get a peak

bandwidth of 189GB/s (1.38x) and 182GB/s (1.33x) for a window size of 64. On

Mist we see a large discrepancy between uni-directional and bi-directional bandwidth
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Figure 4.8: Intra-socket bi-directional bandwidth measurement taken using OMB
on Mist
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Figure 4.9: Intra-socket bi-directional bandwidth measurement taken using OMB
on Cedar

tests. As we see up to 134GB/s for the uni-directional tests, we expected to achieve

bandwidth of around 270GB/s for our bi-directional tests. The theoretical upper

bound would have been 300GB/s assuming we have no delay for the host stage copy

and that we utilised the full bandwidth of all channels. As we only got 189GB/s

rather than 270GB/s, further tests were conducted to determine the reason behind

this. To investigate this we conducted bi-directional bandwidth tests for the host

stage copies only to see if there is a hardware limitation. We can see the results in

Figure 4.10. Even with varying the number of streams, the maximum bandwidth
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Figure 4.10: Intra-socket bi-directional bandwidth measurement taken using OMB
on Mist using only the NVLinks connected to the host.
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Figure 4.11: Inter-socket bi-directional bandwidth measurement taken using OMB
on Cedar.

we achieve is 68GB/s when using the host-staged copies alone. This is true for both

window sizes.

Using the NVLink between the GPUs, we archived 137GB/s and if we add the

additional bandwidth we obtain from using the host-stage copies we should get

205GB/s (137GB/s + 68GB/s). So our measurement of 189GB/s in Figure 4.8 is

around 93% of what we expect. Therefore, our results are somewhat reasonable.

We think that the slight drop in performance is due to the delay of starting D2H

copies and waiting for the H2D copies to start before we can issue the next chunk
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of data.

When looking at the inter-socket bandwidth tests in Figure 4.11 for Cedar our

results are very similar to the intra-socket results. Just like the uni-directional test,

the results are consistent between intra and inter-socket. For both windows sizes we

get roughly 108GB/s peak bandwidth and a speed up of 1.18x over using NVLink.

4.5 Summary

Point-to-point communication is the building block of MPI collective communica-

tion and many applications. Many GPU-based point-to-point communication de-

signs have been developed to take advantage of NVLink or PCIe. Traditionally,

these designs only use the interconnect that directly connects two devices together.

We explored using multiple interconnect paths between devices to see if it would be

possible to increase the total available bandwidth. Our proposed idea shows consid-

erable performance improvement in bandwidth at the UCX layer and the MPI layer.

We saw the most performance increase for unidirectional bandwidth measurements

with large window sizes. With smaller window sizes for bidirectional bandwidth

micro-benchmarks, we were still able to obtain nearly a 20% bandwidth increase.

Although this mechanism can only be applied to messages larger than 4MB, we do

see consistent performance improvement to 1GB. To extend this work for applica-

tions in Deep Learning we will design a hierarchical collective in Chapter 5 which

uses this multi-path copy as a part of its design.



Chapter 5

GPU-Aware MPI Allreduce Design

In Chapter 3, we saw that MPI communication is a major bottleneck in Deep Learn-

ing applications. These applications use a mixture of point-to-point and collective

communication. The GPU versions of the frameworks which were profiled heavily

relied on the usage of MPI Allreduce and up to 90% of communication time was

spent in this collective. In Chapter 4 we explored using multiple paths simultane-

ously to maximise bandwidth in point-to-point operations.

Research [54, 56] and state of the art MPI implementations [3, 33] offer GPU

acceleration for their collectives. Open source options such as Open MPI + UCX are

not well optimised for collective communication on modern platforms. These open

source implementations do not take advantage of all available NVLink interconnects

for MPI Allreduce and they also use a CPU based reduction operation. In addition,

their collective design is general purpose and is not designed for specific hardware

platforms.

Given our prior knowledge that MPI Allreduce is a major bottleneck for Horovod

and that we have been able to improve point-to-point communication, In this chapter

we propose a new MPI Allreduce collective design which uses our multi-path copy

mechanism. We focus our design to be optimised for the Mist platform as that is

where we saw the largest performance improvement for the multi-path copy design.

71
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In this chapter we make the following contributions [16]:

• Investigate the performance difference between a CPU-based and GPU-based

reduction operation for MPI Allreduce when data resides in GPU global mem-

ory.

• We present the importance of platform and accelerator optimised tuning tables

for MPI Allreduce and show there is significant performance improvements to

be made with a small change to the MPI library.

• We show that our Proposed Hierarchical MPI Allreduce using the Multi-Path

Copy, from Chapter 4, can help reduce latency of MPI Allreduce micro-

benchmarks.

• Finally, we show that our Proposed Hierarchical MPI Allreduce using the

Multi-Path Copy mechanism has a large impact on Deep Learning applica-

tions.

