
Design and Evaluation of Efficient Collective Communications on

Modern Interconnects and Multi-core Clusters

by

Ying Qian

A thesis submitted to the Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

(January, 2010)

Copyright ©Ying Qian, 2010

 ii

Abstract

Two driving forces behind high-performance clusters are the availability of modern

interconnects and the advent of multi-core systems. As multi-core clusters become

commonplace, where each core will run at least one process with multiple intra-node and

inter-node connections to several other processes, there will be immense pressure on the

interconnection network and its communication system software.

Many parallel scientific applications use Message Passing Interface (MPI) collective

communications intensively. Therefore, efficient and scalable implementation of MPI

collective operations is critical to the performance of applications running on clusters. In

this dissertation, I propose and evaluate a number of efficient collective communication

algorithms that utilize the modern features of Quadrics and InfiniBand interconnects as

well as the availability of multiple cores on emerging clusters.

To overcome bandwidth limitations and to enhance fault tolerance, using multiple

independent networks known as multi-rail networks is very promising. Quadrics multi-

rail QsNetII network is constructed using multiple network interface cards (NICs) per

node, where each NIC is connected to a rail. I design and evaluate a number of Remote

Direct Memory Access (RDMA) based multi-port collective operations on multi-rail

QsNetII network. I also extend the gather and allgather algorithms to be shared memory

aware for small to medium messages. The algorithms prove to be much more efficient

than the native Quadrics MPI implementation.

ConnectX is the newest generation of InfiniBand host channel adapters from

Mellanox Technologies. I provide evidence that ConnectX achieves scalable performance

 iii

for simultaneous communication over multiple connections. Utilizing this ability of

ConnectX cards, I propose a number of RDMA based multi-connection and multi-core

aware allgather algorithms at the MPI level. My algorithms are devised to target different

message sizes, and the performance results show that they outperform the native

MVAPICH implementation.

Recent studies show that MPI processes in real applications could arrive at an MPI

collective operation at different times. This imbalanced process arrival pattern can

significantly affect the performance of the collective communication operation.

Therefore, design and efficient implementation of collectives under different process

arrival patterns is critical to the performance of scientific applications running on modern

clusters. I propose novel RDMA-based process arrival pattern aware alltoall and allgather

for different message sizes over InfiniBand clusters. I also extend the algorithms to be

shared memory aware for small to medium messages under process arrival patterns. The

performance results indicate that the proposed algorithms outperform the native

MVAPICH implementation as well as other non-process arrival pattern aware algorithms

when processes arrive at different times.

 iv

Acknowledgements

I would like to thank the guidance and support of my supervisor Professor Ahmad

Afsahi. Without him, this dissertation would have never been possible. I would like to

acknowledge the financial support from the Natural Science and Engineering Research

Council of Canada (NSERC) and Ontario Graduate Scholarship (OGS). I am indebted to

the Department of Electrical and Computer Engineering for awarding me Teaching

Assistantship.

I would like to thank my friends at the Parallel Processing Research Laboratory,

Reza Zamani, Ryan E. Grant, and Mohammad J. Rashti for their great help. I also would

like to especially thank my friends, HaoJie Ji, Qian Wu, and Helen Zhou for their kind

support.

Lastly, special thanks to my parents for their love and support during my study.

 v

Table of Contents

Abstract .. ii

Acknowledgements ... iv

Table of Contents ... v

List of Figures ... viii

Glossary .. xi

Chapter 1 : Introduction ... 1

1.1 Message Passing and Collective Communications .. 1

1.2 Modern Interconnects and User-level Messaging .. 2

1.3 Problem Statement ... 3

1.4 Contributions ... 4

1.5 Dissertation Outline ... 8

Chapter 2 : Background ... 9

2.1 Message Passing Interface ... 11

2.1.1 Point-to-point Communications .. 12

2.1.2 Collective Communications .. 13

2.2 High-Performance Interconnects ... 15

2.2.1 Quadrics QsNetII ... 16

2.2.2 Elan4lib and Elanlib .. 16

2.2.3 InfiniBand Architecture .. 18

2.2.4 OFED .. 22

2.3 Communication Modeling ... 23

2.3.1 Hockney’s Model .. 23

2.3.2 Port Modeling ... 24

2.4 Summary .. 24

Chapter 3 : RDMA-based Multi-port Collectives on Multi-rail QsNetII Clusters 25

3.1 Related Work ... 25

3.2 Experimental Framework ... 27

3.3 Motivation .. 27

3.3.1 Elan RDMA Performance ... 28

3.3.2 Tports Performance ... 29

3.3.3 MPI Send/Receive Performance ... 29

 vi

3.3.4 Collective Performance ... 30

3.4 Collective Algorithms .. 32

3.4.1 Scatter ... 33

3.4.2 Gather .. 33

3.4.3 Allgather ... 34

3.4.4 Alltoall Personalized Exchange .. 37

3.5 Implementation Issues ... 38

3.6 Performance Analysis .. 40

3.6.1 Evaluation of Scatter ... 40

3.6.2 Evaluation of Gather ... 40

3.6.3 Evaluation of Allgather ... 42

3.6.4 Evaluation of Alltoall Personalized Exchange .. 45

3.7 Summary .. 45

Chapter 4 : RDMA-based and Shared Memory Aware Multi-port Gather and Allgather on Multi-

rail QsNetII SMP Clusters .. 48

4.1 Related Work ... 48

4.2 Native Gather and Allgather implementation on Quadrics QsNetII 49

4.3 Motivation .. 50

4.3.1 Shared Memory vs. RDMA .. 50

4.4 SMP-aware Allgather Algorithms ... 54

4.4.1 SMP-aware Gather and Broadcast Algorithm .. 54

4.4.2 SMP-aware Direct/Bruck Algorithms ... 57

4.4.3 Application Performance .. 60

4.5 Summary .. 62

Chapter 5 : Multi-connection and Multi-core Aware Allgather on InfiniBand Clusters 64

5.1 Related Work ... 64

5.2 Allgather in MVAPICH ... 65

5.3 Experimental Platform ... 65

5.4 Motivation .. 66

5.5 The Proposed Allgather Algorithms .. 71

5.5.1 Single-group Multi-connection Aware Algorithm .. 71

5.5.2 Multi-group Gather-based Multi-connection Aware Algorithm 72

5.5.3 Multi-group Multi-connection Aware Algorithm ... 74

 vii

5.5.4 Complexity Analysis of the Algorithms ... 76

5.6 Performance Results .. 79

5.7 Summary .. 80

Chapter 6 : Process Arrival Pattern Aware Collectives on InfiniBand .. 83

6.1 Related work .. 83

6.2 MPI_Alltoall() and MPI_Allgather() in MVAPICH.. 84

6.3 Motivation .. 84

6.3.1 Process arrival pattern ... 85

6.3.2 Impact of Process Arrival Pattern on Collectives ... 86

6.4 The Proposed Process Arrival Pattern Aware MPI_Alltoall() and MPI_Allgather() 88

6.4.1 Notification Mechanisms for Early-arrival Processes ... 90

6.4.2 RDMA-based Process Arrival Pattern Aware Alltoall ... 91

6.4.3 RDMA-based Process Arrival Pattern Aware Allgather .. 92

6.4.4 RDMA-based Process Arrival Pattern and Shared Memory Aware Alltoall 92

6.4.5 RDMA-based Process Arrival Pattern and Shared Memory Aware Allgather 93

6.5 Experimental Results ... 94

6.5.1 MPI_Alltoall() Micro-benchmark Results .. 94

6.5.2 MPI_Allgather() Micro-benchmark Results ... 97

6.5.3 Application Results ... 101

6.6 Summary .. 104

Chapter 7 : Conclusion and Future Work .. 105

7.1 Future Work ... 108

References .. 111

 viii

List of Figures

Figure 2.1 A typical multi-core cluster. ... 9

Figure 2.2 Layers of abstraction. ... 11

Figure 2.3 Some collective communication operations. .. 15

Figure 2.4 Quaternary fat tree structure for 2 dimensions. .. 16

Figure 2.5 Quadrics programming libraries. .. 17

Figure 2.6 IBA System Area Network [31]. .. 19

Figure 2.7 IBA communication stacks [31]. .. 20

Figure 3.1 Elan RDMA Write performance. .. 29

Figure 3.2 T-port send/receive performance. ... 30

Figure 3.3 MPI send/receive performance. .. 30

Figure 3.4 Elan collectives and MPI_Scatter() bandwidth on dual-rail QsNetII. 31

Figure 3.5 Standard Exchange algorithm for 9 processes under 2-port modeling. 35

Figure 3.6 Bruck allgather algorithm for 9 processes under 2-port modeling. 36

Figure 3.7 Bruck alltoall algorithm for 9 processes under 2-port modeling. 39

Figure 3.8 Scatter performance and scalability. ... 41

Figure 3.9 Gather performance and scalability. ... 42

Figure 3.10 Allgather performance and scalability. ... 44

Figure 3.11 Alltoall performance and scalability. .. 46

Figure 4.1 Comparison of intra-node communications: RDMA (elan_put), shared memory (shm-

p2p) and memory copy. ... 52

Figure 4.2 Intra-node gather and broadcast. .. 53

Figure 4.3 Phase 1 and 2 of the SMP-aware Gather and Broadcast on a four 4-way SMP cluster.

 ... 56

Figure 4.4 SMP-Aware Direct allgather algorithm on a cluster of four 4-way SMP nodes. 58

Figure 4.5 Performance of the proposed allgather algorithms on a cluster of four 4-way SMP

nodes with dual-rail QsNetII. .. 59

Figure 4.6 Scalability of the proposed allgather algorithms on a cluster of four 4-way SMP nodes

with dual-rail QsNetII. .. 61

Figure 5.1 Normalized average latency of a 1-byte message sent simultaneously over multiple

connections. ... 68

Figure 5.2 Aggregate bandwidth of multiple independent allgather operations. 70

Figure 5.3 Group structure for gather-based allgather algorithm on a 4-node, 16-core cluster. 73

 ix

Figure 5.4 Group structure for 2-group allgather algorithm on a 4-node, 16-core cluster. 75

Figure 5.5 Group structure for 4-group allgather algorithm on a 4-node, 16-core cluster. 76

Figure 5.6 Allgather performance. ... 81

Figure 6.1 Process arrival pattern for 4 processes. .. 85

Figure 6.2 Completion time of MVAPICH Alltoall under different process arrival patterns. 88

Figure 6.3 Completion time of MVAPICH Allgather under different process arrival patterns. 89

Figure 6.4 Performance of the proposed MPI_Alltoall(), 16 processes on a 4-node, 16-core cluster.

 ... 96

Figure 6.5 MPI_Alltoall() scalability. .. 97

Figure 6.6 Performance of the proposed MPI_Alltoall() with 25% and 75% late processes. 98

Figure 6.7 Performance of the proposed MPI_Allgather(), 16 processes on a 4-node, 16-core

cluster. .. 100

Figure 6.8 MPI_Allgather() scalability. ... 101

Figure 6.9 Performance of the proposed MPI_Allgather() with 25% and 75% late processes. ... 102

 x

List of Tables

Table 4.1 Application and communication speedup (16 processes) when using the proposed

allgather algorithms. .. 62

Table 5.1 Per-node complexity of the proposed allgather algorithms on a 4-node, 16-core cluster.

 ... 78

Table 6.1 The average of worst-case and the average-case imbalance factors for FT LU and MG

benchmarks. ... 87

Table 6.2 PAP_Direct MPI_Alltoall() speedup over native MVAPICH and the Direct algorithms

for NAS FT running with different number of processes and classes. .. 103

Table 6.3 PAP_Shm_Direct MPI_Allgather() speedup over native MVAPICH and the shared

memory aware Direct algorithms for N-BODY and RADIX running with different number of

processes. ... 103

 xi

Glossary

CA Channel Adapter

CQ Completion Queues

HCA Host Channel Adapter

HPC High-Performance Computing

IBA InfiniBand Architecture

iWARP Internet Wide Area RDMA Protocol

MIF Maximum Imbalanced Factor

MPI Message Passing Interface

NICs Network Interface Cards

NUMA Non-Uniform Memory Access

OFED OpenFabrics Enterprise Distribution

PAP Process Arrival Pattern

PGAS Partitioned Global Address Space

PIO Programmed Input/Output

QDMA Queue-based Directed Message Access

QP Queue Pair

RC Reliable Connection

RD Raw Datagram

RD Reliable Datagram

RDMA Remote Direct Memory Access

SMP Symmetric Multiprocessors

SRQ Shared Receive Queue

TCA Target Channel Adapter

Tports Tagged Message Ports

UC Unreliable Connection

UD Unreliable Datagram

VPI Virtual Protocol Interconnect

VPID Virtual Process ID

 xii

WQE Work Queue Element

WQR Work Queue Request

XRC eXtended Reliable Connection

 1

Chapter 1: Introduction

With the introduction of high-speed networks, the trend in the high-performance

computing (HPC) community is to use network-based computing systems such as clusters

of multiprocessors to achieve high performance. Symmetric multiprocessors (SMP) and

non-uniform memory access (NUMA) clusters are the predominant platforms for HPC

due to their cost-performance effectiveness [86]. SMP and NUMA nodes are traditionally

equipped with multiple single-core processors. However, industry has recently adopted

the development of chip multiprocessors, or multi-cores, for general-purpose

applications. With the emergence of such multi-core clusters, each core will run at least

one process with multiple intra-node and inter-node connections to several other

processes. This will put immense pressure on the interconnection network and its

communication system software. Therefore, researchers in academia and industry have

been working on improving the performance of communication subsystems through

advancements in high-speed networking technologies and messaging layers [4, 6, 7, 16,

35, 37, 90].

1.1 Message Passing and Collective Communications

Most scientific applications running on HPC use the Message Passing Interface

(MPI) [45] as the parallel programming paradigm of choice. In MPI, data transfer is done

using explicit communications. MPI provides two kinds of communications: point-to-

point and collective. Previous studies of application usage show that the performance of

collective communications is critical to HPC applications, including those in [26, 56, 90].

The study in [50] shows that some applications spend more than eighty percent of their

overall communication time in collective operations. They also use a large number of

 2

collective operations, some with very large payloads and some with small payloads

below 2KB [33]. As such, collective communication has been an active area of research

[2, 22, 27, 39, 41, 54, 69, 70, 74, 76, 80, 91]. This trend is still ongoing, especially with

the availability of contemporary interconnects and emerging architectures.

Collective communications involve a group of MPI processes. They can be

categorized into one-to-all, all-to-one, alltoall, and synchronization primitives. There are

two services in the one-to-all category: broadcast and scatter. In broadcast, the same

message is delivered from a root process to all other processes. In scatter, which is also

called personalized broadcast, the sending process delivers different messages to all other

processes. Gather, an all-to-one operation, is the reverse of scatter. In gather, messages

from different processes are gathered by the root process. In alltoall communications, all

processes exchange data with each other. In alltoall broadcast, also called allgather, each

process sends the same data to all other processes. In alltoall personalized exchange, also

called alltoall, each process has a different data for every other processes. Barrier, a

synchronization operation, is a global control operation that synchronizes across all

processes in the group.

