

High-Performance Interconnects and Computing Systems: Quantitative Studies

By

Ying Qian

A thesis submitted to the Department of

Electrical and Computer Engineering

in conformity with the requirements for

the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

May, 2004

Copyright © Ying Qian, 2004

 ii

ABSTRACT

As symmetric multiprocessors become commonplace, there are a number of factors

affecting the performance of parallel applications, including the application characteristics,

parallel programming paradigms used by the applications, and the machine system’s

architecture. In recent years, with the introduction of high speed networks, the high

performance computing community has seen a trend to use network-based computing

systems such as cluster of symmetric multiprocessors. In such systems, the communication

subsystems become another crucial factor which affects the application performance.

In this thesis, the communication characteristics of one widely used parallel benchmarks,

NAS parallel benchmarks written in MPI, are studied for different class sizes B, and C, and

the newly released class D. Moreover, the performance of three different implementations of

the NAS benchmarks in MPI, OpenMP, and Java, is compared on a small 4-way SMP (Dell

PowerEdge 6650) and on a large 72-way SMP (Sun fire 15K server). The memory bandwidth,

MPI communication latency and bandwidth are provided on these two SMPs, as well. Our

results indicate that the performance of applications is affected by their characteristics. The

new class D has much more communication than class B and class C, larger message size and

larger number of messages. On both SMPs, the MPI version has better performance than the

OpenMP and the Java.

Two interconnects, the Sun Fire Link Interconnect and the Myrinet, are studied in this

thesis. The Sun Fire Link is a memory-based interconnect, where Sun MPI uses the Remote

Shared Memory (RSM) model for its user-level inter-node messaging protocol. I give an

overview of the Sun Fire Link, RSM, and the Sun MPI implantation on top of RSM. I

provide an in-depth performance evaluation of the Sun Fire Link interconnect cluster of four

Sun Fire 6800s at the RSM layer, and at the micro benchmark level. Our results include the

performance of the Remote Shared Memory API primitives, MPI overhead on top of the

RSM, latency and bandwidth under different communication modes, parameters of the LogP

 iii

model, collective communications, and different permutation communications. I also provide

the performance of a Myrinet cluster with eight 2-way SMP nodes (Dell PowerEdge 2650), at

the micro-benchmark level and application level. The Sun Fire Link and Myrinet achieve 5 µs

and 6 µs latency, along with 695 MB/s and 444 MB/s bandwidth, respectively. In general,

they both perform relatively well in most cases.

 iv

Acknowledgements

I would like to thank the guidance and support of my supervisor Professor Ahmad Afsahi.

Without him, this project would have never been possible. I would like to acknowledge the

financial support from the Ontario Graduate Scholarship for Science and Technology

(OGSST). I am indebted to the Queen’s University for awarding me as a Teaching Assistant

and Dr. Afsahi for supporting me as a Research Assistant.

I would like to thank my friends at the Parallel Processing Research Laboratory, Nathan

R. Fredrickson and Reza Zamani for their great help. I also would like to thank Dr. Ken

Edgecombe, and Dr. Hartmut Schmider at High Performance Computing Virtual Laboratory

at the Queen’s University, and Mr. Gary Braida at the Sun Microsystems for their kind help

in accessing the Sun Fire cluster with its Sun Fire Link interconnect.

Lastly, special thanks to my parents for their love and support during my study.

 v

Table of Contents Page
ABSTRACT ..ii

Acknowledgements .. iv

List of Tables..viii

List of Figures .. ix

Glossary of Symbols and Abbreviations...xii

1. Introduction .. 1

1.1 Motivation ... 1

1.2 Contributions .. 4

1.3 Outline of Thesis ... 5

2. Background ... 7

2.1 Parallel Computer Architectures .. 7

2.2 Computing Nodes.. 9

2.3 High-Performance Interconnects .. 10

2.3.1 Myrinet ... 10

2.3.2 Quadrics ... 11

2.3.3 Sun Fire Link ... 12

2.3.4 InfiniBand... 14

2.4 User-Level Protocols... 15

2.4.1 GM .. 16

2.4.2 Elan3lib and Elanlib .. 17

2.4.3 Remote Shared Memory ... 18

2.4.4 VAPI ... 18

2.4.5 VIA.. 19

2. 5 Parallel Programming Paradigms.. 19

2.5.1 Message Passing ... 20

2.5.1.1 Sun MPI... 21

2.5.1.2 MPICH... 24

2.5.2 OpenMP.. 25

 vi

2.5.3 JAVA... 26

2.5.4 Other Parallel Programming Paradigms... 26

2.6 Summary ... 27

3. Application Benchmarks and Their Characteristics ... 28

3.1 NAS Parallel Benchmarks.. 28

3.1.1 EP .. 29

3.1.2 MG .. 30

3.1.3 CG ... 30

3.1.4 FT .. 30

3.1.5 LU.. 31

3.1.6 IS ... 31

3.1.7 BT and SP... 31

3.2 Characteristics of the NAS Benchmark Suite .. 32

3.3 Summary ... 43

4. Performance on Small and Large SMPs... 44

4.1 SMP Platforms.. 44

4.2 Memory Bandwidth.. 45

4.3 Communication Latency and Bandwidth... 46

4.4 Collective Communications ... 49

4.5 Performance of Application Benchmarks... 51

4.6 Summary ... 54

5. Remote Shared Memory over Sun Fire Link Interconnect .. 56

5.1 Remote Shared Memory .. 56

5.1.1 Remote Shared Memory Structure .. 58

5.1.2 Performance at the Remote Shared Memory level ... 59

5.1.3 MPI Implementation over Remote Shared Memory .. 62

5.2 Summary ... 65

6. SMP Clusters’ Performance at the Micro-benchmark and Application Levels.. 66

6.1 Cluster Platforms.. 66

6.2 Latency .. 67

 vii

6.3 Bandwidth ... 71

6.4 LogP Parameters .. 74

6.5 Traffic Patterns... 77

6.5.1 Uniform Traffic.. 78

6.5.2 Permutation Patterns .. 78

6.5.3 Results... 79

6.6 Collective Communications ... 83

6.6 Application Benchmarks.. 86

6.7 Summary ... 87

7. Conclusion ... 89

7.1 Future Work ... 91

References ... 92

VITA.. 97

 viii

List of Tables

Table Page

Table 1.1 Software environments of computing systems... 4

Table 2.1. Processor and the system using them. ... 9

Table 4.1. Execution time of NPB 3.0 OMP, NPB 3.0 Java, NPB2.3 MPI, Class B, on Dell PowerEdge 6650

and Sun Fire 15K, with 4 threads or processes .. 54

Table 5.1. RSM API calls and their definitions (partial)... 57

Table 5.2. Execution time for RSMAPI calls. 16KB memory size is used for “export_create”,

“export_publish”, “export_unpublish”, “export_destroy”, “release_controller”, and “import_put”........ 60

Table 6.1. Half-way ping-pong latency for small message sizes.. 70

Table 6.2. Comparison of Sun Fire Link and Myrient short message latency (in microseconds) with other

high-performance interconnects.. 70

Table 6.3. Bidirectional bandwidth... 73

Table 6.4. Comparison of Sun Fire Link and Myrinet MPI bandwidths (Mbytes/s) with other

high-performance interconnects.. 73

Table 6.5. LogP/LogGP parameters in terms of parameterized LogP... 76

Table 6.6. LogP parameters... 77

Table 6.7 Barrier performance (microseconds) ... 86

 ix

List of Figures

Figure Page

Figure 2.1. Parallel computer models: (a) SMP (b) MPP (c) DSM (d) COW/CLUMP. 8

Figure 2.2. The host and network interface architecture of Myrinet... 10

Figure 2.3. Structure of Elan4. .. 11

Figure 2.4. Two domains direct connect configuration. .. 13

Figure 2.5. Three domains direct connect configuration. ... 13

Figure 2.6. Four domains and 1 switch configuration. .. 14

Figure 2.7. Eight domains and 4 switches configuration... 14

Figure 2.8. Layers of abstraction from Network to Applications... 15

Figure 2.9. Send side flow chart. ... 16

Figure 2.10. Receive side flow chart. ... 17

Figure 2.11. Elan programming libraries. .. 18

Figure 2.12. Standard send/receive model.. 21

Figure 2.13. Sun MPI structure... 22

Figure 2.14. On-node messages. (a) small (b) medium-size (c) long. .. 23

Figure 2.15. Fork-join model. .. 25

Figure 3.1. Number of send events per process.. 34

Figure 3.2. Average message size (Kbytes) per process... 35

Figure 3.3. Average message size (Kbytes). .. 36

Figure 3.4. Number of destinations. .. 37

Figure 3.5. Cumulative distribution of message sizes, class B. ... 38

Figure 3.6. Cumulative distribution of message sizes, class C. ... 39

Figure 3.7. Cumulative distribution of message sizes, class D. ... 40

Figure 3.8. Destination distribution of process 0 (64 processes) ... 41

Figure 3.9. Destination distribution of process 0 (64 processes). ... 42

Figure 4.1. Memory bandwidth on (a) Dell PowerEdge 6650 (b) Sun Fire 15K. .. 46

Figure 4.2. Point-to-point latency on Dell PowerEdge 6650.. 48

Figure 4.3. Point-to-point latency on Sun Fire 15K. .. 48

 x

Figure 4.4. Bandwidth on Dell PowerEdge 6650.. 48

Figure 4.5. Bandwidth on Sun Fire 15K. .. 49

Figure 4.6. Latency of collective communications on Dell PowerEdge 6650. .. 50

Figure 4.7. Latency of collective communications on Sun Fire 15K, 4 processes.. 50

Figure 4.8. Latency of collective communications on Sun Fire 15K, 64 processes.. 50

Figure 4.9. Speedup on Dell PowerEdge 6650, Class A and Class B, of (a) NPB2.3-MPI (b) NPB3.0-OMP

(c)NPB3.0-JAVA... 52

Figure 4.10. Speedup on Sun Fire 15K, Class A and Class B, of (a) NPB2.3-MPI (b) NPB3.0-OMP

(c)NPB3.0-JAVA... 53

Figure 5.1. Setup, Data transfer, and Tear down in Remote Shared Memory communication. 58

Figure 5.2. Different steps in the data transfer phase. (a) get (b) put (c) map. ... 59

Figure 5.3. Percentage comparison for the export and import side. (16 KB).. 61

Figure 5.4. Execution times of several RSMAPI calls. .. 61

Figure 5.5. Comparison of the RSM put and get with different message sizes. .. 61

Figure 5.6. Structure of messages.. 62

Figure 5.7. Pseudo-nodes for (a) MPI_Send, (b) MPI_Recv. .. 64

Figure 5.8. Block store opertaioins.. 65

Figure 6.1. On-node MPI latencies on Sun Fire Link cluster. .. 68

Figure 6.2. On-node MPI latencies on Myrinet cluster. .. 68

Figure 6.3. Off-node MPI latencies over Sun Fire Link. ... 69

Figure 6.4. Off-node MPI latencies over Myrinet. ... 69

Figure 6.5. Off-node latency under load. .. 71

Figure 6.6. RSM put and MPI latency comparison... 71

Figure 6.7. On-node bandwidths. .. 72

Figure 6.8. Off-node bandwidths... 73

Figure 6.9. Aggregate off-node bandwidth. .. 74

Figure 6.10. Message transmission modeled by parameterized LogP.. 76

Figure 6.11. LogP parameters, g(m), os(m), and or(m). (a) Sun Fire Link (b) Myrinet............................... 77

Figure 6.12. Uniform Traffic accepted bandwidth (a) Sun Fire Link, (b) Myrinet. 80

Figure 6.13. Permutation patterns accepted bandwidth (Sun Fire Link).. 82

 xi

Figure 6.14. Permutation patterns accepted bandwidth (Myrient).. 83

Figure 6.15. Collective communication performance, Sun Fire Link. (a) 16 processes (b) 64 processes 84

Figure 6.16. Collective communication performance, Myrinet. ... 85

Figure 6.17. NAS benchmark performance, class A and class B.. 87

 xii

Glossary of Symbols and Abbreviations

ADI Abstract Device Interface

BT Block Tridiagonal

CC-NUMA Cache-Coherent Non-Uniform Memory Access

CFD Computational Fluid Dynamics

CG Conjugate Gradient

COW Cluster of Workstations

DSM Distributed Shared Memory

EP Embarrassingly Parallel

FFT Fast-Fourier Transform

FT 3-D Fast-Fourier Transform

HCA Host Channel Adapters

HPF High Performance Fortran

IS Integer Sort

LU Lower-upper Diagonal

MIMD Multiple-Instruction Streams Multiple-Data Streams

MISD Multiple-Instruction Streams Single-Data Stream

MG Multigrid

MPI Message Passing Interface

MPP Massively Parallel Processors

NIC Network Interface Cards

NPB NAS Parallel Benchmarks

PDE Partial Differential Equation

RDMA Remote Direct Memory Access

RSM Remote Shared Memory

RSMAPI Remote Shared Memory Application Programming Interface

 xiii

SAN System Area Networks

SIMD Single-Instruction Stream Multiple-Data Streams

SISD Single-Instruction Stream Single-Data Stream

SMP Symmetric Multiprocessor

SP Scalar Pentadiagonal

SSOR symmetric successive over-relaxation

TCA Target Channel Adapters

VCSEL Vertical Cavity Surface Emitting Laser

VI Virtual Interface

VIA Virtual Interface Architecture

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Motivation

 In late 80s and early 90s, several parallel machines with different architectures appeared.

They include Symmetric Multiprocessors (SMP) such as Cray T-90, massively parallel

processor (MPP) systems such as Cray T3D, Intel Paragon, and Thinking Machines CM-5,

and Distributed Shared Memory (DSM) multiprocessors such as Stanford DASH and SGI

Origin 2000. Considerable work has gone into the design of SMP systems, and several

vendors such as IBM, Sun, Compaq, SGI, and HP offer small to large scale shared-memory

systems [16]. Recently, network of workstations (NOW) and cluster of multiprocessors

(CLUMPs) have been proposed as viable platforms for high performance computing. SMPs

are the backbone of such high-performance cluster computing systems.

Parallel machines are being built to satisfy the increasing demand of higher performance

for parallel applications. The parallel applications can be written using a variety of parallel

programming paradigms, including message passing, shared memory, data parallel, bulk

synchronous, and mixed-mode. The message passing and shared memory paradigms are the

two most important programming paradigms. In the message passing paradigm, data transfer

is done using explicit communications through send and receive calls. Collective

communications and synchronization are also supported. The shared memory paradigm is

originally designed for shared memory systems, although researchers are investigating to

extend it to cluster of SMPs too [33]. In the shared memory paradigm, the threads running on

separate processors, can communicate with each other by writing data to the shared memory

Chapter 1 Introduction 2

and then reading from it. Message Passing interface (MPI) [39] and OpenMP [43] are the de

facto standards for these two paradigms. However, it is open to debate which parallel

programming paradigm is the programming of choice for high performance [9][24]. It is

really interesting to compare their performance on different systems.

To measure and to predict the performance of parallel computer systems, parallel

benchmarks are designed. A benchmark is a performance testing program that captures

processing and data movement characteristics of a class of applications [21]. A benchmark

suite is a set of benchmark programs together with a set of specific rules. NAS parallel

benchmark suite [42] is one of the most popular parallel benchmarks, which consists of eight

benchmarks, each having different communication characteristic. It has several

implementations, written in MPI [5], OpenMP [23], Java [18] and High Performance Fortran

[17], respectively.

There are a number of factors affecting the performance of parallel applications on SMP

systems. These include the applications’ characteristics, the choice of parallel programming

paradigms used by the applications, and the machine system’s architecture. Understanding

the applications’ characteristics will give us insights to design better high performance

computing systems in the future. It will also provide us with reasons why some applications

perform better or worse on a specific system. In this thesis, I am interested in the

communication characteristics of the NAS parallel benchmark suite, along with its

performance on different SMPs.

In recent years, with the introduction of high speed networks, the high performance

computing community has seen a trend to use network-based computing systems such as

network of workstations (NOW) and cluster of multiprocessors (CLUMPs), to achieve high

performance. The parallel applications developed for these computing systems require

intensive co-operations between the processors. Therefore, the communication subsystem

becomes a crucial factor which may affect the application performance. The network

interconnects, the communication protocols and the messaging middleware form some of the

important components of the communication subsystem.

Chapter 1 Introduction 3

Currently there are several high performance interconnects that provide low latency and

high bandwidth. Three of the most famous products are Myrinet [7], InfiniBand [38] and

Quadrics [30], using the user-level messaging layers GM [50], VAPI [12][28] and Elan3lib

[30], respectively. Recently, Sun Microsystems has introduced the Sun Fire link interconnect

[31][34][46] to provide ultra-high bandwidth needed to fuse a collection of large SMP servers

into a cluster. Remote Shared Memory (RSM) [45] provides the inter-node user-level

communications over the Sun Fire Link interconnect.

Usually, there are two messaging layers between these network interconnects and the

applications: user-level messaging layer and the message passing layer. The messaging layers

mentioned above provide protected user-level access to the network interface. Kernel-based

protocols like TCP/IP are not capable of effectively utilizing the performance provided by the

network interconnects, because every data transfer involves operating system intervention.

On the contrary, the user-level network protocols offered by these high speed interconnects

are designed to bypass the operating system, and to thereby reduce the end to end latencies. It

is also crucial to provide an efficient implementation of message passing interface on top of

the user-level protocol. In this thesis, the performance of the user-level messaging layer,

message passing layer, and the application layer are provided. With these results, one can

discover how each layer performs and how well each layer is implemented on top of the

lower layer.

In this thesis, I am interested in evaluating the performance of single SMPs, as well as

the cluster of SMPs. To design better architectures in the future, it is important to discover

how the communication subsystems, parallel programming paradigms, and the application

characteristics may affect the performance. I am interested in measuring the performance of

several computing platforms. Our platforms consist of a 72-way SMP node from Sun

Microsystems (Sun Fire 15K), a 4-way Intel Xeon MP from Dell (Dell PowerEdge 6650), a

cluster of four 24-way SMP (Sun Fire 6800) interconnected by the Sun Fire Link interconnect,

and a cluster of eight 2-way Intel Xeon MP from Dell (Dell PowerEdge 2650) interconnected

Chapter 1 Introduction 4

by Myrinet. The software environment, including the operating system, compiler and the MPI

version, are shown in Table 1.1.

Table 1.1 Software environments of computing systems.