5.1 Related Work

For CPU-based clusters there is an extensive amount of research regarding collec-

tive algorithms for all-to-all communication patterns such as MPI Allreduce and

MPI Allgather. In [57], Bruck et al. present all-to-all communication exchange for

multi-port CPU systems which allows for k messages to be sent/received at each

step of the algorithm. The Reduce-Scatter-AllGather (RSA) algorithm presented

in [58] by Rabenseifner tries to optimise bandwidth for any buffer size or process

counts for MPI Allreduce. Bandwidth optimised approaches have been designed for

the broadcast and reduce stages of an allreduce collective which two binary trees

span all processes [59]. This approach allows for collectives to achieve nearly twice

the bandwidth of other algorithms. In [60], Thakur et al. investigate flat algorithms

implemented in MPICH such as: ring, recursive doubling, RSA, and Bruck for dif-

ferent message sizes and process counts. They observed that the ring algorithm
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performed better for large messages. The Bruck algorithm was better optimised for

short messages.

As multi-node systems are hierarchical in their physical topology, a large amount

of research into hierarchical algorithms has been conducted [61–64]. Works investi-

gate the impact of hierarchy on derived data types [63], CPU cache hierarchy [61],

PAP-aware algorithms [62] and using Mellanox multi-connection features [64].

For applications in Deep Learning we are mostly interested in GPU specific hi-

erarchical collectives. Research in this area is also not new [56, 65]. With GPU

based collectives, data resides in GPU global memory and must be moved between

the nodes via the network card. In [65], Chu et al. studied collectives which in-

clude a computation component alongside the usual communication part such as

MPI Allreduce, MPI Reduce, and MPI Scan. It was investigated whether host-based

or GPU-based reductions were more performant in large clusters. The location of

the reduction operation affects the data transfer step of the collective. They showed

that smaller GPU messages perform better with a CPU-based reductions but larger

GPU messages perform better with a GPU-based reduction. Hierarchical GPU-

Aware collectives have been studied by investigating the various algorithms one can

use at each level; intra-GPU, inter-GPU (intra-node), and inter-node [66].

With the emergence of new high bandwidth interconnects such as NVLink, collec-

tives have been designed for Deep Learning workloads on these platforms. In [46],

Awan et al. focused on MPI Allreduce and offloaded the reduction computation

on GPUs resulting in significant improvements in Horovod’s synthetic benchmarks.

Alongside kernel based reductions, in [54] Chu et al. studied the underutilisation of

NVLink connections by taking the physical topology into account.

5.2 Motivation

We saw in Section 5.1 that there has been many investigations into GPU based

reductions for collectives. Currently, open source MPI implementations such as
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Figure 5.1: Single node physical topology of SciNet system Mist. Uni-directional
bandwidth is labelled for each interconnect. Red arrow shows the first step of of
copying the data from D2H in the Open MPI implementation of MPI Allreduce.
The CPU based reduction occurs using the appropriate collective algorithm. Then
the blue arrow shows the second step copy the data from H2D.

Open MPI or MVAPICH2 do not use GPU kernel reductions even when data resides

on the GPU. This is problematic for MPI collective performance due to the new

NVLink interconnects on modern platforms. On Mist (Figure 5.1), we hypothesise

that CPU reductions are a bottleneck as data must be copied to the host, reduced,

then copied back to the device. So to send data from GPU0 to GPU1 two data

transfers occur when using CPU reductions. A GPU reduction would result in only

a single data transfer and theoretically halve the latency for a given message size.

Aside from the issue of multiple copies, a CPU based reduction also cause NVLink

to be underutilised. On Mist the NVLink between the GPUs on each socket are not

utilised.

5.3 Design and Implementation

In this chapter we explore three additional designs alongside the original Open MPI

implementation of MPI Allreduce. These three designs are targeted for MPI Allreduce
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with the goal of impacting Horovod. As Horovod is our target, we will be focusing

on when MPI Allreduce is called with the following call parameters:

• The source buffer is MPI IN PLACE.

• The receive buffer is allocated on GPU global memory.

• The count parameter gives a message size larger than 1MB.

• The MPI Datatype is MPI FLOAT.

• The MPI Op is MPI SUM.

Horovod uses other MPI Datatype values and MPI Op operations. As we are targeting

what we suspect is the major bottleneck in the application, when other use cases

of MPI Allreduce are called in the library, we will use the existing Open MPI

implementation for all design.

5.3.1 MPI Allreduce with GPU Kernel Reduction

As discussed in Section 5.2, a CPU reduction operation leads to under utilised

NVLinks and multiple data transfers between processes. We first want to modify

the implementation of the collective so that it no longer uses host memory. Then

we modified it to execute the reduction operation using a GPU kernel.

GPU Buffer Allocation

In the file coll cuda allreduce.c, Open MPI copies the GPU buffers into host

memory if the send or receive buffers are allocated on the GPU. We modified the

code so that, if our collective invocation does not match our specific scenario, this

copy is executed as described; otherwise, we leave the data in the GPU buffer for the

collective to use. This modification alters Open MPI’s CUDA Aware MPI Allreduce

implementation to keep data in GPU memory during the collective’s execution.

