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ABSTRACT 

 

As symmetric multiprocessors become commonplace, there are a number of factors 

affecting the performance of parallel applications, including the application characteristics, 

parallel programming paradigms used by the applications, and the machine system’s 

architecture. In recent years, with the introduction of high speed networks, the high 

performance computing community has seen a trend to use network-based computing 

systems such as cluster of symmetric multiprocessors. In such systems, the communication 

subsystems become another crucial factor which affects the application performance. 

In this thesis, the communication characteristics of one widely used parallel benchmarks, 

NAS parallel benchmarks written in MPI, are studied for different class sizes B, and C, and 

the newly released class D. Moreover, the performance of three different implementations of 

the NAS benchmarks in MPI, OpenMP, and Java, is compared on a small 4-way SMP (Dell 

PowerEdge 6650) and on a large 72-way SMP (Sun fire 15K server). The memory bandwidth, 

MPI communication latency and bandwidth are provided on these two SMPs, as well. Our 

results indicate that the performance of applications is affected by their characteristics. The 

new class D has much more communication than class B and class C, larger message size and 

larger number of messages. On both SMPs, the MPI version has better performance than the 

OpenMP and the Java. 

Two interconnects, the Sun Fire Link Interconnect and the Myrinet, are studied in this 

thesis. The Sun Fire Link is a memory-based interconnect, where Sun MPI uses the Remote 

Shared Memory (RSM) model for its user-level inter-node messaging protocol. I give an 

overview of the Sun Fire Link, RSM, and the Sun MPI implantation on top of RSM. I 

provide an in-depth performance evaluation of the Sun Fire Link interconnect cluster of four 

Sun Fire 6800s at the RSM layer, and at the micro benchmark level. Our results include the 

performance of the Remote Shared Memory API primitives, MPI overhead on top of the 

RSM, latency and bandwidth under different communication modes, parameters of the LogP 
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model, collective communications, and different permutation communications. I also provide 

the performance of a Myrinet cluster with eight 2-way SMP nodes (Dell PowerEdge 2650), at 

the micro-benchmark level and application level. The Sun Fire Link and Myrinet achieve 5 µs 

and 6 µs latency, along with 695 MB/s and 444 MB/s bandwidth, respectively. In general, 

they both perform relatively well in most cases. 
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Chapter 1  

 

Introduction 

1.1 Motivation 

  In late 80s and early 90s, several parallel machines with different architectures appeared. 

They include Symmetric Multiprocessors (SMP) such as Cray T-90, massively parallel 

processor (MPP) systems such as Cray T3D, Intel Paragon, and Thinking Machines CM-5, 

and Distributed Shared Memory (DSM) multiprocessors such as Stanford DASH and SGI 

Origin 2000. Considerable work has gone into the design of SMP systems, and several 

vendors such as IBM, Sun, Compaq, SGI, and HP offer small to large scale shared-memory 

systems [16]. Recently, network of workstations (NOW) and cluster of multiprocessors 

(CLUMPs) have been proposed as viable platforms for high performance computing. SMPs 

are the backbone of such high-performance cluster computing systems. 

Parallel machines are being built to satisfy the increasing demand of higher performance 

for parallel applications. The parallel applications can be written using a variety of parallel 

programming paradigms, including message passing, shared memory, data parallel, bulk 

synchronous, and mixed-mode. The message passing and shared memory paradigms are the 

two most important programming paradigms. In the message passing paradigm, data transfer 

is done using explicit communications through send and receive calls. Collective 

communications and synchronization are also supported. The shared memory paradigm is 

originally designed for shared memory systems, although researchers are investigating to 

extend it to cluster of SMPs too [33]. In the shared memory paradigm, the threads running on 

separate processors, can communicate with each other by writing data to the shared memory 
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and then reading from it. Message Passing interface (MPI) [39] and OpenMP [43] are the de 

facto standards for these two paradigms. However, it is open to debate which parallel 

programming paradigm is the programming of choice for high performance [9][24]. It is 

really interesting to compare their performance on different systems.  

To measure and to predict the performance of parallel computer systems, parallel 

benchmarks are designed. A benchmark is a performance testing program that captures 

processing and data movement characteristics of a class of applications [21]. A benchmark 

suite is a set of benchmark programs together with a set of specific rules. NAS parallel 

benchmark suite [42] is one of the most popular parallel benchmarks, which consists of eight 

benchmarks, each having different communication characteristic. It has several 

implementations, written in MPI [5], OpenMP [23], Java [18] and High Performance Fortran 

[17], respectively. 

There are a number of factors affecting the performance of parallel applications on SMP 

systems. These include the applications’ characteristics, the choice of parallel programming 

paradigms used by the applications, and the machine system’s architecture. Understanding 

the applications’ characteristics will give us insights to design better high performance 

computing systems in the future. It will also provide us with reasons why some applications 

perform better or worse on a specific system. In this thesis, I am interested in the 

communication characteristics of the NAS parallel benchmark suite, along with its 

performance on different SMPs.  

In recent years, with the introduction of high speed networks, the high performance 

computing community has seen a trend to use network-based computing systems such as 

network of workstations (NOW) and cluster of multiprocessors (CLUMPs), to achieve high 

performance. The parallel applications developed for these computing systems require 

intensive co-operations between the processors. Therefore, the communication subsystem 

becomes a crucial factor which may affect the application performance. The network 

interconnects, the communication protocols and the messaging middleware form some of the 

important components of the communication subsystem.  
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Currently there are several high performance interconnects that provide low latency and 

high bandwidth. Three of the most famous products are Myrinet [7], InfiniBand [38] and 

Quadrics [30], using the user-level messaging layers GM [50], VAPI [12][28] and Elan3lib 

[30], respectively. Recently, Sun Microsystems has introduced the Sun Fire link interconnect 

[31][34][46] to provide ultra-high bandwidth needed to fuse a collection of large SMP servers 

into a cluster. Remote Shared Memory (RSM) [45] provides the inter-node user-level 

communications over the Sun Fire Link interconnect.  

Usually, there are two messaging layers between these network interconnects and the 

applications: user-level messaging layer and the message passing layer. The messaging layers 

mentioned above provide protected user-level access to the network interface. Kernel-based 

protocols like TCP/IP are not capable of effectively utilizing the performance provided by the 

network interconnects, because every data transfer involves operating system intervention. 

On the contrary, the user-level network protocols offered by these high speed interconnects 

are designed to bypass the operating system, and to thereby reduce the end to end latencies. It 

is also crucial to provide an efficient implementation of message passing interface on top of 

the user-level protocol. In this thesis, the performance of the user-level messaging layer, 

message passing layer, and the application layer are provided. With these results, one can 

discover how each layer performs and how well each layer is implemented on top of the 

lower layer.  

In this thesis, I am interested in evaluating the performance of single SMPs, as well as 

the cluster of SMPs. To design better architectures in the future, it is important to discover 

how the communication subsystems, parallel programming paradigms, and the application 

characteristics may affect the performance. I am interested in measuring the performance of 

several computing platforms. Our platforms consist of a 72-way SMP node from Sun 

Microsystems (Sun Fire 15K), a 4-way Intel Xeon MP from Dell (Dell PowerEdge 6650), a 

cluster of four 24-way SMP (Sun Fire 6800) interconnected by the Sun Fire Link interconnect, 

and a cluster of eight 2-way Intel Xeon MP from Dell (Dell PowerEdge 2650) interconnected 
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by Myrinet. The software environment, including the operating system, compiler and the MPI 

version, are shown in Table 1.1. 

 
Table 1.1 Software environments of computing systems. 

  
Dell PowerEdge 
6650 4-way SMP 

Sun Fire 15K 
72-way SMP 

Sun cluster 4x24 
Sun Fire 6800 

Myrinet cluster 8x2 
Dell PowerEdge 

2650 

OS Linux, Redhat 9 Solaris 9 Solaris 9 Linux, Redhat 9 

Compiler Intel compiler 7.1 Sun One Studio 7 Sun One Studio 7 gcc 

MPI 
MPICH-1.2.5 
ch_shmem 

Sun MPI 6 Sun MPI 6 
MPICH-1.2.5..10 

(MPICH-GM) 

 

1.2 Contributions 

This thesis discusses a number of issues that are the contributing factors affecting the 

performance of the parallel computing systems. This thesis makes four major contributions. 

 I obtain the communication characteristics of five NAS benchmarks written in MPI, 

including a newly released class D, which has not been characterized before. This 

thesis compares the communication patterns of the applications running under 

different number of processes and different problem sizes: class B, class C, and class 

D. The communication characteristics include the message size and the number of 

messages, and the distribution of the message destinations.  

 For the two SMP platforms, the memory bandwidth, and the performance of a set of 

micro-benchmark suite implemented on top of MPI are presented. With these results 

and the communication characteristics of the NAS parallel benchmarks, I explain the 

performance of these parallel applications. This thesis also compares the 

performance of the NAS benchmarks under different parallel programming 

paradigm, including MPI, OpenMP and Java.  

 This thesis studies the newly released user-level protocol “RSM” for the Sun Fire 

Link interconnect. The performance of RSM Application Programming Interface 

(API) calls is provided. This will help in determining the mechanisms that should be 
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used at a high-level (the MPI level) to achieve performance. I also look at how the 

Sun MPI is implemented on top of the RSM protocol.  

 This thesis presents a framework to evaluate the performance of communication 

subsystems of two clusters. I provide a set of micro-benchmarks implemented on top 

of MPI to evaluate the performance of communications seen by the applications. The 

micro-benchmarks include traditional point-to-point latency, bandwidth, bandwidth 

under load, LogP parameters, permutation traffic patterns, and collective 

communications. These, along with the performance of the low level protocol, can 

be used to determine what percentage of the performance at the lower layer is 

delivered to the MPI level. These micro-benchmarks are also used to assess the 

quality of the given MPI implementation as well. Finally, I measure the performance 

of the NAS parallel benchmarks on the Myrinet cluster.  

1.3 Outline of Thesis 

In this thesis, I characterize one popular parallel benchmark suite, NAS parallel 

benchmarks, and evaluate its performance on a small SMP, a large SMP and an SMP cluster. 

I also evaluate the performance of two recently introduced high performance interconnects, 

the Sun Fire Link and the Myrinet, at the user level (just for the Sun Fire Link), and at the 

micro-benchmark level. 

In chapter 2, I provide the background of this thesis. I take a look at the popular high 

performance architectures, high performance interconnects, user-level protocols, and 

different parallel programming paradigms. In chapter 3, the NAS parallel benchmarks are 

introduced, along with their communication characteristics. The performance of MPI 

micro-benchmarks and the NAS benchmarks on a small SMP and a large SMP is compared 

in chapter 4. In chapter 5, I introduce the Remote Shared Memory (RSM) model in detail, 

along with the performance of some RSM API calls. The implementation of SunMPI over 

RSM is also discussed in this chapter. In chapter 6, the performance of the Sun Fire Link and 

Myrinet is evaluated by several micro-benchmarks, including latency, bandwidth, aggregate 
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bandwidth, different traffic patterns and collective communications. I also provide the 

performance of application benchmarks on the Myrinet cluster. Finally, I conclude the thesis 

and provide some directions for future work in chapter 7. 
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Chapter 2  

 

Background 

In the past decade, high performance computers have been implemented using a variety 

of architectures: Massively Parallel Processors (MPP), Symmetric Multiprocessors (SMP), 

Distributed Shared Memory (DSM) multiprocessors, and Clusters. The current trend in high 

performance computing is for hybrid architectures, such as networks of workstations (NOW) 

and clusters of multiprocessors (CLUMPs). In section 2.1, I briefly describe the most 

common parallel computer architectures. Not to mention, our focus in this thesis is on SMPs, 

and CLUMPs, as they are and will remain the trends for years to come. In section 2.2 through 

section 2.5, I will discuss the different components of a high performance computing system 

including the nodes, the interconnects, the massaging layers, and the parallel programming 

paradigms. 

2.1 Parallel Computer Architectures 

Based on the Flynn’s classification [21], there are four kinds of machine architectures, 

single-instruction stream single-data stream (SISD), single-instruction stream multiple-data 

streams (SIMD), multiple-instruction streams single-data stream (MISD) and 

multiple-instruction streams multiple-data streams (MIMD). SISD models conventional 

sequential computers. MISD was seldom used. In an SIMD machine, all processors execute 

the same instruction at the same time. So it is a synchronous machine, and mostly used for 
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special purpose applications. An MIMD machine is a general-purpose machine, where 

processors operate in parallel but asynchronously.  

MIMD machines are generally classified into four practical machine models: Symmetric 

Multiprocessors (SMP), Massively Parallel Processors (MPP), Distributed Shared Memory 

(DSM) multiprocessors, Cluster of Workstations (COW), and Cluster of Multiprocessors 

(CLUMP), as shown in Figure 2.1. 

P/C P/C P/C

Bus or Crossbar

SM SM SM

...

...

(a) SMP

P/C

LM

DIR

NIC

   MB
P/C

LM

DIR

NIC

   MB

...

Custom-designed Network

(c) DSM

P/C

LM

NIC

MB
P/C

LM

NIC

MB

...

Custom-designed Network

DIR: Cache directory
IOB: I/O bus
LD: Local disk
LM: Local memory
MB: Memory bus
NIC: Network interface circuitry
P/C: Processor and cache
SM: Shared memory

(b) MPP

P/C

LM

Bridge

MB

NIC
LD IOB

P/C

LM

Bridge

NIC
LD IOB

Commodity Network

(d) COW/CLUMP

MB

...