Dell PowerEdge
6650 4-way SMP

Sun Fire 15K
72-way SMP

Sun cluster 4x24
Sun Fire 6800

Myrinet cluster 8x2
Dell PowerEdge

2650

OS Linux, Redhat 9 Solaris 9 Solaris 9 Linux, Redhat 9

Compiler Intel compiler 7.1 Sun One Studio 7 Sun One Studio 7 gcc

MPI
MPICH-1.2.5
ch_shmem

Sun MPI 6 Sun MPI 6
MPICH-1.2.5..10

(MPICH-GM)

1.2 Contributions

This thesis discusses a number of issues that are the contributing factors affecting the

performance of the parallel computing systems. This thesis makes four major contributions.

 I obtain the communication characteristics of five NAS benchmarks written in MPI,

including a newly released class D, which has not been characterized before. This

thesis compares the communication patterns of the applications running under

different number of processes and different problem sizes: class B, class C, and class

D. The communication characteristics include the message size and the number of

messages, and the distribution of the message destinations.

 For the two SMP platforms, the memory bandwidth, and the performance of a set of

micro-benchmark suite implemented on top of MPI are presented. With these results

and the communication characteristics of the NAS parallel benchmarks, I explain the

performance of these parallel applications. This thesis also compares the

performance of the NAS benchmarks under different parallel programming

paradigm, including MPI, OpenMP and Java.

 This thesis studies the newly released user-level protocol “RSM” for the Sun Fire

Link interconnect. The performance of RSM Application Programming Interface

(API) calls is provided. This will help in determining the mechanisms that should be

Chapter 1 Introduction 5

used at a high-level (the MPI level) to achieve performance. I also look at how the

Sun MPI is implemented on top of the RSM protocol.

 This thesis presents a framework to evaluate the performance of communication

subsystems of two clusters. I provide a set of micro-benchmarks implemented on top

of MPI to evaluate the performance of communications seen by the applications. The

micro-benchmarks include traditional point-to-point latency, bandwidth, bandwidth

under load, LogP parameters, permutation traffic patterns, and collective

communications. These, along with the performance of the low level protocol, can

be used to determine what percentage of the performance at the lower layer is

delivered to the MPI level. These micro-benchmarks are also used to assess the

quality of the given MPI implementation as well. Finally, I measure the performance

of the NAS parallel benchmarks on the Myrinet cluster.

1.3 Outline of Thesis

In this thesis, I characterize one popular parallel benchmark suite, NAS parallel

benchmarks, and evaluate its performance on a small SMP, a large SMP and an SMP cluster.

I also evaluate the performance of two recently introduced high performance interconnects,

the Sun Fire Link and the Myrinet, at the user level (just for the Sun Fire Link), and at the

micro-benchmark level.

In chapter 2, I provide the background of this thesis. I take a look at the popular high

performance architectures, high performance interconnects, user-level protocols, and

different parallel programming paradigms. In chapter 3, the NAS parallel benchmarks are

introduced, along with their communication characteristics. The performance of MPI

micro-benchmarks and the NAS benchmarks on a small SMP and a large SMP is compared

in chapter 4. In chapter 5, I introduce the Remote Shared Memory (RSM) model in detail,

along with the performance of some RSM API calls. The implementation of SunMPI over

RSM is also discussed in this chapter. In chapter 6, the performance of the Sun Fire Link and

Myrinet is evaluated by several micro-benchmarks, including latency, bandwidth, aggregate

Chapter 1 Introduction 6

bandwidth, different traffic patterns and collective communications. I also provide the

performance of application benchmarks on the Myrinet cluster. Finally, I conclude the thesis

and provide some directions for future work in chapter 7.

Chapter 2 Background 7

Chapter 2

Background

In the past decade, high performance computers have been implemented using a variety

of architectures: Massively Parallel Processors (MPP), Symmetric Multiprocessors (SMP),

Distributed Shared Memory (DSM) multiprocessors, and Clusters. The current trend in high

performance computing is for hybrid architectures, such as networks of workstations (NOW)

and clusters of multiprocessors (CLUMPs). In section 2.1, I briefly describe the most

common parallel computer architectures. Not to mention, our focus in this thesis is on SMPs,

and CLUMPs, as they are and will remain the trends for years to come. In section 2.2 through

section 2.5, I will discuss the different components of a high performance computing system

including the nodes, the interconnects, the massaging layers, and the parallel programming

paradigms.

2.1 Parallel Computer Architectures

Based on the Flynn’s classification [21], there are four kinds of machine architectures,

single-instruction stream single-data stream (SISD), single-instruction stream multiple-data

streams (SIMD), multiple-instruction streams single-data stream (MISD) and

multiple-instruction streams multiple-data streams (MIMD). SISD models conventional

sequential computers. MISD was seldom used. In an SIMD machine, all processors execute

the same instruction at the same time. So it is a synchronous machine, and mostly used for

Chapter 2 Background 8

special purpose applications. An MIMD machine is a general-purpose machine, where

processors operate in parallel but asynchronously.

MIMD machines are generally classified into four practical machine models: Symmetric

Multiprocessors (SMP), Massively Parallel Processors (MPP), Distributed Shared Memory

(DSM) multiprocessors, Cluster of Workstations (COW), and Cluster of Multiprocessors

(CLUMP), as shown in Figure 2.1.

P/C P/C P/C

Bus or Crossbar

SM SM SM

...

...

(a) SMP

P/C

LM

DIR

NIC

 MB
P/C

LM

DIR

NIC

 MB

...

Custom-designed Network

(c) DSM

P/C

LM

NIC

MB
P/C

LM

NIC

MB

...

Custom-designed Network

DIR: Cache directory
IOB: I/O bus
LD: Local disk
LM: Local memory
MB: Memory bus
NIC: Network interface circuitry
P/C: Processor and cache
SM: Shared memory

(b) MPP

P/C

LM

Bridge

MB

NIC
LD IOB

P/C

LM

Bridge

NIC
LD IOB

Commodity Network

(d) COW/CLUMP

MB

...

P/C
...

P/C
...

Figure 2.1. Parallel computer models: (a) SMP (b) MPP (c) DSM (d) COW/CLUMP.

SMP is a Uniform Memory Access (UMA) system, where all memory locations are the

same distance away from the processors, so it takes roughly the same amount of time to

access any memory location. SMP systems have gained prominence in the market place.

Considerable work has gone into the design of SMP systems, and several vendors such as IBM,

Sun, Compaq, SGI, and HP offer small to large-scale shared memory systems [16].

Chapter 2 Background 9

MPP, DSM multiprocessors, COW, and CLUMP and are distributed-memory systems,

where there are multiple nodes each having one or more processors and its own local memory.

For MPP, COW and CLUMP systems, one node’s local memory is considered remote

memory for other nodes. DSM machines use cache directory protocols to implement coherent

caches. MPP, CLUMP and COW machines do not have cache directory, and processes

communicate by exchanging messages. MPP machines consist of a number of nodes

interconnected by a high-speed custom-designed network. SMPs are called tightly coupled

[21]. COW and CLUMP machines are low-cost variation of MPP machines, which use

low-cost commodity networks. 41.9% of the top 500 supercomputers in the world are clusters

[49].

2.2 Computing Nodes

MPP, COW, CLUMP and DSM multiprocessors each contain multiple nodes, which are

connected by custom-designed or commodity networks. Each node can be a uni-processor, an

SMP, or a Simultaneous Multi-Threading (SMT) system. SMP was introduced in section 2.1.

The SMPs that I will explore in this thesis include Dell PowerEdge 2560, Dell PowerEdge

6650, Sun Fire 6800 and Sun Fire 15K server. Two-way Dell PowerEdge 2560 and four-way

Dell PowerEdge 6650 use Intel Xeon MP Processors. Sun Fire 6800 and Sun Fire 15K

servers have 24 and 72 Sun Ultrasparc III cu processors, respectively. SMT is the technology

that allows a single physical processor to execute multiple threads concurrently in hardware.

Intel implemented SMT with Hyper-Threading, which is used on the Intel Xeon MP

Processor. Table 2.1 shows some popular processors used in high performance computers.

Table 2.1. Processor and the system using them.
Processor System

IBM PowerPC IBM SP cluster

Intel Xeon MP Dell PowerEdge

Sun Ultrasparc IV cu Sun Fire server

Intel Itanium2 HP Integrity Server

Compaq Alpha Compaq AlphaServer

Chapter 2 Background 10

2.3 High-Performance Interconnects

To have high-performance computer systems, the interconnect that connects the nodes of

the system plays a crucial role. Currently, there are several high performance interconnects that

provide low latency (less than 10 us) and high bandwidth, such as Myrinet [7], InfiniBand [38],

and Quadrics [30]. Recently, Sun Microsystems has introduced Sun Fire link [46] to provide

ultra-high bandwidth needed to fuse a collection of large SMP servers into a cluster.

2.3.1 Myrinet

Myrinet was developed by Myricom [7] based on packet-switching technology, which

was originally designed for Massively Parallel Processor systems [7]. The packets are

wormhole-routed through a network consisting of switching elements and host interfaces.

The core of the switch is a pipelined crossbar. The programmable Myrinet network interface

cards provide much flexibility in designing communication software.

Figure 2.2. The host and network interface architecture of Myrinet

Figure 2.2 illustrates the architecture of a node in a Myrinet network system. Each host

has a Network Interface Card (NIC) that contains a processor and some memory, which is

used to store the control program and data. The NIC connects to the host’s I/O bus. The

M3F2-PCIXE-2 "E card" Myrinet/PCI-X interface has been released recently. The “E card”

has a 64-bit, 133MHz PCI-X interface, and has a programmable Lanai-2Xp RISC processor

Network

Host CPU

Cache

Host
Memory

Bridge

NI
memory

To-from
host

CPU

Send

Receive

DMA engines
I/O bus Host bus

Network Interface

Chapter 2 Background 11

operating at 333MHz with 2MB local memory. Each port is 2.0+2.0 Gbps data rate. The

standard firmware has two ports working at same time, which acts as a 4.0+4.0 Gbps data-rate

port.

2.3.2 Quadrics

Quadrics networks (QsNet) [30] is based on two building blocks, a programmable

network interface called Elan and a low-latency high-bandwidth communication switch

called Elite [30]. The newly released QM500 PCI-X network adapter for Quadrics QsNet II

[1], uses Quadrics Elan 4 network processor, and is connected to the hosts via 64bit, 133MHz

PCI-X Bus. It provides full duplex 900Mbytes/s peak bandwidth at each direction. It has

64Mbytes onboard DDR-SDRAM memory. Quadrics switch uses a full crossbar connection

and supports wormhole routing. The performance of Quadrics is provided in [30].

Figure 2.3. Structure of Elan4.

QsNet II provides efficient and protected access to a global virtual memory using

remote direct memory access (RDMA) operations. The Elan4 chip contains the following

major logic blocks, as outlined in Figure 2.3. The 64-bit multi-threaded control processor with

independent hardware state machines controls pipelined output DMA issue, input transaction

64 bit
Thread

processor

STEN
processor

Command
processor

RDMA
engine

COMMS
Logic FIFO

SDRAM
32K 4-way
set associate
multi-port Cache

64-bit
MMU

133 MHz
PCI-X

INPUT

64 bit 1 GB/s
72 bit 2 GB/s

16 bit LVDS
Link each way

Chapter 2 Background 12

processing, synchronization processing, the scheduling of the thread processor, and the

command queue processing. It also generates output packets issued directly over the PCI-X

interface by the main processor. MMU is used to translate 64-bit virtual addresses into either

local SDRAM physical addresses or 64-bit physical addresses for PCI-X master addresses. A

64-bit Thread Processor helps to implement high-level messaging libraries without explicit

intervention from the main CPU. The short message processing unit is called STEN (Small

Transaction Engine).

2.3.3 Sun Fire Link

Sun Fire Link is a high-bandwidth, low-latency interconnect recently introduced to cluster

Sun Fire 6800 and 15K/12K systems [13][46]. The system’s interface to the Sun Fire Link

network is provided by a Sun Fire Link specific I/O subsystem which is called the Sun Fire

Link assembly. Each Sun Fire Link assembly contains two optical transceiver modules called

Sun Fire Link optical modules. Each optical module supports a full-duplex optical link. The

transmitter uses a Vertical Cavity Surface Emitting Laser (VCSEL), and has a 1.65 GB/s raw

bandwidth, and a theoretical 1 GB/s sustained bandwidth after protocol handling [34]. The Sun

Fire Link assembly is installed in pair. Each pair is called a computer domain of the system,

which means that each compute domain contains four optical link connections to the Sun Fire

Link network. A Sun Fire 6800 server can have one compute domain, while a Sun Fire

15K/12K server can have up to four compute domains, with a maximum count of 16 optical

links connected to the network.

A Sun Fire cluster can have different network structure depending on the type of topology

used: direct connect or switched. The switches are not needed when the Sun Fire cluster has

two or three domains. The optical cables connect directly to the servers. Figure 2.4 shows how

two domains connect to each other, and Figure 2.5 shows how three domains connect to each

other.

Chapter 2 Background 13

Figure 2.4. Two domains direct connect configuration.

Figure 2.5. Three domains direct connect configuration.

For more than four domains, switches are needed. The Sun Fire Link switch is an

eight-port optical switch, each of which handles one optical network link. So the current Sun

Fire switch supports only up to eight hosts, while theoretically, the Sun Fire Link can support

up to 254 hosts. There are two standard switched configurations. One can have up to four

domains and two Sun Fire Link switches. Figure 2.6 shows this configuration. The other can

have up to eight domains and four switches, which is shown in Figure 2.7.

The network interface does not have a DMA engine. It can initiate interrupts as well as do

polling for data transfer operations. It provides uncached read and write accesses to remote

memory regions on the other nodes. Layered system software components implements a

mechanism for user-level messaging based on direct access to remote memory regions of other

nodes [2]. This is referred to as Remote Shared Memory (RSM) [45]. Nodes can communicate

through a TCP/IP network for cluster administration issues, and exchanging control and

Optical links

Server

Sun Fire Link
Assemblies

Sun Fire Link
domains

Optical links

Chapter 2 Background 14

status/error information. Sun MPI is a complete library of message-passing routines, based on

RSMAPI. Details will be given in chapter 5.

Figure 2.6. Four domains and 1 switch configuration.

Figure 2.7. Eight domains and 4 switches configuration.

2.3.4 InfiniBand

The InfiniBand Architecture [38] is a packet switched network, initially proposed as a

generic interconnect for inter-process communication and I/O. In the InfiniBand network,

nodes are connected to the fabric by Host Channel Adapters (HCAs) and Target Channel

Adapters (TCAs). A Channel Adapter (CA) that is installed in processor nodes and I/O units,

generates and consumes packets, as well as initiating DMA operations. It connects to the host

1 2 8

Sun Fire Link switch

Sun Fire Link switch

…
Domains

1 2 4

Sun Fire Link switch

Sun Fire Link switch

…
Domains

Chapter 2 Background 15

through the PCI-X bus. They also contain an interface to the memory and hardware engines,

which provides virtual to physical address translations and memory protection [38].

The fundamental concept of the channel interface is the queue pair (QP) [38] which

serves as a virtual communication port. Each QP has two queues: a send queue and a receive

queue. The completion of communication requests is reported through completion queues

(CQ).

2.4 User-Level Protocols

TCP/IP, a very popular kernel-based communication protocol, incurs in performance

penalties, which is unbearable in System Area Networks (SAN) due to its layered structure [6].

SAN is a local network designed for high-speed interconnection in cluster environments

(server to server), multiprocessing systems and storage area networks. TCP/IP stack is

generally built into the operating system kernel, so every data transfer involves operating

system intervention. Data copying in TCP/IP layers (from kernel space to user space or vice

versa) causes performance degradation.

Figure 2.8. Layers of abstraction from Network to Applications.

To provide low latency, the user-level network protocols move some of the services

normally provided by kernel into the user level. Bypassing the operating system, the user-level

protocols avoid the costs associated with switching to the privileged mode. The layers of

abstraction of TCP and user-level protocols are shown in Figure 2.8. In the following, we

briefly discuss some important user-level protocols.

Applications

Programming Environment

User-level Network Protocol

Physical Network

Applications

Programming Environment

TCP

TCP/IP Stack

Physical Network

Network Driver
(a) User-level

(b) TCP

Chapter 2 Background 16

2.4.1 GM

 GM [50] is a commercial open source user-level networking protocol from Myricom

Corporation, which runs on top of the Myrinet network. GM provides a protected interface to

the network interface cards so that multiple user applications can share the NIC

simultaneously. GM supports both send/receive and RDMA operations, and its performance

is provided in [20][28]. User buffers need to be registered and pinned down in the physical

memory to enable DMA transfer in and out of these memory regions.

The GM communication system provides reliable and ordered delivery between the

communication endpoints, called ports. For the send/receive model, ports need to be opened

before any communications, by calling the gm_open function. All the buffers used by send

and receive must be registered using gm_dma_calloc. As shown in Figure 2.9, the send side

may send a message by calling a GM API send function, gm_send_with_callback. When the

send completes, GM calls the callback function, and waits for the receiving event to indicate

if the send has been completed successfully.

Figure 2.9. Send side flow chart.

In the receive side, opening the port and registering the buffers are also needed to be

done at the beginning. API call gm_allow_remote_memory_access allows these local buffers

gm_send_with_callback

callback

LANai Memory

User Process Memory

Send queue

Send state
machine

Receive event

queue

Send packet

Send completed

Chapter 2 Background 17

to be modified by any other GM process. Then the receive side waits for events that indicate

the incoming messages. Figure 2.10 shows the major steps at the receive side.

Figure 2.10. Receive side flow chart.

2.4.2 Elan3lib and Elanlib

Figure 2.11 illustrates the Elan programming libraries [30]. Elan3lib [30] provides the

lowest-level, user space programming interface to the Elan3 [30] network. At this level

communications between processes can be done though an abstraction of a distributed, virtual

shared memory. Elanlib is a higher-level machine independent communication library to

provide low level accesses [30]. It provides a global virtual address space by integrating the

address spaces of individual nodes. One node can use RDMA to access a remote node’s

memory [28]. A general-purpose synchronization mechanism based on events stored in

memory is provided so that the completion of RDMA operations can be reported. It also

provides basic mechanism for point-to-point message passing, called tagged message ports

(Tports). Unlike GM and VAPI, the QsNet does not require the communication buffers to be

registered.

LANai Memory

User Process Memory

Receive event

queue

Receive buffer pool

gm_provide_receive_buffer

gm_receive

Send state
machine

Arriving packets

Receive completed

Chapter 2 Background 18

Figure 2.11. Elan programming libraries.