When we enter the code of the collective (in the file coll base allreduce.c), we

check the buffer again to verify that it is allocated on the GPU. This may seem like
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a redundant check but the same algorithm code is used for CPU and GPU buffers,

thus it has multiple entry points. For the buffer checking we use the function which

already exists inside Open MPI called opal cuda check bufs(). If we have a send

or receive buffer allocated on the GPU, we allocate the temporary buffer in GPU

global memory; otherwise, we allocate a buffer on host memory. The code can be

seen in Listing 5.1. This buffer allocation logic handles the multiple entry points

into the collective. Upon exit of the collective we free the memory region on host

memory. If we allocated the memory on the GPU we wait until MPI Finalize as

repeatedly allocating and freeing GPU buffers are fairly slow.

The function labelled my CUDA malloc() in Listing 5.1 is a wrapper around

CUDA memory allocation function. As noted earlier, memory allocation on GPU is

fairly slow. Therefore we allocate memory the first time we use the temporary buffer

and use the same pointer until the application finishes. Each time the collective runs

we use the same pointer.

0 i n t i sCudaBuf fer = opa l cuda check bu f s ( ( char ∗) sbuf , ( char ∗) rbuf ) ;
1

2 void ∗ tmp buf = isCudaBuf fer
3 ? ( void ∗) my CUDA malloc ( )
4 : ( void ∗) mal loc ( d a t a s i z e ) ;

Listing 5.1: Buffer Location Allocation Logic

0 extern void ∗ cuda buf f ;
1 s t a t i c i n t i s a l l r e d u c e ma l l o c e d = 0 ;
2

3 s t a t i c i n l i n e void ∗ my cudaMalloc ( ) {
4 i f ( ! i s a l l r e d u c e ma l l o c e d ) {
5 char ∗ env = getenv ( ”PINNED GPU BUFFER SIZE” ) ;
6 s i z e t p i nn ed gpu bu f f e r s i z e = ( s i z e t ) a t o l ( env ) ;
7

8 cudaMalloc(&cuda buf f , p i nn ed gpu bu f f e r s i z e ) ;
9 i s a l l r e d u c e ma l l o c e d = 1 ;

10 }
11 re turn cuda buf f ;
12 }

Listing 5.2: Lazy Buffer Allocation Logic
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The memory allocation function can be seen in Listing 5.2. Here we read an

environment variable which statically chooses the temporary GPU buffer size. Then

we use the CUDA Run-time API call cudaMalloc() to create the GPU memory

region. This functionality is implemented in other MPI libraries but we are adding

it to Open MPI so that we can use the designs which are discussed later in this

chapter. Pining these temporary buffers allows UCX to send directly between GPUs.

Previously, UCX would always send data from GPU to Host or Host to GPU.

Changing these buffers allows us to use the CUDA-Aware features of UCX and use

its CUDA IPC transport layer. Aside from better utilising the NVLink connections

we wanted to use UCX’s CUDA IPC code as that is where we implemented the

multi-path copy mechanism in Chapter 4.

GPU Kernel Design

As our new design no longer copies data to the host we cannot use the existing code

to reduce our data for MPI Allreduce. Therefore, we designed a simple GPU kernel

for the MPI FLOAT and MPI SUM use case. The code of this kernel can be seen in

Listing 5.3. This design is fairly simple as the reduction operation required by Open

MPI library only reduces two data points at once. When reducing two data points

A and B the sum is stored in the original location of the two inputs. Storing the

0 g l o b a l void vecAddImpl ( f l o a t ∗a , f l o a t ∗b , i n t n)
1 {
2 // Get our g l oba l thread ID
3 i n t id = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4

5 // Make sure we do not go out o f bounds
6 i f ( id < n) {
7 f l o a t tmp buf = a [ id ] + b [ id ] ;
8 a [ id ] = tmp buf ;
9 b [ id ] = tmp buf ;

10 }
11 }

Listing 5.3: Kernel reduction for MPI FLOAT and MPI SUM use case.
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result in one or both does not make a difference to the performance of the kernel as

the message sizes we use in Horovod do not saturate HBM2 memory. It was chosen

to store the result in the location of both inputs to allow for flexibility in writing

the MPI Allreduce collective code.

When compiling this kernel to create a library, which can be called by Open

MPI, the Nvidia compiler nvcc outputs a C++ library. As Open MPI uses C in its

implementation this kernel could not be called from inside the library. To handle

this we used the extern ‘‘C’’ keyword so that Open MPI could be linked to

this kernel library. The kernel is linked during the configuration phase of building

Open MPI using LIBS=‘‘-lkernel’’ ./configure --other-flags.... Then the

header for the kernel was included inside the library and called like a regular function

invocation.

5.3.2 MPI Allreduce with GPU Kernel Reduction with Tun-

ing Table

Using the buffer modification and the kernel reduction code in Section 5.3.1 we

applied it to all other algorithms implemented by Open MPI which were not used by

the default execution path. We made the modifications to the following algorithms:

• Recursive Doubling

• Ring

• Segmented Ring

• Basic Linear (Reduce to P0 then Broadcast)

• Reduce Scatter Allgather

Then each algorithm was run for all messages size from 8B to 1GB. For each message

size we calculated the average latency for each algorithm Then we chose the optimal

algorithm for each message size and created the tuning table. This tuning was

completed for four processes on a single node. The tuning would be different for
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each process and node count. We restricted to this process count as our target is to

improve single-node performance. The previous tuning table was designed for CPU

based collectives.