P/C
...

P/C
...

 
Figure 2.1. Parallel computer models: (a) SMP (b) MPP (c) DSM (d) COW/CLUMP. 

 

SMP is a Uniform Memory Access (UMA) system, where all memory locations are the 

same distance away from the processors, so it takes roughly the same amount of time to 

access any memory location. SMP systems have gained prominence in the market place. 

Considerable work has gone into the design of SMP systems, and several vendors such as IBM, 

Sun, Compaq, SGI, and HP offer small to large-scale shared memory systems [16].  
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MPP, DSM multiprocessors, COW, and CLUMP and are distributed-memory systems, 

where there are multiple nodes each having one or more processors and its own local memory. 

For MPP, COW and CLUMP systems, one node’s local memory is considered remote 

memory for other nodes. DSM machines use cache directory protocols to implement coherent 

caches. MPP, CLUMP and COW machines do not have cache directory, and processes 

communicate by exchanging messages. MPP machines consist of a number of nodes 

interconnected by a high-speed custom-designed network. SMPs are called tightly coupled 

[21]. COW and CLUMP machines are low-cost variation of MPP machines, which use 

low-cost commodity networks. 41.9% of the top 500 supercomputers in the world are clusters 

[49]. 

2.2 Computing Nodes 

MPP, COW, CLUMP and DSM multiprocessors each contain multiple nodes, which are 

connected by custom-designed or commodity networks. Each node can be a uni-processor, an 

SMP, or a Simultaneous Multi-Threading (SMT) system. SMP was introduced in section 2.1. 

The SMPs that I will explore in this thesis include Dell PowerEdge 2560, Dell PowerEdge 

6650, Sun Fire 6800 and Sun Fire 15K server. Two-way Dell PowerEdge 2560 and four-way 

Dell PowerEdge 6650 use Intel Xeon MP Processors. Sun Fire 6800 and Sun Fire 15K 

servers have 24 and 72 Sun Ultrasparc III cu processors, respectively. SMT is the technology 

that allows a single physical processor to execute multiple threads concurrently in hardware. 

Intel implemented SMT with Hyper-Threading, which is used on the Intel Xeon MP 

Processor. Table 2.1 shows some popular processors used in high performance computers. 

Table 2.1. Processor and the system using them. 
Processor System 

IBM PowerPC IBM SP cluster 

Intel Xeon MP Dell PowerEdge 

Sun Ultrasparc IV cu Sun Fire server 

Intel Itanium2 HP Integrity Server 

Compaq Alpha Compaq AlphaServer 
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2.3 High-Performance Interconnects 

To have high-performance computer systems, the interconnect that connects the nodes of 

the system plays a crucial role. Currently, there are several high performance interconnects that 

provide low latency (less than 10 us) and high bandwidth, such as Myrinet [7], InfiniBand [38], 

and Quadrics [30]. Recently, Sun Microsystems has introduced Sun Fire link [46] to provide 

ultra-high bandwidth needed to fuse a collection of large SMP servers into a cluster.  

2.3.1 Myrinet 

Myrinet was developed by Myricom [7] based on packet-switching technology, which 

was originally designed for Massively Parallel Processor systems [7]. The packets are 

wormhole-routed through a network consisting of switching elements and host interfaces. 

The core of the switch is a pipelined crossbar. The programmable Myrinet network interface 

cards provide much flexibility in designing communication software. 

 
Figure 2.2. The host and network interface architecture of Myrinet 

 

Figure 2.2 illustrates the architecture of a node in a Myrinet network system. Each host 

has a Network Interface Card (NIC) that contains a processor and some memory, which is 

used to store the control program and data. The NIC connects to the host’s I/O bus. The 

M3F2-PCIXE-2 "E card" Myrinet/PCI-X interface has been released recently. The “E card” 

has a 64-bit, 133MHz PCI-X interface, and has a programmable Lanai-2Xp RISC processor 
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operating at 333MHz with 2MB local memory. Each port is 2.0+2.0 Gbps data rate. The 

standard firmware has two ports working at same time, which acts as a 4.0+4.0 Gbps data-rate 

port.  

2.3.2 Quadrics 

Quadrics networks (QsNet) [30] is based on two building blocks, a programmable 

network interface called Elan and a low-latency high-bandwidth communication switch 

called Elite [30]. The newly released QM500 PCI-X network adapter for Quadrics QsNet II 

[1], uses Quadrics Elan 4 network processor, and is connected to the hosts via 64bit, 133MHz 

PCI-X Bus. It provides full duplex 900Mbytes/s peak bandwidth at each direction. It has 

64Mbytes onboard DDR-SDRAM memory. Quadrics switch uses a full crossbar connection 

and supports wormhole routing. The performance of Quadrics is provided in [30]. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Structure of Elan4. 

 

QsNet II provides efficient and protected access to a global virtual memory using 

remote direct memory access (RDMA) operations. The Elan4 chip contains the following 

major logic blocks, as outlined in Figure 2.3. The 64-bit multi-threaded control processor with 

independent hardware state machines controls pipelined output DMA issue, input transaction 
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processing, synchronization processing, the scheduling of the thread processor, and  the 

command queue processing. It also generates output packets issued directly over the PCI-X 

interface by the main processor. MMU is used to translate 64-bit virtual addresses into either 

local SDRAM physical addresses or 64-bit physical addresses for PCI-X master addresses. A 

64-bit Thread Processor helps to implement high-level messaging libraries without explicit 

intervention from the main CPU. The short message processing unit is called STEN (Small 

Transaction Engine). 

2.3.3 Sun Fire Link 

Sun Fire Link is a high-bandwidth, low-latency interconnect recently introduced to cluster 

Sun Fire 6800 and 15K/12K systems [13][46]. The system’s interface to the Sun Fire Link 

network is provided by a Sun Fire Link specific I/O subsystem which is called the Sun Fire 

Link assembly. Each Sun Fire Link assembly contains two optical transceiver modules called 

Sun Fire Link optical modules. Each optical module supports a full-duplex optical link. The 

transmitter uses a Vertical Cavity Surface Emitting Laser (VCSEL), and has a 1.65 GB/s raw 

bandwidth, and a theoretical 1 GB/s sustained bandwidth after protocol handling [34]. The Sun 

Fire Link assembly is installed in pair. Each pair is called a computer domain of the system, 

which means that each compute domain contains four optical link connections to the Sun Fire 

Link network. A Sun Fire 6800 server can have one compute domain, while a Sun Fire 

15K/12K server can have up to four compute domains, with a maximum count of 16 optical 

links connected to the network. 

A Sun Fire cluster can have different network structure depending on the type of topology 

used: direct connect or switched. The switches are not needed when the Sun Fire cluster has 

two or three domains. The optical cables connect directly to the servers. Figure 2.4 shows how 

two domains connect to each other, and Figure 2.5 shows how three domains connect to each 

other. 
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Figure 2.4. Two domains direct connect configuration. 

 
Figure 2.5. Three domains direct connect configuration. 

 

For more than four domains, switches are needed. The Sun Fire Link switch is an 

eight-port optical switch, each of which handles one optical network link. So the current Sun 

Fire switch supports only up to eight hosts, while theoretically, the Sun Fire Link can support 

up to 254 hosts. There are two standard switched configurations. One can have up to four 

domains and two Sun Fire Link switches. Figure 2.6 shows this configuration. The other can 

have up to eight domains and four switches, which is shown in Figure 2.7. 

The network interface does not have a DMA engine. It can initiate interrupts as well as do 

polling for data transfer operations. It provides uncached read and write accesses to remote 

memory regions on the other nodes. Layered system software components implements a 

mechanism for user-level messaging based on direct access to remote memory regions of other 

nodes [2]. This is referred to as Remote Shared Memory (RSM) [45]. Nodes can communicate 

through a TCP/IP network for cluster administration issues, and exchanging control and 
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status/error information. Sun MPI is a complete library of message-passing routines, based on 

RSMAPI. Details will be given in chapter 5. 

 

 
Figure 2.6. Four domains and 1 switch configuration. 

 

Figure 2.7. Eight domains and 4 switches configuration. 

 

2.3.4 InfiniBand 

The InfiniBand Architecture [38] is a packet switched network, initially proposed as a 

generic interconnect for inter-process communication and I/O. In the InfiniBand network, 

nodes are connected to the fabric by Host Channel Adapters (HCAs) and Target Channel 

Adapters (TCAs). A Channel Adapter (CA) that is installed in processor nodes and I/O units, 

generates and consumes packets, as well as initiating DMA operations. It connects to the host 
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through the PCI-X bus. They also contain an interface to the memory and hardware engines, 

which provides virtual to physical address translations and memory protection [38].  

The fundamental concept of the channel interface is the queue pair (QP) [38] which 

serves as a virtual communication port. Each QP has two queues: a send queue and a receive 

queue. The completion of communication requests is reported through completion queues 

(CQ). 

2.4 User-Level Protocols 

TCP/IP, a very popular kernel-based communication protocol, incurs in performance 

penalties, which is unbearable in System Area Networks (SAN) due to its layered structure [6]. 

SAN is a local network designed for high-speed interconnection in cluster environments 

(server to server), multiprocessing systems and storage area networks. TCP/IP stack is 

generally built into the operating system kernel, so every data transfer involves operating 

system intervention. Data copying in TCP/IP layers (from kernel space to user space or vice 

versa) causes performance degradation.  

 
Figure 2.8. Layers of abstraction from Network to Applications. 

 

To provide low latency, the user-level network protocols move some of the services 

normally provided by kernel into the user level. Bypassing the operating system, the user-level 

protocols avoid the costs associated with switching to the privileged mode. The layers of 

abstraction of TCP and user-level protocols are shown in Figure 2.8. In the following, we 

briefly discuss some important user-level protocols. 
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2.4.1 GM 

  GM [50] is a commercial open source user-level networking protocol from Myricom 

Corporation, which runs on top of the Myrinet network. GM provides a protected interface to 

the network interface cards so that multiple user applications can share the NIC 

simultaneously. GM supports both send/receive and RDMA operations, and its performance 

is provided in [20][28]. User buffers need to be registered and pinned down in the physical 

memory to enable DMA transfer in and out of these memory regions.  

The GM communication system provides reliable and ordered delivery between the 

communication endpoints, called ports. For the send/receive model, ports need to be opened 

before any communications, by calling the gm_open function. All the buffers used by send 

and receive must be registered using gm_dma_calloc. As shown in Figure 2.9, the send side 

may send a message by calling a GM API send function, gm_send_with_callback. When the 

send completes, GM calls the callback function, and waits for the receiving event to indicate 

if the send has been completed successfully.  

  

 

 

 

 

 

 

 

 
Figure 2.9. Send side flow chart. 
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to be modified by any other GM process. Then the receive side waits for events that indicate 

the incoming messages. Figure 2.10 shows the major steps at the receive side.  

 
Figure 2.10. Receive side flow chart. 

 

2.4.2 Elan3lib and Elanlib 

Figure 2.11 illustrates the Elan programming libraries [30]. Elan3lib [30] provides the 

lowest-level, user space programming interface to the Elan3 [30] network. At this level 

communications between processes can be done though an abstraction of a distributed, virtual 

shared memory. Elanlib is a higher-level machine independent communication library to 

provide low level accesses [30]. It provides a global virtual address space by integrating the 

address spaces of individual nodes. One node can use RDMA to access a remote node’s 

memory [28]. A general-purpose synchronization mechanism based on events stored in 

memory is provided so that the completion of RDMA operations can be reported. It also 

provides basic mechanism for point-to-point message passing, called tagged message ports 

(Tports). Unlike GM and VAPI, the QsNet does not require the communication buffers to be 

registered. 
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Figure 2.11. Elan programming libraries. 

 

2.4.3 Remote Shared Memory 

Remote Shared Memory (RSM) [45] is designed for the Sun Fire link interconnect, to 

provide low latency and high bandwidth communications. It is a high-performance 

memory-based mechanism, which implements user-level inter-node messaging with direct 

access to memory that is resident on remote nodes. To establish the communications, an 

application process creates an RSM export segment from the process’ local address space. 

One or more remote application processes create an RSM import segment with a virtual 

connection between export and import segments across the interconnect. All processes make 

memory references for the shared segment with addresses local to their specific address 

spaces. After the RSM segment is published through one or more interconnect controllers, the 

segment is remotely accessible. RSM also provides a notification mechanism to synchronize 

local and remote accesses. An export process can call a function to block while an import 

process finishes a data write operation. When the import process finishes writing, the process 

unblocks the export process by calling a signal function. Once unblocked, the export process 

processes the data. The detailed API is studied in Chapter 5. 

2.4.4 VAPI 

 Verb-Based API (VAPI) is the software interface for the InfiniBand. The interface is based 

on the InfiniBand verbs layer, which is an abstract description of functionalities of a HCA. 
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The performance of send/receive and RDMA operations is shown in [12][28]. Both reliable 

connection and unreliable datagram services have been implemented on HCAs. Similar to the 

GM, memory buffers must be registered with HCA before being used. Existing designs of MPI 

over InfiniBand use send/receive operations for small data messages and control message, and 

RDMA operations for large data messages [12].  

2.4.5 VIA 

 The Virtual Interface Architecture (VIA) [6][15] is designed to provide high bandwidth 

and low latency over a System Area Network, by providing a protected and directly 

accessible network interface called the Virtual Interface (VI). Two VI endpoints on different 

nodes can be connected by a bidirectional point-to-point communication channel. The virtual 

memory used by user communication buffers needs to be registered, so that these buffers can 

be accessed by network interface. The VIA specifies two types of data transfer models: the 

traditional send/receive messaging model and the Remote Direct Memory Access (RDMA) 

model. 