2.4.3 Remote Shared Memory

Remote Shared Memory (RSM) [45] is designed for the Sun Fire link interconnect, to

provide low latency and high bandwidth communications. It is a high-performance

memory-based mechanism, which implements user-level inter-node messaging with direct

access to memory that is resident on remote nodes. To establish the communications, an

application process creates an RSM export segment from the process’ local address space.

One or more remote application processes create an RSM import segment with a virtual

connection between export and import segments across the interconnect. All processes make

memory references for the shared segment with addresses local to their specific address

spaces. After the RSM segment is published through one or more interconnect controllers, the

segment is remotely accessible. RSM also provides a notification mechanism to synchronize

local and remote accesses. An export process can call a function to block while an import

process finishes a data write operation. When the import process finishes writing, the process

unblocks the export process by calling a signal function. Once unblocked, the export process

processes the data. The detailed API is studied in Chapter 5.

2.4.4 VAPI

 Verb-Based API (VAPI) is the software interface for the InfiniBand. The interface is based

on the InfiniBand verbs layer, which is an abstract description of functionalities of a HCA.

Three communication operations are provided: send/receive, RDMA operations and Atomic.

User applications

shmem MPI-2

Elanlib T-port

Elan3lib User space

Kernel space

Chapter 2 Background 19

The performance of send/receive and RDMA operations is shown in [12][28]. Both reliable

connection and unreliable datagram services have been implemented on HCAs. Similar to the

GM, memory buffers must be registered with HCA before being used. Existing designs of MPI

over InfiniBand use send/receive operations for small data messages and control message, and

RDMA operations for large data messages [12].

2.4.5 VIA

 The Virtual Interface Architecture (VIA) [6][15] is designed to provide high bandwidth

and low latency over a System Area Network, by providing a protected and directly

accessible network interface called the Virtual Interface (VI). Two VI endpoints on different

nodes can be connected by a bidirectional point-to-point communication channel. The virtual

memory used by user communication buffers needs to be registered, so that these buffers can

be accessed by network interface. The VIA specifies two types of data transfer models: the

traditional send/receive messaging model and the Remote Direct Memory Access (RDMA)

model.

2. 5 Parallel Programming Paradigms

Parallel computers provide support for a wide range of parallel programming paradigms.

The HPC programmer has several choices for the parallel programming paradigm, including

the message passing, shared memory, data parallel, bulk synchronous, and mix-mode.

Message Passing interface (MPI) [39], and OpenMP [43] are the de facto standards for

message passing, and shared memory paradigms. The shared address space within each SMP

node is suitable for OpenMP parallelization and POSIXThread [44]. Message passing can be

employed within and across the nodes of a cluster. Programming with shared memory

paradigm is generally easier but it is not highly scalable, while message passing is harder to

program but it is more scalable. Data parallel paradigm is for the SIMD architecture, where a

single control unit issues each instruction to the processing elements [32]. The Bulk

Synchronous Parallel (BSP) model is a universal abstraction of parallel computation that can

be used to design portable parallel programs [29]. The mix-mode programming is a

Chapter 2 Background 20

combination of message passing and shared memory paradigms. Which programming

paradigm is better depends on the nature of the given problem and the architecture being used.

In this section, MPI, OpenMP, Java, and other paradigms are introduced.

2.5.1 Message Passing

MPI [39] is a well known message passing environment. MPI has good portability,

because programs written using MPI can run on distributed-memory multicomputers,

shared-memory multiprocessors, and networks of workstations. On top of shared memory

systems, message passing is implemented as writing to and reading from the shared memory.

So MPI can be implemented very efficiently on top of the shared memory systems. Another

advantage of the MPI programming model is that the user has complete control over data

distribution and process synchronization, which can provide optimal data locality and

workflow distribution. The disadvantage is that existing sequential applications require a fair

amount of restructuring for parallelization based on MPI.

MPI provides the user with a programming model where processes communicate with

each others by calling library routines. There are two kinds of communications in MPI,

point-to-point and collective.

Point-to-point communication is the basic communication mechanism used to transmit

data between a pair of processes in MPI, as shown in Figure 2.12. Point-to-point

communications can be divided into blocking and non-blocking. A blocking procedure will

not return until the user is allowed to reuse resources specified in the call. A non-blocking

procedure may return before the operation completes. Blocking calls support four different

modes: standard send and receive, buffered, synchronize and ready.

Standard – The completion of a send implies that the message either is buffered internally or

has been received. So after the call returns, the user is free to overwrite the

message.

Buffered – The user guarantees a certain amount of buffering space.

Chapter 2 Background 21

Synchronous – Rendezvous semantics is used between the sender and receiver. The sending

process blocks until the corresponding receive has been posted.

Ready – A send operation can be started only after the matching receive is already posted.

The ready mode is a way for the programmer to notify the system that the receive

has been posted so that the underlying system can use faster protocol if it is

available.

Figure 2.12. Standard send/receive model.

Collective communications transmit data among all processes in a group. Barrier

operation synchronizes across all processes in the group. In a Broadcast operation, a process

sends a unique message to all other processes of the group. In a Gather operation, each

process sends a message to a specific process. Scatter operation is the inverse operation to the

gather operation, where a process sends a different message to all processes in the group.

Alltoall operation sends messages from all processes to all processes. Reduce operation gets

the combined value from the messages received from all other process in the group, using the

operation op.

2.5.1.1 Sun MPI

Sun MPI [48] is a complete library of message-passing routines, developed by Sun

Microsystems. Figure 2.13 describes the architecture of Sun MPI. Sun MPI treats on-node

and off-node communications differently. For on-node communications, shared memory

protocol is used, while Remote Shared Memory [45] protocol is used for off-node

Match

Process A Process B

Send X,B

Receive Y,A

Address Y

Address X

Address space Address space

Chapter 2 Background 22

communications. A Remote Shared Memory application programming interface (RSMAPI)

offers a set of user level function calls for remote memory operations [45].

Figure 2.13. Sun MPI structure.

For on-node point-to-point message passing, the sender writes to shared-memory buffers,

depositing pointers to these buffers into shared-memory postboxes [47]. After the sender

finishes writing, the receiver can read the postboxes and the buffers. Figure 2.14 shows the

different ways a message is sent based on its size. For small messages, instead of putting

pointers to the buffers into postboxes, data itself is placed into the postboxes. For

medium-size messages, one postbox is used pointing to the buffers with data. For large

messages, which may be separated into several buffers, the reading and writing can be

pipelined. For very large messages, to keep the message from overrunning the

shared-memory area, the sender is allowed to advance only one postbox ahead of the receiver.

Thus, the footprint of the message in shared memory is limited to at most two postboxes at

any one time, along with associated buffers. Sun MPI uses eager protocol for small messages,

where it writes the messages without explicitly coordinating with the receiver. For large

Memory

 Network
Drivers

 TCP Stack

shmem RSM TCP

Progress Engine

Sun MPI Level

Application Level

Sun Fire Link Adapter

Chapter 2 Background 23

messages, it employs rendezvous protocol, where the receiver must explicitly notify the

sender that it is ready to receive the message, before the message can be sent.

Figure 2.14. On-node messages. (a) small (b) medium-size (c) long.

For off-node communications, Sun MPI supports high performance message passing by

means of the RSM protocol, which is running on top of the Sun Fire Link. Sun MPI over

RSM achieves low latency bypassing the operating system, and high bandwidth from striping

messages through multiple channels. Messages sent over RSM are in one of two fashions

depending on the size of message [31][47]. Short messages are fit into multiple postboxes

and no extra buffers are used. Pipelined messages are sent in 1024-byte buffers under the

control of multiple postboxes.

Standard MPI communications are two-sided. To complete the transfer of information,

both the sending and receiving side processes must call proper functions. This form of

communication requires synchronization between the sending and receiving processes. Sun

MPI supports one-sided communication designed to reduce the amount of synchronization

required. In one-sided communication, a process opens a window in memory, and exposes it to

some processes that it wants to communicate with, using a particular communicator. These

processes must reside on the same node. As long as the window is open, any process in that

 postboxpostbox

buffer buffer

Receiver
reads

Sender
writes

postbox

(a) small message

(c) long message

Data

Chapter 2 Background 24

particular communicator and node can put (write) data into it and get (read) data out of it.

MPI_Put and MPI_Get functions are used for the put and get operations.

Efficient implementation of collective communication algorithms is one of the keys to the

performance of cluster computer systems. Sun MPI takes advantage of the symmetric

multiprocessors’ characteristics for efficient implementation of collective communication

algorithms for on-node, and off-node communications in clusters of SMPs. For on-node

collective communications, the optimized algorithms use the local exchange method instead

of point-to-point approach. As stated earlier, on a single SMP node, any process may

communicate with any other node via shared memory. Thus, the time to complete the

operation is limited by the memory bandwidth. For off-node collective communications, one

representative process for each SMP node is chosen [35]. This process is responsible for

delivering the message to all other processes on the same node, which are involved in the

collective operation.

2.5.1.2 MPICH

MPICH [40] is a portable implementation of the full MPI specification for a variety of

parallel computing environments. MPICH is designed through implementation of an abstract

device interface (ADI). Each implementation of ADI is called a device. Several devices are

available, such as ch_p4, ch_shmem and ch_gm. The ch_p4 device supports SMP nodes and

heterogeneous collections of systems. The ch_shmem device is appropriate for an SMP. It

uses shared memory to pass messages between processes. The ch_gm is used for the GM

user-level protocol. There are four protocols in MPCH, namely eager, rendezvous, short, and

get. In the eager protocol, the sender sends data to the receiver without request, while in the

rendezvous protocol the sender sends the data only after the receiver notifies the sender that it

can accept the message. In the short protocol the data was sent in to the control message

envelop. In the get protocol the receiver just gets the data from the sender

Chapter 2 Background 25

2.5.2 OpenMP

Message-passing codes written in MPI are obviously portable and should transfer easily

to SMP cluster systems. However, it is not immediately clear that message passing is the

most efficient parallelization technique within an SMP box, where in theory a shared memory

model such as OpenMP [43] should be preferable.

OpenMP is a loop level programming style. It is popular because it is easy to use and

enables incremental development. Parallelizing a code includes two steps, (1) discover the

parallel loop nests contributing significantly to the computations time; (2) add directives for

starting/closing parallel regions, managing the parallel threads (workload distribution,

synchronization), and managing the data.

OpenMP provides a fork-and-join execution model, as shown in Figure 2.15. A program

begins execution as a single process or thread, until a parallelization directive for a parallel

region is found. At this time, the thread creates a number of threads, and becomes the master

thread of these threads. All threads execute the statements together until the end of the

parallel region.

Figure 2.15. Fork-join model.

The advantage of OpenMP is that an existing code can be easily parallelized by placing

OpenMP directives around the loops which do not contain data dependences. The

disadvantage is that it may not scale very well with the number of processors. In [33],

OpenMP is extended for the cluster of SMPs by “compiler-directed” distributed shared

memory system.

F
O
R
K

J
O
I
N

{ parallel region }

thread

Main
thread

F
O
R
K

J
O
I
N

{ parallel region }

thread

Chapter 2 Background 26

2.5.3 JAVA

Java is a relatively new language for High Performance Computing. Although Java

programs suffer from poor performance, running much slower than C and Fortran, it offers a

number of benefits as a language for HPC, such as portability, software engineering, security

and GUI development [36]. Java offers a higher level of platform independence to generate

portable code which compiles and runs on a diverse range of platforms.

There are several parallel programming models of Java: Java threads, MPI-like API of

Java [10] and an OpenMP-like API for Java (JOMP) [8]. It is possible to write shared

memory parallel programs using Java’s native threads model by running a single

multi-threaded Java application. The Java thread class is part of the standard Java libraries.

Most current virtual machines implement this class on top of the native OS threads allowing

threads distributed across the processors. A thread is spawned by creating an instance of the

java.lang.thread class, and has the methods to control the threads [36]. Currently, there are

several Java MPI-like bindings available, which are generally implemented in two ways - as a

wrapper around the existing native MPI library, or as a pure Java implementation. JOMP [8]

is a prototype Java version of OpenMP, which provides a familiar parallelism model without

the complexity of Java threads.

2.5.4 Other Parallel Programming Paradigms

In the mixed MPI-OpenMP programming style, each SMP node executes one MPI

process that has multiple OpenMP threads. This kind of hybrid parallelization might be

beneficial when it utilizes the high optimization of the shared memory model on each node.

As small to large SMP clusters become more prominent, it is open to debate whether pure

message-passing or mixed MPI-OpenMP is the programming of choice for higher

performance. Previous works on small SMP clusters have shown contradictory results

[9][19].

In Data Parallel paradigm, a single program controls the distribution of and operations on

data distributed across all processors. The compiler is responsible for generating the codes to

Chapter 2 Background 27

distribute the array elements on the available processors. Data parallel applications may be

run on MIMD and SIMD architectures [32]. High Performance Fortran (HPF) [32] is a

programming language designed to support the data parallel programming style.

In the BSP model [29], the computation is divided into a sequence of supersteps. In each

superstep, the processors perform some local computation, initiate communications to other

processors, and synchronize at the end of each superstep.

2.6 Summary

General idea about parallel computer architectures is given in this chapter. I discussed

the architecture of some popular systems, especially SMPs and CLUMPs, which are the

trends now and will remain the trends for future. I discussed different components of such

systems, including the processor, interconnect, user-level messaging layer and high-level

parallel programming paradigms. In the following chapters, I will discuss the performance of

such parallel computer systems. In chapter 3, I will introduce the application benchmarks.

Chapter 3 Application Benchmarks and Their Characteristics 28

Chapter 3

Application Benchmarks and Their Characteristics

To evaluate the performance of high-performance parallel computer systems, application

benchmarks are developed. In this chapter, I describe the NAS parallel Benchmark (NPB)

suite [42], used in this thesis along with the communication characteristics of its MPI

versions. The architectural requirements and scalability of NAS parallel benchmarks (class

A) was presented in [37]. The communication characteristics of some of the NAS

benchmarks were studied in [5]. In [9], the NAS benchmarks were used to evaluate two

communication libraries over the IBM SP machine. In this section, I include the

characteristics of the newly released class D, as well as the results for classes B and C. I have

gathered the communication traces under three system sizes of 16, 32, and 64 processes.

3.1 NAS Parallel Benchmarks

The NAS Parallel Benchmark suite has been developed at the NASA Ames Research

Center [42] to help evaluate the performance of parallel supercomputers. The benchmark

suite, which mimics the computation and data movement characteristics of large scale

computational fluid dynamics (CFD) applications consists of eight programs, including five

kernels and three pseudo-applications. Namely, the three simulated CFD application

benchmarks are block tridiagonal (BT), lower-upper diagonal (LU), and scalar

pentadiagonal (SP), and the kernels are conjugate gradient (CG), embarrassingly parallel

(EP), 3-D fast-Fourier transform (FT), integer sort (IS), and multigrid (MG). The five

kernels mimic the computational core of five numerical methods used by CFD applications.

Chapter 3 Application Benchmarks and Their Characteristics 29

The simulated CFD applications reproduce much of the data movement and computation

found in full CFD codes.

Implementation of the NAS benchmarks are based on either Fortran 90 (including

Fortran-77), or C language (except for NPB-JAVA 3.0 and NPB-HPF 3.0) because of the

observation that Fortran and C are the most commonly used programming languages by the

scientific parallel computing community.

I used three different versions of the NAS benchmarks, version 2.3, version 2.4, and

version 3.0. NPB 2.3 is implemented with MPI-based source-code. They are intended to be

run with little or no tuning. NPB 2.3 comes with five problem sizes for each benchmark:

small class S, workstation class W, large class A and larger classes B and C. I study the

characteristics of class B and class C in this chapter, and then the performance of class B in

chapter 4.

High-performance computer systems have grown significantly in size and capabilities,

including increases in cache and memory size, improved compiler technology and increased

network bandwidths. The latest release, NPB 2.4 is also implemented with MPI, but contains

a new and even larger class D, whose characteristics is studied in Section 4.2. Each class D

benchmark involves approximately 20 times as much work, and a data set that is

approximately 16 times as large, comparing with class C benchmark. Note that the class D

implementation of the IS benchmark is not yet available.

NPB 3.0 is implemented in three different ways, OpenMP, High Performance Fortran

(HPF) [17], and Java, which are called NPB–OMP 3.0 [23], NPB-JAVA 3.0 [18] and

NPB-HPF 3.0, respectively. They were derived from the NPB-serial implementations

released with NPB 2.3, with some additional optimization. I study the class B performance of

NPB–OMP 3.0 and NPB-JAVA 3.0 in chapter 4.

3.1.1 EP

An embarrassingly parallel kernel, EP [5] provides an estimate of the upper achievable

limits for floating point performance, by generating pairs of Gaussian random deviates

Chapter 3 Application Benchmarks and Their Characteristics 30

according to a specific scheme. That is the performance without significant interprocessor

communication. The MPI version of the kernel benchmark requires a power of two number

of processors.

3.1.2 MG

Simplified multigrid kernel, MG [5] uses a V-cycle multgrid method to compute an

approximate solution to the discrete Poisson problem, the 3-D scalar Poisson equation. The

partitioning of the grid onto processors occurs such that the grid is successively halved,

starting with the z dimension, then the y dimension and then the x dimension, and repeating

until all power-of-two processors are assigned. The algorithm requires highly structured long

distance communication between coarse and fine, so that it tests both short and long distance

data communication. The MPI version of the kernel benchmark requires a power of two

number of processors.

3.1.3 CG

The conjugate gradient kernel, CG [5] computes an approximation to the smallest

eigenvalue of a large, sparse, symmetric positive definite matrix, using conjugate gradient

method. This kernel is typical of unstructured grid computations in that it tests irregular long

distance communication, which employs unstructured matrix vector multiplication. The MPI

version of the kernel benchmark requires a power of two number of processors.

3.1.4 FT

FT [5] is a 3-D fast-Fourier transform (FFT) partial differential equation (PDE)

benchmark. It numerically solves a certain partial differential equation using forward and

inverse FFTs. The implementation of FT follows a fairly standard scheme. The 3-D array of

data is distributed according to z-planes of the array – one or more planes are stored in each

processor. The forward 3-D FFT is then performed as multiple 1-D FFTs in each dimension,

first in the x- and then y- dimensions. An array transposition is then performed which

amounts to an exchange from all nodes to the others. The final set of 1-D FFTs is then

Chapter 3 Application Benchmarks and Their Characteristics 31

performed. The MPI version of the kernel benchmark requires with a power of two number of

processors.