5.3.3 Proposed Hierarchical MPI Allreduce with Multi-Path

Copy

This algorithm was designed to use the multi-path copy mechanism we presented

in Chapter 4. This algorithm also uses the same buffer and kernel design as before.

As our multi-path copy focuses on intra-socket copy, we will use that feature for

intra-socket communication within the collective. In Chapter 4, we saw the multi-

path copy had minimal impact for inter-socket copies on Mist. There is a large

difference between intra- and inter-socket bandwidth of around 130GB/s to 56GB/s

respectively. Therefore we aim to minimise inter-socket transfers. Figure 5.2 shows
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Figure 5.2: Physical topology of Mist with our proposed algorithm overlaid. Uni-
directional bandwidth is labelled for each interconnect.



CHAPTER 5. GPU-AWARE MPI ALLREDUCE DESIGN 80

the algorithm in 3 steps:

1. GPU0 and GPU3 sends their data to GPU1 and GPU2 and reduce their data.

2. GPU1 and GPU2 exchange their data and reduce their data.

3. GPU1 and GPU2 sends their data to GPU0 and GPU3.

Due to the large bandwidth discrepancy, mentioned earlier, Step 2 of this algorithm

takes roughly 2-3 times longer than Step 1 or 3. Thus it would be beneficial to

overlap Step 1 with 2 and Step 2 with 3. To do this, we used pipelining by chunking

the send buffer into multiple chunks and having each chunk execute the algorithm

independently. Although this causes the steps to overlap it does not result in any

overlap between the steps themselves as the CUDA API serialises data transfers be-

tween two memory regions. Algorithm 5.1 presents the implementation of pipelining

inside Open MPI. The three steps for the algorithm are obscured by our effort to

pipeline. The send operation in Line 4 and the recv operation in Line 8 correspond

to Step 1. We see additional recvs posted in Line 10 and 5. These are used by Steps

3 and 2 respectively. We post these receives prematurely as this allows for UCX

to register the CUDA IPC handle during Step 1 before we need to open the IPC

handles Step 2 and Step 3. Next in Lines 14 to 27 we execute Step 2 and Step 3

as the message chunks arrive. In Line 15 we use MPI Testany to check if any phase

1 chunks have been received. If a chunk has arrived, then we reduce the data and

send a message as per Step 2. The same dynamic message checking and sending

is used in Lines 21-26 to execute Step 3. Finally we use MPI Wait to wait for any

outstanding message transfers in Line 39.

There are many tuning tables we created for this collective. The full table can

be seen in 5.1. For each message size there is a different number of chunks which

gives us the optimal latency for the collective. We collected MPI Allreduce latency

for this algorithm for all messages sizes for 2-32 chunks. Then we created a tuning

table for the optimal number of chunks.
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Algorithm 5.1 Hierarchical MPI Allreduce with Multi-Path Copy Algorithm

for i← 0 to num chunks by 1 do
if 0 == rank or 3 == rank then

remote rank = 0 == rank ? 1 : 2; MPI Isend chunk to remote rank post
MPI Irecv from remote rank (used in phase 3)

else
remote rank = 1 == rank ? 0 : 3; post MPI Irecv from remote rank (used
in phase 1). remote rank = 1 == rank ? 2 : 1; post MPI Irecv from remote
rank (used in phase 2).

end

end
if 1 == rank or 2 == rank then

while chunks to be sent in either phase 2 or 3 do
MPI Testany to check if any phase 1 chunks have been received if chunk
from phase 1 received then

reduce data remote rank= 1 == rank ? 2 : 1; MPI Isend chunk to
remote rank

end
MPI Testany to check if any phase 2 chunks have been received if chunk
from phase 2 recited then

reduce data remote rank = 1 == rank ? 0 : 3; MPI Isend chunk to
remote rank

end

end

end
MPI Wait for any outstanding transfers

In [50, 52] the authors noted that using cudaDeviceDisablePeerAccess() and

cudaDeviceEnablePeerAccess() allows us to switch between PCIe and NVLink

on platforms with both interconnects. Although this behaviour is not documented

within the CUDA API, our experiments gave similar results to what was described

in those papers. Therefore, we decided to explore this feature to further reduce inter-

socket congestion. We created another tuning table to dynamically switch between

PCIe and NVLink in Step 2 of our algorithm.