2. 5 Parallel Programming Paradigms 

Parallel computers provide support for a wide range of parallel programming paradigms. 

The HPC programmer has several choices for the parallel programming paradigm, including 

the message passing, shared memory, data parallel, bulk synchronous, and mix-mode.  

Message Passing interface (MPI) [39], and OpenMP [43] are the de facto standards for 

message passing, and shared memory paradigms. The shared address space within each SMP 

node is suitable for OpenMP parallelization and POSIXThread [44]. Message passing can be 

employed within and across the nodes of a cluster. Programming with shared memory 

paradigm is generally easier but it is not highly scalable, while message passing is harder to 

program but it is more scalable. Data parallel paradigm is for the SIMD architecture, where a 

single control unit issues each instruction to the processing elements [32]. The Bulk 

Synchronous Parallel (BSP) model is a universal abstraction of parallel computation that can 

be used to design portable parallel programs [29]. The mix-mode programming is a 
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combination of message passing and shared memory paradigms. Which programming 

paradigm is better depends on the nature of the given problem and the architecture being used. 

In this section, MPI, OpenMP, Java, and other paradigms are introduced. 

2.5.1 Message Passing 

MPI [39] is a well known message passing environment. MPI has good portability, 

because programs written using MPI can run on distributed-memory multicomputers, 

shared-memory multiprocessors, and networks of workstations. On top of shared memory 

systems, message passing is implemented as writing to and reading from the shared memory. 

So MPI can be implemented very efficiently on top of the shared memory systems. Another 

advantage of the MPI programming model is that the user has complete control over data 

distribution and process synchronization, which can provide optimal data locality and 

workflow distribution. The disadvantage is that existing sequential applications require a fair 

amount of restructuring for parallelization based on MPI. 

MPI provides the user with a programming model where processes communicate with 

each others by calling library routines. There are two kinds of communications in MPI, 

point-to-point and collective.  

Point-to-point communication is the basic communication mechanism used to transmit 

data between a pair of processes in MPI, as shown in Figure 2.12. Point-to-point 

communications can be divided into blocking and non-blocking. A blocking procedure will 

not return until the user is allowed to reuse resources specified in the call. A non-blocking 

procedure may return before the operation completes. Blocking calls support four different 

modes: standard send and receive, buffered, synchronize and ready. 

Standard – The completion of a send implies that the message either is buffered internally or 

has been received. So after the call returns, the user is free to overwrite the 

message. 

Buffered – The user guarantees a certain amount of buffering space. 
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Synchronous – Rendezvous semantics is used between the sender and receiver. The sending 

process blocks until the corresponding receive has been posted. 

Ready – A send operation can be started only after the matching receive is already posted. 

The ready mode is a way for the programmer to notify the system that the receive 

has been posted so that the underlying system can use faster protocol if it is 

available. 

 

 

 

 

 

 

 
 

Figure 2.12. Standard send/receive model. 

 

Collective communications transmit data among all processes in a group. Barrier 

operation synchronizes across all processes in the group. In a Broadcast operation, a process 

sends a unique message to all other processes of the group. In a Gather operation, each 

process sends a message to a specific process. Scatter operation is the inverse operation to the 

gather operation, where a process sends a different message to all processes in the group. 

Alltoall operation sends messages from all processes to all processes. Reduce operation gets 

the combined value from the messages received from all other process in the group, using the 

operation op. 

2.5.1.1 Sun MPI 

Sun MPI [48] is a complete library of message-passing routines, developed by Sun 

Microsystems. Figure 2.13 describes the architecture of Sun MPI. Sun MPI treats on-node 

and off-node communications differently. For on-node communications, shared memory 

protocol is used, while Remote Shared Memory [45] protocol is used for off-node 
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communications. A Remote Shared Memory application programming interface (RSMAPI) 

offers a set of user level function calls for remote memory operations [45].  

 

 
Figure 2.13. Sun MPI structure. 

 

For on-node point-to-point message passing, the sender writes to shared-memory buffers, 

depositing pointers to these buffers into shared-memory postboxes [47]. After the sender 

finishes writing, the receiver can read the postboxes and the buffers. Figure 2.14 shows the 

different ways a message is sent based on its size. For small messages, instead of putting 

pointers to the buffers into postboxes, data itself is placed into the postboxes. For 

medium-size messages, one postbox is used pointing to the buffers with data. For large 

messages, which may be separated into several buffers, the reading and writing can be 

pipelined. For very large messages, to keep the message from overrunning the 

shared-memory area, the sender is allowed to advance only one postbox ahead of the receiver. 

Thus, the footprint of the message in shared memory is limited to at most two postboxes at 

any one time, along with associated buffers. Sun MPI uses eager protocol for small messages, 

where it writes the messages without explicitly coordinating with the receiver. For large 
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messages, it employs rendezvous protocol, where the receiver must explicitly notify the 

sender that it is ready to receive the message, before the message can be sent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14. On-node messages. (a) small (b) medium-size (c) long. 

 

For off-node communications, Sun MPI supports high performance message passing by 

means of the RSM protocol, which is running on top of the Sun Fire Link. Sun MPI over 

RSM achieves low latency bypassing the operating system, and high bandwidth from striping 

messages through multiple channels. Messages sent over RSM are in one of two fashions 

depending on the size of message [31][47]. Short messages are fit into multiple postboxes 

and no extra buffers are used. Pipelined messages are sent in 1024-byte buffers under the 

control of multiple postboxes.  

Standard MPI communications are two-sided. To complete the transfer of information, 

both the sending and receiving side processes must call proper functions. This form of 

communication requires synchronization between the sending and receiving processes. Sun 

MPI supports one-sided communication designed to reduce the amount of synchronization 

required. In one-sided communication, a process opens a window in memory, and exposes it to 
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particular communicator and node can put (write) data into it and get (read) data out of it. 

MPI_Put and MPI_Get functions are used for the put and get operations. 

Efficient implementation of collective communication algorithms is one of the keys to the 

performance of cluster computer systems. Sun MPI takes advantage of the symmetric 

multiprocessors’ characteristics for efficient implementation of collective communication 

algorithms for on-node, and off-node communications in clusters of SMPs. For on-node 

collective communications, the optimized algorithms use the local exchange method instead 

of point-to-point approach. As stated earlier, on a single SMP node, any process may 

communicate with any other node via shared memory. Thus, the time to complete the 

operation is limited by the memory bandwidth. For off-node collective communications, one 

representative process for each SMP node is chosen [35]. This process is responsible for 

delivering the message to all other processes on the same node, which are involved in the 

collective operation. 

2.5.1.2 MPICH 

MPICH [40] is a portable implementation of the full MPI specification for a variety of 

parallel computing environments. MPICH is designed through implementation of an abstract 

device interface (ADI). Each implementation of ADI is called a device. Several devices are 

available, such as ch_p4, ch_shmem and ch_gm. The ch_p4 device supports SMP nodes and 

heterogeneous collections of systems. The ch_shmem device is appropriate for an SMP. It 

uses shared memory to pass messages between processes. The ch_gm is used for the GM 

user-level protocol. There are four protocols in MPCH, namely eager, rendezvous, short, and 

get. In the eager protocol, the sender sends data to the receiver without request, while in the 

rendezvous protocol the sender sends the data only after the receiver notifies the sender that it 

can accept the message. In the short protocol the data was sent in to the control message 

envelop. In the get protocol the receiver just gets the data from the sender 
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2.5.2 OpenMP 

Message-passing codes written in MPI are obviously portable and should transfer easily 

to SMP cluster systems. However, it is not immediately clear that message passing is the 

most efficient parallelization technique within an SMP box, where in theory a shared memory 

model such as OpenMP [43] should be preferable.  

OpenMP is a loop level programming style. It is popular because it is easy to use and 

enables incremental development. Parallelizing a code includes two steps, (1) discover the 

parallel loop nests contributing significantly to the computations time; (2) add directives for 

starting/closing parallel regions, managing the parallel threads (workload distribution, 

synchronization), and managing the data. 

OpenMP provides a fork-and-join execution model, as shown in Figure 2.15. A program 

begins execution as a single process or thread, until a parallelization directive for a parallel 

region is found. At this time, the thread creates a number of threads, and becomes the master 

thread of these threads. All threads execute the statements together until the end of the 

parallel region.  

 
Figure 2.15. Fork-join model. 

 

The advantage of OpenMP is that an existing code can be easily parallelized by placing 

OpenMP directives around the loops which do not contain data dependences. The 

disadvantage is that it may not scale very well with the number of processors. In [33], 

OpenMP is extended for the cluster of SMPs by “compiler-directed” distributed shared 

memory system. 
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2.5.3 JAVA 

Java is a relatively new language for High Performance Computing. Although Java 

programs suffer from poor performance, running much slower than C and Fortran, it offers a 

number of benefits as a language for HPC, such as portability, software engineering, security 

and GUI development [36]. Java offers a higher level of platform independence to generate 

portable code which compiles and runs on a diverse range of platforms.  

There are several parallel programming models of Java: Java threads, MPI-like API of 

Java [10] and an OpenMP-like API for Java (JOMP) [8]. It is possible to write shared 

memory parallel programs using Java’s native threads model by running a single 

multi-threaded Java application. The Java thread class is part of the standard Java libraries. 

Most current virtual machines implement this class on top of the native OS threads allowing 

threads distributed across the processors. A thread is spawned by creating an instance of the 

java.lang.thread class, and has the methods to control the threads [36]. Currently, there are 

several Java MPI-like bindings available, which are generally implemented in two ways - as a 

wrapper around the existing native MPI library, or as a pure Java implementation. JOMP [8] 

is a prototype Java version of OpenMP, which provides a familiar parallelism model without 

the complexity of Java threads. 

2.5.4 Other Parallel Programming Paradigms 

In the mixed MPI-OpenMP programming style, each SMP node executes one MPI 

process that has multiple OpenMP threads. This kind of hybrid parallelization might be 

beneficial when it utilizes the high optimization of the shared memory model on each node. 

As small to large SMP clusters become more prominent, it is open to debate whether pure 

message-passing or mixed MPI-OpenMP is the programming of choice for higher 

performance. Previous works on small SMP clusters have shown contradictory results 

[9][19].  

In Data Parallel paradigm, a single program controls the distribution of and operations on 

data distributed across all processors. The compiler is responsible for generating the codes to 
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distribute the array elements on the available processors. Data parallel applications may be 

run on MIMD and SIMD architectures [32]. High Performance Fortran (HPF) [32] is a 

programming language designed to support the data parallel programming style. 

In the BSP model [29], the computation is divided into a sequence of supersteps. In each 

superstep, the processors perform some local computation, initiate communications to other 

processors, and synchronize at the end of each superstep. 

2.6 Summary 

General idea about parallel computer architectures is given in this chapter. I discussed 

the architecture of some popular systems, especially SMPs and CLUMPs, which are the 

trends now and will remain the trends for future. I discussed different components of such 

systems, including the processor, interconnect, user-level messaging layer and high-level 

parallel programming paradigms. In the following chapters, I will discuss the performance of 

such parallel computer systems. In chapter 3, I will introduce the application benchmarks. 
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Chapter 3  

Application Benchmarks and Their Characteristics 

To evaluate the performance of high-performance parallel computer systems, application 

benchmarks are developed. In this chapter, I describe the NAS parallel Benchmark (NPB) 

suite [42], used in this thesis along with the communication characteristics of its MPI 

versions.  The architectural requirements and scalability of NAS parallel benchmarks (class 

A) was presented in [37]. The communication characteristics of some of the NAS 

benchmarks were studied in [5]. In [9], the NAS benchmarks were used to evaluate two 

communication libraries over the IBM SP machine. In this section, I include the 

characteristics of the newly released class D, as well as the results for classes B and C. I have 

gathered the communication traces under three system sizes of 16, 32, and 64 processes. 

3.1 NAS Parallel Benchmarks 

The NAS Parallel Benchmark suite has been developed at the NASA Ames Research 

Center [42] to help evaluate the performance of parallel supercomputers. The benchmark 

suite, which mimics the computation and data movement characteristics of large scale 

computational fluid dynamics (CFD) applications consists of eight programs, including five 

kernels and three pseudo-applications. Namely, the three simulated CFD application 

benchmarks are block tridiagonal (BT), lower-upper diagonal (LU), and scalar 

pentadiagonal (SP), and the kernels are conjugate gradient (CG), embarrassingly parallel 

(EP), 3-D fast-Fourier transform (FT), integer sort (IS), and multigrid (MG). The five 

kernels mimic the computational core of five numerical methods used by CFD applications. 



Chapter 3 Application Benchmarks and Their Characteristics 29 

 

The simulated CFD applications reproduce much of the data movement and computation 

found in full CFD codes.  

Implementation of the NAS benchmarks are based on either Fortran 90 (including 

Fortran-77), or C language (except for NPB-JAVA 3.0 and NPB-HPF 3.0) because of the 

observation that Fortran and C are the most commonly used programming languages by the 

scientific parallel computing community. 

I used three different versions of the NAS benchmarks, version 2.3, version 2.4, and 

version 3.0. NPB 2.3 is implemented with MPI-based source-code. They are intended to be 

run with little or no tuning. NPB 2.3 comes with five problem sizes for each benchmark: 

small class S, workstation class W, large class A and larger classes B and C. I study the 

characteristics of class B and class C in this chapter, and then the performance of class B in 

chapter 4.  