1.2 Modern Interconnects and User-level Messaging

Currently, several switch-based interconnects provide low latency and high

bandwidth for HPC. Myrinet [48], Quadrics [65], InfiniBand [31], and iWARP Ethernet

[68] are the most famous interconnects available today. They use the user-level

messaging layers GM and MX [81], Elan4lib [65], and OpenFabrics Enterprise

Distribution (OFED) [82] respectively. These messaging layers provide protected user-

level access to the network interface. The user-level network protocols offered by these

 3

high-speed interconnects are designed to bypass the operating system, and to thereby

reduce the end-to-end latencies and lower the CPU utilization. These interconnects have

several new features to provide better performance. They all support one-sided

communications at the user level known as Remote Direct Memory Access (RDMA)

Write, RDMA Read and RDMA Atomic operations. RDMA is a one-sided operation that

allows a process to access the memory of a remote process. RDMA has been used in

enhancing the performance of point-to-point and collective communications in MPI [29,

36, 42, 51, 67], to name a few, as well as other parallel programming paradigms such as

Partitioned Global Address Space (PGAS) languages [23]. RDMA has also been used to

design communication subsystems for databases and file systems [92] and to implement

web servers on clusters [12].

1.3 Problem Statement

With the availability of fast interconnects and the advent of multi-core technology,

there is a dire demand for improving the performance of communication subsystems in

modern clusters in general, and collectives in particular. In essence, this work tries to

address the following questions:

(1) How can we effectively utilize the new features of modern interconnects in the

design of collectives?

(2) How can we devise collectives that could benefit from the emerging SMP/multi-

core nodes?

(3) How can we adapt existing collective algorithms on such architectures?

(4) How can we design collectives under different process arrival patterns?

 4

This dissertation seeks to understand the underlying architectures of the systems and

the contemporary networks, and to efficiently utilize them to improve the performance of

collective communications. It tackles a number of challenges including efficient data

transfer mechanisms for intra-node and inter-node communications, efficient algorithms

and protocols for different message sizes, algorithm adaptations for SMP and multi-core

systems, process skew time, and scalability. Specifically, features such as RDMA, multi-

rail communication, hardware broadcast, shared memory intra-node vs. inter-node

message passing, multi-core awareness, multi-connection capability, and process arrival

pattern awareness have been used to propose novel algorithms and protocols.

1.4 Contributions

In this dissertation, I have proposed several contributions to the efficient design and

implementation of collective communications, as follows:

 RDMA-based Multi-port Collectives on Multi-rail Quadrics QsNetII

To overcome bandwidth limitations and to enhance fault tolerance, using multiple

independent networks known as multi-rail networks is very promising. Quadrics multi-

rail QsNetII network [65] is constructed using multiple network interface cards (NICs)

per node, each NIC connecting to a rail. However, this feature has been available only for

point-to-point communications. This dissertation contributes by designing and

implementing RDMA-based multi-port algorithms for scatter, gather, allgather, and

alltoall collectives on top of multi-rail Quadrics QsNetII systems.

Performance results indicate that my multi-port collectives implementations are

better than the native implementation except for messages less than 512 bytes. The

proposed multi-port gather gains an improvement of up to 2.15 for 4KB message. The

 5

RDMA-based allgather is better than the Quadrics implementation in the elan_gather()

for messages larger than 2KB. The allgather Direct algorithm gains an improvement of

up to 1.49 for 32KB messages over the native elan_gahter(). My multi-port Direct

alltoall algorithm is also much better than the native elan_alltoall() for medium and large

size messages, with up to a factor of 2.26 improvement for 2KB messages. It should be

noted that the native library, both in Quadrics [55] and MVAPCH [47], implements well-

known collective communication algorithms.

 RDMA-based and Shared Memory Aware Multi-port Gather and Allgather on

Multi-rail Quadrics QsNetII

Multi-rail communication improves the performance for medium to large messages.

Shared memory communication improves the performance for short messages. However,

simply replacing network communication with shared memory transactions for intra-node

communication will not enhance the collective performance much. This dissertation

proposes three optimized SMP aware allgather algorithms for short to medium message

sizes, SMP-aware Gather and Broadcast algorithm and SMP-aware Direct and Bruck

[10] algorithm. In the SMP-aware Gather and Broadcast algorithm, I first do an SMP-

aware gather algorithm across all processes in the system and then broadcast the gathered

data to all processes. In the SMP-aware Direct and Bruck algorithm, I adapt the

traditional multi-port Direct and Bruck allgather algorithms to SMP clusters by

performing them across the SMP nodes rather than processes. Shared memory gather and

broadcast operations are used within the nodes.

Compared to the native implementation in QsNetII, the SMP-aware Gather and

Broadcast algorithm is the best algorithm for up to 256-byte messages. For short to

 6

medium size messages (512B to 8KB), the SMP-aware Bruck algorithm outperforms all

other algorithms. An improvement of up to 1.96 for 4KB message can be observed using

the SMP-aware Bruck algorithm. For medium to large messages (16KB to 1MB), the

RDMA-based Direct algorithm is superior among all algorithms, gaining an

improvement of up to 1.49 for 32KB messages.

 Multi-connection and Multi-core Aware Allgather on InfiniBand Clusters

This dissertation provides evidence that the latest ConnectX InfiniBand cards [44]

achieve scalable performance for simultaneous communication over multiple connections

(up to a certain number of connections). Utilizing this, I propose a number of RDMA

based multi-connection and multi-core aware allgather algorithms. Specifically, the

proposed algorithms are Single-group Multi-connection Aware, Multi-group Gather-

based Multi-connection Aware, and Multi-group Multi-connection Aware allgather

algorithms. The Single-group Multi-connection Aware algorithm is a multi-connection

extension of the proposed SMP-aware algorithm targeted at small to medium messages.

Designed for small messages, the Multi-group Gather-based Multi-connection Aware

allgather algorithm takes advantage of the availability of multiple cores to distribute the

CPU processing load. Finally, to further utilize the multi-connection capability of the

InfiniBand network, I propose the Multi-group Multi-connection Aware allgather

algorithm for medium to large message sizes.

My algorithms are devised to target different message sizes and the performance

results show that they outperform the native MVAPICH implementation for up to 128KB

messages. The gather-based algorithm has the best performance for very small messages

up to 32 bytes. The single-group multi-connection aware algorithm outperforms all other

 7

algorithms from 64 bytes up to 2KB. From 4KB to 64KB, the 2-group multi-connection-

aware algorithm performs the best.

 Process Arrival Pattern Aware Collectives on Multi-core InfiniBand Clusters

I provide evidence, and confirm previous observations, that MPI processes in real

applications could arrive at an MPI collective operation at different times. This

imbalanced process arrival pattern can significantly affect the performance of the

collective operation and consequently the application itself. Therefore, its efficient

implementation under different process arrival patterns is critical to the performance of

scientific applications running on modern clusters. This dissertation proposes RDMA-

based and process arrival pattern aware allgather and alltoall collectives on top of

InfiniBand. To boost the performance for small messages, the process arrival pattern

aware allgather and alltoall algorithms are enhanced with shared memory awareness.

The process arrival pattern aware alltoall algorithms are better than their non process

arrival pattern aware counterparts for all message sizes. My algorithms are also superior

to the native MVAPICH, with an improvement factor of 3.1 at 8KB for the Direct

algorithm and 3.5 at 4B for shared memory Direct algorithm, with a maximum

imbalanced factor (MIF) of 32. With a larger MIF of 512, the improvements are 1.5 and

1.2, respectively. The process arrival pattern aware allgather Direct algorithms are also

better than their non-process arrival pattern aware counterparts for most of the message

sizes. The proposed allgather algorithms gain an improvement factor of 3.1 at 8KB

compared to MVAPICH for RDMA-based version and 2.5 times at 1B for shared

memory aware version, with MIF equal to 32. With a larger MIF of 512, 1.3 and 1.2

times improvement are achieved respectively.

 8

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, I provide the

background material for this study. I will discuss the message passing programming

paradigm and then introduce MPI collective communication primitives in detail. I will

also introduce two popular high-performance interconnects and their user-level

messaging protocols. The communication and port modeling used in this dissertation are

provided at the end of Chapter 2. In Chapter 3, I will present high performance RDMA-

based multi-port collectives on multi-rail QsNetII. RDMA-based and SMP-aware multi-

port allgather on multi-rail QsNetII SMP clusters will be introduced in Chapter 4. In

Chapter 5, I design and implement multi-connection aware collectives on InfiniBand

clusters. In Chapter 6, I take the process arrival pattern into consideration for devising

collectives, and propose process arrival pattern aware alltoall and allgather algorithms.

Finally I conclude the dissertation in Chapter 7.

 9

Chapter 2: Background

In this chapter, I will summarize the background material that is related to this

dissertation. In the past couple of decades, several parallel machines with different

architectures have been built as viable platforms for high-performance computing, such

as SMPs, NUMAs, distributed shared memory, and clusters of multiprocessors. However,

with the availability of high-speed networks, the HPC community has adopted network-

based computing clusters as cost-effective platforms to achieve high performance. This

trend has been accelerated by the advent and use of multi-core processors in high-

performance clusters, shown in Figure 2.1. According to the ranking in June, 2009, more

than 82% of top 500 supercomputing sites are clusters [86]. Not to mention, clusters are

also increasingly used in the low-to-medium end of spectrum, as well as in data centers,

financial institutions, etc.

Computer Node

p0 p1

p2 p3

Cluster Interconnect

Computer Node

p4 p5

p6 p7

p0 p1

p2 p3

p4 p5

p6 p7

... ...

Network Interface Network Interface

Figure 2.1 A typical multi-core cluster.

 10

Interconnection networks are critical in achieving high performance. Currently, there

are several switch-based modern interconnects that provide low latency and high

bandwidth. The most famous and leading products include Myrinet [48], InfiniBand [31],

Quadrics [55], and Internet Wide Area RDMA Protocol (iWARP) Ethernet [68]. High-

speed interconnects offer their own user-level messaging layers to replace the traditional

costly TCP/IP protocol stack. The user-level network protocols offered by these high-

speed interconnects are designed to bypass the operating system and to directly access the

network hardware, thereby reducing the end to end latencies. These user-level network

protocols move some of the services normally provided by the kernel into the user-level.

Bypassing the operating system, the user-level protocols avoid the costs associated with

switching to privileged mode. GM and MX [81] Elan4lib [65] and OpenFabrics [82] and

the Deep Computing Messaging Framework [37], are the user-level protocols offered by

Myrinet, Quadrics and InfiniBand and iWARP Ethernet interconnects, and IBM Blue

Gene/P machines [30], respectively.

The processes in parallel applications running on clusters mostly communicate with

each other by explicit message passing through the interconnection network. MPI [45] is

the de facto standard for parallel programming on clusters. Figure 2.2 shows the layers of

abstraction for messaging layers for high-performance networks. MPI functions as a

communication middleware providing the parallel programming environment to the

application layer. It hides the details of the underlying network hardware and also the

user-level network protocol. MPI is the critical component bridging the gap between

network hardware and the user application. Therefore, it is important to have a high-

performance and scalable MPI design.

 11

Figure 2.2 Layers of abstraction.

MPI provides different kinds of communication services to the application: point-to-

point, one-sided, and collective communications. In collective communications, a group

of processes are involved in a collective communication operation. Previous profiling

studies of applications show that applications spend more than eighty percent of the

overall communication time in collective operations [50]. Therefore, performance of

collective communications becomes critical to HPC. The objective of this research is

therefore to design and evaluate efficient collective communication algorithms on

emerging multi-core/SMP clusters with their modern high-performance interconnection

networks.

In Section 2.1, I will explain the MPI library and its communication services. In

Section 2.2, the Quadrics and InfiniBand networks are introduced along with their user-

level messaging layers. Section 2.3 describes the port modeling and the communication

cost modeling used to analyze the performance of the collective communications.

2.1 Message Passing Interface

The most commonly used programming model for clusters is MPI [45]. An

advantage of the MPI programming model is that the user has complete control over data

distribution and process synchronization, which can provide optimal data locality and

Applications

Application Programming Interface (MPI)

User-level Network Protocol (GM/MX, Elan, OFED)

Physical Network

 12

workflow distribution. It is also portable as MPI programs can run on distributed-memory

multicomputers, shared memory multiprocessors, and clusters.

MPI specifies an Application Programming Interface to provide different kinds of

communications, including point-to-point communications, collective communications,

and one-sided communications. One has to bear in mind that one-sided communication in

MPI-2 is at the application level to mimic the essence of shared memory programming on

clusters, while RDMA is a feature at the network-level. For the sake of this dissertation,

we only discuss point-to-point and collective communications. Point-to-point

communication is covered because many MPI distributions implement their collectives

using explicit MPI point-to-point operations. This of course incurs a lot of overhead as

compared to the RDMA-based communications, which is one of the focuses of this

dissertation.

2.1.1 Point-to-point Communications

Point-to-point communication is the basic communication mechanism used in

transmitting data between a pair of processes in MPI. The source process initiates the

communication by calling an MPI_Send() function, and the destination process receives

this message by issuing an MPI_Recv() function. A message consists of two parts: the

actual message payload, and the message envelope that helps route the data. The message

envelope consists of source, destination, a tag field and the communicator. The tag field

can be used by the program to distinguish different types of messages. A communicator

specifies the communication context for a communication operation. It should be

mentioned that there are a number of modes available for MPI point-to-point

communication including the standard, synchronous, buffered, and ready modes.

 13

MPI implementations such as MPICH2 [46], MVAPICH [47], and OpenMPI [24]

treat small and large messages differently. An Eager protocol is used to eagerly transfer

small messages to the receiver to avoid extra overhead of pre-negotiation. For large-size

messages, a Rendezvous protocol is used in which a negotiation phase makes the receiver

ready to receive the message data from the sender. After the data transfer, a finalization

packet is sent by the sender to inform the receiver that the data is placed in its appropriate

application buffer. Researchers have proposed different techniques to boost the

performance of Eager and Rendezvous protocols in RDMA-based interconnects. Sur et

al. [77] proposed an RDMA Read-based Rendezvous method. Rashti and Afsahi [67]

proposed a speculative MPI Rendezvous protocol to effectively improve communication

progress and consequently the overlap ability. Recently, Small and Yuan [75] refined the

Rendezvous protocol for medium and large messages using three customized protocols.

2.1.2 Collective Communications

MPI offers a number of collective communication operations, where a group of

processes are involved in the operation. Collective communication operations involve

global control and global data movement. MPI_Barrier() is a global control operation

that synchronizes all processes in the group. Global data movement operations include

MPI_Bcast(), MPI_Scatter(), MPI_Gather(), MPI_Allgather(), MPI_Alltoall(),

MPI_Reduce(), MPI_Allreduce(), and variants of them. Some collective operations are

shown in Figure 2.3. The actual implementation may differ from those shown. Such

collectives can be formally defined as follows, where p is the number of processes in the

group:

 MPI_Bcast(): a process, the root, sends the same message to all other

 14

processes of the group.

 MPI_Scatter(): the root process sends a different message to every other

process in the group. This operation is also known as one-to-all personalized

communication.

 MPI_Gather(): it is the reverse of MPI_Scatter(). The root gathers data from

every other process. A gather operation is different from an all-to-one

MPI_Reduce() in that it does not involve any combination or reduction of

data.

 MPI_Allgather(): in this operation, each process sends the same message to

all other processes. It is also called alltoall broadcast. This data intensive

operation is heavily used in matrix multiplication kernels.