Finally we added the usage of our multi-path copy. During implementation we

noticed that using the multi-path copy while sending data between sockets caused

an overall performance degradation. Therefore, we chose chunks which did not have

any overlap to use the multi-path copy.
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Message
Size (B)

Use Multi-Path?
Inter-Socket

Communication Path
Number

of Chunks
32K No NVLink 2
64K No NVLink 2
128K No NVLink 2
256K No NVLink 2
512K No NVLink 2
1M No NVLink 2
2M No NVLink 2
4M No NVLink 2
8M No NVLink 4
16M Yes NVLink 4
32M Yes NVLink 8
64M Yes PCIe 8
128M Yes PCIe 16
256M Yes PCIe 16
512M Yes PCIe 16

1G Yes PCIe 16

Table 5.1: Tuning Table for the proposed algorithm

5.4 Performance Evaluation and Analysis

5.4.1 Experimental Setup

Experiments in this chapter were conducted on Mist using the setup described in

Chapter 4. In addition to that environment, we are using Open MPI + HPC-X

(with UCX and HCOLL) from HPC-X v2.7 NCCL 2.5.6, and Horovod 0.20.3 with

TensorFlow 1.15.2. For our application studies with HPC-X, we used Horovod 0.19.2

as we had runtime issues with Horovod 0.20.3.

5.4.2 Micro-Benchmark Results

We split this subsection into two parts; first we compare the default Open MPI

implementation to the algorithm described in Section 5.3.1, then we compare the

three designs together. This is done for the clarity of the figures which will be

displayed in this section. For our Micro-benchmark tests we use the OSU Micro-
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Figure 5.3: OMB results for MPI Allreduce comparing the default Open MPI im-
plementation with a CPU reduction to our GPU kernel based reduction design on
Mist.
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Benchmarking suite for their MPI Allreduce test. We have configured data to be

allocated on the GPU for the receive buffer. For the send buffer we have modified

the benchmark so that it uses MPI IN PLACE to mimic the Horovod MPI API calls.

Default Open MPI vs. Open MPI with GPU kernel reduction

We compare the default Open MPI with a CPU reduction to our first design in

Section 5.3.1, where we use a GPU reduction and the idle NVLinks between the

GPUs. The micro-benchmark results for this collective design is shown in Figure

5.3. There is a performance degradation for medium sized messages. The CPU

based reduction still outperforms the GPU kernel. After 1MB using the additional

NVLink and the GPU kernel reduction outperforms the default implementation.

For large messages the performance improvement is significant. For a 1MB, there

is a 3.8x speedup and up to 9.5x speedup for a 1GB in this collective. This could

be due to CPUs being latency optimised and GPUs to be throughput optimised

therefore the large messages can take advantage of the parallel kernel reduction.

It could also stem from removing the D2H and H2D copies and replacing it with

a single D2D copy which halves the number of copies. It is difficult to determine

if this performance improvement stems from using the idle NVLinks or the GPU

kernel reduction alone, as we cannot use one without the other. We suspect that all

of these have contributed to the performance improvement in some capacity.

Open MPI with GPU kernel reduction vs. Open MPI with tuned GPU

kernel reduction

In this section we now study the second design option where with further optimise

the collective by using a new static tuning table. The old static tuning table used

in the Open MPI with GPU kernel reduction result were based off of the original

tuning table for a CPU based reduction. The new tuned GPU kernel reduction
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Figure 5.4: OMB results for MPI Allreduce comparing the GPU kernel based re-
duction design with and without a algorithm tuning table on Mist.
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uses a tuning table that was created to optimise the results we see with our GPU

kernel design.

We do not compare it to the original CPU design to provide some extra resolution

in our figures. In Figure 5.4 we can see the results of this tuning table. Small

messages have been omitted as the default CPU tuning table was already using

the optimal algorithm for those message sizes, thus no difference was observed at

those sizes. From 16KB all the way to 1GB this new tuning table shows a good

performance improvement. That said, the improvement is more incremental than

the previous design. We see the largest difference at 512KB with a speedup of 4.5x.

We believe this to be a product of the default CPU tuning table choosing a bad

algorithm for a particular message size. Improving the chosen algorithms to select

the best performance of the GPU kernel reduction collective is what we think is the

main impact of our design. At 64MB we observe a speedup of 1.44x and at 1GB we

get a 1.49x speedup. Although this is close to a 50% performance improvement we

can see we are starting to reach the limitations of the hardware as our improvement

are much smaller than the previous section.

Open MPI with tuned GPU kernel reduction vs. Proposed Hierarchical

Allreduce with Multi-Path Copy

We now compare our proposed algorithm to the tuned GPU Kernel design. The

results can be seen in Figure 5.5. As previously stated, we are are getting closer to

the hardware limitation and the improvement we see is smaller than before. This

proposed algorithm only benefits messages larger than 2MB. From 2MB to 1GB we

see a performance improvement of 1.4% to 6.4% reduction in latency.