High-performance computer systems have grown significantly in size and capabilities, 

including increases in cache and memory size, improved compiler technology and increased 

network bandwidths. The latest release, NPB 2.4 is also implemented with MPI, but contains 

a new and even larger class D, whose characteristics is studied in Section 4.2. Each class D 

benchmark involves approximately 20 times as much work, and a data set that is 

approximately 16 times as large, comparing with class C benchmark. Note that the class D 

implementation of the IS benchmark is not yet available.  

NPB 3.0 is implemented in three different ways, OpenMP, High Performance Fortran 

(HPF) [17], and Java, which are called NPB–OMP 3.0 [23], NPB-JAVA 3.0 [18] and 

NPB-HPF 3.0, respectively. They were derived from the NPB-serial implementations 

released with NPB 2.3, with some additional optimization. I study the class B performance of 

NPB–OMP 3.0 and NPB-JAVA 3.0 in chapter 4. 

3.1.1 EP  

An embarrassingly parallel kernel, EP [5] provides an estimate of the upper achievable 

limits for floating point performance, by generating pairs of Gaussian random deviates 
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according to a specific scheme. That is the performance without significant interprocessor 

communication. The MPI version of the kernel benchmark requires a power of two number 

of processors. 

3.1.2 MG  

Simplified multigrid kernel, MG [5] uses a V-cycle multgrid method to compute an 

approximate solution to the discrete Poisson problem, the 3-D scalar Poisson equation. The 

partitioning of the grid onto processors occurs such that the grid is successively halved, 

starting with the z dimension, then the y dimension and then the x dimension, and repeating 

until all power-of-two processors are assigned. The algorithm requires highly structured long 

distance communication between coarse and fine, so that it tests both short and long distance 

data communication. The MPI version of the kernel benchmark requires a power of two 

number of processors. 

3.1.3 CG  

The conjugate gradient kernel, CG [5] computes an approximation to the smallest 

eigenvalue of a large, sparse, symmetric positive definite matrix, using conjugate gradient 

method. This kernel is typical of unstructured grid computations in that it tests irregular long 

distance communication, which employs unstructured matrix vector multiplication. The MPI 

version of the kernel benchmark requires a power of two number of processors. 

3.1.4 FT 

FT [5] is a 3-D fast-Fourier transform (FFT) partial differential equation (PDE) 

benchmark. It numerically solves a certain partial differential equation using forward and 

inverse FFTs. The implementation of FT follows a fairly standard scheme. The 3-D array of 

data is distributed according to z-planes of the array – one or more planes are stored in each 

processor. The forward 3-D FFT is then performed as multiple 1-D FFTs in each dimension, 

first in the x- and then y- dimensions. An array transposition is then performed which 

amounts to an exchange from all nodes to the others. The final set of 1-D FFTs is then 
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performed. The MPI version of the kernel benchmark requires with a power of two number of 

processors.  

 

3.1.5 LU 

The lower-upper diagonal benchmark, LU [5], uses symmetric successive 

over-relaxation (SSOR) method to solve a seven-block-diagonal system which results from 

finite-difference discretization of Naview-Stokes equations in 3-D by splitting it into block 

lower and upper triangular systems. 2-D partitioning of the grid onto processors occurs by 

halving the grid repeatedly in the first two dimensions, alternately x and then y, until all 

power-of-two processors are assigned, resulting in vertical pencil-like grid partitions. The 

ordering of point based operations constituting the SSOR procedure proceeds on diagonals 

which progressively seep from one corner on and given z plane to the opposite corner of the 

same z plane, there upon proceeding to the next z plane. Communication of partition 

boundary data occurs after completion of computation on all diagonals that contact an 

adjacent partition. The MPI version of this benchmark requires a power of two number of 

processors.  

3.1.6 IS 

Parallel sort over small integers, IS [5], kernel benchmark, sorts N keys in parallel, which 

are generated by the sequential key generation algorithm given initially must be uniformly 

distributed in memory. IS is the only NAS benchmark that written in C language (except for 

the JAVA version). The MPI version of the kernel benchmark requires a power of two 

number of processors. 

3.1.7 BT and SP 

Block Tridiagonal, BT [5], and Scalar Pentadiagonal, SP [5] have a similar structure; 

each solves three sets of uncoupled systems of equations. BT uses an implicit algorithm to 
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solve 3-D compressible Navier-Stokes equations. The finite differences solution to the 

problem is based on an Alternating Direction Implicit (ADI) approximate factorization that 

decouples the x, y and z dimensions. The resulting systems are Block-Tridiagonal of 5x5 

blocks and are solved sequentially along each dimension. Differently, SP is based on a 

Beam-Warming approximate factorization that decouples the x, y and z dimensions. Both BT 

and SP require a square number of processors. Those codes have been written such that if the 

number of processors is different than a square number, then the unneeded processors are set 

inactive and are not used during computations.  

3.2 Characteristics of the NAS Benchmark Suite  

A proper understanding of the communication patterns of parallel applications is 

important for determining how to maximize their performance within a given environment.  

This section presents the communication patterns of the MPI version of the NAS benchmark 

suite. This includes the message sizes, the number of messages, and the destination 

distribution. I executed the applications on a 4-node Sun Fire 6800s, and a Sun Fire 15K 

server at the High Performance Computing Virtual Laboratory (HPCVL) for gathering their 

communication traces. I wrote my own profiling codes using the wrapper facility of the MPI. 

I did this by inserting recording operations in the profiling MPI library and saving the 

communication related activities into log files.  

I chose five benchmarks from the NAS benchmark suite, BT, SP, LU, CG and MG. I 

characterized three problem sizes: class B and class C (from NPB 2.3 MPI), class D (from 

NPB 2.4 MPI). I have not included EP and FT because all of the communications in EP and 

FT are collective communications. In IS, each process is sending messages to only one fixed 

destination process. Note that I was not able to gather the results for the class D of BT with 

16 processes and 32 processes due to their large problem sizes. 

 Traditionally, the communication properties of parallel application have been 

characterized by three attributes: the spatial, temporal, and volume components [11][26]. The 

spatial behavior is presented by distribution of message destinations. The temporal behavior 
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is defined by message generation rate. (The temporal characteristics are not provided in this 

thesis). The volume of data transfer is characterized by the distribution of message sizes and 

the average number of messages. 

 Figure 3.1 shows the number of send events per process for the benchmarks. Class D has 

a much larger number of send events than class B and class C, more than two times for MG, 

CG, and LU (64 processes). Class B and class C behave very similar. With the increasing 

number of processes, from 16 to 64 processes, the number of sends in MG and LU does not 

change much, while the number of sends in BT and SP is increasing. For CG, BT and SP, the 

send events are evenly assigned to each process, because the minimum, average and 

maximum number stay very close. LU has the largest number of send events among all the 

benchmarks; each process is sending more than 200000 messages for class D. MG has the 

smallest number of send events, smaller than 10000 events for class D, with 64 processes. 

Figure 3.2 shows the average, minimum and maximum message size (Kbyte) transferred 

among processes. The average message sizes of the whole applications are shown in Figure 

3.3. Class D has a much larger average message size than class B, which is slightly larger 

than class C. All benchmarks have decreasing average message sizes, when running with 

more processes. LU has the smallest average message size, around 0.7 Kbytes for class D and 

64 processes, while BT has the biggest average message size, around 60 Kbytes for class D 

and 64 processes. 

Figure 3.4 shows the number of destinations. In BT and SP, there are two different 

communicators used. I define <destination #, communicator> as one unique destination. CG, 

BT and SP have the same number of destinations for each process. It is clear that the 

processes in the benchmarks do not have many partners. LU and CG have up to four different 

destinations; MG has up to nine destinations; BT and SP have up to 12 destinations. So, in 

conclusion, in the NAS benchmarks, each process has relatively constant number of partners 

to communicate with. 
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Figure 3.1. Number of send events per process.  
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Figure 3.2. Average message size (Kbytes) per process. 
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the average message size around 700 bytes. BT and SP have quite large message sizes, where 

almost all the messages are more than 10 Kbytes. 

 

 
 

 Figure 3.3. Average message size (Kbytes). 
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Figure 3.4. Number of destinations. 
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Figure 3.5. Cumulative distribution of message sizes, class B. 
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 Figure 3.6. Cumulative distribution of message sizes, class C. 
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Figure 3.7. Cumulative distribution of message sizes, class D. 
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Figure 3.8. Destination distribution of process 0 (64 processes) 
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Figure 3.9. Destination distribution of process 0 (64 processes ).  
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3.3 Summary 

In this chapter, the NAS Parallel benchmark suite has been introduced. I analyzed the 

communication characteristics of the MPI version, where it could provide insights as to the 

performance of applications on high performance computers. I presented the characteristics 

of applications under different problem sizes (classes B, C and D), and different system sizes 

(16, 32 and 64 processes). 

I have found that the number of send calls and average message sizes are increasing with 

larger workloads. Class D has much more communication than class B and class C. For the 

same workload, running with larger number of processes, the benchmarks have larger number 

of send calls, but with smaller average message sizes. LU has the largest number of send calls, 

and smallest average message size. LU is the benchmark that sends a lot of small size 

messages. MG has many different message sizes. BT and SP are very similar, both sending 

relatively large size messages.  

Knowing more about the application benchmarks, I will evaluate the micro-benchmark 

and application benchmark performance on two different SMPs in the next chapter. I will try 

to correlate the performance of these applications on different platforms (SMPs and CLUMPs) 

with their communication characteristics. 
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Chapter 4  

Performance on Small and Large SMPs 

Having analyzed the communication characteristics of the NAS benchmark suite, I 

would like to know their performance on two different SMP systems. An SMP machine is the 

building block of cluster of SMP machines. For this, I would like to see their performance 

under a suite of parallel application benchmarks. In this chapter, I evaluate the performance 

on two SMPs, a 4-way Dell PowerEdge 6650, and a 72-way Sun Fire 15K server. The results 

include memory bandwidth, latencies and bandwidths of point-to-point communications, 

latencies of collective communications and the performance of three versions of the NAS 

parallel Benchmarks, implemented in MPI, OpenMP, and JAVA, respectively. I compare the 

results for different classes, as well as for different programming paradigms. In [24], the 

performance of OpenMP, MPI, and hybrid programming paradigms are provided on Sun Fire 

15K server. However, they only used the BT benchmark for comparative study. The 

performance between the MPI and OpenMP version of a large-scale application benchmark 

suite, SPECseis was compared in [4]. 

4.1 SMP Platforms 

Dell PowerEdge 6650 has 4 Intel Xeon MP processors (1.4-GHz), and 2 GB of RAM. In 

our tests in this chapter and following chapters, Hyper-Threading is turned off on the Dell 

PowerEdge machines. The system uses Linux, RedHat 9, as the operating system, the Intel 

compiler 7.1 and MPICH 1.2.5 for the MPI messaging layer. I use the ch_shmem device 

which is suitable for SMP, because of its highly optimized use of shared memory model on 

SMP. The Sun Fire 15K server has 72 UltraSPARC III Cu processors (1.2-GHz), and 144 GB 
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of RAM. The environment includes the Solaris™ 9 Operating Environment, and Sun MPI 6.0 

for message passing. 

4.2 Memory Bandwidth 

Computer CPUs are getting faster much more quickly than computer memory systems. As 

this continues, more and more programs will be limited in performance by the memory 

bandwidth of the system, rather than by the computational performance of the CPU. In this 

Section, I study the memory bandwidth of the Dell PowerEdge 6650, and the Sun Fire 15K 

server. 

We wrote the benchmark codes for memory bandwidth in MPI and OpenMP based on the 

STREAM benchmark [51]. The STREAM benchmark is specifically designed to work with 

datasets much larger than the available cache on any given system, so that the results are 

(presumably) more indicative of the performance of very large, vector style applications. What 

we do is to have all processes in the MPI version, or threads in the OpenMP version, do a 

number of memory operations at the same time. These operations are copy, scalar, addition, 

and triad, which is the combination of the scalar and addition operations.  

Figure 4.1 shows the memory bandwidth of the Dell PowerEdge 6650, and the Sun Fire 

15K server. For the MPI version with one process, PowerEdge 6650 achieves 0.6 GB/s 

bandwidth, comparing to 0.8 GB/s for the OpenMP version with one thread. The OpenMP 

version also has a better performance than the MPI version when running with two 

processes/threads. They both have degrading performance for 4 processes or threads. The Sun 

Fire 15K server shows very good scalability. The performance is dropping for 71 

processes/threads. The MPI version has similar performance as the OpenMP version, which 

indicates that Sun MPI is highly optimized using shared memory within the SMP. The Dell 

PowerEdge 6650 has a larger memory bandwidth when running with 2 processes/threads than 

the Sun Fire server. 
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(b) 
Figure 4.1. Memory bandwidth on (a) Dell PowerEdge 6650 (b) Sun Fire 15K. 

 

4.3 Communication Latency and Bandwidth  

 I am also interested in the performance at the MPI level. In this section, I provide the 

performance of point-to-point latencies and bandwidths. Latency is defined as the time it 

takes for a message to travel from the sender process address space to the receiver process 

address space. I provide here our framework for measuring the latency of a message transfer. 