 MPI_Alltoall(): In this operation, each process sends a different message to

every other processes. This operation is used in a variety of parallel

algorithms such as fast fourier transform, matrix transpose, sample sort, and

some parallel database join operation.

 MPI_Reduce(): combines the data received from every other process, using

the operation, “*”, and returns the combined value to the root process. The

operation, “*”, can be add, maximum, minimum, etc.

 MPI_Allreduce(): the result of MPI_Reduce() is returned to all processes in

the group.

 15

root

process1

process3

root root

(a) broadcast

before after before after

(b) scatter
(c) gather

(d) allgather (e) alltoall

a*b*c

a

b

c

root

(f) reduce

process2

process1

process2

process3 process3

process2

process1

process0

process1

process2

process3

process1

process2

process3

a*b*c

a

b

c

(g) allreduce

process1

process2

process3

process1

process2

process3

Figure 2.3 Some collective communication operations.

2.2 High-Performance Interconnects

To have a high-performance cluster computer system, the interconnection network

that connects the nodes of the system plays a crucial role in performance. This

dissertation considers Quadrics QsNetII [6], and InfiniBand [31] as representatives of a

proprietary and an open standard interconnect, respectively. It should be mentioned that

these two interconnects substantially differ from each other. Brightwell et al. [9]

discussed some of the differences between the earlier versions of these interconnects. In

the following, I will discuss both interconnects in detail.

 16

2.2.1 Quadrics QsNetII

Quadrics QsNetII is a butterfly bi-directional multistage interconnection network

with 4x4 switches, which can be viewed as a quaternary fat-tree [6]. The network

supports hardware broadcast and barrier, and multiple NICs per node. The latest

generation, QsNetII, has two building blocks, a low-latency high-bandwidth

communication switch called Elite4 and a programmable network interface called Elan4

[6]. Elite switches are connected in a fat tree topology, shown in Figure 2.4 permitting

4096 nodes in the system. Quadrics switch uses a full crossbar connection and supports

wormhole routing.

In addition to generating and accepting packets to and from the network, the Elan4

provides substantial local processing power to the host processor to implement high-level

message passing protocols such as MPI. An embedded user-programmable I/O processor

on Elan4 is used to offload asynchronous protocol handling tasks.

Switch

node

Figure 2.4 Quaternary fat tree structure for 2 dimensions.

2.2.2 Elan4lib and Elanlib

Quadrics provides libelan and libelan4 libraries [54], on top of its Elan4 network as

shown in Figure 2.5. Elan4lib [65] provides the lowest-level, user-space programming

interface to the network. Elanlib is a higher-level machine independent communication

library to provide low-level accesses. It provides a global virtual address space by

integrating the address space of individual nodes.

 17

Figure 2.5 Quadrics programming libraries.

Under these default programming libraries, each parallel job first acquires a job-wise

capability, it is then allocated a virtual process ID (VPID). The communication between

the processes is supported by two different models: Queue-based Directed Message

Access (QDMA) and RDMA. QDMA allows processes to post messages (up to 2KB) to a

remote queue of another process. RMDA give processes direct access to remote memory

exposed by other processes. QsNetII provides efficient and protected access to a global

virtual memory using RDMA operations.

A general-purpose synchronization mechanism based on events stored in memory is

provided so that the completion of RDMA operations can be reported. The event

mechanism allows one operation to be triggered upon the completion of the other

operations. This event can be utilized to provide fast and asynchronous progress of back-

to-back operations.

The Quadrics library also provides basic mechanisms for point-to-point message

passing, called Tagged Message Ports (Tports) [65]. Unlike GM [81] and OFED [82], the

QsNetII does not require the communication buffers to be pinned. Elanlib also supports

multi-rail point-to-point communications. It also supports hardware broadcast and barrier

collective operations.

User applications

shmem MPI

Elanlib T-port

Elan4lib

 18

SHMEM [73] is a message passing library very similar to MPI. It was originally

developed for the Cray T3E series of vector computers. SHMEM uses active messaging,

where a source process reads from and writes onto a target process's memory directly,

without any need for the target processor's cooperation. This allows for very low

latencies and high bandwidth for inter-processor communications.

2.2.3 InfiniBand Architecture

InfiniBand Architecture (IBA) [31] is proposed as a generic interconnect for inter-

process communication and I/O. In this section, I will introduce the InfiniBand

architecture and its features, including the communication semantics provided and the

associated transport services. This section will show how InfiniBand differs from the

Quadrics network.

InfiniBand Architecture Overview

InfiniBand is an open-standard interconenct. IBA defines a System Area Network to

connect multiple platforms. In the InfiniBand network, processing nodes and I/O nodes

are connected to the fabric by Host Channel Adapters (HCAs) and Target Channel

Adapters (TCAs) respectively, as shown in Figure 2.6. IB Verbs specify the semantic

interface between HCA and consumers. A Channel Adapter (CA) that is installed in

processor nodes and I/O units generates and consumes packets as well as initiating DMA

operations. It connects to the host through the PCI-X or PCI-Express bus.

 19

Figure 2.6 IBA System Area Network [31].

InfiniBand Protocol Stack

The communication in InfiniBand is based on the concept of the Queue Pair (QP)

[31], which serves as a virtual communication port. The structure of IBA communication

stack is shown in Figure 2.7. Each QP has two queues: a send queue and a receive queue.

The send queue holds instructions to transmit data and the receive queue holds

instructions that describe where the received data is to be stored. Two QPs on different

nodes can be connected to each other by a logical bi-directional communication channel.

An application can have multiple QPs. Communication operations are described by Work

Queue Requests (WQR), which are then submitted to the queue pairs. Once submitted, a

WQR becomes a Work Queue Element (WQE). The completion of communication

requests is reported through Completion Queues (CQ).

 20

Figure 2.7 IBA communication stacks [31].

InfiniBand Transport Services

IBA provides five transport services: Reliable Connection (RC), Unreliable

Connection (UC), Reliable Datagram (RD), Unreliable Datagram (UD), and Raw

Datagram (RD). The current generation IBA adapters support RC, UC, and RD modes.

Both RC and UC are connection-oriented services, which require the consumer to initiate

a communication establishment procedure (a connection) with the target node before any

data transfer can take place. Both RC and RD are acknowledged services, which means

both transport protocols guarantee that all data is delivered in order. This dissertation is

concerned about the RC mode where RDMA is supported.

Datagram services including RD and UD are connectionless. They allow the

consumer of the QP to communicate with any unreliable datagram QP on any node.

 21

Similarly, the receive operation accepts incoming messages from any unreliable datagram

QP on any node. The RD is more like a data link service that allows a QP to send and

receive raw datagram messages. It is connectionless and unreliable. RD has two types of

raw datagram (EtherType and IPv6).

When a receiver handles incoming receives on a given QP, RC or UD, the Consumer

must post the number of receive WQRs. It is difficult when the Consumer cannot predict

the incoming rate on a given QP. To address this problem, the Shared Receive Queue

(SRQ) concept, on the other hand, allows a set of receive queues to draw from a common

pool of receive WQE - the shared receive queue. The SRQ contains WQEs that can be

used to receive incoming data on any RC or UD QP that is associated with the SRQ.

The latest InfiniBand network cards from Mellanox Technologies [44] introduce

support for a new InfiniBand transport service: eXtended Reliable Connection (XRC).

The XRC transport attempts to give the same feature set of RC while providing additional

scalability for multi-core clusters. [36] In RC, each process is required to have a

connection to each other process in the cluster for full connectivity. Instead, XRC allows

a single process to have only one connection per destination node. Given this capability

to reduce the number of required connections in RC mode, the connection memory

required can be potentially reduced by a factor equal to the number of cores per node.

InfiniBand Channel and Memory Semantics

IBA offers both channel semantics and memory semantics for communications.

Channel semantics is also called Send/Receive. In this semantics, the message only

specifies the destination’s QP without naming the memory space of the destination. On

the other hand, in the memory semantics the initiating consumer directly writes or read

 22

to/from the virtual memory space of a remote node. The remote node is not involved in

the data transfer. I will be only using the memory semantic in this dissertation, which

includes RDMA Read, RDMA Write and Atomic operations.

RDMA Read reads from a virtually contiguous buffer on a remote node and writes

the data to a local memory buffer. RDMA Write writes a virtually contiguous buffer onto

a remote node. The virtually contiguous buffer can gather from a list of local buffer

segments. The RDMA Atomic operation is a combined Read, Modify, and Write atomic

operation on a remote 64 bit word.

2.2.4 OFED

OpenFabrics Enterprise distribution (OFED) [82] is a high-performance server and

storage connectivity software for RDMA and transport offload hardware solutions. The

OFED, maintained by OpenFabrics Alliance [82], collaborates the development and

testing by all major InfiniBand and iWARP Ethernet vendors.

Verbs is one of the core InfiniBand modules and an abstract description of

functionalities of a HCA. It provides infrastructure for kernel/user communication,

handles memory pinning, pass most operations on to device-specific driver and provides

direct path to the HCA driver. Mellanox Technologies OFED is based on the InfiniBand

verbs layer. It is a single Virtual Protocol Interconnect (VPI) [90] software stack based

on the OFED Linux stack, which supports all Mellanox network adapters.

Three communication operations are provided in OFED: send/receive, RDMA

operations and Atomic. Both reliable connection and unreliable datagram services have

been implemented on HCAs. Similar to GM, memory buffers must be registered with

HCA before being used. For parallel applications, OFED offers MVAPICH [47] MPI

 23

implementation from Ohio State University (OSU). Existing designs of MPI over

InfiniBand use send/receive operations for small data messages and control messages,

and RDMA operations for large data messages.

2.3 Communication Modeling

To design collective communication algorithms on different systems, there is a need

to have a cost model to estimate the lower bounds for the latency and bandwidth cost of

collective communication operations. In addition, design and performance of collective

operations are influenced by the network system characteristics, including the port

modeling.

2.3.1 Hockney’s Model

Hockney has proposed a simple model for point-to-point communication operations,

[25] as in Equation 2.1:

r

m
tt 0 (2.1)

where r is the asymptotic bandwidth, which is the maximum achievable bandwidth.

 is the startup time, and m/ r represents the transmission time in sending an m-byte

message through a network with bandwidth r .

Hockney’s model has some advantages. Firstly, it is a simple model that is a linear

function of the message size m. Secondly, r and represent two fundamental

quantities of the network. Thirdly, it is architecture-independent. It can be applied to

networks with different architectures by changing the value of parameters. While there

are other models available such as the postal model [5], LogP model [19], LogGP [1],

ot

ot

 24

and PlogP [34]. Hockney’s model is sufficient for the study of the algorithms in chapter 3

of this dissertation, as we are not concerned with congestion in the network.

2.3.2 Port Modeling

In a direct network, each node has a bi-directional link to all other nodes. The port

model of a system refers to the number of links that can be used at the same time. If each

node can only send and receive messages over one of its links at a time, this is called a

one-port communication. In an all-port system, a node can send and receive data over all

the links at the same time. If the number of links that can be used at once is greater than

one but less than the number of links available, the port modeling is called k-port.

2.4 Summary

In this chapter, I surveyed the related background for this dissertation. I discussed

the different components of high-performance clusters including MPI parallel

programming paradigm, the high-performance interconnects and their user-level

messaging layers. I also introduced Hockney’s communication modeling and port

modeling. In the following chapters, I will propose and implement different algorithms

and techniques to improve the performance of collective communication over Quadrics

and InfiniBand SMP/multi-core clusters.

 25

Chapter 3: RDMA-based Multi-port Collectives on Multi-rail QsNetII

Clusters

Network bandwidth usually becomes the performance bottleneck for today’s most

demanding applications [16, 38]. Recently, a new technique has been emerging that uses

multiple independent networks/rails or multi-port NICs to overcome bandwidth

limitations and enhance fault tolerance. Existing examples include native multi-rail

support on Quadrics and dual-port NICs in InfiniBand and Myrinet. Quadrics QsNetII

uses multiple NICs per node to construct a multi-rail cluster network, in which the i-th

NIC connects to the i-th rail.

There are two basic ways in distributing the traffic over multiple rails. One is to use

multiplexing, where messages are transferred over different rails in a round robin fashion.

The other method is called message striping, where messages are divided in multiple

chunks and sent over multiple rails simultaneously. Quadrics has a native support for a

simple even message striping over multi-rail QsNetII networks only for large point-to-

point messages through its Elan put and get, SHMEM put and get, and Tports

send/receive functions. However, it does not support multi-rail collectives. In this

chapter, I devise and evaluate multi-port collective communications on Multi-rail

Quadrics QsNetII networks [58, 60].

3.1 Related Work

Study of collective communication operations has been an active area of research.

Thakur and his colleagues discussed recent collective algorithms used in MPICH [80].

They have shown some algorithms perform better depending on the message size and the

number of processes. In [88], Vadhiyar et al. introduced the idea of automatically tuned

 26

collectives in which collective communications are tuned for a given system by

conducting a series of experiments on the system. Both works are implemented based on

MPI point-to-point communications. The authors in [57] analyzed the performance of

collective communication operations under different communication cost models.

Petrini, et al. described how they improved the effective performance of ASCI Q

supercomputer interconnected with a Quadrics QsNet. [56] A number of papers have

been reported on the use of RDMA in the design and implementation of collectives on

modern networks. Roweth and his colleagues studied how different collective algorithms

have been devised and implemented on QsNetII [70, 71]. Sur, et al. proposed efficient

RDMA-based alltoall broadcast and alltoall personalized exchange for InfiniBand

clusters [76, 78]. In [84], Tipparaju and Nieplocha used the concurrency available in

modern networks to optimize MPI_Allgather() on InfiniBand and QsNetII. All the above

research is done under single-rail systems, while this chapter adapts multi-port algorithms

over multi-rail Quadrics QsNetII networks.

On multi-rail systems, Coll and his associates [16] did a comprehensive simulation

study on static and dynamic allocation schemes for multi-rail systems. The authors in

[38] designed an MPI-level multi-rail InfiniBand clusters. However, their work addressed

only point-to-point communications. On multi-port collectives, Chan et al. [15]

redesigned and re-implemented a number of multi-port MPI collectives for IBM Blue

Gene/L using MPI point-to-point communications, and not RDMA as studied in this

chapter. Recently, the New Madeleine communication library [3] is designed for multi-

rail message transfers across multiple heterogeneous high-performance networks.

 27

3.2 Experimental Framework

The experiments were conducted on a 4-node dedicated SMP cluster interconnected

with two QM500-B Quadrics QsNetII NICs per node, and two QS8A-AA QsNetII E-

series 8-way switches. The QM500-B PCI-X network adapter for Quadrics QsNetII [65]

uses Elan 4 network processor and has 64 Mbytes onboard DDR-SDRAM memory.

Each node is a Dell PowerEdge 6650 that has four 1.4 GHz Intel Xeon MP

Processors with 256KB unified L2 cache, 512KB unified L3 cache, and 2GB of DDR-

SDRAM on a 400 MHz Front Side Bus. Each NIC is inserted in a 64-bit, 100 MHz PCI-

X slot. The operating system is the Vanilla kernel version 2.6.9. The Quadrics software

installed is the latest “Hawk” release with the kernel patch qsnetp2, kernel module

5.10.5qsnet, QsNet Library 1.5.9-1, and QsNetII Library 2.2.11-2. Test codes were

launched by the pdsh [53] task launching tool, version 2.6.1. The MPI implementation is

the Quadrics MPI, version MPI.1.24-49.intel81.