CHAPTER 5. GPU-AWARE MPI ALLREDUCE DESIGN 87

512K
1M 2M 4M

Message Size (B)

2 × 102

3 × 102

la
te

nc
y 

(u
s)

Open MPI with tuned GPU kernel reduction
Proposed Hierarchical Allreduce with Multi-Path Copy

(a) Medium

8M 16M
32M

64M
Message Size (B)

103

6 × 102

2 × 103

3 × 103

4 × 103

la
te

nc
y 

(u
s)

Open MPI with tuned GPU kernel reduction
Proposed Hierarchical Allreduce with Multi-Path Copy

(b) Large

128M
256M

512M
1G

Message Size (B)

104

la
te

nc
y 

(u
s)

Open MPI with tuned GPU kernel reduction
Proposed Hierarchical Allreduce with Multi-Path Copy

(c) Very Large

Figure 5.5: OMB results for MPI Allreduce comparing the tuned GPU kernel based
reduction design with our proposed algorithm on Mist.
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Proposed Hierarchical Allreduce with Multi-Path Copy compared to ex-

isting MPI implementations

So far, we have observed the incremental improvement to our collective with each

design change. Although we see a decent performance improvement with respect to

the original implementation, it is important to make comparisons to other MPI im-

plementations to see how our design compares. In this section we have included both

the original Open MPI + UCX implementation and the our proposed hierarchical

allreduce with multi-path copy.

Spectrum MPI marginally outperforms the original Open MPI + UCX. Thus

our proposed design outperforms Spectrum MPI for all message sizes. Our proposed

hierarchical allreduce with multi-path copy outperforms NCCL and Open MPI +

HPC-X for message sizes greater than 8MB.

The proposed algorithm outperforms Spectrum MPI, Open MPI + UCX, Open

MPI + HPC-X, MVAPICH2-GDR, and NCCL with a speedup of 11.47x, 14.33x,

1.09x, 1.26x, 1.25x, for 64MB messages, respectively. This is the message size

Horovod + TensorFlow uses extensively as seen in Chapter 3. We outperform Spec-

trum MPI, Open MPI + UCX, MVAPICH2-GDR, and NCCL at 1GB messages by

12.25x, 15.63x, 1.47x, and 1.38x, respectively. Results for Open MPI + HPC-X at

512MB and 1GB are not present as we faced CUDA ‘out of memory’ errors.

Our design shows significant performance improvements over Open MPI + UCX

and Spectrum MPI. We suspect that this is because MPI Allreduce in these libraries

use a CPU based reduction even for GPU resident data. Our design also performs

better than NCCL, Open MPI + HPC-X and MVAPICH2-GDR, which are both

GPU-optimised communication libraries.
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Figure 5.6: MPI Allreduce results comparing our proposed hierarchical allreduce
with multi-path copy against Spectrum MPI, Open MPI + UCX, Open MPI +
HPC-X, MVAPICH2-GDR, and NCCL on Mist
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5.4.3 Application Results

In this section we are extending our evaluations to Deep Learning applications.

Figure 5.7 presents the performance of our proposed design with Horovod with

TensorFlow and four Deep Learning models: ResNet50, ResNet152, DenseNet201,

and VGG16. We varied the Horovod tuning parameter HOROVOD FUSION THRESHOLD

to see if any additional performance could be gained for the proposed MPI designs

[67]. The default value of this parameter is 64MB.

For ResNet50, we see a throughput speedup of up to 1.49x, 1.56x, 1.19x, 1.23x,

and 1.21x over Spectrum MPI, Open MPI + UCX, Open MPI + HPC-X, MVAPICH2-

GDR, and NCCL, respectively. With a fusion threshold larger than 128MB we see
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Figure 5.7: Horovod + TensorFlow throughput with different models, a batch size of
32, and different values of HOROVOD FUSION THRESHOLD for each MPI implementation
and NCCL on Mist
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minimal change in our performance. With ResNet152 and for a fusion threshold of

64MB, we observe a throughput speedup of 1.40x, 1.36x, 1.08x, and 1.19x over Spec-

trum MPI, Open MPI + UCX, MVAPICH2-GDR, and NCCL, respectively. Our

design outperforms other implementations, but we noticed for this model, there was

a slight performance drop using our proposed hierarchical algorithm compared to

our allreduce with GPU kernel reduction. For ResNet152, we were unable to obtain

results for Open MPI + HPC-X as this model would cause the application to seg-

fault. A modest performance speedup of 1.09x, 1.13x, 1.25x, 1.26x, and 1.06x is seen

over Spectrum MPI, Open MPI + UCX, Open MPI + HPC-X, MVAPICH2-GDR,

and NCCL with DenseNet201, respectively.

VGG16 shows the highest performance improvement when using our proposed

collective. We observe a speedup of 2.08x, 2.72x, 1.84x, and 1.72x over Spectrum

MPI, Open MPI + UCX, Open MPI + HPC-X, and NCCL for 64MB buffers,

respectively. With this model, we saw that tuning the framework improved the

performance further. This tuning gave us 2.98x, 3.42x, 3.20x, and 3.21x speedup

for 1GB buffers over Spectrum MPI, Open MPI + UCX, Open MPI + HPC-X, and

NCCL, respectively. For VGG16, we present the results for MVAPICH2-GDR for

completeness, as MVAPICH2-GDR would often hang and not return results. We

had a 5% success rate for job submissions for this model. This is why only 3 out of

5 data points are presented in this figure. That said, for a buffer size of 64MB we

observe a speedup of 0.67x and 1.23x at 1GB. Overall, it is clear from these results

that the performance improvement for Horovod + TensorFlow with the proposed

MPI Allreduce is significant, but fairly dependent on the model.