I do the standard ping-pong test under different MPI send modes; measure the latency with 

different send buffers; and find the unidirectional latency. In the ping-pong test, the sender 

sends a message and the receiver upon receiving the message, immediately replies with the 

same message size [31]. In the unidirectional test, the sender sends a number of messages and 

the receiver replies after receiving all these messages. 

 The bi-directional latency test is the ping-pong test that is repeated sufficient number of 

times to eliminate the transient conditions of the network. Then, the average round-trip time 
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divided by two is reported as the one-way latency. This test is repeated for messages of 

increasing sizes. I tested using matching pairs of blocking sends and receives under different 

MPI send modes; that is, the standard mode, the synchronous mode, the buffered mode, and 

the ready mode. 

In the standard latency test with buffer management, I modify the standard ping-pong test 

such that each send operation uses a different message buffer. This test exposes the buffer 

management cost at the MPI level. The results are obtained with 16 different buffers. I 

experimented with different message sizes. 

The unidirectional bandwidth test shows the capacity of the network. In this measurement, 

the sending process constantly pumps messages into the network without waiting for an 

acknowledgement. The receiving node sends back an acknowledgment upon receiving all the 

messages. Bandwidth is reported as the total number of bytes per unit time delivered during 

the time measured. 

All the results are averaged over running the tests for 1000 times. I do not have the 

results for the synchronous mode for the Sun Fire 15K due to limited exclusive access to the 

system. Figure 4.2 shows the latencies on Dell PowerEdge 6650, and Figure 4.3 shows the 

results on Sun Fire 15K server. For the Dell PowerEdge 6650, the latency stays at 10 µs for 

up to 512-byte message, for the standard, ready, buffered and diffbuf modes. The 

Unidirectional mode has a little bit larger latency, 12 µs for small size messages, and 32 µs 

for the synchronous mode. The Sun Fire 15K server has a better performance, 3 µs up to 

64-byte messages for unidirectional ping, 5µs for standard ready and diffbuf, and 6 µs for 

buffered mode. For large message size, the Sun Fire 15K server also has smaller latency.  

Figure 4.4 and Figure 4.5 show the bandwidth on these two systems. The Dell 

PowerEdge 6650 achieves up to 600 MB/s, while the Sun Fire 15K server gets up to around 

550MB/s. The performance of Dell PowerEdge 6650 is degrading after 64 Kbytes messages. 

This might be due to several reasons: protocol switch from eager to rendezvous protocol, 

poor MPI implementation, or lack of sufficient memory. 
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Figure 4.2. Point-to-point latency on Dell PowerEdge 6650. 

 
 

  
Figure 4.3. Point-to-point latency on Sun Fire 15K. 
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Figure 4.4. Bandwidth on Dell PowerEdge 6650.  
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Figure 4.5. Bandwidth on Sun Fire 15K. 

 I have presented the MPI latencies and bandwidths on Dell PowerEdge 6650 and Sun 

Fire 15K. From the results, it can be concluded that the Sun Fire 15K server has a better 

memory hierarchy system and a better MPI implementation than the MPICH on the Dell 

PowerEdge 6650 server. The Dell PowerEdge 6650 server has a degrading performance for 

message sizes larger than 64 Kbytes. In the next section, I will look at the performance of 

collective communications, an important part in message passing applications. 

4.4 Collective Communications 

 Efficient implementation of collective communication operations is one of the keys to 

the performance of parallel applications. I have chosen the broadcast, scatter, gather, alltoall, 

alltoallv, reduce and allreduce operations as representatives of the mostly used collective 

communication primitives in parallel applications. I have measured the performance in terms 

of their average completion time over 500 times running. An overall look at their running 

time shows that the reduce and allreduce operations take the longest, and broadcast 

operations the shortest.  

On the Dell PowerEdge 6650, I present the results running with 4 processes. On the Sun 

Fire 15K, I provide the results running with 4 and 64 processes. Figure 5.7 shows the 

completion time of collective communications on Dell PowerEdge 6650, and Figure 5.8 shows 

the results on Sun Fire server, both with 4 processes. For the Sun Fire 15K, alltoall and 

alltoallv have a special long time for 1 byte and 512 bytes message size. I have not found any 

reason for that. In general, Sun Fire 15K server has a better performance. 
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Figure 4.6. Latency of collective communications on Dell PowerEdge 6650. 

 

 
Figure 4.7. Latency of collective communications on Sun Fire 15K, 4 processes. 

 

 
Figure 4.8. Latency of collective communications on Sun Fire 15K, 64 processes.  
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4.5 Performance of Application Benchmarks 

 Having known the performance at the MPI level, it is the time to run some application 

benchmarks to evaluate their performance. I evaluate the performance of NPB 2.3 (MPI 

version), NPB 3.0 (JAVA version) and NPB 3.0 (OpenMP version) on our 4-way, and 

72-way SMP nodes. Because of the size of the SMPs, I run the NPB suite with number of 

processes/threads 1, 2 and 4 for the 4-way SMP, and from 1 to 64 for the 72-way SMP, 

respectively. I have chosen the class A and class B problem sizes, due to the memory size of 

the Dell PowerEdge 6650. I ran all the benchmarks three times, and the results shown in this 

section are the average completion time. Note that the NPB 3.0 JAVA version does not have 

an implementation for EP. I do not have the results of EP and IS for all OpenMP cases due to 

memory limitation. 

 Figure 4.9 shows the speedup for the MPI, OpenMP and JAVA versions of the NAS 

parallel benchmarks on Dell PowerEdge 6650. I include the results for MPICH on two 

devices, the ch_p4 and ch_shmem. The ch_shmem has a better scalability than the ch_p4, 

which indicates that the ch_shmem has a better implementation on SMP. For the MPI results, 

the performance of class A and class B are similar except for CG. I believe it is because the 

serial version of the CG program of MPI version takes quite long time for class B. Although 

LU has many small size messages, discussed in chapter 3, the speedup is better than the other 

benchmarks except for CG and EP. It is because the Dell PowerEdge 6650 does not have a 

good performance for large messages. EP does not have many communications. It has a 

linear speedup. FT has a poor performance because it requires larger memory, exceeding our 

memory system size. 
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Figure 4.9. Speedup on Dell PowerEdge 6650, Class A and Class B, of (a) NPB2.3-MPI 
(b) NPB3.0-OMP (c)NPB3.0-JAVA. 
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For NPB3.0 OMP version, the performance of class A is better than class B. MG and SP 

have almost the same performance in class A and class B. BT and FT have lower speedup 

because they require more memory. Figure 4.9 (c) shows the speedup of NPB3.0 Java version. 

The performance of class A and class B are similar. MG has the best performance, almost 

super-linear. In general, NPB3.0 MPI version on device ch_shmem has the best performance 

in the three versions of NAS benchmarks. NPB3.0 Java has slightly better performance than 

NPB2.3 OMP. The speedups of NPB3.0 OMP with 4 threads are all around or smaller than 

2.5.  

   

(a) 

   

(b) 

   

(c) 

Figure 4.10. Speedup on Sun Fire 15K, Class A and Class B, of (a) NPB2.3-MPI (b) 
NPB3.0-OMP (c)NPB3.0-JAVA. 
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For the Sun Fire 15K server, I have chosen the class B. (Unfortunately I did not have 

enough exclusive access time to get the results for class A.) Figure 4.10 (a) shows the 

speedup of NPB 2.3 MPI. All benchmarks have very good scalability. CG has the best 

performance, while FT has the worst. NPB 2.3 MPI has the best performance in three 

versions, while NPB 3.0 JAVA does not have good scalability.  

Table 4.1 compares the execution times for the class B on two SMPs, for applications 

running with 4 threads/processes. In most of the MPI and OpenMP version of the 

benchmarks, the Sun Fire 15K shows a better performance. For the Java version, except for 

LU and FT, the Dell PowerEdge 6650 shows a better performance than the Sun Fire 15K.  

  

Table 4.1. Execution time of NPB 3.0 OMP, NPB 3.0 Java, NPB2.3 MPI, Class B, on 
Dell PowerEdge 6650 and Sun Fire 15K, with 4 threads or processes 

MPI Dell p4 Dell shmem SunFire OMP Dell SunFire JAVA Dell SunFire

CG 815.9  668.9  283.0 CG 934.0 753.9 CG 796.9  1010.1 
LU 796.8  2296.0  1051.8 LU 1022.5 773.4 LU 16261.5 6090.5 
FT 295.5  411.2  250.8 FT 326.9 201.2 FT 1023.0  977.8 
MG 59.8  82.6  58.0 MG 38.7 35.1 MG 68.5  180.7 
BT 3290.2  3302.0  1962.2 BT 1150.1 662.8 BT 3079.4  3637.6 
SP 1728.0  2877.9  1489.3 SP 609.5 739.7 SP 1170.6  3628.0 

 

4.6 Summary 

In this chapter, I compared the performance of memory bandwidths, point-to-point 

latencies and bandwidths at the MPI level. I also compared three versions of the NAS 

applications benchmarks on two SMPs, implemented in MPI, OpenMP and Java.  

I discovered that the large-scale SMP (Sun Fire 15K server) has a better MPI 

performance, while the small-scale SMP (Dell PowerEdge 6650) has a degrading 

performance for large size message transfers. The MPICH implementation of Dell 

PowerEdge 6650 is not as good as the Sun MPI implementation. For both systems, the MPI 

version of the application benchmarks has a better scalability than the OpenMP and Java 

versions. 
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Because of the excellent performance of the Sun MPI on the Sun Fire 15K server, I am 

interested to see how Sun MPI has been implemented, and how it performs among different 

nodes over the Sun Fire Link interconnect. In chapter 5, I will look into the RSM user-level 

communication layer over the network hardware. Then the performance at higher level will 

be provided on both the Sun Fire Link interconnect and the Myrinet in chapter 6. 
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Chapter 5  

Remote Shared Memory over Sun Fire Link Interconnect 

In chapter 4, I have studied the performance of two SMPs which can be used as a node in 

a CLUMP. The communication overhead is one of the most important factors affecting the 

performance of high-performance cluster computer systems. The interconnection network 

hardware and the communication system software and libraries are the keys to the 

performance. In this chapter, I introduce a new memory-based interconnect, Sun Fire Link, 

recently released by the Sun Microsystems. I study the user-level messaging layer, Remote 

Shared Memory (RSM) [45] and the Sun MPI [48] implementation on top of RSM in section 

5.1, along with the performance of RSM API in section 5.2.  

5.1 Remote Shared Memory 

The Sun Fire Link cluster interconnect is used to cluster the Sun Fire 6800s and the Sun 

Fire 15K/12K systems. Information is transferred over fiber-optic communication links. Each 

link supports full-duplex, point-to-point communication [34]. The raw data transfer rate of 

each link is 1.64 GB/s. After coding, framing and protocol overhead, one link can 

theoretically sustain 1 GB/s of unidirectional user data bandwidth [34]. RSM is a 

high-performance memory-based mechanism, which implements user-level inter-node 

messaging with direct access to memory that is resident on remote nodes. Its performance 

directly affects the performance of upper software layers such as MPI, and application levels. 
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Table 5.1 shows some of the RSM API calls with their definitions. The complete API 

calls can be found in [45]. The API calls can be classified into five categories: interconnect 

controller operations, cluster topology operations, memory segment operations, barrier 

operations, and event operations. 

Table 5.1. RSM API calls and their definitions (partial). 
Interconnect controller operations   

rsm_get_controller get a controller handle 

rsm_release_controller release a controller handle 

Cluster topology operations           

rsm_free_interconnect_topology get or free interconnect topology 

rsm_get_interconnect_topology get interconnect topology 

Memory segment operations including segment management and data access 

rsm_memseg_export_create resource allocation functions for export memory segments 

rsm_memseg_export_destroy resource release functions for export memory segments 

rsm_memseg_export_publish allow a memory segment to be imported by other nodes 

rsm_memseg_export_republish re-allow a memory segment to be imported by other nodes 

rsm_memseg_export_unpublish disallow a memory segment to be imported by other nodes 

rsm_memseg_import_connect create logical connection between import and export segments 

rsm_memseg_import_disconnect break logical connection between import and export segments 

rsm_memseg_import_get read from a segment 

rsm_memseg_import_put write to a segment 

rsm_memseg_import_map map imported segment 

rsm_memseg_import_unmap unmap imported segment 

Barrier operations                    

rsm_memseg_import_close_barrier remote memory access error detection functions 

rsm_memseg_import_destroy_barrier destroy barrier for imported segment 

rsm_memseg_import_init_barrier create barrier for imported segment 

rsm_memseg_import_open_barrier remote memory access error detection functions 

rsm_memseg_import_order_barrier impose the order of write in one barrier 

rsm_memseg_import_set_mode set mode for barrier scoping 

Event operations                     

rsm_intr_signal_post signal for an event 

rsm_intr_signal_wait wait for an event 
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5.1.1 Remote Shared Memory Structure 

Communication under the RSMAPI involves two basic steps: 1. segment setup and 

teardown; 2. the actual data transfer operations using the direct read and write models [2][31]. 

In essence, an application process running on one node, for example process 0 in Figure 5.1, 

should first create an RSM export segment from its local address space, and publish it to 

make it available for other processes. Then one or more remote processes running on remote 

nodes, for example process 1 in Figure 5.1, create an RSM import segment with a virtual 

connection between the import and export segments across the memory-based interconnect in 

order to connect to them. This is called the setup step. After the establishment of connection 

between the export and import segments, the processes can communicate with each other by 

writing into and reading from the memory. This is called the data transfer phase. After the 

data are successfully transferred, the last step is to tear down the connection between the 

export process and the import process. The import side process disconnects the connection 

and the export side process unpublishes the segments and destroys the memory handle. The 

RSMAPI provides barrier and signal notification mechanisms to support remote access error 

detection and synchronization [45]. 