3.3 Motivation

In this section, I will perform a feasibility study of the potential performance that

could be gained using multi-port message striping in the algorithms on a multi-rail

system. My intention in this section is to show while point-to-point messages benefit

from message striping, only a couple (Elan and MPI) collectives that are currently

implemented on top of point-to-point Tports or elan_put() will gain from multi-rail

striping.

In the following, I first present the performance of Elan put and get, Tports

send/receive, as well as MPI point-to-point under single-rail and dual-rail QsNetII on my

platform (SHMEM put and get also stripe large messages). I will then demonstrate the

 28

performance of Elan collectives, and the MPI_Scatter() that does not have any Elan

counterpart. Please note that the Elan collectives are directly used by MPI collectives.

The point-to-point experimentation is done with the uni-directional, bi-directional,

and both-way traffics. In the uni-directional bandwidth test, the sender transmits a

message repeatedly to the receiver, and then waits for the last message to be

acknowledged. The bi-directional test is the ping-pong test where the sender sends a

message and the receiver upon receiving the message immediately replies with a message

of the same size. This is repeated a sufficient number of times to eliminate the transient

conditions of the network. In the both-way test, both the sender and receiver send data

simultaneously. This test puts more pressure on the communication subsystem and the

PCI-X bus.

3.3.1 Elan RDMA Performance

Figure 3.1 presents the bandwidth performance of the RDMA Write using the pgping

micro-benchmark available in the Elan Library. It is evident that the bandwidth is

doubled in the dual-rail system. The both-way single-rail and dual-rail elan_put()

bandwidths are 670MB/s and 1332 MB/s, respectively. The bandwidth for elan_get() is

almost the same as elan_put() in each case (not shown).

The Elan RDMA Write short message latency does not change much between

single-rail and dual-rail. The latency varies between 2 µs to 2.77 µs for a 4-byte message.

The elan_get() short message latency is slightly larger than the RDMA write. That is why

I decided to use elan_put() in the design and implementations of collectives.

 29

 Figure 3.1 Elan RDMA Write performance.

3.3.2 Tports Performance

Figure 3.2 shows the Tports bandwidth. Tests are done using the tping micro-

benchmark (except for the uni-directional case, where I wrote my own code). Like the

Elan RDMA, the dual-rail Tports bandwidth outperforms the single-rail bandwidth in

each case. The single-rail T-ports bandwidth is roughly the same as RDMA bandwidth.

However, dual-rail bandwidth falls short of RDMA. The short message latency is slightly

larger than the RDMA.

3.3.3 MPI Send/Receive Performance

Figure 3.3 compares the MPI bandwidth under different cases. Unlike the both-way,

the uni-directional and bi-directional MPI bandwidths for dual-rail are almost doubled.

This shows that the MPI point-to-point implementation over Tports mostly benefit from

striping in the dual-rail QsNetII. The short message MPI latency is close to that of the T-

ports (not shown here).

0

200

400

600

800

1000

1200

1400

1 16 256 4K 64K 1M

B
a

n
d

w
id

th
 (M

B
/s

)

Message size (bytes)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

 30

Figure 3.2 T-port send/receive performance.

Figure 3.3 MPI send/receive performance.

3.3.4 Collective Performance

Figure 3.4 depicts the aggregate bandwidth for the Elan hardware and software

broadcasts, gather, allgather, and alltoall, as well as MPI_Scatter(). For the Elan

collectives, I have used the gping micro-benchmark in the Elan Library. For the MPI

collectives, I have written my own code to measure their performance. From the results,

except for the gather, all other Elan collectives do not benefit from the dual-rail QsNetII.

0

200

400

600

800

1000

1200

1400

1 16 256 4K 64K 1M

B
an

d
w

id
th

 (
M

B
/s

)

Message size (bytes)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

0

200

400

600

800

1000

1200

1400

1 16 256 4K 64K 1M

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

Uni-directional (2-rail) Uni-directional (1-rail)

Bi-directional (2-rail) Bi-directional (1-rail)

Both-way (2-rail) Both-way (1-rail)

 31

It should be mentioned that both gather and allgather use single-port algorithms in the

Elan library. MPI_Scatter() is implemented on top of Tports, so it achieves larger

bandwidth under dual-rail.

Figure 3.4 Elan collectives and MPI_Scatter() bandwidth on dual-rail QsNetII.

0

50

100

150

200

250

300

350

1 16 256 4K 64K 1M

B
a

n
d

w
id

th
 (M

B
/s

)

Message size (bytes)

Hardware Broadcast (elan_hbcast)

0

20

40

60

80

100

120

1 16 256 4K 64K 1M
B

a
n

d
w

id
th

 (M
B

/s
)

Message size (bytes)

Software Broadcast (elan_bcast)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 16 256 4K 64K 1M

B
an

d
w

id
th

 (M
B

/s
)

Message size (bytes)

Gather (elan_gather)

0

50

100

150

200

250

1 16 256 4K 64K 1M

B
a

n
d

w
id

th
 (M

B
/s

)

Message size (bytes)

Allgather (elan_gather)

0

50

100

150

200

250

1 16 256 4K 64K 1M

B
a

n
d

w
id

th
 (M

B
/s

)

Message size (bytes)

Alltoall (elan_alltoall)

0

200

400

600

800

1000

1200

1400

1 16 256 4K 64K 1M

B
a

n
d

w
id

th
 (M

B
/s

)

Message size (bytes)

Scatter (MPI_Scatter)

 32

Efficient implementation of collective operations is one of the keys to the

performance of parallel applications. Given the multi-rail performance offered at the Elan

and Tports levels, excellent opportunities exist for devising efficient collectives for such

systems. Basically, there are two ways to improve the performance of collectives on

multi-rail systems. One is to implement single-port collective communication algorithms

that gain multi-rail striping from the underlying communication subsystem. This is the

approach currently used for MPI_Scatter(). However, this will only improve the

performance for large messages. The second approach that I propose is to design and

implement multi-port algorithms for multi-rail systems that also benefit from the striping

feature supported by QsNetII. In this regard, I have used some known multi-port

algorithms [10] and implemented them on the dual-rail QsNetII network directly at the

Elan level using RDMA Write.

3.4 Collective Algorithms

In this section, I provide an overview of some well-known algorithms for scatter,

gather, allgather, and alltoall personalized exchange, and adapt them on top of Quadrics

QsNetII networks. In the following discussion, N is the number of processors (or

processes) and k is the number of ports in the multi-port algorithms (equal to the number

of available rails). In the k-port (or multi-port) modeling, each process has the ability to

simultaneously send and receive k messages on its k links. The assumption is that the

communication between any pair of processes has the same cost, and the number of

processes is a power of (k + 1). Otherwise, dummy processes can be assumed to exist

until the next power of (k + 1), and the algorithms apply with little or no performance loss.

 33

3.4.1 Scatter

The spanning binomial tree algorithm [43] can be extended for k-port modeling. In

this algorithm, the scattering process sends k messages of length N/(k + 1) each to its k

children. Therefore, there are (k + 1) processes having N/(k + 1) different messages.

These processes, at step 2, send one (k + 1)-th of their initial message to each of their

immediate k children. This process continues and all processes are informed after

 Nk 1log communication steps. Using Hockney’s model [25], the total communication

time, T, is:

)(
1

)log(

)1()()log(

1

log

1

)(log
1

1

1

mks

N

i

iN
mks

l
k

N
NtT

klNtT
k

k

 (3.1)

where ts is the message startup time, lm is the message size in bytes, and τ is the time

to transfer one byte.

The above algorithm has a logarithmic number of steps, therefore suitable for short

messages. Another algorithm, for large messages, is the Direct algorithm, which is the

extension of sequential tree algorithm for k-port modeling. At each step, the source

process sends its k different messages to k other processes. There are a total of (N -1)/k

communication steps. Therefore, the total communication time, T, is:

)(
1

 ms lt

k

N
T (3.2)

3.4.2 Gather

Gather is the exact reverse of scatter and so the same spanning binomial tree

algorithm extended for k-port modeling can be used. However, the communication starts

 34

from the leaf processes and messages are combined in the intermediate processes until it

reaches the root. The total communication cost is the same as Equation (3.1).

3.4.3 Allgather

I provide an overview of three well-known allgather algorithms: Direct, Standard

Exchange [8], and Bruck [10]. The Direct algorithm is used for medium to large

messages. Standard Exchange is targeted for short to medium size messages, while the

Bruck algorithm typically performs better for short messages.

Direct Allgather Algorithm: The Direct allgather algorithm is the extension of

sequential tree algorithm for k-port modeling and suitable for medium to large messages.

In each step, each process sends its own message to k other processes in a wrap-around

fashion. There are a total of

k

N 1 communication steps. Using Hockney’s model, the

total communication cost, T, is:

)(
1

 ms lt
k

N
T (3.3)

Standard Exchange Allgather Algorithm: The Standard Exchange allgather

algorithm [8] is the extension of Recursive Doubling algorithm [80] for k-port modeling,

and works for power of (k+1) processes. It should generally perform well for short and

medium size messages. In the k-port Standard Exchange algorithm, processes are divided

into N/(k+1) groups of (k+1) processes each. Processes are grouped as (0, 1, …, k), (k+1,

k+2, …, 2(k+1)-1), …, (N - (k+1), N - (k+1)+1, …, N - 1). In step 1, all processes within a

group exchange their messages using k-port. At the end of this step, each process has

(k+1) messages. In step 2, process p exchanges all its messages with processes (p +

(k+1)) mod N, (p + 2(k+1)) mod N, …, (p + k(k+1)) mod N. At the end of this step, each

 35

process has (k+1)2 messages. This continues to the step logk+1 N. At each step i of this

algorithm, each process sends messages of size (k+1)i–1 to k other processes. Note this

algorithm needs correction steps when the number of processes is not a power of (k+1).

Figure 3.5 illustrates the 2-port Standard Exchange algorithm for nine processes. The

total communication cost, T, is:

)(
1

log 1
 mks l

k

N
NtT (3.4)

0

1 2

3

4 5

6

7 8

0

3 6

1

4 7

2

5 8

Step 1

Step 2

Figure 3.5 Standard Exchange algorithm for 9 processes under 2-port modeling.

Bruck Allgather Algorithm: The Bruck allgather algorithm [8] works on any

number of processes, and is proposed to improve the performance for small messages.

Figure 3.6 illustrates the 2-port Bruck algorithm for nine processes. The allgather

operation among N processes can be represented as a sequence of process-memory

configurations. Each process has an N-block output buffer. Initially, local data is placed

at the top of the output buffer.

 36

0 1 2 3 4 5 6 7

P0 P1 P2 P3 P4 P5 P6 P7

8

P8

0

1

2

1

2

3

2

3

4

3

4

5

4

5

6

5

6

7

6

7

8

7

8

0

P0 P1 P2 P3 P4 P5 P6 P7

8

0

1

P8

 Initial step Phase 1: After step 0

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

0

3

4

5

6

7

8

0

1

4

5

6

7

8

0

1

2

5

6

7

8

0

1

2

3

6

7

8

0

1

2

3

4

7

8

0

1

2

3

4

5

P0 P1 P2 P3 P4 P5 P6 P7

8

0

1

2

3

4

5

6

P8

8 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

P0 P1 P2 P3 P4 P5 P6 P7

0

1

2

3

4

5

6

7

P8

8 8 8 8 8 8 8 8 8

 Phase 1: After step 1 Phase 2

Figure 3.6 Bruck allgather algorithm for 9 processes under 2-port modeling.

The algorithm consists of two phases. Phase 1 has Nk 1log steps. In each step i of

phase 1, process p sends all its data to processes (p – (k+1)i), (p – 2(k+1)i), …, (p –

k(k+1)i), and stores the data it receives from processes (p + (k+1)i), (p + 2(k+1)i), …, (p

+ k(k+1)i) at the end of the data it already has. An additional step is required if N is not a

power of (k+1), where each process sends the first NkkN 1log)1(() blocks from the top

of its output buffer to the destination processes and appends the received data to the end

of its current data. The second phase consists of a single round local memory shift. The

total communication cost is the same as Equation (3.4).

 37

3.4.4 Alltoall Personalized Exchange

I also provide an overview of three well-known algorithms for alltoall Personalized

Exchange: Direct, Standard Exchange [8], and Bruck [10].

Direct Alltoall Personalized Exchange Algorithm: A lower bound for alltoall

personalized exchange time is (N -1)/k since each process must receive N – 1 different

messages and it can only receive at most k messages at a time. A simple algorithm is

based on the extension of the Direct algorithm for k-port modeling. The processes are

arranged in a virtual ring. That is, at step i, process p sends its message to processes (p +

(i – 1)k + 1) mod N, (p + (i – 1)k + 2) mod N, …, (p + ik) mod N. The modulus operation

avoids sending messages to a single destination. The communication cost is the same as

Equation (3.3).

Standard Exchange Alltoall Personalized Exchange Algorithm: The Standard

Exchange algorithm [8] for alltoall personalized exchange has the same grouping as the

Standard Exchange algorithm for allgather. However, each node sends N/(k + 1) message

at a time. The total communication cost, T, is the same as Equation (3.3).

Bruck Alltoall Personalized Exchange Algorithm: The Bruck algorithm [10] of

alltoall personalized exchange operation among N processors can be represented as a

sequence of processor-memory configurations. Each processor-memory configuration has

N columns of N blocks each. Columns i represents the processor Pi , and the block j

represents the data j to be sent to processor Pj.

Bruck algorithm [10] for alltoall personalized exchange operation consists of three

phases. The first and the third phases only require local memory movement in each

processor. The first phase does a local copy and shift of the data blocks such that the data

block to be sent by each processor to itself is at the top of the column. In each

 38

communication step j of the second phase, process i sends to rank (i + kj) (with wrap-

around) all those data blocks whose jth bit is 1, receives data from rank (i - kj), and stores

the incoming data into blocks whose jth bit is 1 (overwriting the data which was just

sent). All communications are independent, so k communications can be combined

together under k-port modeling. The final phase does a local inverse shift of the blocks to

place the data in the right order. This algorithm also takes Nk 1log steps

communications. The total communication cost is same as Equation (3.3). Figure 3.7

shows the example of this algorithm with four communication steps on nine nodes.

3.5 Implementation Issues

The algorithms are devised based on two-port put-based algorithms, where a sending

process has direct control in sending messages simultaneously over the two rails using

the elan_doput() function. When a message is larger than a threshold (1KB), even

message striping is used over the two rails. When a message is sent, the sending process

uses the elan_wait() to make sure the user buffer can be re-used. Note that in the

implementation of the algorithms, processes do not synchronize with each other.

Quadrics supports event notification for both single-rail and multi-rail systems. The

destination event (devent) is set once in each rail. A target process may call

elan_initEvent() once for each rail and then wait on each ELAN_EVENT to be returned.

This guarantees a message has been delivered in order in its entirety.