3.1.5 LU

The lower-upper diagonal benchmark, LU [5], uses symmetric successive

over-relaxation (SSOR) method to solve a seven-block-diagonal system which results from

finite-difference discretization of Naview-Stokes equations in 3-D by splitting it into block

lower and upper triangular systems. 2-D partitioning of the grid onto processors occurs by

halving the grid repeatedly in the first two dimensions, alternately x and then y, until all

power-of-two processors are assigned, resulting in vertical pencil-like grid partitions. The

ordering of point based operations constituting the SSOR procedure proceeds on diagonals

which progressively seep from one corner on and given z plane to the opposite corner of the

same z plane, there upon proceeding to the next z plane. Communication of partition

boundary data occurs after completion of computation on all diagonals that contact an

adjacent partition. The MPI version of this benchmark requires a power of two number of

processors.

3.1.6 IS

Parallel sort over small integers, IS [5], kernel benchmark, sorts N keys in parallel, which

are generated by the sequential key generation algorithm given initially must be uniformly

distributed in memory. IS is the only NAS benchmark that written in C language (except for

the JAVA version). The MPI version of the kernel benchmark requires a power of two

number of processors.

3.1.7 BT and SP

Block Tridiagonal, BT [5], and Scalar Pentadiagonal, SP [5] have a similar structure;

each solves three sets of uncoupled systems of equations. BT uses an implicit algorithm to

Chapter 3 Application Benchmarks and Their Characteristics 32

solve 3-D compressible Navier-Stokes equations. The finite differences solution to the

problem is based on an Alternating Direction Implicit (ADI) approximate factorization that

decouples the x, y and z dimensions. The resulting systems are Block-Tridiagonal of 5x5

blocks and are solved sequentially along each dimension. Differently, SP is based on a

Beam-Warming approximate factorization that decouples the x, y and z dimensions. Both BT

and SP require a square number of processors. Those codes have been written such that if the

number of processors is different than a square number, then the unneeded processors are set

inactive and are not used during computations.

3.2 Characteristics of the NAS Benchmark Suite

A proper understanding of the communication patterns of parallel applications is

important for determining how to maximize their performance within a given environment.

This section presents the communication patterns of the MPI version of the NAS benchmark

suite. This includes the message sizes, the number of messages, and the destination

distribution. I executed the applications on a 4-node Sun Fire 6800s, and a Sun Fire 15K

server at the High Performance Computing Virtual Laboratory (HPCVL) for gathering their

communication traces. I wrote my own profiling codes using the wrapper facility of the MPI.

I did this by inserting recording operations in the profiling MPI library and saving the

communication related activities into log files.

I chose five benchmarks from the NAS benchmark suite, BT, SP, LU, CG and MG. I

characterized three problem sizes: class B and class C (from NPB 2.3 MPI), class D (from

NPB 2.4 MPI). I have not included EP and FT because all of the communications in EP and

FT are collective communications. In IS, each process is sending messages to only one fixed

destination process. Note that I was not able to gather the results for the class D of BT with

16 processes and 32 processes due to their large problem sizes.

 Traditionally, the communication properties of parallel application have been

characterized by three attributes: the spatial, temporal, and volume components [11][26]. The

spatial behavior is presented by distribution of message destinations. The temporal behavior

Chapter 3 Application Benchmarks and Their Characteristics 33

is defined by message generation rate. (The temporal characteristics are not provided in this

thesis). The volume of data transfer is characterized by the distribution of message sizes and

the average number of messages.

 Figure 3.1 shows the number of send events per process for the benchmarks. Class D has

a much larger number of send events than class B and class C, more than two times for MG,

CG, and LU (64 processes). Class B and class C behave very similar. With the increasing

number of processes, from 16 to 64 processes, the number of sends in MG and LU does not

change much, while the number of sends in BT and SP is increasing. For CG, BT and SP, the

send events are evenly assigned to each process, because the minimum, average and

maximum number stay very close. LU has the largest number of send events among all the

benchmarks; each process is sending more than 200000 messages for class D. MG has the

smallest number of send events, smaller than 10000 events for class D, with 64 processes.

Figure 3.2 shows the average, minimum and maximum message size (Kbyte) transferred

among processes. The average message sizes of the whole applications are shown in Figure

3.3. Class D has a much larger average message size than class B, which is slightly larger

than class C. All benchmarks have decreasing average message sizes, when running with

more processes. LU has the smallest average message size, around 0.7 Kbytes for class D and

64 processes, while BT has the biggest average message size, around 60 Kbytes for class D

and 64 processes.

Figure 3.4 shows the number of destinations. In BT and SP, there are two different

communicators used. I define <destination #, communicator> as one unique destination. CG,

BT and SP have the same number of destinations for each process. It is clear that the

processes in the benchmarks do not have many partners. LU and CG have up to four different

destinations; MG has up to nine destinations; BT and SP have up to 12 destinations. So, in

conclusion, in the NAS benchmarks, each process has relatively constant number of partners

to communicate with.

Chapter 3 Application Benchmarks and Their Characteristics 34

Figure 3.1. Number of send events per process.

LU

0

100000

200000

300000

400000

500000

600000

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls
MG

0

2000

4000

6000

8000

10000

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls
CG

0

10000

20000

30000

40000

50000

60000

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

BT

0

2000

4000

6000

8000

10000

12000

14000

b16 b36 b64 c16 c36 c64 d64

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

SP

0

5000

10000

15000

20000

25000

30000

b16 b36 b64 c16 c36 c64 d16 d36 d64

Class/number of processes

N
um

be
r o

f s
en

d
ca

lls

Chapter 3 Application Benchmarks and Their Characteristics 35

Figure 3.2. Average message size (Kbytes) per process.

Figure 3.5, Figure 3.6, and Figure 3.7 show the cumulative distribution of message sizes.

The value in the Y-axis presents the percentage of the messages with message sizes smaller

than the X-axis value. MG has many different sizes of messages, from 10 bytes to more than

100 Kbytes. Almost half of the messages sent in CG are around 0.6 Kbytes, while another

half is more than 10Kbytes. LU sends many small messages around 500 bytes, which makes

LU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

MG

0

5

10

15

20

25

30

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

CG

0

20

40

60

80

100

120

140

160

180

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

BT

0

10

20

30

40

50

60

70

b16 b36 b64 c16 c36 c64 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

SP

0

50

100

150

200

250

b16 b36 b64 c16 c36 c64 d16 d36 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

Chapter 3 Application Benchmarks and Their Characteristics 36

the average message size around 700 bytes. BT and SP have quite large message sizes, where

almost all the messages are more than 10 Kbytes.

 Figure 3.3. Average message size (Kbytes).

LU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

MG

0

5

10

15

20

25

30

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 B
yt

e)

CG

0

20

40

60

80

100

120

140

160

180

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes
A

ve
ra

ge
 m

es
sa

ge
 s

iz
e

(K
 B

yt
e)

BT

0

10

20

30

40

50

60

70

b16 b36 b64 c16 c36 c64 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 B
yt

e)

SP

0
20

40
60

80
100
120

140
160

180
200

b16 b36 b64 c16 c36 c64 d16 d36 d64

Class/number of processes

A
ve

ra
ge

 m
es

sa
ge

 s
iz

e
(K

 b
yt

e)

Chapter 3 Application Benchmarks and Their Characteristics 37

Figure 3.4. Number of destinations.

Figure 3.8 and Figure 3.9 show the destination distribution of process 0, running with 64

processes. For class B and class C, CG, BT and SP have exactly the same destinations, and

the same number of messages is sent to each destination. For class D, all benchmarks have

similar destinations as in class B and class C, but larger number of messages is sent. It is clear

that the benchmarks do not show many communication partners.

LU

0

1

2

3

4

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f d
es

tin
at

io
ns

MG

0

2

4

6

8

10

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f d
es

tin
at

io
ns

CG

0

1

2

3

4

b16 b32 b64 c16 c32 c64 d16 d32 d64

Class/number of processes

N
um

be
r o

f d
es

tin
at

io
ns

BT, SP

0

2

4

6

8

10

12

14

b16 b36 b64 c16 c36 c64 d16 d36 d64

Class/number of processes

N
um

be
r o

f d
es

tin
at

io
ns

Chapter 3 Application Benchmarks and Their Characteristics 38

Figure 3.5. Cumulative distribution of message sizes, class B.

BT

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (Byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es

SP

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es
LU

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000 1E+08

Message size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es
CG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 100 10000 1000000

Message size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es
MG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000 100000 1000000

Messasge size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es

Chapter 3 Application Benchmarks and Their Characteristics 39

 Figure 3.6. Cumulative distribution of message sizes, class C.

BT

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (Byte)

C
DF

 o
f m

es
sa

ge
 s

iz
es

SP

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (byte)

C
DF

 o
f m

es
sa

ge
 s

iz
es

LU

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000 1E+08

Message size (byte)

CD
F

of
 m

es
sa

ge
 s

iz
es

CG

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es
MG

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1000000

Messasge size (byte)

CD
F

of
 m

es
sa

ge
 s

iz
es

Chapter 3 Application Benchmarks and Their Characteristics 40

Figure 3.7. Cumulative distribution of message sizes, class D.

BT

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000

Message size (Byte)

C
DF

 o
f m

es
sa

ge
 s

iz
es

SP

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000 1E+08

Message size (byte)

C
DF

 o
f m

es
sa

ge
 s

iz
es

LU

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000 1E+08

Message size (byte)

C
D

F
of

 m
es

sa
ge

 s
iz

es
CG

0

0.2

0.4

0.6

0.8

1

1 100 10000 1000000 1E+08

Message size (byte)

CD
F

of
 m

es
sa

ge
 s

iz
es

MG

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1E+06 1E+07

Messasge size (byte)

CD
F

of
 m

es
sa

ge
 s

iz
es

Chapter 3 Application Benchmarks and Their Characteristics 41

Figure 3.8. Destination distribution of process 0 (64 processes)

CG Class D

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 7 13 19 25 31 37 43 49 55 61

Destination

N
um

be
r o

f s
en

ds

MG Class D

0

200
400

600

800

1000
1200

1400

1600

1 7 13 19 25 31 37 43 49 55 61

Destination

N
um

be
r o

f s
en

ds

CG Class B & Class C

0

1000

2000

3000

4000

5000

6000

7000

1 8 15 22 29 36 43 50 57

Destination

N
um

be
r o

f s
en

ds

MG Class B

0

100

200

300

400

500

1 7 13 19 25 31 37 43 49 55 61

Destination

N
um

be
r o

f s
en

ds

MG Class C

0

100

200

300

400

500

600

1 7 13 19 25 31 37 43 49 55 61

Destination

N
um

be
r o

f s
en

ds

Chapter 3 Application Benchmarks and Their Characteristics 42

Figure 3.9. Destination distribution of process 0 (64 processes).

LU Class B

0

5000

10000

15000

20000

25000

30000

1 8 15 22 29 36 43 50 57

Destination

N
um

be
r o

f s
en

ds

LU Class C

0

10000

20000

30000

40000

50000

1 8 15 22 29 36 43 50 57

Destination

N
um

be
r o

f s
en

ds

LU Class D

0

20000

40000

60000

80000

100000

120000

140000

1 8 15 22 29 36 43 50 57

Destination

N
um

be
r o

f s
en

ds

SP Class D

0

1000

2000

3000

4000

1 17 33 49 65 81 97 113

Destination

N
um

be
r o

f s
en

ds

SP Class B & Class C

0

500

1000

1500

2000

2500

3000

1 18 35 52 69 86 103 120

Destination

N
um

be
r o

f s
en

ds

BT Class B & Class C

0

500

1000

1500

1 18 35 52 69 86 103 120

Destination

N
um

be
r o

f s
en

ds

BT Class D

0

500

1000

1500

2000

1 17 33 49 65 81 97 113

Destination

N
um

be
r o

f s
en

ds

Chapter 3 Application Benchmarks and Their Characteristics 43

3.3 Summary

In this chapter, the NAS Parallel benchmark suite has been introduced. I analyzed the

communication characteristics of the MPI version, where it could provide insights as to the

performance of applications on high performance computers. I presented the characteristics

of applications under different problem sizes (classes B, C and D), and different system sizes

(16, 32 and 64 processes).

I have found that the number of send calls and average message sizes are increasing with

larger workloads. Class D has much more communication than class B and class C. For the

same workload, running with larger number of processes, the benchmarks have larger number

of send calls, but with smaller average message sizes. LU has the largest number of send calls,

and smallest average message size. LU is the benchmark that sends a lot of small size

messages. MG has many different message sizes. BT and SP are very similar, both sending

relatively large size messages.

Knowing more about the application benchmarks, I will evaluate the micro-benchmark

and application benchmark performance on two different SMPs in the next chapter. I will try

to correlate the performance of these applications on different platforms (SMPs and CLUMPs)

with their communication characteristics.

Chapter 4 Performance on Small and Large SMPs 44

Chapter 4

Performance on Small and Large SMPs

Having analyzed the communication characteristics of the NAS benchmark suite, I

would like to know their performance on two different SMP systems. An SMP machine is the

building block of cluster of SMP machines. For this, I would like to see their performance

under a suite of parallel application benchmarks. In this chapter, I evaluate the performance

on two SMPs, a 4-way Dell PowerEdge 6650, and a 72-way Sun Fire 15K server. The results

include memory bandwidth, latencies and bandwidths of point-to-point communications,

latencies of collective communications and the performance of three versions of the NAS

parallel Benchmarks, implemented in MPI, OpenMP, and JAVA, respectively. I compare the

results for different classes, as well as for different programming paradigms. In [24], the

performance of OpenMP, MPI, and hybrid programming paradigms are provided on Sun Fire

15K server. However, they only used the BT benchmark for comparative study. The

performance between the MPI and OpenMP version of a large-scale application benchmark

suite, SPECseis was compared in [4].

4.1 SMP Platforms

Dell PowerEdge 6650 has 4 Intel Xeon MP processors (1.4-GHz), and 2 GB of RAM. In

our tests in this chapter and following chapters, Hyper-Threading is turned off on the Dell

PowerEdge machines. The system uses Linux, RedHat 9, as the operating system, the Intel

compiler 7.1 and MPICH 1.2.5 for the MPI messaging layer. I use the ch_shmem device

which is suitable for SMP, because of its highly optimized use of shared memory model on

SMP. The Sun Fire 15K server has 72 UltraSPARC III Cu processors (1.2-GHz), and 144 GB

Chapter 4 Performance on Small and Large SMPs 45

of RAM. The environment includes the Solaris™ 9 Operating Environment, and Sun MPI 6.0

for message passing.

4.2 Memory Bandwidth

Computer CPUs are getting faster much more quickly than computer memory systems. As

this continues, more and more programs will be limited in performance by the memory

bandwidth of the system, rather than by the computational performance of the CPU. In this

Section, I study the memory bandwidth of the Dell PowerEdge 6650, and the Sun Fire 15K

server.

We wrote the benchmark codes for memory bandwidth in MPI and OpenMP based on the

STREAM benchmark [51]. The STREAM benchmark is specifically designed to work with

datasets much larger than the available cache on any given system, so that the results are

(presumably) more indicative of the performance of very large, vector style applications. What

we do is to have all processes in the MPI version, or threads in the OpenMP version, do a

number of memory operations at the same time. These operations are copy, scalar, addition,

and triad, which is the combination of the scalar and addition operations.

Figure 4.1 shows the memory bandwidth of the Dell PowerEdge 6650, and the Sun Fire

15K server. For the MPI version with one process, PowerEdge 6650 achieves 0.6 GB/s

bandwidth, comparing to 0.8 GB/s for the OpenMP version with one thread. The OpenMP

version also has a better performance than the MPI version when running with two

processes/threads. They both have degrading performance for 4 processes or threads. The Sun

Fire 15K server shows very good scalability. The performance is dropping for 71

processes/threads. The MPI version has similar performance as the OpenMP version, which

indicates that Sun MPI is highly optimized using shared memory within the SMP. The Dell

PowerEdge 6650 has a larger memory bandwidth when running with 2 processes/threads than

the Sun Fire server.

Chapter 4 Performance on Small and Large SMPs 46

Memory Bandwidth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4

Number of processes/threads
B

an
dw

id
th

 (G
B

/s
)

MPI
OMP

(a)

Memory bandwidth

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 71

Number of processes/threads

B
an

dw
id

th
 (G

B/
s)

MPI
OMP

(b)
Figure 4.1. Memory bandwidth on (a) Dell PowerEdge 6650 (b) Sun Fire 15K.

4.3 Communication Latency and Bandwidth

 I am also interested in the performance at the MPI level. In this section, I provide the

performance of point-to-point latencies and bandwidths. Latency is defined as the time it

takes for a message to travel from the sender process address space to the receiver process

address space. I provide here our framework for measuring the latency of a message transfer.

I do the standard ping-pong test under different MPI send modes; measure the latency with

different send buffers; and find the unidirectional latency. In the ping-pong test, the sender

sends a message and the receiver upon receiving the message, immediately replies with the

same message size [31]. In the unidirectional test, the sender sends a number of messages and

the receiver replies after receiving all these messages.

 The bi-directional latency test is the ping-pong test that is repeated sufficient number of

times to eliminate the transient conditions of the network. Then, the average round-trip time

Chapter 4 Performance on Small and Large SMPs 47

divided by two is reported as the one-way latency. This test is repeated for messages of

increasing sizes. I tested using matching pairs of blocking sends and receives under different

MPI send modes; that is, the standard mode, the synchronous mode, the buffered mode, and

the ready mode.

In the standard latency test with buffer management, I modify the standard ping-pong test

such that each send operation uses a different message buffer. This test exposes the buffer

management cost at the MPI level. The results are obtained with 16 different buffers. I

experimented with different message sizes.

The unidirectional bandwidth test shows the capacity of the network. In this measurement,

the sending process constantly pumps messages into the network without waiting for an

acknowledgement. The receiving node sends back an acknowledgment upon receiving all the

messages. Bandwidth is reported as the total number of bytes per unit time delivered during

the time measured.

All the results are averaged over running the tests for 1000 times. I do not have the

results for the synchronous mode for the Sun Fire 15K due to limited exclusive access to the

system. Figure 4.2 shows the latencies on Dell PowerEdge 6650, and Figure 4.3 shows the

results on Sun Fire 15K server. For the Dell PowerEdge 6650, the latency stays at 10 µs for

up to 512-byte message, for the standard, ready, buffered and diffbuf modes. The

Unidirectional mode has a little bit larger latency, 12 µs for small size messages, and 32 µs

for the synchronous mode. The Sun Fire 15K server has a better performance, 3 µs up to

64-byte messages for unidirectional ping, 5µs for standard ready and diffbuf, and 6 µs for

buffered mode. For large message size, the Sun Fire 15K server also has smaller latency.