                       Process 0 (export side)    Process 1 (import side) 

Get_controller

Exorit_create

Exprot_publish

Export_unpublish

Export_destroy

Release_controller

Import_disconnect

Release_controller

Read/Write

Import_connect

Get_controller

 
Figure 5.1. Setup, Data transfer, and Tear down in Remote Shared Memory 

communication. 

Setup 

Data Trasnfer 

Tear down 
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The “Import” side can use three different methods, namely “map”, “put”, and “get”, to 

read or write data. The “map” method uses CPU block store operation to write to the address, 

which is mapped to the exported memory segment from the other process. “put” and “get” 

writes to and reads from the exported memory segment through the connection, respectively. 

Figure 5.2 illustrates the main steps for each of the three approaches. The barrier operations 

ensure the data transfers are successfully completed. The signal operation is used to inform 

the “Export” side that the “Import” side has written something onto the exported segment. 

Barrier and signal operations may or may not be used for small messages, because of the 

high overhead of those operations. 

                     Get (Read)          Put (Write)      Map (Read or Write) 

Initiate barrier

Close barrier

Initiate barrier

Open barrier

Order barrier

Put

Order barrierOrder barrier

Open barrier

Get

Initiate Barrier

Open barrier

Block store

Destroy barrier

Close barrier

Map

Close barrier

Destroy barrier

Signal

Destroy barrier

Signal

Unmap
 

  (a)                 (b)                 (c) 

Figure 5.2. Different steps in the data transfer phase. (a) get (b) put (c) map. 

 

5.1.2 Performance at the Remote Shared Memory level 

The RSMAPI is the closest layer to the Sun Fire Link, so I would like to test the 

performance of RSMAPI calls, (described in Table 5.1), with varying parameters over the 

Sun Fire Link interconnect. Communication of data using RSMAPI involves two processes 

running on two different nodes, one as the export side and the other as the import side.  

Table 5.2 shows the execution time of several RSMAPI calls. For those that are affected 

by the size of memory segment, 16 KB memory size is used. The get_controller takes the 
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longest, 841 µs. Before the export side can be accessed by the import side, it needs to execute 

get_interconnect_topology, export_create and export_publish primitives. This takes 1.7 ms 

long. This is quite long compared to a put operation. Similarly, the import side needs to run 

get_controller and import_connect primitives, which takes 1.0 ms long. Figure 5.3 shows that 

the “connect” and “disconnect” calls use more than 80% of the total communication time at 

the import side. To get a better performance, these preparations cannot be done for every 

communication. In the Sun MPI implementation, they are done in the initialization phase. 

The time for barrier operations, such as open, close and signal are also not small compared to 

the time to “put” a small message size. That is why explicit barrier is not used for small 

message size transaction. 

Figure 5.4 shows the execution time of export_create, export_publish, export_unpublish, 

export_destroy and release_controller with different memory segment size. The 

export_publish is most sensitive to the segment size. Figure 5.5 shows the performance of put 

and get. To write a message smaller than 64 bytes, the put takes 35 µs long, but it takes only 

0.6 µs long for a 64-byte message. That is why Sun MPI writes a complete 64 bytes to the 

postbox even if the message size is smaller than 64 bytes. The put has a much better 

performance than the get, except for message sizes smaller than 64 bytes. To get 16 Kbytes, it 

takes 373 µs long, while put takes only 28 µs long for the same message size. That is why 

Sun MPI implementation uses put rather than get. 

Table 5.2. Execution time for RSMAPI calls. 16KB memory size is used for 
“export_create”, “export_publish”, “export_unpublish”, “export_destroy”, 

“release_controller”, and “import_put”. 
Export side Time(µs) Import side Time(µs)
get_interconnect_topology 12.65 import_connect 173.45
get_controller 841.00 import_map 13.56
free_interconnect_topology 0.61 import_init_barrier 0.33
export_create 103.61 import_set_mode 0.38
export_publish 119.36 import_open_barrier 9.93
export_unpublish 73.48 import_order_barrier 16.80
export_destroy 16.73 import_put 27.73
release_controller 3.63 import_close_barrier 7.13

import_destroy_barrier 0.14
import_signal 23.78
import_unmap 21.40
import_disconnect 486.31  
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Figure 5.3. Percentage comparison for the export and import side. (16 KB) 
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Figure 5.4. Execution times of several RSMAPI calls. 
 

 
Figure 5.5. Comparison of the RSM put and get with different message sizes. 

 

 

0

50

100

150

200

1 4 16 64 256 1k 4k

Size of data (bytes)

Ti
m

e 
(µ

s)

import_put import_get

0

50000

100000

150000

200000

250000

1 16 256 4k 64k 1M

Size of data (bytes)

Ti
m

e 
(µ

s)

import_put import_get

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Export

destroy

unpublish

publish

create

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Import

disconnect

signal

destroy_barrier

close_barrier

import_put

order_barrier

open_barrier

set_mode

init_barrier

connect 



Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 62 

 

5.1.3 MPI Implementation over Remote Shared Memory 

In this section, I look at how MPI_Send and MPI_Recv primitives have been 

implemented in Sun MPI over RSM. Because the segment setup and teardown have quite 

large overhead as seen in Section 5.2, Sun MPI establishes several logical connections to 

each node when the program starts. Each connection is also called a stripe.  

  

 Figure 5.6. Structure of messages. 

Messages are sent in one of two fashions short messages (smaller than 3912 bytes) and 

long messages [31]. Short messages are fit into multiple postboxes, 64 bytes each, because 

remote memory accesses are provided only to full 64-byte cache lines. Buffers, barriers, and 

signal operations are not used due to the high overhead. Note that even for messages smaller 

than 64 bytes, a full 64-byte postbox is used. Long messages are sent in 1024-byte buffers 

under the control of multiple postboxes, shown in Figure 5.6. Each postbox in the queue has 

the pointer to point to the buffer. These postboxes are sent to receiver who can recover the 

messages from buffers. Barriers are opened for each stripe to make sure the writes are 

successfully done.  

The environment variable MPI_POLLALL can be set to “1” or “0”. In the general polling 

(MPI_POLLALL=1), Sun MPI polls for all incoming messages even though their 

corresponding receive calls may or may have not been posted earlier. In the directed polling 

…. 
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(MPI_POLLALL=0), the implementation searches only for the specified connection. 

Directed polling has a better performance when the user’s code is perfectly organized. 

To write the data, the “rsm_memseg_import_put” API call or the CPU block store 

operation can be used at the sender side, where “put” has a better performance than the “get”. 

Figure 5.7 shows the flowchart for MPI_Send and MPI_Recv primitives, which are using the 

CPU block store operation to write data.  

When “put/get support” is not defined, block store operations are used in MPI_Send. 

There are three block store operations which can be used, atomic_copy, atomic_copy64, and 

cheetah_copy. Atomic_copy can write any length of data. The atomic_copy64 is used to write 

only 64-byte cache lines. The cheetah_copy perform the prefetch technique so it has to write 

data more than two cache lines. Prefetch is a technique that attempts to minimize the time a 

processor spends waiting for instructions to be fetched from memory. It will try to fetch next 

memory copy instruction before the previous copy completes. 

For small messages, atomic_copy64 is used to write postboxes (64 bytes) directly. Long 

messages are divided and copied into buffers. For each buffer, if there are more than 8 cache 

lines data to write, cheetah_copy is used, where prefetching can provide better performance. 

Otherwise, data will be written using atomic_copy64 with 64 bytes at a time. Figure 5.8 shows 

when each block store operation is used. 
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Figure 5.7. Pseudo-nodes for (a) MPI_Send, (b) MPI_Recv. 

if send to itself 

        copy the message into the buffer 

else if general poll 

                exploit the progress engine 

        endif 

        establish the forward connection (if not done yet) 

        if message < short message size (3912 bytes) 

                set envelop as data in the postbox 

                write data to postboxes  

        else if message < rendezvous size (256 KB) 

                        set envelop as eager data 

               else 

                        set envelop as rendezvous request 

                        wait for rendezvous Ack 

                        set envelop as rendezvous data 

               endif 

               reclaim the buffer if message Ack received 

               prepare the message in cache-line size 

               open barrier for each connection 

                        write data to buffers  

               close barrier 

               write pointers to buffers in the postboxes 

        endif 

endif  

 (a) MPI_Send pseudo-code 

if receive from itself 

        copy data into the user buffer 

else if general poll 

                exploit the progress engine 

        endif 

        establish the backward connection (if not done yet) 

        wait for incoming data, and check out the envelope 

        switch (envelope) 

                case: rendezvou request 

                        send rendezvous Ack 

                case: eager,  rendezvou data, or postbox data 

                        copy data from buffers to user buffer 

                        write message Ack back to the sender 

        endswitch      

endif  

(b) MPI_Recv pseudo-code 
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Figure 5.8. Block store opertaioins. 
 

5.2 Summary 

In this chapter, I studied the RSM model, along with the performance of its API calls. 

However, it should be pointed out that the performance seen at the user-level may not be 

delivered at the higher levels. In the next chapter, I will evaluate the performance of Sun Fire 

link interconnect and Myrinet at the micro-benchmark levels. Then I can find exactly how 

much overhead is added by the MPI implementation on top of the user-level protocol. 

 

If for each buffer there are more than 8*64 data to write 

cheetah_copy 

atomic_copy64 the leftovers 

else 

atomic_copy64 
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Chapter 6  

SMP Clusters’ Performance at the Micro-benchmark and 

Application Levels 

 In chapter 5, I introduced the Remote Shared Memory model. However, applications 

may run over another layer on top of the user-level. For our NAS benchmarks, this layer is 

the MPI layer. I have studied how Sun MPI point-to-point communications are implemented 

on top of RSM. Now, it is the time to find the actual overhead added by the Sun MPI 

messaging layer. In this chapter, I evaluate the performance of two popular interconnects at 

the micro-benchmark level: one is the Sun Fire Link interconnect and the other is the Myrinet. 

I also provide the performance of our Myrinet cluster at the application level. The results 

presented in this chapter include point-to-point latencies and bandwidths, parameterized 

LogP performance, different traffic patterns bandwidths, collective communications, and 

application benchmarks.   

6.1 Cluster Platforms 

 I would like to test the performance on two clusters of SMPs, one is four Sun Fire 6800 

nodes interconnected by the Sun Fire link interconnect, and the other is eight Dell PowerEdge 

2650 nodes interconnected by the Myrinet. The Sun Fire 6800 has 24 UltraSPARC-III Cu 

processors and 24 GB of shared memory. The Sun Fire 6800 nodes offer a flat memory 

system, such that all memory locations approximately have the same distance to each 

processor. The Sun MPI library uses the Remote Shared Memory (RSM) model to implement 

high performance messaging protocol between the nodes, and uses shared memeory model 
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within the nodes. Each Dell PowerEdge 2650 node has two Intel Xeon MP Processors 

running at 2 GHz with 64-bit PCI-X slots for Myrinet interconnect. I used the MPICH-GM 

1.2.5..12 as the message passing library on top of GM 2.1, which has been very recently 

released as the user-level message-passing system for the Myrinet networks. 

6.2 Latency 

I present some measurements similar to the ones introduced in chapter 4. The 

measurements have been done for on-node communication, as well as for off-node 

communication. I also measure the MPI latency under load when the sending and receiving 

nodes are on different nodes. I do the average standard ping-pong latency test when 

simultaneous messages are in transit between pairs of send and receive processes. Note that, 

the send and receive nodes are on different nodes, and pair-wise processes are spread evenly 

across different nodes in the cluster.  

In our experiments on the Sun Fire Link, I have used the default environment variable 

MP_POLLALL equal to 1. Figure 6.1 shows the latency for on-node pair-wise 

communication on Sun Fire Link. The latency for 1-byte message is 2 µs for unidirectional 

ping, 3 µs for Standard, Ready, Buffered, Synchronous, and the Diff buf modes. For the 

unidirectional, it remains at 2 µs up to 64 bytes, and for bidirectional ping, is almost constant 

at 3 µs. It is clear that the buffered mode has a higher latency for larger messages. It is 

interesting to see that for messages up to 1KB the latency is 5 µs for the unidirectional ping, 

and between 7 to 9 µs for bidirectional. The latency for on-node communication on Myrinet 

is shown in Figure 6.2. The on-node latency for 1-byte message remains at 1.3 µs for 

unidirectional ping, and 1.6 µs for Standard, Ready, Synchronous, Diff buf modes, and 2.5 µs 

for the buffered mode.  

Figure 6.3 shows the latency for off-node communication on Sun Fire Link, where the 

endpoints are on different SMP machines. Quite interestingly, the latency for 1-byte message 

remains at 2 µs for unidirectional ping, but 5 µs for Standard, Ready, Synchronous, Diff buf 

modes, and 6 µs for the buffered mode. This is almost fixed up to 64 bytes. Figure 6.3 shows 
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that the MPI uses the short message method for up to 3912 bytes messages and then switches 

to the long message method for larger messages. For off-node communications, the diff buf 

has slightly worse performance compared to others (except for the buffered mode). For large 

size messages, the off-node communications have similar performance with on-node 

communications. 

  

 

 

 

 

 

 

 

Figure 6.1. On-node MPI latencies on Sun Fire Link cluster.  
 