We profiled MPI Allreduce during Horovod’s execution for different Deep Learn-

ing models to draw a connection between our proposed design and the applica-

tion performance. Figure 5.8 presents the frequency of message sizes used by

MPI Allreduce. With ResNet50, increasing the fusion buffer from 64MB to 128MB
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Figure 5.8: Message sizes used by MPI Allreduce for Horovod + TensorFlow with
different models, a batch size of 32, and HOROVOD FUSION THRESHOLD on Mist.
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changes the message sizes. We see a reduction in messages in 16-64MB range but

an increase for 128MB. As we increase the threshold we see no further changes.

When comparing this observation to the throughput results in Figure 5.7, we see

that throughput increases for our designs when the threshold changes from 64MB to

128MB but stays constant afterwards. For ResNet152 we observe similar results to

ResNet50 but increasing the threshold past 128MB also results in generating smaller

messages. For DenseNet201, we see no impact on message size when changing the

threshold. This is also reflected in the throughput measurements being consistent

with different thresholds values. Finally, with VGG16 we see mostly message sizes

of 16MB and 64MB with a 64MB tensor fusion threshold. It is evident that in

this model increasing the threshold directly increases the message sizes used in

MPI Allreduce. This is also reflected in the throughput results for our proposed

algorithms, since increasing the thresholds yield a better overall performance for

VGG16.

5.5 Summary

Collectives such as MPI Allreduce are an important part of Deep Learning appli-

cations. Focusing research on this topic is important in accelerating these emerging

applications. As the MPI Allreduce usage in Horovod is GPU-based we focused on

algorithms using GPU buffers and modern GPU features such as NVLink.

In this chapter we incrementally changed the MPI Allreduce collective and ob-

served the source of the performance improvements. When we evaluated Default

Open MPI vs. Open MPI with GPU kernel reduction we saw the largest perfor-

mance improvement for large messages. Since our GPU kernel reduction design

allows data to be transferred directly from one GPU to another without staging we

reduce the number of copies required for the collective. We next created a new al-
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gorithm tuning table for our MPI Allreduce collective. This tuning table improved

performance as the tuning decision were based of GPU collective performance rather

than the previous implementation basing their tuning of CPU collectives. Finally we

added our Proposed Hierarchical Allreduce with Multi-Path Copy algorithm to our

tuning table and we outperformed both Open MPI + UCX and Spectrum MPI for

all message sizes. We also outperformed MVAPICH2-GDR, Open MPI + HPC-X

and NCCL for very large message sizes.

Then we evaluated our proposed algorithm with Horovod to observe its impact

on Deep Learning applications. We generally saw some performance improvement

across a few Deep Learning models. With additional tuning of Horovod we were able

to get a significant performance improvement for certain Deep Learning models. Fi-

nally we profiled the Deep Learning application again to draw a connection between

the performance improvement we saw from the additional framework tuning.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Communication is one of the most critical issues facing HPC and Deep Learning ap-

plications today. As most applications in these domains depend upon MPI for their

communication, investigating MPI implementations themselves is incredibly impor-

tant. In this thesis, we engage in a few research directions with the goal of improving

the performance of Deep Learning applications on HPC systems. We begin with a

workload characterisation of some Deep Learning Frameworks to understand which

parts of the MPI library are used. Then we develop an improved point-to-point com-

munication mechanism, and finally we integrate the point-to-point communication

mechanism within the context of a collective and apply it to some Deep Learning

applications. The rest of this section will conclude each chapter in greater detail.

Communication Characterisation of Distributed Deep Learn-

ing Frameworks

In Chapter 3, we investigated MPI communication characteristics of a few Deep

Learning applications. Similar to traditional HPC applications, DL applications

use a mixture of point-to-point and collectives. We found that MPI Allreduce and

95
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MPI Bcast were the most frequently used collectives in both Horovod and CNTK.

Horovod relied heavily on MPI Allreduce during run-time and spent the majority

of its communication time in that collective. We also explored Horovod’s NCCL

configurations where the application uses a mixture of NCCL and MPI at run-time.

We saw the application use MPI for small messages. Horovod offload GPU com-

munication for MPI Allreduce to the NCCL library where it uses NCCL allreduce.

We observed that Horovod’s offloading of large GPU message to NCCL resulted

in an increased throughput for applications using 64 GPUs. CNTK was the only

framework that uses point-to-point communication with all four training methods.

We measured some metrics regarding point-to-point communication such as mes-

sage queues traversal times and point-to-point communication pairs. We found that

CNTK frequently sends and receives data from rank 0. This made us suspect rank

0 could have issues handling the MPI message queue. When profiling CNTK, we

observed that CNTK frequently checks the message queue but we never saw more

than a couple messages present in the queue. Therefore, we believe that CNTK will

not benefit from using any message matching techniques.