 39

00

01

02

03

04

05

06

07

08

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

70

71

72

73

74

75

76

77

78

80

81

82

83

84

85

86

87

88

P0 P1 P2 P3 P4 P5 P6 P7 P8

00

01

02

03

04

05

06

07

08

11

12

13

14

15

16

17

18

10

22

23

24

25

26

27

28

20

21

33

34

35

36

37

38

30

31

32

44

45

46

47

48

40

41

42

43

55

56

57

58

50

51

52

53

54

66

67

68

60

61

62

63

64

65

77

78

70

71

72

73

74

75

76

88

80

81

82

83

84

85

86

87

P0 P1 P2 P3 P4 P5 P6 P7 P8

 Initial After phase 1

00

80

02

81

04

84

06

86

08

11

01

13

03

15

05

17

07

10

22

12

24

14

26

16

28

18

21

33

23

35

25

37

27

30

20

32

44

34

46

36

48

38

41

31

43

55

45

57

47

50

41

52

42

54

66

56

68

58

61

52

63

53

65

77

67

70

60

72

63

74

64

76

88

78

81

71

83

74

85

75

87

P0 P1 P2 P3 P4 P5 P6 P7 P8

00

80

70

60

04

84

74

64

08

11

01

81

71

15

05

85

75

10

22

12

02

81

26

16

06

86

21

33

23

13

03

37

27

17

07

32

44

34

24

14

48

38

28

18

43

55

45

35

25

50

40

30

20

54

66

56

46

36

61

51

41

31

65

77

67

57

47

72

62

52

42

76

88

78

68

58

83

73

63

53

87

P0 P1 P2 P3 P4 P5 P6 P7 P8

 Phase 2: After step 0 Phase 2: After step 1

00

80

70

60

50

40

30

20

08

11

01

81

71

61

51

41

31

10

22

12

02

81

72

62

52

42

21

33

23

13

03

83

73

63

53

32

44

34

24

14

04

84

74

64

43

55

45

35

25

15

05

85

75

54

66

56

46

36

26

16

06

86

65

77

67

57

47

37

27

17

07

76

88

78

68

58

48

38

28

18

87

P0 P1 P2 P3 P4 P5 P6 P7 P8

00

80

70

60

50

40

30

20

10

11

01

81

71

61

51

41

31

21

22

12

02

81

72

62

52

42

32

33

23

13

03

83

73

63

53

43

44

34

24

14

04

84

74

64

54

55

45

35

25

15

05

85

75

65

66

56

46

36

26

16

06

86

76

77

67

57

47

37

27

17

07

87

88

78

68

58

48

38

28

18

08

P0 P1 P2 P3 P4 P5 P6 P7 P8

 Phase 2: After step 2 Phase 2: After step 3

Figure 3.7 Bruck alltoall algorithm for 9 processes under 2-port modeling.

Memory registration/deregistration is a costly operation. Unlike InfiniBand, QsNetII

does not need memory registration and address exchange for message transfers. This

eases the implementation, and effectively reduces the communication latency. Although I

have implemented the proposed algorithms on dual-rail clusters, the algorithms and

implementations are robust enough to be used in multi-rail clusters.

 40

3.6 Performance Analysis

In this section, I present the performance of the multi-port collectives introduced in

Section 3.4 when they are implemented directly at the Elan layer using RDMA Write on

multi-rail QsNetII clusters with striping support.

3.6.1 Evaluation of Scatter

I have implemented the multi-port spanning Binomial tree algorithm and Direct

algorithm for scatter operation on multi-rail QsNetII systems at the elan level using

RDMA Write. Figure 3.8 compares the performance of the two scatter algorithms on the

dual-rail QsNetII. As expected, the Binomial tree algorithm is superior for short

messages, while the Direct algorithm has a much better performance for medium and

large messages. Figure 3.8 also presents the scalability of the implementation. The

scalability figures verify that indeed the Binomial tree algorithm is the better algorithm

for short messages with increasing system size.

3.6.2 Evaluation of Gather

The multi-port spanning Binomial tree algorithm for Gather operation has been

implemented on multi-rail QsNetII systems using RDMA Write feature. Figure 3.9

compares the performance of the gather algorithm with the elan_gather(). The results are

very promising as the implementation is much better than the native implementation

except slightly for messages less than 512 bytes. The proposed multi-port gather gains an

improvement of up to 2.15 for 4KB message. The scalability plots in Figure 3.9 verify the

superiority of the gather algorithm for medium and large messages. However, it does

show that with increasing number of processes elan_gather() is better for very short

messages.

 41

Figure 3.8 Scatter performance and scalability.

Scatter (16 processes)

0

20

40

60

1 4 16 64 256 1K

Message size (bytes)

T
im

e
 (

µ
s

)

Direct Tree

Scatter (16 processes)

0

100

200

300

400

500

600

2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

Direct Tree

Scatter (16 processes)

0

5000

10000

15000

20000

25000

30000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s

)

Direct Tree

Scatter scalability (16B)

0

20

40

60

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Direct Tree

Scatter scalability (8KB)

0
20
40
60
80

100
120
140
160
180

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Direct Tree

Scatter scalability (256KB)

0

2000

4000

6000

8000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Direct Tree

 42

Figure 3.9 Gather performance and scalability.

3.6.3 Evaluation of Allgather

Figure 3.10 compares the performance of the three allgather algorithms, Direct,

Standard Exchange, and Bruck on the dual-rail QsNetII cluster. The Bruck algorithm is

Gather (16 processes)

0

10

20

30

40

1 4 16 64 256 1K

Message size (bytes)

T
im

e
 (

µ
s

)

elan_gather Direct Tree

Gather (16 processes)

0

100

200

300

400

500

2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

elan_gather Direct Tree

Gather (16 processes)

0

5000

10000

15000

20000

25000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s

)

elan_gather Direct Tree

Gather scalability (16B)

0

5

10

15

20

25

3 9 16

Number of processes

T
im

e
 (

µ
s

)

elan_gather Direct Tree

Gather scalability (8KB)

0

40

80

120

160

3 9 16

Number of processes

T
im

e
 (

µ
s

)

elan_gather Direct Tree

Gather scalability (256KB)

0

1000

2000

3000

4000

5000

6000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

elan_gather Direct Tree

 43

superior among the three algorithms for short messages, while the Direct algorithm has a

much better performance for medium and large messages. The Standard Exchange

algorithm incurs a penalty, due to correction steps, when the number of processes is not a

power of k+1 (16 processes in this case). Otherwise, its performance is better than the

Bruck algorithm for medium size messages.

The Quadrics implementation of allgather in the elan_gather() performs better than

my RDMA-based implementations for messages up to and including 2KB. This is most

probably because Quadrics uses shared memory point-to-point communication for

messages up to 2KB, where its performance is better than the intra-node RDMA. This

confirms the hypothesis that traditional algorithms for short messages, such as Bruck and

Standard Exchange, are suitable for flat (uniprocessor) clusters, where there is only one

process per node. For SMP clusters and the emerging multi-core clusters, shared memory

communication is the preferred method for intra-node communications for short

messages. I will investigate these techniques to boost the performance of my algorithms

for such systems in Chapter 4.

After 2KB, the Direct algorithm performs the best among all algorithms. The multi-

port allgather Direct algorithm gains an improvement of up to 1.49 for 32KB messages

over the native elan_gahter(). The platform used in my study represents a small cluster.

However, the scalability plots in Figure 3.10 verify the superiority of the Direct algorithm

for medium and large messages. It also shows that with increasing number of processes

elan_gather() outperforms my algorithms for very short messages.

 44

Figure 3.10 Allgather performance and scalability.

Allgather (16 processes)

0

40

80

120

160

200

1 4 16 64 256 1K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

Allgather (16 processes)

0

3000

6000

9000

12000

2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

Allgather (16 processes)

10000

60000

110000

160000

210000

260000

310000

64K 128K 256K 512K 1M
Message size (bytes)

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

Allgather scalability (16B)

0
10
20
30
40
50
60
70

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

Allgather scalability (8KB)

0

500

1000

1500

2000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

Allgather scalability (256KB)

0

20000

40000

60000

80000

100000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_gather Direct

Standard Exchange Bruck

 45

3.6.4 Evaluation of Alltoall Personalized Exchange

I have also implemented the multi-port Direct algorithm, Standard Exchange

algorithm, and Bruck’s index algorithm for alltoall personalized exchange on multi-rail

QsNetII systems using RDMA Write.

Figure 3.11 compares the performance of the three alltoall algorithms, with the

elan_alltoall(). The results are again encouraging. My multi-port Direct alltoall algorithm

and its implementation is much better than the native elan_alltoall() for medium size

messages. In fact, the improvement is up to a factor of 2.26 for 2KB message. However,

elan_alltoall() is better than the three algorithms for short messages up to 512 bytes. For

large message sizes, my two-port algorithm is better. The scalability plots confirm these

findings.

3.7 Summary

Scientific applications written in MPI often use collective communications among

the parallel processes. In this chapter, I studied the communication performance on a

QsNetII dual-rail cluster and found that there is potential to improve the performance of

collective using the multi-rail techniques, with respect to the native implementation that

uses well-known algorithms. Quadrics MPI directly calls Elan collectives, therefore

optimizing Elan collectives is crucial to the performance of MPI applications.

Quadrics supports point-to-point message striping over multi-rail QsNetII. In this

work, I have devised and implemented a number of multi-port collectives at the Elan

level over multi-rail QsNetII systems. These collectives include scatter, gather, allgather

and alltoall personalized exchange. The multi-port Direct implementation outperforms

elan_gather() as well as the Standard Exchange and Bruck algorithms for messages

 46

Figure 3.11 Alltoall performance and scalability.

larger than 1KB. The performance results indicate that the multi-port gather gains an

improvement of up to 2.15 for 4KB message over the native elan_gather(). The multi-

Alltoall (16 processes)

0

100

200

300

400

1 4 16 64 256 1K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan _alltoall Direct

Standard Exchange Bruck

Alltoall (16 processes)

0

5000

10000

15000

20000

25000

2K 4K 8K 16K 32K

Message size (bytes)

T
im

e
 (

µ
s

)

Elan _alltoall Direct

Standard Exchange Bruck

Alltoall (16 processes)

0

50000

100000

150000

200000

64K 128K 256K 512K 1M

Message size (bytes)

T
im

e
 (

µ
s

)

Elan _alltoall Direct

Standard Exchange Bruck

Alltoall scalability (16B)

0

20

40

60

80

100

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_alltoall Direct

Standard Exchange Bruck

Alltoall scalability (8KB)

0

500

1000

1500

2000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_alltoall Direct

Standard Exchange Bruck

Alltoall scalability (256KB)

0

50000

100000

150000

200000

3 9 16

Number of processes

T
im

e
 (

µ
s

)

Elan_alltoall Direct

Standard Exchange Bruck

 47

port allgather Direct algorithm gains an improvement of up to 1.49 for 32KB messages

over the native elan_gather() in the cluster. The proposed multi-port alltoall performs

better than the elan_alltoall() by a factor of 2.26 for 2KB message.

The results are encouraging. However, the RDMA-based algorithms did not perform

well for short messages. The native allgather and alltoall implementation has a better

latency for up to 2KB and 512B, respectively. To address this deficiency in RDMA-

based algorithms, in the next chapter I will propose shared memory aware algorithms to

speedup the collectives for co-located processes on SMP/multi-core nodes.

 48

Chapter 4: RDMA-based and Shared Memory Aware Multi-port

Gather and Allgather on Multi-rail QsNetII SMP Clusters

In Chapter 3, I designed and implemented multi-port RDMA-only scatter, gather,

allgather and alltoall collectives directly at the Elan level over multi-rail QsNetII. While

the performance of the algorithms was excellent for medium to large messages, they

lagged behind the native QsNetII implementations for small size messages. This chapter

seeks to propose and evaluate efficient gather and allgather for all message sizes, utilizing

both shared memory and RDMA features [59, 63].

4.1 Related Work

On SMP clusters, some recent work has been devoted to improve the performance of

intra-node communications on SMP nodes [11, 13, 32]. Buntinas et al. [11] have used

shared buffers, message queues, Ptrace system call, kernel copy, and NIC loopback

mechanisms to improve large data transfers in SMP systems. In [13], Chai and others

improved the intra-node communication by using the system cache efficiently and

requiring no locking mechanisms. In [32], Jin et al. implemented a potable kernel module

interface to support intra-node communications. Chai et al. [14] used both shared

memory and OS kernel-assisted direct copy to design efficient MPI intra-node

communication. An intra-node shared memory communication for Virtual Machine

environments is proposed in [28]. The shared memory communication is a one-copy

approach, mapping user buffers between Virtual Machine. This thesis uses shared buffers

for shared memory communications.

On collectives for SMP clusters and large SMP nodes, Sistare and his colleagues

presented new algorithms taking advantage of high backplane bandwidth of shared

 49

memory systems [74]. In [85], Tipparaju and his colleagues overlapped shared memory

intra-node and remote memory access inter-node communications in devising collectives

for IBM SP. However, this work is on regular clusters with high-speed interconnects. A

leader-base scheme was proposed in [39] to improve the performance of broadcast over

InfiniBand. This chapter has looked at a more intensive collective operation, and the

proposed algorithms use shared memory. In [91], Wu and others used MPI point-to-point

across the network and shared memory within the SMP node to improve the performance

of a number of collectives. I use RDMA and multi-rail communications for inter-node

communication. In [87], Traff devised an optimized allgather algorithm for SMP clusters.

Ritzdorf and Traff [69] used similar techniques in enhancing NEC’s MPI collectives. It

should be mentioned that the research in [87, 69] is done at MPI level. Mamidala et al.

[42] designed allgather over InfiniBand using shared memory for intra-node and single-

port Recursive Doubling algorithm for inter-node communication via RDMA. However,

in this chapter, I propose a couple of new SMP-aware algorithms. Mamidala et al. [40]

systematically evaluated Intel's Clovertown and AMD's Opteron multi-core architectures

and used these insights to develop efficient collective operations.

4.2 Native Gather and Allgather implementation on Quadrics QsNetII

QsNetII elan_gather() in the Elan library takes care of the gather and allgather

collectives. The gather algorithm uses a tree-based algorithm among the processes [70].

Leaf processes send data to their parents. Intermediate processes add their own data and

forward to their parents. This process continues until the root process gathers all data. To

reduce host processor involvement, the Elan event processor on the NIC is used to chain

the RDMA puts [71]. In SMP clusters, data up to 2KB are gathered in the node’s shared

 50

memory buffer. Inter-node gather is then performed on a tree formed by the first process

of each node. For medium size messages, a tree-based algorithm is used among all

processes in the system. For messages larger than 4KB, Tports Send/Recv is used among

all processes, which benefits from message striping in multi-rail QsNetII. For allgather,

elan_gather() uses the gather algorithm followed by broadcast for messages up to 32KB.

For larger messages, it switches to the ring algorithm. Note that all the algorithms in

elan-gather() are single-port algorithms.

4.3 Motivation

In this section, I do a feasibility study of the potential performance that could be

gained in the algorithms by using multi-port message striping and shared memory

communication.

4.3.1 Shared Memory vs. RDMA

Intra-node communication can be done using shared memory copying via shared

buffers/queues, kernel-based copying, and copying through the NIC [11]. In the shared

memory copying approach, a memory region is shared between the two processes. The

sending process copies its message into the shared buffer and then sets a shared,

synchronization flag. The receiving process polls on the flag to realize whether the

sending process has finished writing. It then copies the data from the shared buffer to its

own buffer. Finally, it resets the flag. The mechanism used guarantees that no race

condition occurs.

The NIC-based copying method is basically an intra-node RDMA Write operation.

The kernel-based copying method eliminates one of the two copies associated with the

 51

shared memory method. However, it requires an expensive system call. Therefore, I do

not consider it in my work.