 

Figure 6.2. On-node MPI latencies on Myrinet cluster.                           

The latency for off-node communication on the Myrinet is shown in Figure 6.4. In the 

synchronous mode, the Myrinet shows quite large latency, equal to 23 µs for up to 64 byte 

message. Latency for 1-byte message remains at 5 µs for unidirectional ping, 6 µs for Standard, 

Ready, Diff buf modes, and 7 µs for the buffered mode. The off-node latencies for small size 

message on the Myrinet are a little bit larger than on the Sun Fire Link. For large size message, 
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off-node communications have better performance than on-node communications. Table 6.1 

shows a summary of small message size latencies for on-node and off-node communications 

for both clusters. Table 6.2 compares the best reported short message latencies for MPI over 

Quadrics QsNet [27], and QsNet II [1], Myrinet D-card [27], Myrinet E-card [41], InfiniBand 

[27], Sun Fire Link [34], and our Sun Fire Link *. The performances of the Sun Fire Link 

interconnect for short messages are better than the results for MPI over QsNet and InfiniBand, 

but almost comparable to the results for QsNet II and Myrinet E-card. The performance of our 

Myrinet for short messages is not as good as reported in [41]. 

 

 
Figure 6.3. Off-node MPI latencies over Sun Fire Link.  

 

 
Figure 6.4. Off-node MPI latencies over Myrinet.   
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I also measured the average standard ping-pong latency test when simultaneous messages 

are in transit between pairs of send and receive processes, as shown in Figure 6.5. For each 

curve, the message size is held constant, while the number of off-node pairs is increased. The 

results are interesting as the latency in each case for both interconnects does not change much 

as the number of pairs is increased. The flatness of the curves verifies that Sun Fire Link and 

Myrinet interconnects deliver a robust low latency for short messages that is not sensitive to 

the load. For Myrinet, the latencies stay at 6 µs from 2-byte to 64-byte messages, running 

with up to 8 processes. Sun Fire Link stays at less than 6 µs up to 8-byte messages, 7µs for 

16-byte messages, and more than 10 µs for 32-byte messages. 

                                                 
Table 6.1. Half-way ping-pong latency for small message sizes 

        Sun Fire Link             Myrinet 

Message 
Size (bytes) 

On-node 
(µs) 

Off-node 
(µs) 

On-node 
(µs) 

Off-node 
(µs) 

1 2.8 5 1.5 6.2 
2 2.8 4.9 1.5  5.8  

4 2.8 5 1.5  5.9  

8 2.8 5 1.6  6.0  

16 2.9 5.9 1.5  6.2  

32 3.1 6 1.6  6.2  

 
Table 6.2. Comparison of Sun Fire Link and Myrient short message latency (in 

microseconds) with other high-performance interconnects. 

QsNet 
QsNet 
II 

Myrinet 
(D card) 

Myrinet 
(E card) Myrinet*

InfiniBand Sun Fire Link 
(Sun) 

Sun Fire 
Link* 

 4.6 ~3 6.7  3.5  6.2 6.8 3.7 5 
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Figure 6.5. Off-node latency under load.  

   

Figure 6.6 shows the overhead of the standard MPI ping-pong latency over the RSM put 

primitive. Note that I have assumed the same execution time for put with 1 to 64 bytes.  

I measured the communication latencies under different modes on Sun Fire Link and 

Myrinet in this section. Myrinet has smaller on-node latencies for small size message, but the 

Sun Fire link has a better performance for off-node communications and for large size 

message.  
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Figure 6.6.  RSM put and MPI latency comparison. 
 

6.3 Bandwidth 
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receive processes. In this test, send and receiving nodes are on different nodes, and pair-wise 

processes are spread evenly across different nodes in the cluster.  

Figure 6.7 presents the bandwidth for on-node communication on the Sun Fire Link and 

the Myrinet. The unidirectional bandwidth can be considered as the peak performance of the 

network, while sending packets in both directions may expose the network bottlenecks. For 

Sun Fire Link, the unidirectional ping achieves the highest bandwidth of 695 MB/s for 

internode communication. The network shows roughly similar performance for both 

unidirectional and bidirectional cases (except for the buffered mode). The bidirectional ping 

achieves a bandwidth of approximately 660 MB/s, except for the buffered mode, where it has 

the lowest bandwidth of 346 MB/s. This is clear as it has the overhead of buffer management. 

However, the diff buff has a better performance of 582 MB/s. It is interesting to see that for 

on-node communication, except for the buffered mode, all others achieve roughly the same 

maximum bandwidth. For Myrinet, one can see clearly that the on-node bandwidths arrive at 

maximum 700 Mbyte/s around 4 Kbytes. Except for diffbuf mode, the bandwidths start to 

drop from 64 Kbytes. This shows that either MPICH-GM does not have good implementation 

for on-node large size messages, or the memory system cannot handle such large size 

messages.  

 

Figure 6.7. On-node bandwidths.  
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message protocols is at the 3912 bytes message size. Except for buffered mode, both 

unidirectional ping and bidirectional ping achieve around 600 MB/s. For Myrinet, the 

bidirectional ping except for the buffered mode, achieves a bandwidth of approximately 440 

MB/s, which is not as good as the Sun Fire Link. The buffered mode, where it has the lowest 

bandwidth of 360 MB/s is similar to the Sun Fire Link. Table 6.3 shows a summary of 

maximum bidirectional bandwidths for on-node and off-node communications. Table 6.4 

compares the reported bandwidths for MPI over Quadrics QsNet [27], and QsNet II [1], 

Myrinet D-card [27], Myrinet E-card [41], InfiniBand [27], Sun Fire Link [34], and our Sun 

Fire Link *. 

 
 

 

 

 

 

 

 

                                                           

Figure 6.8. Off-node bandwidths.  
 

Table 6.3. Bidirectional bandwidth 
  Sun Fire Link Myrinet 

  On-node Off-node On-node Off-node 
Bandwidth (MB/s) 658.6 659.5 720.4  443.9  

 
Table 6.4. Comparison of Sun Fire Link and Myrinet MPI bandwidths (Mbytes/s) with 

other high-performance interconnects.  

QsNet 
QsNet 

II 
Myrinet 
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Myrinet 
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InfiniBand Sun Fire Link 
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Link* 

308 900 235 495  444 841 792 695 
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Figure 6.9 shows the aggregate bandwidth with a standard bidirectional ping-pong test for 

varying number of communicating pairs, on the two interconnects. The aggregate bandwidth 

is the sum of individual bandwidths. Again, the inflection point is shown at the 3912 bytes 

message size for the Sun Fire Link in Figure 6.8. From 256kB message size, rendezvous 

protocol is used, where the sender needs to wait for the acknowledge message from receiver. 

Figure 6.8 also shows that up to 256kB message size, the network is capable of providing 

higher bandwidth with increasing number of communication pairs. However, with 256kB 

message size and above, aggregate bandwidth is higher for 16 pairs of communication than 

for 32 pairs. For 16 processes, Myrinet achieves the maximum bandwidth 2500 Mbyte/s. 

 

 
Figure 6.9. Aggregate off-node bandwidth.  
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components of a communication step. Essentially, it captures the relevant aspects of message 

passing systems. It considers the communication cost as well as the cost for integrating 

communication into computation. LogP models sequences of point-to-point communications 

of short messages. L is the network hardware latency for one-word message transfer. O is the 

combined overhead in processing the message at the sender (os) and receiver (or). P is the 

number of processors. The gap, g, is the minimum time interval between two consecutive 

message transmission from a processor. LogGP model [3] extends LogP to also cover long 

messages. The Gap per byte for long messages, G, is defined as the time per byte for a long 

message. 

An efficient method for measurement of LogP parameters has been recently proposed in 

[25]. The method is called parameterized LogP, shown in Figure 6.10, where it subsumes 

both LogP, and LogGP models. This model defines five parameters (L, os, or, g, P). In this 

model, the latency, L, is the end-to-end latency from a process to another process, combining 

all contributing factors. The most significant advantage of this method over the method 

introduced in [22] is that it only requires saturation of the network to measure g(0), the gap 

between sending messages of size zero. For a message size m, the latency, L, and the gaps for 

larger messages, )(mg , can be calculated from g(0), and round trip times, RTT(m), as shown 

in Equation 1, and Equation 2. Table 6.5 defines LogP/LogGP parameters in terms of 

parameterized LogP. 

)0(
2

)0( gRTTL −=                                 (1) 

)0()0()()( gRTTmRTTmg +−=                    (2) 
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Figure 6.10. Message transmission modeled by parameterized LogP. 

 
Table 6.5. LogP/LogGP parameters in terms of parameterized LogP. 

LogP Parameterized LogP 

L )1()1()1( rs oogL −−+  

O 

2
)1()1( rs oo +

 

G )1(g  

 

We applied the parameterized LogP method to our Sun Fire cluster and Myrinet cluster. 

We used two processes on different SMP nodes. The os, or, and g for Sun Fire Link are drawn 

in Figure 6.11(a). It is interesting to see that all three parameters, os (3 µs), or (2 µs), and g 

(2.29 µs), remain fixed for the message sizes of one to 64 bytes. However, they increase with 

larger messages sizes (except with a decrease at 3912 bytes). It seems to us that probably the 

network interface is not quite efficient as the CPU has to do more work with larger message 

sizes, both at the send and at the receiving sides. The decrease at 3912 bytes message size is 

related to switching from the short message protocol to long message protocol. Figure 6.11(b) 

shows the os, or, and g for the Myrinet. All three parameters, os (0.9 µs), or (1.1 µs), and g 

(2.9 µs), also remain fixed for the message sizes of one to 64 bytes. Both os and or have a 

sudden increase at 16 Kbytes. The two interconnects show similar gaps, but Myrinet cluster 

has smaller os and or for small messages. Table 6.6 shows the LogP parameters.  
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Figure 6.11. LogP parameters, g(m), os(m), and or(m). (a) Sun Fire Link (b) Myrinet. 
 

Table 6.6. LogP parameters. 
LogP Sun Fire Link (us) Myrinet (us)

L 0.51 4.2 
o 2.5 0.8 
g 2.29 2.3 

 

6.5 Traffic Patterns 

In the previous section, I analyzed the performance under specific conditions to get the 

“peak” performance of the networks. Even in the “under load” experiments, the destination of 

each process to communicate with and the size of message are fixed. In this section, I expand 

the experiments with some different conditions; that is, different message sizes and different 

destinations. In these experiments, we analyze the network performance under several 

different traffic patterns, where each node selects a random or fixed destination for its 
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transactions. These communication patterns are mostly representative of parallel numerical 

algorithm behavior found in scientific applications [31]. We generate random message size 

and inter-arrival time between two transactions with two different distributions: uniform and 

exponential. Note that these patterns may generate both on-node and off-node traffic. 

6.5.1 Uniform Traffic 

The uniform traffic is one of the most frequently used traffic patterns for evaluating the 

network performance [31]. Each node selects its destination randomly with uniform 

distribution. 

6.5.2 Permutation Patterns 

In these traffic patterns, each node communicates with a fixed destination process. We 

experiment with the following permutation patterns: 

 Bit-reversal. The process with binary coordinates 0121 ,,...,, aaaa nn −−  always 

communicates with process 1210 ,,...,, −− nn aaaa . 

 Butterfly. The ith butterfly permutation is defined by  

iβ ( 01111 ,,,,,..., aaaaaa iiin −+− ) = iiin aaaaaa ,,...,,,,..., 11011 −+−  (0 ≤ i ≤ n-1). 

 Complement. The process with binary coordinates 0121 ,,...,, aaaa nn −−  always 

communicates with process 0121 ,,...,, aaaa nn −− . 

 Matrix transpose. The process with binary coordinates 0121 ,,...,, aaaa nn −−  always 

communicates with process 
2

101
2

,...,,,..., nnn aaaa −
−

. 

 Perfect-shuffle: The process with binary coordinates 0121 ,,...,, aaaa nn −−  always 

communicates with process 1032 ,,...,, −−− nnn aaaa . 

 Neighbor: Processes are divided in pairs. Each pair consists of two adjacent processes. 

For example, process 0 with process 1, process 2 with process 3, …, and process n with 
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process n+1. In our system, two adjacent processes are in same node, so all traffic in the 

pattern are on-node traffic. 

 Cube: The ith butterfly permutation is defined by  

iβ ( 0111 ,...,,,,..., aaaaa iiin −+− ) = 0111 ,...,,,,..., aaaaa iiin −+−  (0 ≤ i ≤ n-1). 

 Baseline: The ith butterfly permutation is defined by  

iβ ( 01111 ,,...,,,,..., aaaaaa iiin −+− ) = 11011 ,...,,,,,..., aaaaaa iiin −+−  (0 ≤ i ≤ n-1). 