Multi-Path Point-to-Point GPU Communication

In Chapter 4 we proposed an intra-socket multi-path point-to-point communication

algorithm for a UCX Put. With modern NVLink platforms we saw that there are

often additional communication paths between GPU pairs that are not used at run-

time. Our design is indented to use all available paths to aggregate the bandwidth

between GPUs. We striped the data across NVLinks or PCIe connections and when

transferring the data via the host we would stage it in host memory. We further

improved this message striping by placing each chunk of data on different CUDA

streams so that the CUDA run-time could pipeline our design further.

We evaluated this design on two HPC systems, one with PCIe to the host and
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the other with NVLink to the host. We observed that on the platform with NVLink

to the host performed significantly better than the system with PCIe. This was

largely due to the higher bandwidth that NVLinks provide. That said, on both

platforms we obtained significant performance improvement when comparing our

results to the default single-path UCX. We applied this put operation to Open MPI

+ UCX and we saw its merit for MPI point-to-point communication with minimal

code changes.

GPU-Aware MPI Allreduce Design

In Chapter 5 we proposed an MPI Allreduce with GPU Kernel Reduction, then

extended that design by creating a new algorithm tuning table, and finally we added

our proposed Hierarchical MPI Allreduce with Multi-Path Copy algorithm to that

tuning table. The design change to use a GPU kernel based reduction saw significant

performance improvement for large messages. We believe it is partially due to GPU

kernels performing better than CPUs for large data computations but we also think

that it is due to never moving data to the host. The direct copies between devices

allowed us to better utilise UCX’s GPU communication optimisations. The addition

of our tuning table for algorithm selection further improved this design as we were

now choosing the collective based on its performance on GPUs, whereas previously

the decision was based of CPU collectives. Our proposed Hierarchical Allreduce with

Multi-Path Copy algorithm performed very well compared to other existing MPI

implementations, especially for very large messages. We evaluated the performance

of our proposed MPI Allreduce collective with Horovod + TensorFlow and various

models. For Horovod with TensorFlow and VGG16, we observe up to 2.98x, 3.42x,

3.22x, 1.23x, and 3.24x speedup over Spectrum MPI, Open MPI + UCX, Open

MPI + HPC-X, MVAPICH2-GDR, and NCCL, respectively. Finally, we profiled

the Deep Learning application again to draw a connection between the performance
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improvement we saw from the additional framework tuning.

6.2 Future Work

Challenges in MPI communication will continue to exist for years to come. We plan

to extend our work in a few ways for new applications and compute systems. In the

following section we will discuss how our algorithms can be extended.

Communication Characterisation of Distributed Deep Learn-

ing Frameworks

In Chapter 3, our work was limited to a few Deep Learning frameworks. There are

many more available frameworks which we would like to study to see if MPI Allreduce

is still the dominant collective in Deep Learning. Model and hybrid parallelism still

appears to be in the research stage of development [35, 36]. As the availability of

these frameworks increase, we hope to see how this changes MPI communication.

Also, we only studied CNN as our focus was Deep Learning, It would be interest-

ing to investigate different areas within Machine Learning such as Reinforcement

Learning.

Multi-Path Point-to-Point GPU Communication

Chapter 4 showed that our multi-path copy was limited by the available bandwidth

to the host. As new GPU platforms with PCIe Gen 5 become available it would be

interesting to apply this design to those systems. We expect PCIe Gen 5 to offer

more bandwidth to the host than our PCIe 3 platform. This could overcome the

issues we observed with PCIe.

A limitation of this work was that we created many static tuning tables for the

multi-path copy. Using an auto-tuning mechanism to decide the data sizes sent
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through each path and the number of CUDA streams could make this design more

portable. Alongside portability, this would also allow for the multi-path copy to

adjust at run-time to handle any congestion.

The new MPI-4.0 standard has introduced partitioned point-to-point communi-

cation. In short, this new interface partitions a send buffer into multiple parts and

the MPI run-time transfers the data as each partition is ready. We could extend this

multi-path design for this new interface by sending each partition across a different

path to better utilise bandwidth and reduce congestion.

GPU-Aware MPI Allreduce Design

Our collective design in Chapter 5 was limited to a single node using four processes.

Deep Learning applications often perform better with one process per GPU. If we

were to step outside of Deep Learning and into traditional HPC we could extend

this design to work with multiple process per GPU. We saw in Chapter 4 that

increasing the window size in bandwidth tests would result in improved bandwidth

utilisation. Therefore, increasing the number of processes per node could yield some

improvements. We could also extend this design for a cluster wide collective. As this

design is restricted to four processes we would have to either design a generalised flat

algorithm or a hierarchical approach that uses the multi-path copy for the intra-node

portion of the algorithm.

This algorithm could also be extended with similar auto-tuning approaches to

what we discussed for our extensions in Chapter 4. The number of chunks used for

pipelining of this collective, switching between PCIe or NVLink, and enabling and

disabling the multi-path copy were decided on static metrics.
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