I have implemented a shared memory point-to-point communication mechanism

based on shared buffers. My implementation requires no locking, and uses the memcpy()

function. Figure 4.1 compares my shared memory implementation (shm_p2p) with intra-

node RDMA Write, elan_put(), and with the concurrent memcpy() operations. My

experimental platform is the same as the one in Chapter 3. For all the tests, results are

averaged over 1000 iterations. By k-memcpy(), I mean k processes simultaneously writing

data onto k sections of a shared memory region. I present up to four concurrent memcpy()

operations as my experimental cluster uses quad-way SMP nodes.

From Figure 4.1, one can conclude that the shared memory implementation is the

preferred method for intra-node communication, but only up to 2KB messages;

afterwards, RDMA is better. In implementing collectives, this is the main reason why

Quadrics uses shared memory intra-node communication among co-located processes

only for messages smaller than 2KB.

Prior research [11, 13] has mostly focused on efficient shared memory

communication only for point-to-point transactions (such as shm_p2p). However, to

implement an SMP-aware per-node collective, such as gather, co-located processes just

need to concurrently transfer their messages to different sections of a shared memory

region using memcpy() operations; and then the root process copies the entire shared

memory buffer into its own destination buffer using another memcpy() operation

(synchronization is also needed). Typically, SMP nodes support concurrent memcpy()

operations efficiently for short to medium size messages. This is clear from the results in

 52

Figure 4.1 as all k-memcpy() operations take much less time than an intra-node RDMA

operation (in fact, this is true up to 128KB messages). Intuitively, one can argue shared

memory regions can be effectively used for per-node collectives for messages larger than

2KB as well, where they should potentially provide better performance than RDMA

implementations.

Figure 4.1 Comparison of intra-node communications: RDMA (elan_put), shared

memory (shm-p2p) and memory copy.

The proposed SMP-aware allgather algorithms in Section 4.4 use per-node shared

memory gather and broadcast. I have implemented these primitives on the 4-way SMP

node in order to empirically find the maximum message size that should be transferred

via shared memory for an efficient gather and broadcast operation. The per-node shared

memory gather described above includes an optimization (as shown in Figure 4.3). For

the shared memory broadcast, the Master (root) process copies its data to the shared

buffer and then sets a synchronization flag. All other processes poll on this flag and then

copy the data to their destination buffers. All processes then synchronize (using

elan_hgsync) to complete the operation.

0

3

6

9

12

1 4 16 64 256 1K 4K

T
im

e
 (

µ
s

)

Message size (bytes)

RDMA vs. Shared Memory vs. Memcpy
elan_put (intra-node) shm-p2p
1-memcpy 2-memcpy
3-memcpy 4-memcpy

 53

Figure 4.2 presents the results for the shared memory gather and broadcast

operations on the 4-way SMP node. While the proposed shared memory broadcast

(shm_bcast) outperforms Elan hardware broadcast (elan_hbcast) and Elan software

broadcast (elan_bcast) for 256B to 32KB messages (with comparable results for very

short messages), the proposed shared memory gather (shm_gather) is better than, or

comparable to, the native elan_gather() for up to 8KB messages. Therefore, I use shared

memory for messages up to 8KB in my experiments. It is clear that this message size can

be found empirically for other single-core/multi-core SMPs, which may have different

architectural characteristics than our platform.

Figure 4.2 Intra-node gather and broadcast.

0

20

40

60

80

1 4 16 64 256 1K 4K 16K

T
im

e
(μ

s)

Message size (bytes)

Gather on a 4-way SMP node

elan_gather() shm_gather

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K

T
im

e
(μ

s)

Message size (bytes)

Broadcast on a 4-way SMP node
elan_hbcast() elan_bcast() shm_bcast

 54

4.4 SMP-aware Allgather Algorithms

In this section, I propose SMP-aware allgather algorithms. In these algorithms, I

distinguish between the intra-node and inter-node communications. However, I do not

just simply replace the intra-node communications in the traditional algorithms with

shared memory communications. I propose two classes of SMP-aware allgather

algorithms. In the first class, I essentially do an SMP-aware gather algorithm across all

processes in the system and then broadcast the gathered data to all processes, hence the

name SMP-aware Gather and Broadcast algorithm.

In the second class, I adapt the traditional multi-port Direct and Bruck allgather

algorithms to SMP clusters by performing them across the SMP nodes rather than

processes. I also do shared memory gather and broadcast operations within the nodes. I

call these algorithms SMP-aware Direct and Bruck algorithms.

4.4.1 SMP-aware Gather and Broadcast Algorithm

This algorithm is essentially done in three phases as follows:

Phase 1: Per-node shared memory gather

Phase 2: Inter-node gather among the Master processes (Tree-based or Direct)

Phase 3: Broadcasting gathered data to all processes

Figure 4.3 shows Phase 1 and Phase 2 of this algorithm for a cluster of four 4-way

SMP nodes. Without loss of generality, I assume process 0 is the root process. I choose

the first process of each node as the local Master process, in this case processes 0, 4, 8,

and 12. In Phase 1, a local shared memory gather is done among the processes of each

node. The size of the shared memory buffer is equal to the number of local processes

times the message size. Each process has a shared memory flag. Local processes

 55

concurrently copy their data, using memcpy(), to the corresponding locations in the

shared buffer, and then set their own shared memory flag. The Master process polls on all

the local flags and will move on to Phase 2 once all flags are set. Note the optimization for

node 0 in Figure 4.3.

In Phase 2, the Master processes involve in a Direct or tree-based inter-node gather

operation. For instance, in a Direct inter-node gather algorithm, each Master writes the

contents of its local shared memory to the corresponding position in the final destination

buffer of the root process. Messages from different Masters are sent on different rails

with message striping using RDMA Write. At the end, all processes synchronize using

elan_hgsync(), and move on to Phase 3 where the root process broadcasts the gathered

data to all processes using QsNetII hardware broadcast primitive.

In principle, the proposed SMP-aware Gather (Direct) and Broadcast algorithm is

similar to the allgather algorithm in elan_gather() for short messages. However, the

proposed algorithm is host-based, while Quadrics uses a single-port tree-based, NIC-

based approach that does not use striping. While NIC-based techniques alleviate cache

flushing problems in host-based methods, they incur higher latencies as the NIC

processor is slower than the host processors. Moreover, on-board SDRAM is a limited

source in NIC-based approaches, which limits the scalability. The proposed algorithms

are all multi-port and use striping. For instance, a 256B message with four processes per

node will be merged into a 1KB message in the shared buffer. This 1KB message will

then be sent in Phase 2 over the two rails using striping. This is not the case in the

Quadrics approach.

 56

F
ig

u
re

 4
.3

 P
h

as
e

1
an

d
 2

 o
f

th
e

S
M

P
-a

w
ar

e
G

at
h

er
 a

n
d

 B
ro

ad
ca

st
 o

n
 a

 f
ou

r
4-

w
ay

 S
M

P
 c

lu
st

er
.

 57

4.4.2 SMP-aware Direct/Bruck Algorithms

The SMP-aware Direct or Bruck allgather algorithms can be done in three steps as

follows:

Phase 1: Per-node shared memory gather

Phase 2: Inter-node allgather among the Master processes (Direct or Bruck)

Phase 3: Per-node shared memory broadcast

Figure 4.4 shows the proposed SMP-aware Direct allgather algorithm on a quad 4-

way SMP cluster. In Phase 1, each SMP node does a shared memory gather operation.

However, the size of the shared buffer for this algorithm is four times larger than its

counterpart in Section 4.4.1. In Phase 2, Master processes involve in a Direct or Bruck

inter-node allgather operation. Each Master writes the gathered data in Phase 1 to the

respective shared memory buffers of the other nodes using the corresponding multi-port

allgather algorithm. Each Master then waits for all devents to make sure it has received

all the data. In Phase 3, Masters use a local shared memory broadcast to copy out the

overall contents of the shared buffer to the destination buffers of each process. A final

synchronization among all processes completes the collective operation.

In Phase 2, right after posting the RDMA Write operations, I copy the messages in

the shared buffer, which have been deposited by local processes, to the destination

buffers. This way, I overlap some memory copy operations in Phase 3 with the inter-node

communication in Phase 2. Meanwhile, at the end of Phase 2 of the SMP-aware Bruck

algorithm, all data is available in the shared buffer. However data is not in the right order.

Instead of doing a local memory shift, I copy each message from the shared buffer to the

right position of the destination buffer for every process.

 58

F
ig

u
re

 4
.4

 S
M

P
-A

w
ar

e
D

ir
ec

t
al

lg
at

h
er

 a
lg

or
it

h
m

 o
n

 a
 c

lu
st

er
 o

f
fo

u
r

4-
w

ay
 S

M
P

 n
od

es
.

 59

F
ig

u
re

 4
.5

 P
er

fo
rm

an
ce

 o
f

th
e

p
ro

p
os

ed
 a

ll
ga

th
er

 a
lg

or
it

h
m

s
on

 a
 c

lu
st

er
 o

f
fo

u
r

4-
w

ay
 S

M
P

 n
od

es

w
it

h
 d

ua
l-

ra
il

 Q
sN

et
II

.

 60

The experimental platform represents a small cluster. However, the scalability plots

in Figure 4.6 verify the superiority of the proposed algorithms for various message sizes.

I have considered 4, 8, and 16 processes in the scalability analysis, where processes are

evenly distributed across the nodes. This nicely resembles clusters of four uni-processor

nodes, dual-processor nodes, and quad-processor nodes, respectively.

4.4.3 Application Performance

In this section, I will consider two real MPI applications, N-BODY and RADIX

[72]. These applications are irregularly structured and use MPI_Allgather() collective as

well as point-to-point communications. N-BODY simulates the interaction of a system of

bodies in three dimensions over a number of time steps, using the Barnes-Hut algorithm.

Radix sorts a series of integer keys in ascending order using the radix algorithm.

Table 4.1 shows the application speedup and the communication speedup of N-

BODY and RADIX running with 16 processes when using the proposed allgather

algorithms. The achieved speedups are within expectation given the size of messages that

the MPI_Allgather() uses in these applications. MPI_Allgather() in RADIX only uses

4KB payload, and the communication speedup of 1.47 is close to the 1.96 speedup that

the SMP-aware Bruck algorithm achieves in the micro-benchmark test. On the contrary,

although N-BODY uses a larger number of MPI_Allgather() collectives, 91% of the

payloads are less than 64 bytes. The remaining payloads are less than 1KB. Given that

the proposed SMP-aware Gather and Broadcast algorithm is only slightly better than the

 61

F
ig

u
re

 4
.6

 S
ca

la
b

il
it

y
of

 t
h

e
p

ro
p

os
ed

 a
ll

ga
th

er
 a

lg
or

it
h

m
s

on
 a

 c
lu

st
er

 o
f

fo
u

r
4-

w
ay

 S
M

P
 n

od
es

 w
it

h

d
u

al
-r

ai
l Q

sN
et

II
.

 62

native elan_gather() for messages up to 64 bytes, the 9% communication speedup for N-

BODY is justified. One has to bear in mind that the micro-benchmark allgather tests at

the Elan level were run in a controlled and a synchronized fashion, while real

applications may typically suffer from process skew and different process arrival pattern

due to imbalanced computation. I will study this and propose process arrival pattern

aware allgather and alltoall algorithms in Chapter 6 of this dissertation.

Table 4.1 Application and communication speedup (16 processes) when using the

proposed allgather algorithms.

 N-BODY RADIX

Application speedup 1.01 1.13

Communication speedup 1.09 1.47

4.5 Summary

In this chapter, I have proposed and evaluated a number of multi-port allgather

algorithms using both RDMA and shared memory communication over multi-rail QsNetII

SMP clusters directly at the Elan level. For the allgather operation, and for very short

messages up to 256B, the SMP-aware Gather and Broadcast algorithm performs slightly

better than the native elan_gather(). The SMP-aware Bruck algorithm outperforms all

algorithms including elan_gather() for 512B to 8KB messages, with a 1.96 improvement

factor for 4KB messages. The multi-port Direct allgather is the best algorithm for 16KB

to 1MB, and outperforms elan_gather() by a factor of 1.49 for 32KB messages. The

proposed allgather algorithms also improve the communication performance of the

applications studied in this chapter of dissertation.

 63

It should be mentioned that while this work was focused at gather and allgather

collectives, the proposed techniques and algorithms can be adapted to other collective

communications such as alltoall.

 64

Chapter 5: Multi-connection and Multi-core Aware Allgather on

InfiniBand Clusters

In this chapter, I turn my attention to InfiniBand [31], a leading high-performance

networking technology that provides low latency, high bandwidth and good scalability

for HPC clusters with thousands of nodes. I provide evidence that the latest generation of

InfiniBand HCAs can provide better performance, and to some scalability for

simultaneous communication over multiple connections [79] with respect to previous

generation of InfiniBand cards [66]. I will then take on the challenge in designing

efficient allgather algorithms by utilizing the multi-connection scalability feature of

ConnectX InfiniBand networks for inter-node communications using RDMA Write,

shared memory operations for intra-node communications in multi-core SMP nodes, as

well as multiple cores for better system and network utilization. Specifically, I propose

and evaluate three multi-connection and multi-core aware allgather algorithms [64].

5.1 Related Work

In [84], Tipparaju and Nieplocha used the concurrency available in modern networks

to optimize MPI_Allgather() on InfiniBand and QsNetII. This work, similar to [63], uses

multiple outstanding RDMA operations, and perhaps is the closest to my work. However,

they do not study the network systematically as I have done in this study, and they do not

use shared memory communication and multi-core systems either.

On multi-connection capability of modern interconnects [66], Rashti and Afsahi

established a number of connections at the verbs level between two processes running on

 65

two nodes (each node having a NetEffect iWARP or Mellanox InfiniHost III InfiniBand

NIC), and then performed point-to-point communications over those connections. It was

observed that the normalized multiple-connection latency of small messages is decreased

and throughput is increased up to a certain number of connections. In a similar work

[79], Sur and others measured the multi-pair RDMA-Write latency and aggregate

bandwidth at the InfiniBand verbs level over ConnectX HCAs between multi-core

platforms. They established a connection between each pair of processes on different

nodes. With increasing number of pairs, the results showed that the network is able to

provide almost the same latency for small messages for up to 8 communicating pairs.

Both the work in [66] and [79] were focused at point-to-point communication.

5.2 Allgather in MVAPICH

MVAPICH [47] implements the Recursive-Doubling algorithm for MPI_Allgather()

for power of two number of processes directly using RDMA operations. No shared

memory operation is used in this approach. An MPI send-recv approach is used for any

other number of processes. Based on the message size, the RDMA-based approach uses

two different schemes: (1) a copy-based approach for small messages into a pre-

registered buffer to avoid buffer registration cost, and (2) a zero-copy method for large

messages, where the cost of data copy is prohibitive [76].

5.3 Experimental Platform

The experiments in Chapter 5 and Chapter 6 were conducted on a 4-node dedicated

multi-core SMP cluster, where each node is a Dell PowerEdge 2850 server having two

dual-core 2.8GHz Intel Xeon EM64T processors (2MB of L2 cache per core) and 4GB of

 66

DDR-2 SDRAM. Each node has a two-port Mellanox ConnectX InfiniBand HCA

installed on an x8 PCI-Express slot. The experiments were done under only one port of

the ConnectX HCA. The machines are interconnected through a Mellanox 24-port

MT47396 Infiniscale-III switch. In terms of software, I used the OpenFabrics Enterprise

Distribution, OFED1.2.5, installed over Linux Fedora Core 5, kernel 2.6.20. For MPI, I

used MVAPICH-1.0.0-1625.