6.5.3 Results 

In the experiments, we consider uniform and exponential distributions for both message 

size (identified by “S” in the figures) and inter arrival time (“T”). We chose 10 Kbytes as the 

mean message size. From the results, the performance is not much sensitive to these 

distributions especially for the Myrinet. Figure 6.12 shows the accepted bandwidth under the 

traffic with uniform distribution. For the Sun Fire Link, the off-node accepted bandwidth can 

be up to around 2000 MB/s with 64 processes, 1500 MB/s with 32 processes, and around 900 

MB/s with 16 processes. Compared with the aggregate bandwidth, Sun Fire Link achieves 

2900 MB/s with 64 processes for 8 Kbytes message, 2400 MB/s with 32 processes and 1500 

MB/s with 16 processes. It is clear that the Sun Fire link interconnect performance scales 

with the number of processes. For Myrinet, the off-node accepted bandwidths, shown in 

Figure 6.12(b), are staying almost the same for all message sizes and inter-arrival time with 

different distributions. The bandwidth is around 1600 MB/s with 16 processes, comparing to 

1300 MB/s as the aggregate bandwidth for 8 Kbytes messages.  
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Figure 6.12. Uniform Traffic accepted bandwidth (a) Sun Fire Link, (b) Myrinet. 
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patterns. They achieve 3100 MB/s maximum accepted off-node bandwidth, which is similar 
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to 3128 MB/s aggregate bandwidth with 16 KB message size. Neighbor has only on-node 

traffic which stays at 4000 MB/s accepted bandwidth. There is half on-node traffic and half 

off-node traffic for Butterfly single-stage. The other traffic patterns have one fourth on-node 

and 3 fourths off-node traffic, where off-node accepted bandwidth stays at 2000 MB/s, and 

on-node bandwidth arrives at 4000 MB/s. Matrix transpose and Butterfly multi-stage 

permutations have similar performance, 2400 MB/s off-node bandwidth and up to 1200 MB/s 

on-node bandwidth. Bitreversal and Baseline single-stage (Inverse perfect shuffle) get 2500 

MB/s off-node bandwidth, and 2000 MB/s on-node bandwidth. All those four patterns have 

similar on-node off-node ratio traffic, but behave differently. The reason is that for Matrix 

transpose and Butterfly multi-stage permutations, the on-node traffic are evenly assigned to 

two nodes, while in Bitreversal and Baseline single-stage (Inverse perfect shuffle), the 

on-node traffic are evenly assigned to four nodes. The results indicate that the on-node and 

off-node communications can be influenced by each other. 

Figure 6.14 shows the accepted bandwidth with 16 processes for the Myrinet. 

Complement (Cube multi-stage) and Neighbor permutations have only off-node traffic with 

bandwidths close to 2000 MB/s. The aggregate bandwidth is 1260 MB/s for 8 Kbytes 

messages, 1460 MB/s for 16 Kbytes messages, and 1530 MB/s for 32 Kbytes messages, 

which indicates that Myrinet does not perform very well around 16 Kbytes. Cube single-stage 

permutation has only on-node traffic with bandwidth up to 3600 MB/s. Bitreversal, Matrix 

transpose and Baseline single-stage (Inverse perfect shuffle) permutations have one fourth 

on-node traffic, and three fourths off-node traffic. They have similar performance of 2000 

MB/s off-node bandwidth and 1500 MB/s on-node bandwidth. Butterfly single-stage has half 

on-node traffic, and half off-node traffic. Butterfly multi-stage and Perfect shuffle have less 

than 1500 MB/s off-node bandwidth, and the other patterns have 2000 MB/s. The difference 

between them is that for Butterfly multi-stage and Perfect shuffle permutations, each process 

does not send message to and receive message from same process. In this experiment for 

Myrinet, the only on-node traffic is from the process 0 and process 15 both sending to and 

receiving from themselves. So the on-node traffic did not affect the performance of off-node 
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traffic. In general, the Myrinet cluster has comparable on-node performance to the Sun Fire 

cluster, while the Sun Fire cluster has better off-node performance. 

 

 

Figure 6.13. Permutation patterns accepted bandwidth (Sun Fire Link). 

 

 

 

 

 

Butterfly (multi-stage)

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Butterfly (single-stage)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Bit-reversal

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Baseline (singe-stage)
Inverse Perfect Shuffle

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 
(M

B
/s

)

Complement
Cube (multi-stage)

0
500

1000
1500
2000
2500
3000
3500

0 2000 4000 6000 8000 1000
0

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 
(M

B
/s

)
Matrix Transpose

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Cube (singe-stage)

0
500

1000
1500
2000
2500
3000
3500
4000

0 2000 4000 6000 8000 1000
0

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Neighbor

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0 2000 4000 6000 8000 10000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

Perfect Shuffle

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d 
B

an
dw

id
th

 (M
B

/s
)

 off-node on-node



Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels     83 

 

 

 

Figure 6.14. Permutation patterns accepted bandwidth (Myrient). 
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Figure 6.15. Collective communication performance, Sun Fire Link. (a) 16 processes (b) 
64 processes 
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Myrient cluster. An overall look at their running time shows that the alltoall operation takes 

the longest, followed by the gather, scatter, and broadcast operations, for Sun Fire cluster. 

This is true for on-node, as well as for off-node communications. For the Sun Fire 15K, 

alltoall and gather have a special long time for 1 byte, 4 bytes and 512 bytes message size. I 

have not found the reason of it. 

In broadcast, for Sun Fire cluster, I see that for all cases, the on-node case performs better 

then the off-node case (except for 64K byte messages with 2 and 16 processes). The 

broadcasting has been highly optimized for on-node communications [35]. In all other cases, 

the on-node performance is better than the off-node performance. However, with very large 

message sizes of 64K and 1M bytes, the difference in performance gradually decreases. This is 

related to the degraded performance of shared-memory system on the Sun Fire due to multiple 

large messages in transit. Figure 6.16 shows the collective communication performance of 

Myrinet cluster. Broadcast again has the best performance, but allreduce has the largest 

completion time, followed by alltoallv and reduce. I do not know the reasons behind the spikes 

for Sun Fire Link in Figure 6.15. I run tests 1000 times and got the average. The spikes were 

present in all cases. 

 

 

Figure 6.16. Collective communication performance, Myrinet. 
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Table 6.7 Barrier performance (microseconds) 
     Sun Fire Link     Myrinet 

# of processes On-node Off-node Off-node
2 1.21 - 9.84 
4 1.80  1156.05 19.12 
8 1.80  1355.17 29.50  

16 3.10  966.50 52.44  
32 - 971.45 - 
64 - 1785.60 - 

Table 6.7 shows the time for barrier operation. For Sun Fire Link, there is a large 

performance gap between the on-node and the off-node performance, mostly because the 

barrier operation is highly optimized for an SMP node.  

6.6 Application Benchmarks 

I analyzed the performance of the 4-node Sun Fire cluster and the 8-node Myrinet cluster 

at the micro-benchmark level in the previous sections. Now I want to evaluate the 

performance of actual application benchmarks. I chose the NPB 2.3 benchmark suite with the 

two problem sizes, class A and class B, fro this study. 

Legend “n×m” in the Figure 6.17 means running with n nodes and m processes in each 

node. For BT and SP, where they require square number of processes, legend “n×m+1” means 

running with n nodes and m processes in each node plus an extra process in one of the nodes. 

Speedups for class A and class B are shown in Figure 6.17. Running with the same number 

of processes, the applications show better speedup when there are fewer processes in each node. 

For example “2×1” has a larger speedup than “1×2”, and “4×1” has a larger speedup than 

“2×2”. This is related to the poor performance of on-node communications for large message 

sizes. In the NAS benchmark suite, all benchmarks, except for EP and FT, have large number of 

long message sizes communications. That is why EP has similar speedup for any combinations 

with same total number processes. LU has more small size messages, so it is less influenced. 

Because FT requires more memory, it has less speedup having 2 processes in each node than 

the case with only one process per node. An extreme case is “1×2” for class B. Some serial 

programs take too long time, which makes them have super linear speedup, such as SP of class 
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A, and BT, CG, and FT of class B. In general all benchmarks have very good speedup for class 

A, close to linear.  
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Figure 6.17. NAS benchmark performance, class A and class B. 

 

6.7 Summary 

In this chapter, I provided the performance at the MPI micro-benchmark level for two 

clusters, a 4-node Sun Fire 6800s interconnected by Sun Fire Link, and an 8-node Dell 

PowerEdge 2560s interconnected by Myrinet. The performance results include the traditional 

point-to-point latencies and bandwidths, latencies and bandwidths under load, and collective 

communications. Both network interconnects had relatively good performance. Sun Fire Link 

achieved 5 µs latency for small size messages, while Myrinet made 6 µs latency. The maximum 

bandwidth for the Sun Fire Link was 700 MB/s, while it was 444 MB/s for the Myrinet. The 

on-node performance of Myrinet dropped for messages larger than 64 Kbytes. 

I also measured the bandwidth under different traffic patterns. Both interconnects are not 

sensitive to different distributions for message size and inter-arrival time of messages. For 

Complement permutation, the Sun Fire Link delivered around 3300 MB/s off-node bandwidth. 



Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels     88 

 

For Neighbor permutation, Myrinet delivered around 2000 MB/s off-node bandwidth. For 

collective communications on Sun Fire Link, the on-node performance was better than the 

off-node. For Myrinet, allreduce took the longest time, broadcast the shortest. 

Finally, I provided the performance of NAS application benchmark for the Myrinet cluster. 

We found that Sun MPI has relatively good implementation for both on-node and off-node 

communications. MPICH-GM has degrading on-node performance for long messages, where it 

affects the performance of application benchmarks. 
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Chapter 7     

Conclusion 

In this thesis, I provided a complete measurement of the performance on the SMPs and 

cluster of SMPs. I looked into all factors which may affect the performance of parallel 

applications on those systems. I found all the results are reasonable. 

Firstly, I discussed and characterized a popular parallel benchmark suite, NAS 

benchmarks suite. I looked at several communication parameters, including the message size, 

the number of messages, and destination distributions. I compared these characteristics 

among five different benchmarks from the NAS benchmark suite. I ran them under different 

number of processes and different problem sizes. I found that with larger problem size, all 

benchmarks have larger average message sizes, and larger number of messages. The newly 

released class D has much more communications and larger message size than the other 

problem sizes. All benchmarks have small number of message destinations, at most 10 

destinations when running with 64 processes.  

Along with the performance of the memory bandwidth, point-to-point latency and 

bandwidth at the MPI level, I presented the performance of the NAS parallel benchmarks on 

a small SMP and a large SMP. The Dell PwerEdge 6650 achieved around 10 µs for small size 

messages, while the Sun Fire 15K stayed at 6 µs. The performance of Dell PowerEdge 6650 

degraded for messages larger than 64 Kbytes. Because the Sun Fire 15K has a better memory 

hierarchy system and better MPI implementation, it showed a very good scalability for the 

performance of the application benchmarks. I believe the performance of the Dell PowerEdge 

6650 is affected by the lack of sufficient memory. I also compared the performance of NAS 

parallel benchmarks implemented with MPI, OpenMP and Java, on both SMP machines. For 

both machines, the MPI version had the best performance among the three versions. 
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I discussed the programming model of the Remote Shared Memory (RSM) user-level 

protocol and the Sun MPI implementation on top of it. The performance of RSM API calls 

was assessed, and compared with the performance of the Sun MPI. The setup and tear down 

steps took very long compared to the execution time of the actual data transfer. put had a 

better performance than get for messages larger than 64 bytes. These results explained how 

the Sun MPI is implemented on top of RSM. 

I introduced a set of micro-benchmark suite at the MPI level to evaluate the performance 

of two interconnects: the Sun Fire Link interconnect and Myrinet. The suite includes not only 

the traditional point-to-point latency and bandwidth, but also the bandwidth under load, LogP 

parameters, different traffic patterns, and collective communications. They were useful in 

finding out the bottlenecks, giving insights about the MPI implementation, and analyzing the 

performance at the application level. Our performance results include the on-node and the 

off-node latency, bandwidth measurements under different communication modes. For Sun 

Fire Link interconnect, to write 64 bytes to a remote node took only around 0.6 µs at RSM 

level. The Sun MPI implementation achieved 2 to 5 µs for off-node latency. The difference 

between them is generated by the MPI implementation. The performance of on-node 

communications was better than off-node communications. But I found the on-node 

performance degraded for large message size on the Myrinet, which also affected the 

performance of the benchmark applications on the Myrinet cluster. All benchmarks had good 

speedups, close to linear. In general, the performance results indicated that the Sun Fire Link 

and Myrinet performed very well in most cases. 

    I observed that the low level implementations delivered better results, and the MPI 

implementations were adding large percentage overheads. I saw that extra copies were done 

in the data critical path. The implementations of some of the collective communications are 

not as good as the broadcast operation, which is highly optimized.  

Generally, the MPI implementations on two SMPs were excellent. They showed better 

scalability than OpenMP and Java. Both interconnects, the Sun Fire Link and Myrinet, also 

presented relatively good performance (low latency and high bandwidth). However, the Sun 
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Fire Link interconnects had a better performance at the micro-benchmark level. The Myrinet 

cluster also performed well under the NAS parallel benchmark suite, except for some cases 

due to lack of enough memory. Knowing the performance at the RSM level, I discovered the 

MPI overhead. I believe there is room to improve the MPI implementation. 

7.1 Future Work 

 The performance measurements in this thesis are mainly in MPI, OpenMP, and Java are 

also included for the experiments on SMPs. The mixed-mode (MPI+OpenMP) programming, 

may be suitable for the cluster of multiprocessor systems. It will be very interesting to 

compare its performance with pure MPI on such systems. 

 I am interested in measuring the performance of the GM messaging layer on top of the 

Myrinet both for the send/receive and RDMA models. 

 In this thesis, I looked at the performance of the Sun Fire Link and Myrinet. It is 

desirable to evaluate the performance of other high performance interconnects such as QsNet 

II and InfiniBand. 

 I looked into the implementations of regular point-to-point communications of Sun MPI. 

The implementations of collective communications in Sun MPI over RSM are also 

interesting. 
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