Figure 4.4 and Figure 4.5 show the bandwidth on these two systems. The Dell

PowerEdge 6650 achieves up to 600 MB/s, while the Sun Fire 15K server gets up to around

550MB/s. The performance of Dell PowerEdge 6650 is degrading after 64 Kbytes messages.

This might be due to several reasons: protocol switch from eager to rendezvous protocol,

poor MPI implementation, or lack of sufficient memory.

Chapter 4 Performance on Small and Large SMPs 48

Figure 4.2. Point-to-point latency on Dell PowerEdge 6650.

Figure 4.3. Point-to-point latency on Sun Fire 15K.

Bandwidth

0

100

200

300

400

500

600

700

800

1 16 255 4K 64K 1M

Message size (byte)

B
an

dw
id

th
 (M

B
/s

) Standard

Syhchronous

Ready

Buffered

Uni-directional

Diffbuf

Figure 4.4. Bandwidth on Dell PowerEdge 6650.

Latency

0

20

40

60

80

100

120

128 1K 8K

Message Size (byte)

0

1

2

3

4

5

6

7

8

9

1 8 64

La
te

nc
y

(µ
s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16K 128K 1M

Standard

Ready

Buffered

Uni-directional

Diffbuf

Latency

0

10

20

30

40

50

60

128 1K 8K

Message Size (byte)

0

5

10

15

20

25

30

35

1 8 64

La
te

nc
y

(µ
s)

0

1000

2000

3000

4000

5000

6000

7000

16K 128K 1M

Standard

Syhchronous

Ready

Buffered

Uni-directional

Diffbuf

Chapter 4 Performance on Small and Large SMPs 49

Bandwidth

0

100

200

300

400

500

600

1 16 256 4K 64K 1M

Message size (byte)

B
an

dw
id

th
 (M

B
/s

) Standard

Ready

Buffered

Uni-directional

Diffbuf

Figure 4.5. Bandwidth on Sun Fire 15K.

 I have presented the MPI latencies and bandwidths on Dell PowerEdge 6650 and Sun

Fire 15K. From the results, it can be concluded that the Sun Fire 15K server has a better

memory hierarchy system and a better MPI implementation than the MPICH on the Dell

PowerEdge 6650 server. The Dell PowerEdge 6650 server has a degrading performance for

message sizes larger than 64 Kbytes. In the next section, I will look at the performance of

collective communications, an important part in message passing applications.

4.4 Collective Communications

 Efficient implementation of collective communication operations is one of the keys to

the performance of parallel applications. I have chosen the broadcast, scatter, gather, alltoall,

alltoallv, reduce and allreduce operations as representatives of the mostly used collective

communication primitives in parallel applications. I have measured the performance in terms

of their average completion time over 500 times running. An overall look at their running

time shows that the reduce and allreduce operations take the longest, and broadcast

operations the shortest.

On the Dell PowerEdge 6650, I present the results running with 4 processes. On the Sun

Fire 15K, I provide the results running with 4 and 64 processes. Figure 5.7 shows the

completion time of collective communications on Dell PowerEdge 6650, and Figure 5.8 shows

the results on Sun Fire server, both with 4 processes. For the Sun Fire 15K, alltoall and

alltoallv have a special long time for 1 byte and 512 bytes message size. I have not found any

reason for that. In general, Sun Fire 15K server has a better performance.

Chapter 4 Performance on Small and Large SMPs 50

Figure 4.6. Latency of collective communications on Dell PowerEdge 6650.

Figure 4.7. Latency of collective communications on Sun Fire 15K, 4 processes.

Figure 4.8. Latency of collective communications on Sun Fire 15K, 64 processes.

 4 processes

0

500

1000

1500

2000

2500

128 1K 8K

Message Size (byte)

0

50

100

150

200

250

300

1 8 64

La
te

nc
y

(µ
s)

0

50000

100000

150000

200000

250000

300000

350000

16K 128K 1M

Broadcast

Gather

Scather

Alltoall

Alltoallv

Reduce

Allreduce

 4 processes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

128 1K 8K

Message Size (byte)

0

5

10

15

20

25

30

35

40

1 8 64

La
te

nc
y

(µ
s)

0

5000

10000

15000

20000

25000

30000

35000

16K 128K 1M

Broadcast

Scatter

Gather

Alltoall

Alltoallv

Reduce

Allreduce

 64 processes

0

50000

100000

150000

200000

250000

128 1K 8K

Message Size (byte)

0

500

1000

1500

2000

2500

3000

1 8 64

La
te

nc
y

(µ
s)

0

200000

400000

600000

800000

1000000

1200000

16K 128K 1M

Broadcast

Scatter

Gather

Alltoall

Alltoallv

Reduce

Allreduce

Chapter 4 Performance on Small and Large SMPs 51

4.5 Performance of Application Benchmarks

 Having known the performance at the MPI level, it is the time to run some application

benchmarks to evaluate their performance. I evaluate the performance of NPB 2.3 (MPI

version), NPB 3.0 (JAVA version) and NPB 3.0 (OpenMP version) on our 4-way, and

72-way SMP nodes. Because of the size of the SMPs, I run the NPB suite with number of

processes/threads 1, 2 and 4 for the 4-way SMP, and from 1 to 64 for the 72-way SMP,

respectively. I have chosen the class A and class B problem sizes, due to the memory size of

the Dell PowerEdge 6650. I ran all the benchmarks three times, and the results shown in this

section are the average completion time. Note that the NPB 3.0 JAVA version does not have

an implementation for EP. I do not have the results of EP and IS for all OpenMP cases due to

memory limitation.

 Figure 4.9 shows the speedup for the MPI, OpenMP and JAVA versions of the NAS

parallel benchmarks on Dell PowerEdge 6650. I include the results for MPICH on two

devices, the ch_p4 and ch_shmem. The ch_shmem has a better scalability than the ch_p4,

which indicates that the ch_shmem has a better implementation on SMP. For the MPI results,

the performance of class A and class B are similar except for CG. I believe it is because the

serial version of the CG program of MPI version takes quite long time for class B. Although

LU has many small size messages, discussed in chapter 3, the speedup is better than the other

benchmarks except for CG and EP. It is because the Dell PowerEdge 6650 does not have a

good performance for large messages. EP does not have many communications. It has a

linear speedup. FT has a poor performance because it requires larger memory, exceeding our

memory system size.

Chapter 4 Performance on Small and Large SMPs 52

(a)

(b)

(c)

Figure 4.9. Speedup on Dell PowerEdge 6650, Class A and Class B, of (a) NPB2.3-MPI
(b) NPB3.0-OMP (c)NPB3.0-JAVA.

Speedup, OMP, CLASS B

0

1

2

3

mg cg lu ft bt sp

Sp
ee

du
p

1

2

4

Speedup, OMP, CLASS A

0

1

2

3

mg cg lu ft bt sp

Sp
ee

du
p

1

2

4

Ch_p4, MPI, CLASS B

0

1

2

3

4

mg cg lu sp ep is

Sp
ee

du
p 1

2

4

Ch_p4, MPI, CLASS A

0

1

2

3

4

mg cg lu ft bt sp ep is

Sp
ee

du
p 1

2

4

Ch_Shmem, MPI, CLASS B

0

1

2

3

4

5

mg cg lu ft bt sp ep is

Sp
ee

du
p 1

2

4

Ch_Shmem, MPI, CLASS A

0

1

2

3

4

5

mg cg lu ft bt sp ep is

Sp
ee

du
p

1

2

4

Speedup, JAVA, CLASS B

0

1

2

3

4

5

6

mg cg lu ft bt sp is

Sp
ee

du
p

1

2

4

Speedup, JAVA, CLASS A

0

1

2

3

4

5

6

mg cg lu ft bt sp is

Sp
ee

du
p 1

2

4

Chapter 4 Performance on Small and Large SMPs 53

For NPB3.0 OMP version, the performance of class A is better than class B. MG and SP

have almost the same performance in class A and class B. BT and FT have lower speedup

because they require more memory. Figure 4.9 (c) shows the speedup of NPB3.0 Java version.

The performance of class A and class B are similar. MG has the best performance, almost

super-linear. In general, NPB3.0 MPI version on device ch_shmem has the best performance

in the three versions of NAS benchmarks. NPB3.0 Java has slightly better performance than

NPB2.3 OMP. The speedups of NPB3.0 OMP with 4 threads are all around or smaller than

2.5.

(a)

(b)

(c)

Figure 4.10. Speedup on Sun Fire 15K, Class A and Class B, of (a) NPB2.3-MPI (b)
NPB3.0-OMP (c)NPB3.0-JAVA.

Speedup, JAVA, CLASS B

0
5

10
15
20
25
30
35
40

MG CG LU FT IS

Sp
ee

du
p

2

4

8

16

32

48

64

70

Speedup, JAVA, CLASS B

0
5

10
15
20
25
30
35

BT SP

Sp
ee

du
p

4

9

16

25

36

49

64

70

Speedup, OMP, CLASS B

0

20

40

60

80

100

MG CG LU FT

Sp
ee

du
p

1

2

4

8

16

32

48

64

70

Speedup, OMP, CLASS B

0

10

20

30

40

50

60

BT SP

Sp
ee

du
p

1

4

9

16

25

36

49

64

70

Speedup, MPI, CLASS B

0

50

100

150

200

MG CG LU FT IS

Sp
ee

du
p

1

2

4

8

16

32

64

Speedup, NPB MPI, CLASS B

0
20
40
60
80

100
120
140
160

BT SP

Sp
ee

du
p

1

4

9

16

25

36

49

64

Chapter 4 Performance on Small and Large SMPs 54

For the Sun Fire 15K server, I have chosen the class B. (Unfortunately I did not have

enough exclusive access time to get the results for class A.) Figure 4.10 (a) shows the

speedup of NPB 2.3 MPI. All benchmarks have very good scalability. CG has the best

performance, while FT has the worst. NPB 2.3 MPI has the best performance in three

versions, while NPB 3.0 JAVA does not have good scalability.

Table 4.1 compares the execution times for the class B on two SMPs, for applications

running with 4 threads/processes. In most of the MPI and OpenMP version of the

benchmarks, the Sun Fire 15K shows a better performance. For the Java version, except for

LU and FT, the Dell PowerEdge 6650 shows a better performance than the Sun Fire 15K.

Table 4.1. Execution time of NPB 3.0 OMP, NPB 3.0 Java, NPB2.3 MPI, Class B, on
Dell PowerEdge 6650 and Sun Fire 15K, with 4 threads or processes

MPI Dell p4 Dell shmem SunFire OMP Dell SunFire JAVA Dell SunFire

CG 815.9 668.9 283.0 CG 934.0 753.9 CG 796.9 1010.1
LU 796.8 2296.0 1051.8 LU 1022.5 773.4 LU 16261.5 6090.5
FT 295.5 411.2 250.8 FT 326.9 201.2 FT 1023.0 977.8
MG 59.8 82.6 58.0 MG 38.7 35.1 MG 68.5 180.7
BT 3290.2 3302.0 1962.2 BT 1150.1 662.8 BT 3079.4 3637.6
SP 1728.0 2877.9 1489.3 SP 609.5 739.7 SP 1170.6 3628.0

4.6 Summary

In this chapter, I compared the performance of memory bandwidths, point-to-point

latencies and bandwidths at the MPI level. I also compared three versions of the NAS

applications benchmarks on two SMPs, implemented in MPI, OpenMP and Java.

I discovered that the large-scale SMP (Sun Fire 15K server) has a better MPI

performance, while the small-scale SMP (Dell PowerEdge 6650) has a degrading

performance for large size message transfers. The MPICH implementation of Dell

PowerEdge 6650 is not as good as the Sun MPI implementation. For both systems, the MPI

version of the application benchmarks has a better scalability than the OpenMP and Java

versions.

Chapter 4 Performance on Small and Large SMPs 55

Because of the excellent performance of the Sun MPI on the Sun Fire 15K server, I am

interested to see how Sun MPI has been implemented, and how it performs among different

nodes over the Sun Fire Link interconnect. In chapter 5, I will look into the RSM user-level

communication layer over the network hardware. Then the performance at higher level will

be provided on both the Sun Fire Link interconnect and the Myrinet in chapter 6.

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 56

Chapter 5

Remote Shared Memory over Sun Fire Link Interconnect

In chapter 4, I have studied the performance of two SMPs which can be used as a node in

a CLUMP. The communication overhead is one of the most important factors affecting the

performance of high-performance cluster computer systems. The interconnection network

hardware and the communication system software and libraries are the keys to the

performance. In this chapter, I introduce a new memory-based interconnect, Sun Fire Link,

recently released by the Sun Microsystems. I study the user-level messaging layer, Remote

Shared Memory (RSM) [45] and the Sun MPI [48] implementation on top of RSM in section

5.1, along with the performance of RSM API in section 5.2.

5.1 Remote Shared Memory

The Sun Fire Link cluster interconnect is used to cluster the Sun Fire 6800s and the Sun

Fire 15K/12K systems. Information is transferred over fiber-optic communication links. Each

link supports full-duplex, point-to-point communication [34]. The raw data transfer rate of

each link is 1.64 GB/s. After coding, framing and protocol overhead, one link can

theoretically sustain 1 GB/s of unidirectional user data bandwidth [34]. RSM is a

high-performance memory-based mechanism, which implements user-level inter-node

messaging with direct access to memory that is resident on remote nodes. Its performance

directly affects the performance of upper software layers such as MPI, and application levels.

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 57

Table 5.1 shows some of the RSM API calls with their definitions. The complete API

calls can be found in [45]. The API calls can be classified into five categories: interconnect

controller operations, cluster topology operations, memory segment operations, barrier

operations, and event operations.

Table 5.1. RSM API calls and their definitions (partial).
Interconnect controller operations

rsm_get_controller get a controller handle

rsm_release_controller release a controller handle

Cluster topology operations

rsm_free_interconnect_topology get or free interconnect topology

rsm_get_interconnect_topology get interconnect topology

Memory segment operations including segment management and data access

rsm_memseg_export_create resource allocation functions for export memory segments

rsm_memseg_export_destroy resource release functions for export memory segments

rsm_memseg_export_publish allow a memory segment to be imported by other nodes

rsm_memseg_export_republish re-allow a memory segment to be imported by other nodes

rsm_memseg_export_unpublish disallow a memory segment to be imported by other nodes

rsm_memseg_import_connect create logical connection between import and export segments

rsm_memseg_import_disconnect break logical connection between import and export segments

rsm_memseg_import_get read from a segment

rsm_memseg_import_put write to a segment

rsm_memseg_import_map map imported segment

rsm_memseg_import_unmap unmap imported segment

Barrier operations

rsm_memseg_import_close_barrier remote memory access error detection functions

rsm_memseg_import_destroy_barrier destroy barrier for imported segment

rsm_memseg_import_init_barrier create barrier for imported segment

rsm_memseg_import_open_barrier remote memory access error detection functions

rsm_memseg_import_order_barrier impose the order of write in one barrier

rsm_memseg_import_set_mode set mode for barrier scoping

Event operations

rsm_intr_signal_post signal for an event

rsm_intr_signal_wait wait for an event

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 58

5.1.1 Remote Shared Memory Structure

Communication under the RSMAPI involves two basic steps: 1. segment setup and

teardown; 2. the actual data transfer operations using the direct read and write models [2][31].

In essence, an application process running on one node, for example process 0 in Figure 5.1,

should first create an RSM export segment from its local address space, and publish it to

make it available for other processes. Then one or more remote processes running on remote

nodes, for example process 1 in Figure 5.1, create an RSM import segment with a virtual

connection between the import and export segments across the memory-based interconnect in

order to connect to them. This is called the setup step. After the establishment of connection

between the export and import segments, the processes can communicate with each other by

writing into and reading from the memory. This is called the data transfer phase. After the

data are successfully transferred, the last step is to tear down the connection between the

export process and the import process. The import side process disconnects the connection

and the export side process unpublishes the segments and destroys the memory handle. The

RSMAPI provides barrier and signal notification mechanisms to support remote access error

detection and synchronization [45].

 Process 0 (export side) Process 1 (import side)

Get_controller

Exorit_create

Exprot_publish

Export_unpublish

Export_destroy

Release_controller

Import_disconnect

Release_controller

Read/Write

Import_connect

Get_controller

Figure 5.1. Setup, Data transfer, and Tear down in Remote Shared Memory

communication.

Setup

Data Trasnfer

Tear down

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 59

The “Import” side can use three different methods, namely “map”, “put”, and “get”, to

read or write data. The “map” method uses CPU block store operation to write to the address,

which is mapped to the exported memory segment from the other process. “put” and “get”

writes to and reads from the exported memory segment through the connection, respectively.

Figure 5.2 illustrates the main steps for each of the three approaches. The barrier operations

ensure the data transfers are successfully completed. The signal operation is used to inform

the “Export” side that the “Import” side has written something onto the exported segment.

Barrier and signal operations may or may not be used for small messages, because of the

high overhead of those operations.

 Get (Read) Put (Write) Map (Read or Write)

Initiate barrier

Close barrier

Initiate barrier

Open barrier

Order barrier

Put

Order barrierOrder barrier

Open barrier

Get

Initiate Barrier

Open barrier

Block store

Destroy barrier

Close barrier

Map

Close barrier

Destroy barrier

Signal

Destroy barrier

Signal

Unmap

 (a) (b) (c)

Figure 5.2. Different steps in the data transfer phase. (a) get (b) put (c) map.

5.1.2 Performance at the Remote Shared Memory level

The RSMAPI is the closest layer to the Sun Fire Link, so I would like to test the

performance of RSMAPI calls, (described in Table 5.1), with varying parameters over the

Sun Fire Link interconnect. Communication of data using RSMAPI involves two processes

running on two different nodes, one as the export side and the other as the import side.

Table 5.2 shows the execution time of several RSMAPI calls. For those that are affected

by the size of memory segment, 16 KB memory size is used. The get_controller takes the

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 60

longest, 841 µs. Before the export side can be accessed by the import side, it needs to execute

get_interconnect_topology, export_create and export_publish primitives. This takes 1.7 ms

long. This is quite long compared to a put operation. Similarly, the import side needs to run

get_controller and import_connect primitives, which takes 1.0 ms long. Figure 5.3 shows that

the “connect” and “disconnect” calls use more than 80% of the total communication time at

the import side. To get a better performance, these preparations cannot be done for every

communication. In the Sun MPI implementation, they are done in the initialization phase.

The time for barrier operations, such as open, close and signal are also not small compared to

the time to “put” a small message size. That is why explicit barrier is not used for small

message size transaction.