ConnectX [17] is the latest generation of InfiniBand HCAs from Mellanox

Technologies. It is a two-port HCA that could operate as 4X InfiniBand or 10-Gigabit

Ethernet. In this work, I am only concerned with the InfiniBand mode of the ConnectX.

In addition, ConnectX supports a number of enhanced InfiniBand features [17] including

hardware-based reliable multicast, enhanced atomic operations, fine-grain end-to-end

QoS, and extended reliable connection. Such features will enhance the performance and

scalability of the communication subsystem. However, to my knowledge, not all these

features have been enabled by the ConnectX drivers and firmware.

5.4 Motivation

In multi-core clusters, each core will run at least one process with possible

connections to other processes. Therefore, it is very important for the NIC hardware and

its communication software to provide scalable performance with the increasing number

of connections. In the following, I will show that point-to-point communications as well

as collective communications can enjoy scalable performance (up to a certain number of

connections) on ConnectX InfiniBand cards. This feature will be useful in devising

collectives over multi-core clusters.

 67

I will start with the point-to-point tests. In this experiment, multiple pairs of

connections are pre-established between two processes running on different nodes. I

perform a ping-pong test using all of the connections in parallel. A message is sent and

received over each connection in a round-robin fashion. I vary the number of connections

(up to 256 connections in total) and message sizes and report half of the cumulative

round trip time divided by the number of connections as the normalized average latency

in Figures 5.1. This shows how well communications over multiple connections can be

performed simultaneously.

For small to medium messages up to 8KB and up to 64 connections, significant time

is saved in sending messages over multiple connections. The best performance is

achieved at 8 connections. Too many connections will degrade the performance for some

message sizes. For messages larger than 8KB, the average latency to send a message over

multiple connections is the same as the latency for one pair of connection. This indicates

no overlapping is taking place among the connections and that the communication is

serialized. One reason behind this is that the ConnectX architecture includes a stateless

offload engine for NIC-based protocol processing. Compared to the previous generation

of InfiniBand cards, ConnectX improves the processing rate of incoming packets by

having hardware schedule the packet processing directly. This technique allows

ConnectX to have a better performance for processing simultaneous network

transactions.

 68

Figure 5.1 Normalized average latency of a 1-byte message sent simultaneously over

multiple connections.

0

1

2

3

4

5

4 8 16 32 64 128 256 512

L
a

te
n

c
y

 (μ
s

)

Message Size (bytes)

Normalized Average Latency of Simultaneous Multi-
connections

1 2 4
8 16 32
64 128 256 connections

0

5

10

15

1K 2K 4K 8K 16K 32K

L
a

te
n

c
y

 (μ
s

)

Message Size (bytes)

Normalized Average Latency of Simultaneous Multi-
connections

1 2 4
8 16 32
64 128 256 connections

20

120

220

320

420

520

64K 128K 256K 512K 1M

L
a

te
n

c
y

 (μ
s

)

Message Size (bytes)

Normalized Average Latency of Simultaneous Multi-
connections

1 2 4
8 16 32
64 128 256 connections

 69

To understand whether the multi-connection ability of ConnectX can help allgather

(and collectives in general), I have devised a second micro-benchmark in which MPI

processes on a set of multi-core nodes are grouped into a number of groups where each

group concurrently performs an independent MPI_Allgather() operation. Processes of

each group are mapped on four different nodes. Therefore, all the communications of an

allgather operation within a group are across the network. I have designed the individual

allgather algorithm in such a way that each process transfers its own data to the other

three members of the group using three back-to-back RDMA operations in a ring-based

fashion, leading to three simultaneous active connections per process. With four groups, I

will have up to 12 bi-directional active connections per card.

I consider a single-group single-connection ring-based allgather as the baseline

operation. I then compare the single- and multiple-group multi-connection allgather with

the baseline allgather, as shown in Figure 5.2. The aggregate bandwidth plot in Figure 5.2

shows the total volume of data per second that passes through the ConnectX HCA. To

have a better understanding of how multi-connection could enhance the performance, the

bandwidth ratio plot in Figure 5.2 shows the bandwidth ratio of the single- and multiple-

group multi-connection allgather over the baseline collective operation.

It is evident that the multi-connection allgather operations achieve higher aggregate

bandwidth, and can saturate the network card more than a single-connection allgather up

to 64KB. The single-group multi-connection case improves the throughput up to 1.8

times the baseline, while the two, three and four groups can achieve up to 2.6, 2.7 and 2.7

times, respectively. The results for the 3-group and 4-group allgather are fairly close to

 70

each other, indicating that the network is almost saturated with nine simultaneous

connections. For all multi-connection tests, the ratio drops below one for 64KB messages

and above, which shows a performance degradation for very large messages when

multiple connections are simultaneously active.

Figure 5.2 Aggregate bandwidth of multiple independent allgather operations.

0

1

2

3

4

5

1 4 16 64 256 1K 4K 16K 64K 256K

B
an

d
w

it
h

 (G
B

/s
)

Message size (bytes)

Aggregate Bandwidth of Multiple Inter-node All-gather

1-group, single-conection 1-group, multi-connection
2-group, multi-connection 3-group, multi-connection
4-group, multi-connection

0.6

1

1.4

1.8

2.2

2.6

1 4 16 64 256 1K 4K 16K 64K 256K

B
an

d
w

it
h

 R
at

io

Message size (bytes)

Bandwidth Ratio of Multi-connection All-gather over
Single-connection Single-group All-gather

1-group, single-conection 1-group, multi-connection
2-group, multi-connection 3-group, multi-connection
4-group, multi-connection

 71

The results clearly show that the network is capable of providing scalable

performance when multiple connections are concurrently active, at least for small to

medium size messages and up to a certain number of connections. The message is that

there is now a potential to improve the performance of collectives by devising efficient

algorithms that use multiple connections concurrently on multi-core systems.

5.5 The Proposed Allgather Algorithms

In this section, I present a number of algorithms for the MPI_Allgather() operation. I

first propose the Single-group Multi-connection Aware allgather algorithm, which is a

multi-connection extension of the SMP-aware algorithm proposed in Section 4.4 [59, 63]

and is targeted at small to medium messages.

I then propose two different classes of algorithms to enhance the allgather

performance for different message sizes. I propose the Multi-group Gather-based Multi-

connection Aware allgather algorithm to achieve efficient performance for very small

messages. This algorithm takes advantage of the availability of multiple cores on the

node to distribute the CPU processing load. Finally, to further utilize the multi-

connection capability of the InfiniBand network, I propose the Multi-group Multi-

connection Aware allgather algorithm for medium to large message sizes. This algorithm

has less shared memory communication volume, but uses more connections per node.

5.5.1 Single-group Multi-connection Aware Algorithm

Single-connection SMP-aware collective communication algorithms can greatly

improve the performance for small to medium message sizes [42, 63]. With the

availability of scalable multi-connection performance in modern networks, there is now

 72

an opportunity to improve the performance further. For this, I modify the inter-node

communication phase of the SMP-aware allgather algorithm [63] to use multiple

connections simultaneously. The algorithm has three phases as follows:

Phase 1: Per-node shared memory gather

Phase 2: Inter-node multi-connection aware allgather among the Master processes

Phase 3: Per-node shared memory broadcast

Each node has a Master process. All node Masters form a group for the inter-node

communication in Phase 2 of the algorithm. In Phase 1, the Master process of each node

gathers the data from the processes on the same node by a shared memory gather

operation. In Phase 2, the Master processes participate in an inter-node allgather

operation. Each Master process sends the gathered data in Phase 1, in a multi-connection

aware fashion, concurrently over all connections to the other Master processes using

RDMA Write operations. In Phase 3, the Master processes perform a shared memory

broadcast. They copy out their received data to a shared buffer, from which each process

copies the final data to its own destination buffer.

5.5.2 Multi-group Gather-based Multi-connection Aware Algorithm

In Phase 2 of the Single-group Multi-connection Aware algorithm, each Master

process is responsible for communication with the Master processes on other nodes.

However, the other processes of each node are idle, waiting for the combined data to be

shared by their respective Master process. For small messages, the ConnectX has the

ability to carry the message data on the work request using programmed input/output

(PIO) instead of DMA [79]. This reduces the communication latency, but the CPU/core is

 73

more involved with the communication process, especially when there are multiple

simultaneously active connections. Therefore, to take advantage of the multi-core

systems and evenly distribute the communication workload on the available cores, I

design a multi-group allgather algorithm, in which the outbound connections of each

node are now distributed among the cores.

As shown in Figure 5.3, in this algorithm I group the processes across the nodes

whose intra-node rank is equal. Each group has a Master process that gathers the data

from the processes of the group. The algorithm is performed in three phases:

Phase 1: Per-node shared memory allgather

Phase 2: Per-group inter-node multi-connection aware gather

Phase 3: Per-node shared memory broadcast

0

1

2

3

4

5

6

7

8

9

19

11

12 14

1513

Group 0 Group 1

Group 2 Group 3

Master Proceses

Figure 5.3 Group structure for gather-based allgather algorithm on a 4-node, 16-

core cluster.

In Phase 1, an intra-node shared memory allgather is performed among processes on

the same node. In Phase 2, each group Master process gathers the data from the processes

of its group. This means that at the end of Phase 2 each Master process will have the

 74

entire data from all processes. In Phase 3, each Master process will then broadcast the

data to all processes on its own node.

The only limitation of this algorithm is that each node should have at least a group

Master process. If the number of nodes is more than the number of groups, some nodes

will remain without a Master. To cover this, some groups may need to have two Master

processes, with the same duties.

5.5.3 Multi-group Multi-connection Aware Algorithm

Up to this point, I have utilized both multi-connection and multi-core features of a

modern InfiniBand cluster in an effort to improve the performance of the allgather

collective operation. However, with the 4-node cluster, both the proposed algorithms in

Section 5.5.1 and Section 5.5.2 use only a maximum of three simultaneously active

connections per card. To examine the multi-connection ability of the NIC more

aggressively, I propose the Multi-group Multi-connection aware allgather algorithm, in

which an additional number of concurrent active connections is used during the allgather

operation. Basically, with an increasing number of cores per node, more groups can be

formed in this algorithm, which will even put more pressure on the NIC. I first propose

an algorithm with only two independent groups.

Two-group allgather: As discussed earlier in Section 5.4, two independent multi-

connection allgather operations achieve a much higher bandwidth than a single allgather

case, at least for small to medium size messages. Therefore, I expect this algorithm to

perform well for a range of message sizes. Figure 5.4 shows the group structure for a

two-group multi-connection allgather on the cluster. Each group has a Master process on

 75

each node, and includes half of each node’s processes. The algorithm is performed in

three phases as follows:

Phase 1: Per-node/per-group shared memory gather by each group Master process

Phase 2: Per-group inter-node multi-connection aware allgather among group

Master processes

Phase 3: Per-node shared memory broadcast from each group Master process

0

1

2

3

4

5

6

7

8

9

10

11

12 14

1513

Group 0 Group 1

Master Processes

Figure 5.4 Group structure for 2-group allgather algorithm on a 4-node, 16-core

cluster.

In Phase 1, each Master process gathers the data of all intra-node processes that

belong to its group. For example in Figure 5.4, process 0 and 2 gather the data from

process 1 and 3, respectively. In Phase 2, an inter-node allgather is done in each group

among Master processes to transfer the data gathered in Phase 1. Each Master process in

Phase 2 concurrently performs RDMA Write operations on all its connections. For

example in Figure 5.4, Master process 2 concurrently sends data to Master processes 6,

10, and 14. Therefore, there will be six concurrently active connections for this case. In

Phase 3, all Master processes broadcast their received data to all the other processes on

the same node.

 76

Four-group allgather: A more connection-intensive algorithm that can be

implemented on the platform is a 4-group multi-connection aware algorithm. Figure 5.5

shows the group structure for such an algorithm on the cluster. The algorithm is done in

two phases as follows:

Phase 1: Per-group inter-node multi-connection aware allgather

Phase 2: Per-node shared memory allgather

In Phase 1, each process performs an inter-node allgather within its group. This

operation is done in a way similar to Phase 2 of the 2-group algorithm. However, this

time 12 concurrent active connections exist per NIC. In Phase 2, each process shares the

combined data received from Phase 1 with all other processes on its own node. Based on

the preliminary results in Figure 5.2, I do not expect the cards to scale well with this

number of connections, at least on the platform I have experimented with.

0

1

2

3

4

5

6

7

8

9

19

11

12 14

1513

Group 0 Group 1

Group 2 Group 3

Figure 5.5 Group structure for 4-group allgather algorithm on a 4-node, 16-core

cluster.

5.5.4 Complexity Analysis of the Algorithms

In order to estimate the performance, in this section I compare the per-node

complexity of the proposed algorithms. The analysis is done based on a 4-node cluster,

each node having 4 cores. I compare the number of active connections, the amount of

 77

shared memory Read/Write operations, and the volume of messages communicated

through the network in the algorithms. I assume the message size for the allgather

operation is M bytes. The following notation is used to present the complexity of the

algorithms in Table 5.1:

αM_βS: α×M bytes of data are communicated in each of β consecutive steps.

αM_βC: There are β active connections, and α×M bytes of data are concurrently

communicated over each connection.

αM_βW / αM_βR: There are β concurrent shared memory Writes/Reads of α×M

bytes of data each.

As shown in Table 5.1, the inter-node communication volume is fixed and equal to

12M for all cases. Moving from the 1-group single-connection algorithm to the 1-group

multi-connection algorithm, I just change the way the inter-node communication is done.

In essence, instead of sending 4M data in three consecutive steps, I send it over three

concurrent active connections.

The other notable difference among the algorithms is in their shared memory

transactions. Consider the 1-group algorithms on a 4-node (16-core) cluster. In Phase 1 of

the 1-group algorithms, all processes first write their data to the shared memory

(1M_4W), and the Master process then reads the data into its send buffer (4M_1R). In

Phase 3, the Master process will share all the data that it has received, from all other

Master processes in Phase 2 of the algorithm, with its local processes (16M_1W). The

local processes will then read the data into their own destination buffers (16M_4R).

 78

Table 5.1 Per-node complexity of the proposed allgather algorithms on a 4-node, 16-

core cluster.

1-group

single-

connection

1-group

multi-

connection

4-group

gather-based

multi-

connection

2-group

multi-

connection

4-group

multi-

connection

Concurrent active

connections

1 In 3 In 3 In 6 In 12 In

1 Out 3 Out 3 Out 6 Out 12 Out

Network –

outbound or

inbound data

4M_3S 4M_3C 4M_3C 2M_6C 1M_12C

Shared

memory

Read/Write

operations

Phase

1

1M_4W +

4M_1R

1M_4W +

4M_1R

1M_4W +

4M_4R

1M_4W +

2M_2R
-

Phase

2
- - - -

4M_4W +

16M_4R

Phase

3

16M_1W

+ 16M_4R

16M_1W +

16M_4R

16M_1W+

16M_4R

8M_2W +

16M_4R
-

The gather-based algorithm has a slightly higher shared memory volume than the 1-

group and 2-group algorithms. This means that for larger size messages, I do not expect

the gather-based algorithm to perform better. With almost the same level of shared

memory volume in the 1-group and 2-group algorithms, the 2-group algorithm has an

edge over the 1-group and gather-based algorithms, mostly due to distribution of its inter-

node communication among more cores, effectively utilizing both multi-connection and

multi-core ability of the InfiniBand cluster. The 4-group algorithm has the lowest shared

memory volume. However, I expect to see some overhead due to its aggressive use of

simultaneous network connections (over 12 connections).