Figure 5.4 shows the execution time of export_create, export_publish, export_unpublish,

export_destroy and release_controller with different memory segment size. The

export_publish is most sensitive to the segment size. Figure 5.5 shows the performance of put

and get. To write a message smaller than 64 bytes, the put takes 35 µs long, but it takes only

0.6 µs long for a 64-byte message. That is why Sun MPI writes a complete 64 bytes to the

postbox even if the message size is smaller than 64 bytes. The put has a much better

performance than the get, except for message sizes smaller than 64 bytes. To get 16 Kbytes, it

takes 373 µs long, while put takes only 28 µs long for the same message size. That is why

Sun MPI implementation uses put rather than get.

Table 5.2. Execution time for RSMAPI calls. 16KB memory size is used for
“export_create”, “export_publish”, “export_unpublish”, “export_destroy”,

“release_controller”, and “import_put”.
Export side Time(µs) Import side Time(µs)
get_interconnect_topology 12.65 import_connect 173.45
get_controller 841.00 import_map 13.56
free_interconnect_topology 0.61 import_init_barrier 0.33
export_create 103.61 import_set_mode 0.38
export_publish 119.36 import_open_barrier 9.93
export_unpublish 73.48 import_order_barrier 16.80
export_destroy 16.73 import_put 27.73
release_controller 3.63 import_close_barrier 7.13

import_destroy_barrier 0.14
import_signal 23.78
import_unmap 21.40
import_disconnect 486.31

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 61

Figure 5.3. Percentage comparison for the export and import side. (16 KB)

0

5000

10000

15000

20000

8k 32k 128k 512k 2M 8M

Memory size (bytes)

Ti
m

e
(u

s)

export_create export_publish export_unpublish
export_destroy release_controller

Figure 5.4. Execution times of several RSMAPI calls.

Figure 5.5. Comparison of the RSM put and get with different message sizes.

0

50

100

150

200

1 4 16 64 256 1k 4k

Size of data (bytes)

Ti
m

e
(µ

s)

import_put import_get

0

50000

100000

150000

200000

250000

1 16 256 4k 64k 1M

Size of data (bytes)

Ti
m

e
(µ

s)

import_put import_get

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Export

destroy

unpublish

publish

create

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Import

disconnect

signal

destroy_barrier

close_barrier

import_put

order_barrier

open_barrier

set_mode

init_barrier

connect

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 62

5.1.3 MPI Implementation over Remote Shared Memory

In this section, I look at how MPI_Send and MPI_Recv primitives have been

implemented in Sun MPI over RSM. Because the segment setup and teardown have quite

large overhead as seen in Section 5.2, Sun MPI establishes several logical connections to

each node when the program starts. Each connection is also called a stripe.

 Figure 5.6. Structure of messages.

Messages are sent in one of two fashions short messages (smaller than 3912 bytes) and

long messages [31]. Short messages are fit into multiple postboxes, 64 bytes each, because

remote memory accesses are provided only to full 64-byte cache lines. Buffers, barriers, and

signal operations are not used due to the high overhead. Note that even for messages smaller

than 64 bytes, a full 64-byte postbox is used. Long messages are sent in 1024-byte buffers

under the control of multiple postboxes, shown in Figure 5.6. Each postbox in the queue has

the pointer to point to the buffer. These postboxes are sent to receiver who can recover the

messages from buffers. Barriers are opened for each stripe to make sure the writes are

successfully done.

The environment variable MPI_POLLALL can be set to “1” or “0”. In the general polling

(MPI_POLLALL=1), Sun MPI polls for all incoming messages even though their

corresponding receive calls may or may have not been posted earlier. In the directed polling

….
….

….
….

postbox

queue

buffer

receiver

sender

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 63

(MPI_POLLALL=0), the implementation searches only for the specified connection.

Directed polling has a better performance when the user’s code is perfectly organized.

To write the data, the “rsm_memseg_import_put” API call or the CPU block store

operation can be used at the sender side, where “put” has a better performance than the “get”.

Figure 5.7 shows the flowchart for MPI_Send and MPI_Recv primitives, which are using the

CPU block store operation to write data.

When “put/get support” is not defined, block store operations are used in MPI_Send.

There are three block store operations which can be used, atomic_copy, atomic_copy64, and

cheetah_copy. Atomic_copy can write any length of data. The atomic_copy64 is used to write

only 64-byte cache lines. The cheetah_copy perform the prefetch technique so it has to write

data more than two cache lines. Prefetch is a technique that attempts to minimize the time a

processor spends waiting for instructions to be fetched from memory. It will try to fetch next

memory copy instruction before the previous copy completes.

For small messages, atomic_copy64 is used to write postboxes (64 bytes) directly. Long

messages are divided and copied into buffers. For each buffer, if there are more than 8 cache

lines data to write, cheetah_copy is used, where prefetching can provide better performance.

Otherwise, data will be written using atomic_copy64 with 64 bytes at a time. Figure 5.8 shows

when each block store operation is used.

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 64

(a)

Figure 5.7. Pseudo-nodes for (a) MPI_Send, (b) MPI_Recv.

if send to itself

 copy the message into the buffer

else if general poll

 exploit the progress engine

 endif

 establish the forward connection (if not done yet)

 if message < short message size (3912 bytes)

 set envelop as data in the postbox

 write data to postboxes

 else if message < rendezvous size (256 KB)

 set envelop as eager data

 else

 set envelop as rendezvous request

 wait for rendezvous Ack

 set envelop as rendezvous data

 endif

 reclaim the buffer if message Ack received

 prepare the message in cache-line size

 open barrier for each connection

 write data to buffers

 close barrier

 write pointers to buffers in the postboxes

 endif

endif

 (a) MPI_Send pseudo-code

if receive from itself

 copy data into the user buffer

else if general poll

 exploit the progress engine

 endif

 establish the backward connection (if not done yet)

 wait for incoming data, and check out the envelope

 switch (envelope)

 case: rendezvou request

 send rendezvous Ack

 case: eager, rendezvou data, or postbox data

 copy data from buffers to user buffer

 write message Ack back to the sender

 endswitch

endif

(b) MPI_Recv pseudo-code

Chapter 5 Remote Shared Memory over Sun Fire Link Interconnect 65

Figure 5.8. Block store opertaioins.

5.2 Summary

In this chapter, I studied the RSM model, along with the performance of its API calls.

However, it should be pointed out that the performance seen at the user-level may not be

delivered at the higher levels. In the next chapter, I will evaluate the performance of Sun Fire

link interconnect and Myrinet at the micro-benchmark levels. Then I can find exactly how

much overhead is added by the MPI implementation on top of the user-level protocol.

If for each buffer there are more than 8*64 data to write

cheetah_copy

atomic_copy64 the leftovers

else

atomic_copy64

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 66

Chapter 6

SMP Clusters’ Performance at the Micro-benchmark and

Application Levels

 In chapter 5, I introduced the Remote Shared Memory model. However, applications

may run over another layer on top of the user-level. For our NAS benchmarks, this layer is

the MPI layer. I have studied how Sun MPI point-to-point communications are implemented

on top of RSM. Now, it is the time to find the actual overhead added by the Sun MPI

messaging layer. In this chapter, I evaluate the performance of two popular interconnects at

the micro-benchmark level: one is the Sun Fire Link interconnect and the other is the Myrinet.

I also provide the performance of our Myrinet cluster at the application level. The results

presented in this chapter include point-to-point latencies and bandwidths, parameterized

LogP performance, different traffic patterns bandwidths, collective communications, and

application benchmarks.

6.1 Cluster Platforms

 I would like to test the performance on two clusters of SMPs, one is four Sun Fire 6800

nodes interconnected by the Sun Fire link interconnect, and the other is eight Dell PowerEdge

2650 nodes interconnected by the Myrinet. The Sun Fire 6800 has 24 UltraSPARC-III Cu

processors and 24 GB of shared memory. The Sun Fire 6800 nodes offer a flat memory

system, such that all memory locations approximately have the same distance to each

processor. The Sun MPI library uses the Remote Shared Memory (RSM) model to implement

high performance messaging protocol between the nodes, and uses shared memeory model

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 67

within the nodes. Each Dell PowerEdge 2650 node has two Intel Xeon MP Processors

running at 2 GHz with 64-bit PCI-X slots for Myrinet interconnect. I used the MPICH-GM

1.2.5..12 as the message passing library on top of GM 2.1, which has been very recently

released as the user-level message-passing system for the Myrinet networks.

6.2 Latency

I present some measurements similar to the ones introduced in chapter 4. The

measurements have been done for on-node communication, as well as for off-node

communication. I also measure the MPI latency under load when the sending and receiving

nodes are on different nodes. I do the average standard ping-pong latency test when

simultaneous messages are in transit between pairs of send and receive processes. Note that,

the send and receive nodes are on different nodes, and pair-wise processes are spread evenly

across different nodes in the cluster.

In our experiments on the Sun Fire Link, I have used the default environment variable

MP_POLLALL equal to 1. Figure 6.1 shows the latency for on-node pair-wise

communication on Sun Fire Link. The latency for 1-byte message is 2 µs for unidirectional

ping, 3 µs for Standard, Ready, Buffered, Synchronous, and the Diff buf modes. For the

unidirectional, it remains at 2 µs up to 64 bytes, and for bidirectional ping, is almost constant

at 3 µs. It is clear that the buffered mode has a higher latency for larger messages. It is

interesting to see that for messages up to 1KB the latency is 5 µs for the unidirectional ping,

and between 7 to 9 µs for bidirectional. The latency for on-node communication on Myrinet

is shown in Figure 6.2. The on-node latency for 1-byte message remains at 1.3 µs for

unidirectional ping, and 1.6 µs for Standard, Ready, Synchronous, Diff buf modes, and 2.5 µs

for the buffered mode.

Figure 6.3 shows the latency for off-node communication on Sun Fire Link, where the

endpoints are on different SMP machines. Quite interestingly, the latency for 1-byte message

remains at 2 µs for unidirectional ping, but 5 µs for Standard, Ready, Synchronous, Diff buf

modes, and 6 µs for the buffered mode. This is almost fixed up to 64 bytes. Figure 6.3 shows

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 68

that the MPI uses the short message method for up to 3912 bytes messages and then switches

to the long message method for larger messages. For off-node communications, the diff buf

has slightly worse performance compared to others (except for the buffered mode). For large

size messages, the off-node communications have similar performance with on-node

communications.

Figure 6.1. On-node MPI latencies on Sun Fire Link cluster.

Figure 6.2. On-node MPI latencies on Myrinet cluster.

The latency for off-node communication on the Myrinet is shown in Figure 6.4. In the

synchronous mode, the Myrinet shows quite large latency, equal to 23 µs for up to 64 byte

message. Latency for 1-byte message remains at 5 µs for unidirectional ping, 6 µs for Standard,

Ready, Diff buf modes, and 7 µs for the buffered mode. The off-node latencies for small size

message on the Myrinet are a little bit larger than on the Sun Fire Link. For large size message,

Latency, on-node

0

10

20

30

40

50

60

128 1K 8K

Message Size (byte)

0

1

2

3

4

5

6

1 8 64

La
te

nc
y

(µ
s)

0

1000

2000

3000

4000

5000

6000

16K 128K 1M

Standard

Synchronous

Ready

Buffered

Uni-directional

Diffbuf

Latency, on-node

0

10

20

30

40

50

60

128 1K 8K

Message Size (byte)

0

2

4

6

8

10

12

1 8 64

La
te

nc
y

(µ
s)

0

500

1000

1500

2000

2500

3000

16K 128K 1M

Standard

Synchronous

Ready

Buffered

Uni-directional

Diffbuf

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 69

off-node communications have better performance than on-node communications. Table 6.1

shows a summary of small message size latencies for on-node and off-node communications

for both clusters. Table 6.2 compares the best reported short message latencies for MPI over

Quadrics QsNet [27], and QsNet II [1], Myrinet D-card [27], Myrinet E-card [41], InfiniBand

[27], Sun Fire Link [34], and our Sun Fire Link *. The performances of the Sun Fire Link

interconnect for short messages are better than the results for MPI over QsNet and InfiniBand,

but almost comparable to the results for QsNet II and Myrinet E-card. The performance of our

Myrinet for short messages is not as good as reported in [41].

Figure 6.3. Off-node MPI latencies over Sun Fire Link.

Figure 6.4. Off-node MPI latencies over Myrinet.

Latency, off-node

0

10

20

30

40

50

60

70

80

90

128 1K 8K

Message Size (byte)

0

1

2

3

4

5

6

7

8

9

1 8 64

La
te

nc
y

(µ
s)

0

500

1000

1500

2000

2500

3000

3500

16K 128K 1M

Standard

Synchronous

Ready

Buffered

Uni-directional

Diffbuf

Latency, off-node

0

10

20

30

40

50

60

70

80

90

128 1K 8K

Message Size (byte)

0

5

10

15

20

25

1 8 64

La
te

nc
y

(µ
s)

0

500

1000

1500

2000

2500

3000

3500

4000

16K 128K 1M

Standard

Synchronous

Ready

Buffered

Uni-directional

Diffbuf

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 70

I also measured the average standard ping-pong latency test when simultaneous messages

are in transit between pairs of send and receive processes, as shown in Figure 6.5. For each

curve, the message size is held constant, while the number of off-node pairs is increased. The

results are interesting as the latency in each case for both interconnects does not change much

as the number of pairs is increased. The flatness of the curves verifies that Sun Fire Link and

Myrinet interconnects deliver a robust low latency for short messages that is not sensitive to

the load. For Myrinet, the latencies stay at 6 µs from 2-byte to 64-byte messages, running

with up to 8 processes. Sun Fire Link stays at less than 6 µs up to 8-byte messages, 7µs for

16-byte messages, and more than 10 µs for 32-byte messages.

Table 6.1. Half-way ping-pong latency for small message sizes

 Sun Fire Link Myrinet

Message
Size (bytes)

On-node
(µs)

Off-node
(µs)

On-node
(µs)

Off-node
(µs)

1 2.8 5 1.5 6.2
2 2.8 4.9 1.5 5.8

4 2.8 5 1.5 5.9

8 2.8 5 1.6 6.0

16 2.9 5.9 1.5 6.2

32 3.1 6 1.6 6.2

Table 6.2. Comparison of Sun Fire Link and Myrient short message latency (in

microseconds) with other high-performance interconnects.

QsNet
QsNet
II

Myrinet
(D card)

Myrinet
(E card) Myrinet*

InfiniBand Sun Fire Link
(Sun)

Sun Fire
Link*

 4.6 ~3 6.7 3.5 6.2 6.8 3.7 5

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 71

Figure 6.5. Off-node latency under load.

Figure 6.6 shows the overhead of the standard MPI ping-pong latency over the RSM put

primitive. Note that I have assumed the same execution time for put with 1 to 64 bytes.

I measured the communication latencies under different modes on Sun Fire Link and

Myrinet in this section. Myrinet has smaller on-node latencies for small size message, but the

Sun Fire link has a better performance for off-node communications and for large size

message.

0

300

600

900

1200

1500

1800

1 4 16 64 256 1k 4k 16k 64k 256k 1M

Data size (bytes)

Ti
m

e
(µ

s)

RSM_PUT MPI latency

Figure 6.6. RSM put and MPI latency comparison.

6.3 Bandwidth

The same bandwidth tests, as in the chapter 4, are done here. Moreover, I measure the

aggregate bandwidth when simultaneous messages are in transit between pairs of send and

Average latency under load,
Myrinet

0

2

4

6

8

10

12

2 4 8 16

Number of processes

La
te

nc
y

(µ
s)

2 B
4 B
8 B
16 B
32 B
64 B

Average latency under load,
Sun Fire Link

0

2

4

6

8

10

12

2 4 8 16 32 64

Number of processes

La
te

nc
y

(µ
s)

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 72

receive processes. In this test, send and receiving nodes are on different nodes, and pair-wise

processes are spread evenly across different nodes in the cluster.

Figure 6.7 presents the bandwidth for on-node communication on the Sun Fire Link and

the Myrinet. The unidirectional bandwidth can be considered as the peak performance of the

network, while sending packets in both directions may expose the network bottlenecks. For

Sun Fire Link, the unidirectional ping achieves the highest bandwidth of 695 MB/s for

internode communication. The network shows roughly similar performance for both

unidirectional and bidirectional cases (except for the buffered mode). The bidirectional ping

achieves a bandwidth of approximately 660 MB/s, except for the buffered mode, where it has

the lowest bandwidth of 346 MB/s. This is clear as it has the overhead of buffer management.

However, the diff buff has a better performance of 582 MB/s. It is interesting to see that for

on-node communication, except for the buffered mode, all others achieve roughly the same

maximum bandwidth. For Myrinet, one can see clearly that the on-node bandwidths arrive at

maximum 700 Mbyte/s around 4 Kbytes. Except for diffbuf mode, the bandwidths start to

drop from 64 Kbytes. This shows that either MPICH-GM does not have good implementation

for on-node large size messages, or the memory system cannot handle such large size

messages.

Figure 6.7. On-node bandwidths.

The bandwidths for off-node communications on the Sun Fire Link and Myrinet are

shown in Figure 6.8. For Sun Fire Link, the transition point between the short and long

Bandwidth, on-node,
Sun Fire Link

0

100

200

300

400

500

600

700

800

1 16 256 4K 64K 1M

Message size (byte)

B
an

dw
id

th
 (M

by
te

/s
)

Bandwidth, on-node,
Myrinet

0

100

200

300

400

500

600

700

800

1 16 255 4K 64K 1M

Message size (byte)

Standard
Synchronous
Ready
Buffered
Uni-directional
Diffbuf

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 73

message protocols is at the 3912 bytes message size. Except for buffered mode, both

unidirectional ping and bidirectional ping achieve around 600 MB/s. For Myrinet, the

bidirectional ping except for the buffered mode, achieves a bandwidth of approximately 440

MB/s, which is not as good as the Sun Fire Link. The buffered mode, where it has the lowest

bandwidth of 360 MB/s is similar to the Sun Fire Link. Table 6.3 shows a summary of

maximum bidirectional bandwidths for on-node and off-node communications. Table 6.4

compares the reported bandwidths for MPI over Quadrics QsNet [27], and QsNet II [1],

Myrinet D-card [27], Myrinet E-card [41], InfiniBand [27], Sun Fire Link [34], and our Sun

Fire Link *.

Figure 6.8. Off-node bandwidths.

Table 6.3. Bidirectional bandwidth
 Sun Fire Link Myrinet

 On-node Off-node On-node Off-node
Bandwidth (MB/s) 658.6 659.5 720.4 443.9

Table 6.4. Comparison of Sun Fire Link and Myrinet MPI bandwidths (Mbytes/s) with

other high-performance interconnects.

QsNet
QsNet

II
Myrinet
(D card)

Myrinet
(E card) Myrinet*

InfiniBand Sun Fire Link
(Sun)

Sun Fire
Link*

308 900 235 495 444 841 792 695

Bandwidth, off-node,
Sun Fire Link

0

100

200

300

400

500

600

700

800

1 16 256 4K 64K 1M

Message size (byte)

B
an

dw
id

th
 (M

by
te

/s
)

Bandwidth, off-node,
Myrinet

0

100

200

300

400

500

600

700

800

1 16 255 4K 64K 1M

Message size (byte)

Standard
Synchronous
Ready
Buffered
Uni-directional
Diffbuf

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 74

Figure 6.9 shows the aggregate bandwidth with a standard bidirectional ping-pong test for

varying number of communicating pairs, on the two interconnects. The aggregate bandwidth

is the sum of individual bandwidths. Again, the inflection point is shown at the 3912 bytes

message size for the Sun Fire Link in Figure 6.8. From 256kB message size, rendezvous

protocol is used, where the sender needs to wait for the acknowledge message from receiver.

Figure 6.8 also shows that up to 256kB message size, the network is capable of providing

higher bandwidth with increasing number of communication pairs. However, with 256kB

message size and above, aggregate bandwidth is higher for 16 pairs of communication than

for 32 pairs. For 16 processes, Myrinet achieves the maximum bandwidth 2500 Mbyte/s.

Figure 6.9. Aggregate off-node bandwidth.

6.4 LogP Parameters

Traditionally, message latency and bandwidth have been used for measuring the network

performance. However, LogP model provides greater detail about different component of a

communication step [14]. It shows how much time is spent by the processor at the sending

side, os, and by the processor at the receiving side, or. It also provides the network hardware

latency, L, and the gap in between consecutive sends, g(m).

In [25], the authors proposed the LogP model for parallel computation and parallel

algorithm development. LogP parameters have been proposed to gain insights into different

Aggregate Bandwidth,
Sun Fire Link

0

500
1000

1500
2000

2500

3000
3500

4000
4500

5000

2 16 128 1K 8K 64K 512K

Message size (byte)

B
an

dw
id

th
 (M

B
/s

)

Aggregate Bandwidth,
Myrinet

0

500
1000

1500

2000
2500

3000

3500

4000
4500

5000

1 16 255 4K 64K 1M

Message size (bytes)

B
an

dw
id

th
 (M

B
/s

) 2 proc
4 proc
8 proc
16 proc
32 proc
64 proc

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 75

components of a communication step. Essentially, it captures the relevant aspects of message

passing systems. It considers the communication cost as well as the cost for integrating

communication into computation. LogP models sequences of point-to-point communications

of short messages. L is the network hardware latency for one-word message transfer. O is the

combined overhead in processing the message at the sender (os) and receiver (or). P is the

number of processors. The gap, g, is the minimum time interval between two consecutive

message transmission from a processor. LogGP model [3] extends LogP to also cover long

messages. The Gap per byte for long messages, G, is defined as the time per byte for a long

message.

An efficient method for measurement of LogP parameters has been recently proposed in

[25]. The method is called parameterized LogP, shown in Figure 6.10, where it subsumes

both LogP, and LogGP models. This model defines five parameters (L, os, or, g, P). In this

model, the latency, L, is the end-to-end latency from a process to another process, combining

all contributing factors. The most significant advantage of this method over the method

introduced in [22] is that it only requires saturation of the network to measure g(0), the gap

between sending messages of size zero. For a message size m, the latency, L, and the gaps for

larger messages,)(mg , can be calculated from g(0), and round trip times, RTT(m), as shown

in Equation 1, and Equation 2. Table 6.5 defines LogP/LogGP parameters in terms of

parameterized LogP.

)0(
2

)0(gRTTL −= (1)

)0()0()()(gRTTmRTTmg +−= (2)

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 76

g(m)

L g(m)

os or

Sender

receiver

Time

Figure 6.10. Message transmission modeled by parameterized LogP.

Table 6.5. LogP/LogGP parameters in terms of parameterized LogP.

LogP Parameterized LogP

L)1()1()1(rs oogL −−+

O

2
)1()1(rs oo +

G)1(g

We applied the parameterized LogP method to our Sun Fire cluster and Myrinet cluster.

We used two processes on different SMP nodes. The os, or, and g for Sun Fire Link are drawn

in Figure 6.11(a). It is interesting to see that all three parameters, os (3 µs), or (2 µs), and g

(2.29 µs), remain fixed for the message sizes of one to 64 bytes. However, they increase with

larger messages sizes (except with a decrease at 3912 bytes). It seems to us that probably the

network interface is not quite efficient as the CPU has to do more work with larger message

sizes, both at the send and at the receiving sides. The decrease at 3912 bytes message size is

related to switching from the short message protocol to long message protocol. Figure 6.11(b)

shows the os, or, and g for the Myrinet. All three parameters, os (0.9 µs), or (1.1 µs), and g

(2.9 µs), also remain fixed for the message sizes of one to 64 bytes. Both os and or have a

sudden increase at 16 Kbytes. The two interconnects show similar gaps, but Myrinet cluster

has smaller os and or for small messages. Table 6.6 shows the LogP parameters.

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 77

Parameterized LogP

1

10

100

1000

10000

1 100 10000 1000000

Message Size (byte)

Ti
m

e
(µ

s) os(m)
or(m)

g(m)

(a)

Parameterized LogP

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1E+06 1E+07

Message size (byte)

Ti
m

e
(µ

s) os(m)
or(m)

g(m)

(b)

Figure 6.11. LogP parameters, g(m), os(m), and or(m). (a) Sun Fire Link (b) Myrinet.

Table 6.6. LogP parameters.
LogP Sun Fire Link (us) Myrinet (us)

L 0.51 4.2
o 2.5 0.8
g 2.29 2.3

6.5 Traffic Patterns

In the previous section, I analyzed the performance under specific conditions to get the

“peak” performance of the networks. Even in the “under load” experiments, the destination of

each process to communicate with and the size of message are fixed. In this section, I expand

the experiments with some different conditions; that is, different message sizes and different

destinations. In these experiments, we analyze the network performance under several

different traffic patterns, where each node selects a random or fixed destination for its

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 78

transactions. These communication patterns are mostly representative of parallel numerical

algorithm behavior found in scientific applications [31]. We generate random message size

and inter-arrival time between two transactions with two different distributions: uniform and

exponential. Note that these patterns may generate both on-node and off-node traffic.

6.5.1 Uniform Traffic

The uniform traffic is one of the most frequently used traffic patterns for evaluating the

network performance [31]. Each node selects its destination randomly with uniform

distribution.

6.5.2 Permutation Patterns

In these traffic patterns, each node communicates with a fixed destination process. We

experiment with the following permutation patterns:

 Bit-reversal. The process with binary coordinates 0121 ,,...,, aaaa nn −− always

communicates with process 1210 ,,...,, −− nn aaaa .

 Butterfly. The ith butterfly permutation is defined by

iβ (01111 ,,,,,..., aaaaaa iiin −+−) = iiin aaaaaa ,,...,,,,..., 11011 −+− (0 ≤ i ≤ n-1).

 Complement. The process with binary coordinates 0121 ,,...,, aaaa nn −− always

communicates with process 0121 ,,...,, aaaa nn −− .

 Matrix transpose. The process with binary coordinates 0121 ,,...,, aaaa nn −− always

communicates with process
2

101
2

,...,,,..., nnn aaaa −
−

.

 Perfect-shuffle: The process with binary coordinates 0121 ,,...,, aaaa nn −− always

communicates with process 1032 ,,...,, −−− nnn aaaa .

 Neighbor: Processes are divided in pairs. Each pair consists of two adjacent processes.

For example, process 0 with process 1, process 2 with process 3, …, and process n with

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 79

process n+1. In our system, two adjacent processes are in same node, so all traffic in the

pattern are on-node traffic.

 Cube: The ith butterfly permutation is defined by

iβ (0111 ,...,,,,..., aaaaa iiin −+−) = 0111 ,...,,,,..., aaaaa iiin −+− (0 ≤ i ≤ n-1).

 Baseline: The ith butterfly permutation is defined by

iβ (01111 ,,...,,,,..., aaaaaa iiin −+−) = 11011 ,...,,,,,..., aaaaaa iiin −+− (0 ≤ i ≤ n-1).

6.5.3 Results

In the experiments, we consider uniform and exponential distributions for both message

size (identified by “S” in the figures) and inter arrival time (“T”). We chose 10 Kbytes as the

mean message size. From the results, the performance is not much sensitive to these

distributions especially for the Myrinet. Figure 6.12 shows the accepted bandwidth under the

traffic with uniform distribution. For the Sun Fire Link, the off-node accepted bandwidth can

be up to around 2000 MB/s with 64 processes, 1500 MB/s with 32 processes, and around 900

MB/s with 16 processes. Compared with the aggregate bandwidth, Sun Fire Link achieves

2900 MB/s with 64 processes for 8 Kbytes message, 2400 MB/s with 32 processes and 1500

MB/s with 16 processes. It is clear that the Sun Fire link interconnect performance scales

with the number of processes. For Myrinet, the off-node accepted bandwidths, shown in

Figure 6.12(b), are staying almost the same for all message sizes and inter-arrival time with

different distributions. The bandwidth is around 1600 MB/s with 16 processes, comparing to

1300 MB/s as the aggregate bandwidth for 8 Kbytes messages.

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 80

(a)

Uniform, 16 processes

0

600

1200

1800

0 1000 2000 3000 4000 5000

Offered bandwidth (MB/s)

Ac
ce

pt
ed

 B
an

dw
id

th
 (M

B/
s)

(b)

Figure 6.12. Uniform Traffic accepted bandwidth (a) Sun Fire Link, (b) Myrinet.

Butterfly, Cube, and Baseline have single-stage and multi-stage patterns. Single-stage is

the highest stage permutation, and multi-stage is the full stage permutation. Figure 6.13

shows the accepted bandwidth of permutation patterns with 32 processes for Sun Fire Link.

There is only off-node traffic for Complement, multi-stage Cube and single-stage Cube

patterns. They achieve 3100 MB/s maximum accepted off-node bandwidth, which is similar

Uniform, 16 processes

0

500

1000

1500

0 1000 2000 3000 4000 5000 6000 7000

Offered Bandw idth (MB/s)

Ac
ce

pt
ed

 B
an

dw
id

th
 (M

B/
s)

Uniform, 32 processes

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000

Offered Bandw idth (MB/s)

Ac
ce

pt
ed

 B
an

dw
id

th
 (M

B/
s)

Uniform, 64 processes

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000

Offered Bandw idth (MB/s)

Ac
ce

pt
ed

 B
an

dw
id

th
 (M

B/
s)

 Off-Node, T-exponential, S-exponential
Off-Node, T-exponential, S-uniform
Off-Node, T-uniform, S-exponential
Off-Node, T-uniform, S-uniform
On-Node, T-exponential, S-exponential
On-Node, T-exponential, S-uniform
On-Node, T-uniform, S-exponential
On-Node, T-uniform, S-uniform

On-node

On-node

On-node

Off-node

Off-node
Off-node

Off-node

On-node

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 81

to 3128 MB/s aggregate bandwidth with 16 KB message size. Neighbor has only on-node

traffic which stays at 4000 MB/s accepted bandwidth. There is half on-node traffic and half

off-node traffic for Butterfly single-stage. The other traffic patterns have one fourth on-node

and 3 fourths off-node traffic, where off-node accepted bandwidth stays at 2000 MB/s, and

on-node bandwidth arrives at 4000 MB/s. Matrix transpose and Butterfly multi-stage

permutations have similar performance, 2400 MB/s off-node bandwidth and up to 1200 MB/s

on-node bandwidth. Bitreversal and Baseline single-stage (Inverse perfect shuffle) get 2500

MB/s off-node bandwidth, and 2000 MB/s on-node bandwidth. All those four patterns have

similar on-node off-node ratio traffic, but behave differently. The reason is that for Matrix

transpose and Butterfly multi-stage permutations, the on-node traffic are evenly assigned to

two nodes, while in Bitreversal and Baseline single-stage (Inverse perfect shuffle), the

on-node traffic are evenly assigned to four nodes. The results indicate that the on-node and

off-node communications can be influenced by each other.

Figure 6.14 shows the accepted bandwidth with 16 processes for the Myrinet.

Complement (Cube multi-stage) and Neighbor permutations have only off-node traffic with

bandwidths close to 2000 MB/s. The aggregate bandwidth is 1260 MB/s for 8 Kbytes

messages, 1460 MB/s for 16 Kbytes messages, and 1530 MB/s for 32 Kbytes messages,

which indicates that Myrinet does not perform very well around 16 Kbytes. Cube single-stage

permutation has only on-node traffic with bandwidth up to 3600 MB/s. Bitreversal, Matrix

transpose and Baseline single-stage (Inverse perfect shuffle) permutations have one fourth

on-node traffic, and three fourths off-node traffic. They have similar performance of 2000

MB/s off-node bandwidth and 1500 MB/s on-node bandwidth. Butterfly single-stage has half

on-node traffic, and half off-node traffic. Butterfly multi-stage and Perfect shuffle have less

than 1500 MB/s off-node bandwidth, and the other patterns have 2000 MB/s. The difference

between them is that for Butterfly multi-stage and Perfect shuffle permutations, each process

does not send message to and receive message from same process. In this experiment for

Myrinet, the only on-node traffic is from the process 0 and process 15 both sending to and

receiving from themselves. So the on-node traffic did not affect the performance of off-node

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 82

traffic. In general, the Myrinet cluster has comparable on-node performance to the Sun Fire

cluster, while the Sun Fire cluster has better off-node performance.

Figure 6.13. Permutation patterns accepted bandwidth (Sun Fire Link).

Butterfly (multi-stage)

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Butterfly (single-stage)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Bit-reversal

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Baseline (singe-stage)
Inverse Perfect Shuffle

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M

B
/s

)

Complement
Cube (multi-stage)

0
500

1000
1500
2000
2500
3000
3500

0 2000 4000 6000 8000 1000
0

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M

B
/s

)
Matrix Transpose

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Cube (singe-stage)

0
500

1000
1500
2000
2500
3000
3500
4000

0 2000 4000 6000 8000 1000
0

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Neighbor

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0 2000 4000 6000 8000 10000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

Perfect Shuffle

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

 (M
B

/s
)

 off-node on-node

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 83

Figure 6.14. Permutation patterns accepted bandwidth (Myrient).

6.6 Collective Communications

In this experiments, I choose broadcast, scatter, gather, alltoall, and barrier operations as

representatives of the mostly used collective communication primitives in parallel

applications. Our experiments are done with processes located on the same node and/or on

different nodes. In the off-node case, we evenly divided the processes among the 4 Sun Fire

6800 nodes.

Butterfly (multi-stage)

0
200
400
600
800

1000
1200
1400
1600

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Butterfly (single-stage)

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Bitreversal

0

500

1000

1500

2000

2500

0 5000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Baseline (single-stage)
Inverse Perfect Shuffle

0

500

1000

1500

2000

2500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Matrix Transpose

0

500

1000

1500

2000

2500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Complement
Cube (multi-stage)

0

500

1000

1500

2000

2500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Cube (single-stage)

0

1000

2000

3000

4000

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Neighbor

0

500

1000

1500

2000

2500

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

Perfect

0

500

1000

1500

2000

0 2000 4000 6000

Offered Bandwidth (MB/s)

A
cc

ep
te

d
B

an
dw

id
th

(M
B

/s
)

 off-node on-node

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 84

(a)

(b)

Figure 6.15. Collective communication performance, Sun Fire Link. (a) 16 processes (b)
64 processes

I measure the performance in terms of their completion time on Sun Fire cluster and

Myrinet cluster. I also obtain the performance of alltoallv, reduce, and allreduce operation on

0

200

400

600

800

1000

1200

1400

1600

1 8 64 512 4K

Ex
ec

ut
io

n
tim

e
(µ

s)

On-node, 16 processes, Sun Fire Link

0

40000

80000

120000

160000

200000

8K 32K 128K 512K

Message size (byte)

Broadcast

Scatter

Gather

Alltoall

0

1000

2000

3000

4000

5000

6000

1 8 64 512 4K

Ex
ec

ut
io

n
tim

e
(µ

s)

Off-node, 16 processes, Sun Fire Link

0

20000

40000

60000

80000

100000

120000

8K 32K 128K 512K

Message size (byte)

Broadcast

Scatter

Gather

Alltoall

0

5000

10000

15000

20000

25000

30000

35000

40000

1 8 64 512 4K

Ex
ec

ut
io

n
tim

e
(µ

s)

Off-node, 64 processes, Sun Fire Link

0

200000

400000

600000

800000

1000000

1200000

1400000

16K 64K 256K 1M

Message size (byte)

Broadcast

Scatter

Gather

Alltoall

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 85

Myrient cluster. An overall look at their running time shows that the alltoall operation takes

the longest, followed by the gather, scatter, and broadcast operations, for Sun Fire cluster.

This is true for on-node, as well as for off-node communications. For the Sun Fire 15K,

alltoall and gather have a special long time for 1 byte, 4 bytes and 512 bytes message size. I

have not found the reason of it.

In broadcast, for Sun Fire cluster, I see that for all cases, the on-node case performs better

then the off-node case (except for 64K byte messages with 2 and 16 processes). The

broadcasting has been highly optimized for on-node communications [35]. In all other cases,

the on-node performance is better than the off-node performance. However, with very large

message sizes of 64K and 1M bytes, the difference in performance gradually decreases. This is

related to the degraded performance of shared-memory system on the Sun Fire due to multiple

large messages in transit. Figure 6.16 shows the collective communication performance of

Myrinet cluster. Broadcast again has the best performance, but allreduce has the largest

completion time, followed by alltoallv and reduce. I do not know the reasons behind the spikes

for Sun Fire Link in Figure 6.15. I run tests 1000 times and got the average. The spikes were

present in all cases.

Figure 6.16. Collective communication performance, Myrinet.

0

500

1000

1500

2000

2500

3000

1 8 64 512 4K

Ex
ec

ut
io

n
tim

e
(u

s)

Off-node, 16 processes, Myrinet

0

50000

100000

150000

200000

250000

16K 64K 256K 1M

Message size (byte)

Broadcast
Gather
Scather
Reduce
Allreduce
Alltoall
Alltoallv

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 86

Table 6.7 Barrier performance (microseconds)
 Sun Fire Link Myrinet

of processes On-node Off-node Off-node
2 1.21 - 9.84
4 1.80 1156.05 19.12
8 1.80 1355.17 29.50

16 3.10 966.50 52.44
32 - 971.45 -
64 - 1785.60 -

Table 6.7 shows the time for barrier operation. For Sun Fire Link, there is a large

performance gap between the on-node and the off-node performance, mostly because the

barrier operation is highly optimized for an SMP node.

6.6 Application Benchmarks

I analyzed the performance of the 4-node Sun Fire cluster and the 8-node Myrinet cluster

at the micro-benchmark level in the previous sections. Now I want to evaluate the

performance of actual application benchmarks. I chose the NPB 2.3 benchmark suite with the

two problem sizes, class A and class B, fro this study.

Legend “n×m” in the Figure 6.17 means running with n nodes and m processes in each

node. For BT and SP, where they require square number of processes, legend “n×m+1” means

running with n nodes and m processes in each node plus an extra process in one of the nodes.

Speedups for class A and class B are shown in Figure 6.17. Running with the same number

of processes, the applications show better speedup when there are fewer processes in each node.

For example “2×1” has a larger speedup than “1×2”, and “4×1” has a larger speedup than

“2×2”. This is related to the poor performance of on-node communications for large message

sizes. In the NAS benchmark suite, all benchmarks, except for EP and FT, have large number of

long message sizes communications. That is why EP has similar speedup for any combinations

with same total number processes. LU has more small size messages, so it is less influenced.

Because FT requires more memory, it has less speedup having 2 processes in each node than

the case with only one process per node. An extreme case is “1×2” for class B. Some serial

programs take too long time, which makes them have super linear speedup, such as SP of class

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 87

A, and BT, CG, and FT of class B. In general all benchmarks have very good speedup for class

A, close to linear.

Speedup, NPB MPI, Class A

0

5

10

15

20

CG EP FT IS LU MG

Sp
ee

du
p

1

2x1

1x2

4x1

2x2

8x1

4x2

8x2

Speedup, NPB MPI, Class B

0

10

20

30

40

50

CG EP FT IS LU MG

S
pe

ed
up

1

2x1

1x2

4x1

2x2

8x1

4x2

8x2

Speedup, NPB MPI, Class A

0

5

10

15

20

25

BT SP

Sp
ee

du
p

1

4x1

2x2

4x2+1

2x4+1

8x2

Speedup, NPB MPI, Class B

0
10
20
30
40
50
60
70
80
90

BT SP

S
pe

ed
up

1

4x1

2x2

4x2+1

2x4+1

8x2

Figure 6.17. NAS benchmark performance, class A and class B.

6.7 Summary

In this chapter, I provided the performance at the MPI micro-benchmark level for two

clusters, a 4-node Sun Fire 6800s interconnected by Sun Fire Link, and an 8-node Dell

PowerEdge 2560s interconnected by Myrinet. The performance results include the traditional

point-to-point latencies and bandwidths, latencies and bandwidths under load, and collective

communications. Both network interconnects had relatively good performance. Sun Fire Link

achieved 5 µs latency for small size messages, while Myrinet made 6 µs latency. The maximum

bandwidth for the Sun Fire Link was 700 MB/s, while it was 444 MB/s for the Myrinet. The

on-node performance of Myrinet dropped for messages larger than 64 Kbytes.

I also measured the bandwidth under different traffic patterns. Both interconnects are not

sensitive to different distributions for message size and inter-arrival time of messages. For

Complement permutation, the Sun Fire Link delivered around 3300 MB/s off-node bandwidth.

Chapter 6 SMP Clusters’ Performance at the Micro-benchmark and Application Levels 88

For Neighbor permutation, Myrinet delivered around 2000 MB/s off-node bandwidth. For

collective communications on Sun Fire Link, the on-node performance was better than the

off-node. For Myrinet, allreduce took the longest time, broadcast the shortest.

Finally, I provided the performance of NAS application benchmark for the Myrinet cluster.

We found that Sun MPI has relatively good implementation for both on-node and off-node

communications. MPICH-GM has degrading on-node performance for long messages, where it

affects the performance of application benchmarks.

Chapter 7 Conclusion 89

Chapter 7

Conclusion

In this thesis, I provided a complete measurement of the performance on the SMPs and

cluster of SMPs. I looked into all factors which may affect the performance of parallel

applications on those systems. I found all the results are reasonable.

Firstly, I discussed and characterized a popular parallel benchmark suite, NAS

benchmarks suite. I looked at several communication parameters, including the message size,

the number of messages, and destination distributions. I compared these characteristics

among five different benchmarks from the NAS benchmark suite. I ran them under different

number of processes and different problem sizes. I found that with larger problem size, all

benchmarks have larger average message sizes, and larger number of messages. The newly

released class D has much more communications and larger message size than the other

problem sizes. All benchmarks have small number of message destinations, at most 10

destinations when running with 64 processes.

Along with the performance of the memory bandwidth, point-to-point latency and

bandwidth at the MPI level, I presented the performance of the NAS parallel benchmarks on

a small SMP and a large SMP. The Dell PwerEdge 6650 achieved around 10 µs for small size

messages, while the Sun Fire 15K stayed at 6 µs. The performance of Dell PowerEdge 6650

degraded for messages larger than 64 Kbytes. Because the Sun Fire 15K has a better memory

hierarchy system and better MPI implementation, it showed a very good scalability for the

performance of the application benchmarks. I believe the performance of the Dell PowerEdge

6650 is affected by the lack of sufficient memory. I also compared the performance of NAS

parallel benchmarks implemented with MPI, OpenMP and Java, on both SMP machines. For

both machines, the MPI version had the best performance among the three versions.

Chapter 7 Conclusion 90

I discussed the programming model of the Remote Shared Memory (RSM) user-level

protocol and the Sun MPI implementation on top of it. The performance of RSM API calls

was assessed, and compared with the performance of the Sun MPI. The setup and tear down

steps took very long compared to the execution time of the actual data transfer. put had a

better performance than get for messages larger than 64 bytes. These results explained how

the Sun MPI is implemented on top of RSM.

I introduced a set of micro-benchmark suite at the MPI level to evaluate the performance

of two interconnects: the Sun Fire Link interconnect and Myrinet. The suite includes not only

the traditional point-to-point latency and bandwidth, but also the bandwidth under load, LogP

parameters, different traffic patterns, and collective communications. They were useful in

finding out the bottlenecks, giving insights about the MPI implementation, and analyzing the

performance at the application level. Our performance results include the on-node and the

off-node latency, bandwidth measurements under different communication modes. For Sun

Fire Link interconnect, to write 64 bytes to a remote node took only around 0.6 µs at RSM

level. The Sun MPI implementation achieved 2 to 5 µs for off-node latency. The difference

between them is generated by the MPI implementation. The performance of on-node

communications was better than off-node communications. But I found the on-node

performance degraded for large message size on the Myrinet, which also affected the

performance of the benchmark applications on the Myrinet cluster. All benchmarks had good

speedups, close to linear. In general, the performance results indicated that the Sun Fire Link

and Myrinet performed very well in most cases.

 I observed that the low level implementations delivered better results, and the MPI

implementations were adding large percentage overheads. I saw that extra copies were done

in the data critical path. The implementations of some of the collective communications are

not as good as the broadcast operation, which is highly optimized.

Generally, the MPI implementations on two SMPs were excellent. They showed better

scalability than OpenMP and Java. Both interconnects, the Sun Fire Link and Myrinet, also

presented relatively good performance (low latency and high bandwidth). However, the Sun

Chapter 7 Conclusion 91

Fire Link interconnects had a better performance at the micro-benchmark level. The Myrinet

cluster also performed well under the NAS parallel benchmark suite, except for some cases

due to lack of enough memory. Knowing the performance at the RSM level, I discovered the

MPI overhead. I believe there is room to improve the MPI implementation.

7.1 Future Work

 The performance measurements in this thesis are mainly in MPI, OpenMP, and Java are

also included for the experiments on SMPs. The mixed-mode (MPI+OpenMP) programming,

may be suitable for the cluster of multiprocessor systems. It will be very interesting to

compare its performance with pure MPI on such systems.

 I am interested in measuring the performance of the GM messaging layer on top of the

Myrinet both for the send/receive and RDMA models.

 In this thesis, I looked at the performance of the Sun Fire Link and Myrinet. It is

desirable to evaluate the performance of other high performance interconnects such as QsNet

II and InfiniBand.

 I looked into the implementations of regular point-to-point communications of Sun MPI.

The implementations of collective communications in Sun MPI over RSM are also

interesting.

 92

References

[1] D. Addison, J. Beecroft, D. Hewson, M. McLaren and F. Petrini, “Quadrics QsNet II: A

Network for Supercomputing Applications”. In Hot Chips 15, Stanford University, CA,

Aug. 2003.

[2] A. Afsahi and Y. Qian, “Remote Shared Memory over Sun Fire Link interconnect”, 15th

IASTED International Conference on Parallel and Distributed Computing and Systems

(PDCS 2003), 2003, pp. 381-386.

[3] A. Alexandrov, M. Ionescu, K. E. Schauser, and C. Scheiman, “Incorporating Long

Messages Into the LogP Model - One Step Closer Towards a Realistic Model for Parallel

Computation”, 7th Annual ACM Symposium on Parallel Algorithms and Architecture,

Jul. 1995.

[4] B. Armstrong, S. W. Kim, and R. Eigenmann, “Quantifying Differences between

OpenMP and MPI Using a Large-Scale Application Suite”, International Workshop on

OpenMP: Experiences and Implementations, Tokyo, Japan, Oct. 2000.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The Nas Parallel Benchmarks”,

Nas Technical Report RNR-91-002, NASA AAmes Research Center, Moffett Field, CA,

1991.

[6] M. Bertozzi, M. Panella, and M. Reggiani, “Design of a VIA based communication

protocol for LAM/MPI suite”, 9th Euromicro Workshop on Parallel and Distributed

Processing, Sept. 2001.

[7] N. J. Boden, D. Cohen, R. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W-K Su,

“Myrinet: A Gigabit-per-Second Local Area Network”, IEEE Micro, 1995.

[8] J. M. Bull, M. E. Kambites, “JOMP an OpenMP-like interface for Java”, Java Grande

2000, 44-53.

[9] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM SP for the NAS

Benchmarks”, Supercomputing Conference (SC’00): High Performance Networking and

Computing Conference, 2000.

 93

[10] B. Carpenter, V. Getov, G. Judd, T. Skjellum, G. Fox, “MPI for Java, Position document

and Draft API Specification”. Available: http://www.javagrande.org/jgpapers.html.

[11] S. Chodnekar, et al., “Towards a Communication Characterization Methodology for

Parallel Applications,” High-Performance Computer Architecture, 1997.

[12] A. Cohen, “A Performance Analysis of 4X InfiniBand Data Transfer Operations”, 17th

International Parallel and Distributed Processing Symposium (IPDPS 2003), 2003.

[13] A. Charlesworth, “The Sun Firplane Interconnect”, IEEE Micro, Vol. 22, No. 1, 2002, pp.

36-45.

[14] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R.Subramonian, and T. von Eiken, “LogP: Towards a Realistic Model of Parallel

Computation”, 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 1993.

[15] V. Dunning, G. Regnier, G. McAlpine, D. Cameron, B, Shubert, F. Berry, A. Merritt, E.

Gronke, and C. Dodd, “ The Virtual Interface Architecture”, IEEE Micro, March/April,

1998, pp. 66-76.

[16] N. R. Fredrickson, Ahmad Afsahi, and Ying Qian, “Performance Characteristics of

OpenMP Constructs, and Application Benchmarks on a Large Symmetric

Multiprocessor”, 17th Annual ACM International Conference on Supercomputing,

ICS'03, San Francisco, CA, USA, June, 2003, pp. 140-149.

[17] M. Frumkin, H. Jin and J. Yan, “Implementation of NAS Parallel Benchmarks in High

Performance Fortran”, Nas Technical Report, NAS-98-009, NASA Ames Research

Center, Moffett Field, CA,1998

[18] M. Frumkin, M. Schultz, H. Jin, and J. Yan, “Implementation of the NAS Parallel

Benchmarks in Java”, Nas Technical Report NAS-02-009, NASA AAmes Research

Center, Moffett Field, CA, 2002.

[19] D. S. Henty, “Performance of hybrid message-passing and shared-memory parallelism

for discrete element modeling”, Supercomputing Conference (SC’00), 2000.

 94

[20] J. Hsieh, T. Leng, V. Mashayekhi, R. Rooholamini. “Architectural and Performance

Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP

Servers”, Super Computing Conference (SC’00), 2000.

[21] K. Huang, Z. Xu, “Scalable Parallel Computing: Technology, Architecture,

Programming”.

[22] G. Iannello, M. Laurio, and S. Mercolino, “LogP performance characterization of fast

messages atop Myrinet”, 6th EUROMICRO Workshop on Parallel and Distributed

Processing (PDP98), 1998.

[23] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementations of NAS Parallel

Benchmarks and its Performance”, NAS Technical Report NAS-99-011, 1999.

[24] G. Jost, H. Jin, Dieter an Mey and F. F. Hatay, “Comparing the OpenMP, MPI, and

Hybrid Programming Paradigms on an SMP Cluster”, NAS-03-019.

[25] T. Kielmann, H. E. Bal, and K. Verstoep, “ Fast Measurement of LogP Parameters for

Message Passing Platforms”, 4th Workshop on Runtime Systems for Parallel

Programming (RTSPP), held in conjunction with IPDPS 2000, 2000.

[26] J. Kim and David J. Lilja, “Characterization of Communication Patterns in

Message-Passing Parallel Scientific Application Programs”, the Workshop on

Communication, Architecture, and Applications for Network-based Parallel Computing,

International Symposium on High Performance Computer Architecture, Feb. 1998, pp.

202-216.

[27] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas, P. Wyckoff,

and D. K. Panda, “Performance comparison of MPI implementations over InfiniBand,

Myrinet, and Quadrics”, Supercomputing Conference (SC’03), 2003.

[28] J. Liu, B. Chandrasekaran, Weikuan Yu, Jiesheng Wu, Darius Buntinas, Sushmitha Kini,

Dhabaleswar K. Panda, Pete Wyckoff, “Microbenchmark Performance Comparison of

High-Speed Cluster Interconnects”, IEEE Micro 24(1): 42-51 (2004).

[29] M. V. Nibhanupudi and B. K. Szymanski, “Adaptive Parallelism in the

Bulk-Synchronous Parallel model”, Proceedings of the Second International Euro-Par

 95

Conference, Lyon, France, Aug 1996.

[30] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Performance Evaluation of the

Quadrics Interconnection Network”, Journal of Cluster Computing, to appear.

[31] Y. Qian, Ahmad Afsahi, Nathan R. Fredrickson, and Reza Zamani, “Performance

Evaluation of the Sun Fire Link SMP Clusters”, 18th International Symposium on High

Performance Computing Systems and Applications, HPCS 2004, Winnipeg, Canada,

May 16-19, 2004,145-156.

[32] H. Richardson, “High Performance Fortran. History, Overview and Current Status”,

Technology Watch Report. Available:

http://www.epcc.ed.ac.uk/epcc-tec/documents/techwatch.html.

[33] M. Sato, et al, “Design of OpenMP Compiler for an SMP Cluster”, 1st European

Workshop on OpenMP (EWOMP'99), 1999.

[34] S. J. Sistare, and C. J. Jackson, “Ultra-High Performance Communication with MPI and

the Sun Fire Link Interconnect”, Supercomputing Conference (SC’02), 2002.

[35] S. J. Sistare, F. Vande Vaart, and E. Loh, “Optimization of MPI Collectives on Clusters

of Large-Scale SMPs”, Supercomputing Conference (SC’99), 1999.

[36] L. A. Smith and J. M. Bull, “Java for High performance Computing”.

[37] F. Wong, R. Martin, R. Arpaci-Dusseau, D. Culler, “Architectural Requirements and

Scalability of the NAS Parallel Benchmarks”, Supercomputing Conference (SC’99) on

High Performance Networking and Computing, Portland, OR. Nov. 1999.

[38] InfiniBand Architecture. Available: http://www.infinibandta.org.

[39] Message Passing Interface Forum: MPI, A Message Passing Interface Standard, Version

1.2, 1997.

[40] MPICH - A Portable MPI Implementation. Available: http://www.mcs.anl.gov/mpi/mpich.

[41] Myricom. Available: http://www.myrinet.com.

[42] NAS Parallel Benchmarks homepage. Available: http://www.nas.nasa.gov/.

[43] OpenMP C/C++ Application Programming Interface, Version 2.0, March 2002.

[44] POSIX Threads programming. Available:

 96

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html.

[45] Remote Shared Memory API for Sun Cluster Systems. Available:

http://docs-pdf.sun.com/817-4415/817-4415.pdf.

[46] Sun Fire Link System Overview. Available: http://docs.sun.com/db/doc/816-0697-11.

[47] Sun HPC ClusterTools 5 Software Performance Guide [Online 2003]. Available:

http://docs-pdf.sun.com/817-0090-10/817-0090-10.pdf.

[48] Sun™ MPI 6.0 Software Programming and Reference Manual.

[49] Top500 supercomputer sites. http://www.top500.org.

[50] The GM API. Available: http://www.myri.com.

[51] The Stream Benchmark. Available: http://www.streambench.org.

97

VITA

Name: Ying Qian

Place and Year of Birth: Shanghai, China P.R. 1978

Education: Shanghai Jiao Tong University, China P.R.

1994-1998

BSc. (Electrical Engineering) 1998

Experience: Software Engineer

Shanghai Communications Technologies Center

1998-2001

Publications:

1. Ying Qian, Ahmad Afsahi, Nathan R. Fredrickson, and Reza Zamani,

"Performance Evaluation of the Sun Fire Link SMP Clusters", 18th International

Symposium on High Performance Computing Systems and Applications, HPCS 2004,

Winnipeg, Canada, May 16-19, 2004,145-156.

2. Ahmad Afsahi and Ying Qian, "Remote Shared Memory over Sun Fire Link

Interconnect", 15th IASTED International Conference on Parallel and Distributed

Computing and Systems, PDCS 2003, Marina del Rey, CA, USA, November 3-5,

2003, pp. 381-386.

3. Nathan R. Fredrickson, Ahmad Afsahi, and Ying Qian, "Performance

Characteristics of OpenMP Constructs, and Application Benchmarks on a Large

Symmetric Multiprocessor", 17th Annual ACM International Conference on

Supercomputing, ICS'03, San Francisco, CA, USA, June, 2003, pp. 140-149.