 79

5.6 Performance Results

In this section, I present the performance results of the proposed algorithms and the

native MVAPICH on the cluster, along with a brief description of the implementation. I

use a cycle-accurate timer to record the time spent in an allgather operation (1000

iterations) for each process, and then calculate the average allgather latency among all

processes.

For the implementation, I am directly using RDMA Write operations. I have

implemented two different schemes: zero-copy and copy-based schemes in RDMA-based

communications. The zero-copy approach is designed for large messages to avoid the

extra data copy. To be able to have a direct data movement, the application buffers are

required be registered. Also, each source process needs to know the address of the remote

destination buffers before the RDMA communications can take place. For this, each

process will advertise its registered destination buffer addresses to all other processes by

writing into their pre-registered and pre-advertised control buffers.

To avoid the high cost of application buffer registration and address advertisement

for small messages, the copy-based technique involves a data copy to pre-registered and

pre-advertised intermediate data buffers at both send and receive sides. The sending

process can copy its messages to the pre-registered intermediate destination buffers using

RDMA Write.

To find the switching point of two schemes, I have implemented the proposed

algorithms using both copy-based and zero-copy techniques, and evaluated them for 1B

 80

to 512KB messages. The results shown in Figure 5.6, for 16 processes on the test cluster,

are the best results of the two schemes for each algorithm.

In general, the proposed multi-connection aware algorithms perform much better

than the native MVAPICH implementation except for 128KB messages and above,

mostly due to shared memory bottleneck and poor multi-connection performance for very

large messages. As expected, the gather-based algorithm has the best performance for

very small messages up to 32 bytes, mostly because this algorithm is using multiple cores

on the node and lightly utilizes the multi-connection ability of the cards for network

communication. The 1-group multi-connection aware algorithm outperforms all other

algorithms from 64 bytes up to 2KB, since it has a lighter shared memory volume. From

4KB to 64KB, the 2-group multi-connection-aware algorithm performs the best, due to a

lighter shared memory volume compared to 1-group algorithms, and use of multiple

concurrent connections and multi-cores.

5.7 Summary

Collective operations are the most data intensive communication primitives in MPI.

In this chapter, I proposed three multi-core and/or multi-connection aware allgather

algorithms over ConnectX InfiniBand networks. The implementation results confirm that

utilizing the advanced features of modern network cards to process the communication

over multiple simultaneously active connections can greatly improve the performance of

collective operations. The proposed 1-group multi-connection aware algorithm performs

better than the 1-group single-connection method for most of the message sizes.

 81

F
ig

u
re

 5
.6

 A
ll

ga
th

er
 p

er
fo

rm
an

ce
.

0 20

40

60

80

10
0

64
12

8
25

6
51

2
1K

Latency (µs)

M
es

sa
g

e
si

ze
 (b

yt
es

)

P
er

fo
rm

an
ce

 o
f M

P
I_

A
ll

g
at

h
er

 (1
6

P
ro

ce
ss

es
)

1
-g

ro
u

p
, s

in
g

le
-c

o
n

n
e

c
ti

o
n

1
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, g

a
th

e
r-

b
a

s
e

d
 m

u
lt

i-
c

o
n

n
e

c
ti

o
n

2
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

M
V

A
P

IC
H

0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

Latency (µs)

M
e
s
s
a
g

e
 s

iz
e
 (b

yt
e
s
)

P
e
rf

o
rm

a
n

c
e

o
f M

P
I_

A
ll

g
a
th

er
 (1

6
 P

ro
c
e
s
s
e
s
)

1
-g

ro
u

p
, s

in
g

le
-c

o
n

n
e

c
ti

o
n

1
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, g

a
th

e
r-

b
a

s
e

d
 m

u
lt

i-
c

o
n

n
e

c
ti

o
n

2
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

M
V

A
P

IC
H

0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
K

4
K

8
K

1
6
K

3
2
K

Latency (µs)

M
e
s
s
a
g

e
 s

iz
e
 (b

yt
e
s
)

P
e
rf

o
rm

a
n

c
e
 o

f M
P

I_
A

ll
g

a
th

er
 (1

6
 P

ro
c

e
s
s
e
s
)

1
-g

ro
u

p
, s

in
g

le
-c

o
n

n
e

c
ti

o
n

1
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, g

a
th

e
r-

b
a

s
e

d
 m

u
lt

i-
c

o
n

n
e

c
ti

o
n

2
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

M
V

A
P

IC
H

0 5

10

15

20

25

1
2

4
8

16
32

Latency (µs)

M
es

sa
g

e
si

ze
 (b

yt
es

)

P
er

fo
rm

an
ce

 o
f M

P
I_

A
ll

g
at

h
er

 (1
6

P
ro

ce
ss

es
)

1
-g

ro
u

p
, s

in
g

le
-c

o
n

n
e

c
ti

o
n

1
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, g

a
th

e
r-

b
a

s
e

d
 m

u
lt

i-
c

o
n

n
e

c
ti

o
n

2
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

4
-g

ro
u

p
, m

u
lt

i-
c

o
n

n
e

c
ti

o
n

M
V

A
P

IC
H

 82

Using the gather-based algorithm, I could also improve the performance by

distributing the communication load over multiple cores for small message sizes that

involve CPU in communication processing. Another factor that has affected the achieved

performance compared to the pure RDMA-based implementation is the use of shared

memory. In general, the multi-group multi-connection aware algorithms perform better

than the RDMA-only allgather, except for very large message sizes.

 83

Chapter 6: Process Arrival Pattern Aware Collectives on InfiniBand

In preceding chapters, I have proposed a number of collective operations on top of

modern interconnects. The micro-benchmark studies, and not the application studies,

were done when processes arrived at the collective call almost simultaneously. However,

this is not the case in real-life running applications. Recent research has shown that

process arrival pattern (PAP) for collective operations have significant influence on the

performance of collectives and consequently on the applications [21]. In this chapter, I

will take another important factor into account, that is PAP awareness, and propose PAP-

aware alltoall [62] and algather collectives on top of InfiniBand [61].

6.1 Related work

Most research on developing and implementing efficient collective communication

algorithms assume all MPI processes involved in the operation arrive at the same time at

the collective call. However, recent studies have shown that processes in real applications

can arrive at the collective calls at different times. This imbalanced process arrival pattern

can significantly affect the performance of the collective operations [21]. In addition, it

has been found that different collective communication algorithms react differently to

PAP [21]. In this regard, the authors in [52] have recently proposed PAP aware MPI-

Bcast() algorithms and implemented them using MPI point-to-point primitives.

My research is similar to the work in [52]. However it has a number of significant

differences. First, the authors in [52] have incorporated control messages in their

algorithms at the MPI layer to make the processes aware of and adapt to the PAP. These

control messages incur high overhead, especially for short messages. My proposed PAP

 84

aware MPI_Alltoall() and MPI_Allgather() instead are RDMA-based, and I use its

inherent mechanism for notification purposes. Therefore, there are no control messages

involved and thus there is no overhead. Secondly, while [52] is targeted at large

messages, I propose and evaluate two RDMA-based schemes for small and large

messages. Thirdly, I propose an intra-node PAP and shared memory aware scatter

operation to boost the performance for small messages.

6.2 MPI_Alltoall() and MPI_Allgather() in MVAPICH

The study in this chapter is done on an InfiniBand ConnectX cluster, and the

platform is described in Chapter 5. MVAPICH is the native MPI implementation. In

MVAPICH, point-to-point and some MPI collective communications have been

implemented directly using RDMA operations. However, MPI_Alltoall() uses the two-

sided MPI send and receive primitives, which transparently uses RDMA. Different

alltoall algorithms are employed for different message sizes: the Bruck algorithm for

small messages, the Recursive-Doubling algorithm for large messages and power of two

number of processes, and the Direct algorithm for large messages and non-power of two

number of processes. The MVAPICH MPI_Allgather() implementation was discussed in

Chapter 5.

dsfasdfas

6.3 Motivation

In this section, I first show that indeed MPI processes arrive at collective calls at

different times at runtime. Then, I present the impact of this skew time on the

performance of MPI_Alltoall() and MPI_Alllgather().

 85

6.3.1 Process arrival pattern

I first describe the parameters that are used to characterize PAP, similar to [21]. An

example for four processes is given in Figure 6.1. Let n processes, 0p , …, 1np be

involved in the collective operations. ia represents the arrival time of ip , and ie

represents the time when ip exits the collective. Let id be the time difference between

each process’s arrival time ia and the average arrival time a . Average arrival time a ,

average-case imbalance time d and worst-case imbalance time are defined in

Equation (6.1) (6.2) and (6.3), respectively.

n

aa
a n 10 ...
 (6.1)

aad ii

n

dd
d n 10 ...
 (6.2)

 iiii aa minmax (6.3)

Arrival time

Exit time

0a 1a
2a

3a

0p 3p2p1p

0e

2e
3e

 a
3d

2d
1d0d

1e

Figure 6.1 Process arrival pattern for 4 processes.

 86

The worst-case imbalance time and the average-case imbalance time are normalized

over the time it takes to communicate a message (the size of this message is equal to the

collective payload). These new metrics are called the average-case imbalance factor
T

d

and the worst-case imbalance factor
T

 [21].

To investigate the PAP behavior of MPI collectives in real applications, I have

developed a profiling tool using the MPI wrapper facility. Using MPI_Wtime(), the

wrapper records the arrival and exit times for each collective. An MPI_Barrier()

operation is used in the MPI initialization phase in MPI_Init() to synchronize all the

processes.

I have chosen several benchmarks from NAS Parallel Benchmarks (NPB), version

2.4 [49]. The average-case imbalance factor and worst-case imbalance factor results

running for 16 processes are shown in Table 6.1. The results show that the averages-case

and worst-case imbalance factors for all applications are quite large. For larger class C,

the imbalance factors are even larger. The results confirm previous studies [21] that

processes arrive at collective sites at different times.

6.3.2 Impact of Process Arrival Pattern on Collectives

To show how the native MVAPICH MPI_Alltoall() and MPI_Allgather() perform on

the platform under random PAP, I use a micro-benchmark similar to [52]. Processes first

synchronize using an MPI_Barrier(). Then, they execute a random computation before

entering the MPI_Alltoall() and MPI_Allgather() operations. The random computation

 87

time is bounded by a maximum value MIF (maximum imbalanced factor [52]) times the

time it takes to send a message.

Table 6.1 The average of worst-case and the average-case imbalance factors for FT

LU and MG benchmarks.

Major
routine

Number
of calls

Average
message size

(bytes)

Average-case
imbalance factor

T

d

Worst-case
imbalance factor

T

FT (class B) alltoall 22 2097152 597 1,812

 reduce 20 16 438,701 1,460,811

FT (class C) alltoall 22 8388608 614 1,871

 reduce 20 16 1,888,964 5,732,913

LU (class B) allreduce 9 22 56,033 163,523

 bcast 10 10 2,799 9,553

LU (class C) allreduce 9 22 118,695 388,537

 bcast 10 10 11,519 32,938

MG (class B) allreduce 12 89 9,101 2917

MG (class C) allreduce 12 89 162,146 560,769

To get the performance of MPI_Alltoall() and MPI_Allgather(), a high-resolution

timer is inserted before and after the MPI_Alltoall() and MPI_Allgather() operations. The

completion time is reported as the average execution time across all the processes. Figure

6.2 and Figure 6.3 present the performance of MVAPICH MPI_Alltoall() and

MPI_Allgather() when MIF is 1, 32, 128 and 512, respectively. Clearly, the completion

time is greatly affected by the increasing amount of random computation. The results

confirm that the PAP can have significant impact on the performance of collectives. It is

therefore crucial to design and implement PAP aware collectives to improve their

 88

performance and consequently the performance of the applications that use them

frequently.

Figure 6.2 Completion time of MVAPICH Alltoall under different process arrival

patterns.

6.4 The Proposed Process Arrival Pattern Aware MPI_Alltoall() and

MPI_Allgather()

In this section, I propose PAP aware algorithms for MPI_Alltoall() and

MPI_Allgather(). My algorithms are based on the Direct and the SMP-aware Direct

allgather (and alltoall) algorithms proposed in Chapter 5. The basic idea in the algorithms

is to let the early-arrived processes do as much work as possible. One critical issue in my

PAP aware algorithms is how to let every other process know who has already arrived at

MVAPICH Alltoall

0

300

600

900

1200

1500

1 4 16 64 256 1K
Message size (bytes)

T
im

e
(µ

s
)

MIF=1 (Synchronized) MIF=32
MIF=128 MIF=512

MVAPICH Alltoall

0

2000

4000

6000

8000

10000

2K 4K 8K 16K 32K
Message size (bytes)

T
im

e
(µ

s)

MIF=1 (Synchronized) MIF=32
MIF=128 MIF=512

MVAPICH Alltoall

0

50000

100000

150000

200000

250000

64K 128K 256K 512K 1M
Message size (bytes)

T
im

e
(µ

s)

MIF=1 (Synchronized) MIF=32
MIF=128 MIF=512

 89

the collective call. Previous work on PAP aware MPI_Bcast() [52] has introduced control

messages that would add extra overhead, especially for small messages. However, in my

work I do not send distinct control messages and instead I utilize the inherent features of

RDMA-based communication to notify the arrival of a process. In the following, I first

propose my RDMA-based PAP aware MPI_Alltoall() and MPI_Allgather(), and then

extend them to be shared memory aware for better performance for small messages.

Figure 6.3 Completion time of MVAPICH Allgather under different process arrival

patterns.

MVAPICH Allgather

0
200
400
600
800

1000
1200
1400

1 4 16 64 256 1K
Message size (bytes)

T
im

e
(µ

s)

MIF=1(Synchronized) MIF=32
MIF=128 MIF=512

MVAPICH Allgather

0

2000

4000

6000

8000

10000

2K 4K 8K 16K 32K
Message size (bytes)

T
im

e
(µ

s)

MIF=1(Synchronized) MIF=32
MIF=128 MIF=512

MVAPICH Allgather

0
50000

100000
150000
200000
250000
300000

64K 128K 256K 512K 1M
Message size (bytes)

T
im

e
(µ

s)

MIF=1(Synchronized) MIF=32
MIF=128 MIF=512

 90

6.4.1 Notification Mechanisms for Early-arrival Processes

The basic idea in my PAP aware algorithms is for each process to send its distinct

data to the already-arrived processes as soon as possible. It is therefore very important to

have an efficient mechanism in place to inform others of the early-arrival processes. For

this, I have devised two different notification mechanisms for zero-copy and copy-based

schemes used in RDMA-based communications. These notification mechanisms do not

incur any communication overhead.

In the zero-copy approach, where the cost of data copy is prohibitive for large

messages, the application buffers are registered to be directly used for data transfer.

However, for an RDMA Write message transfer to take place each source process needs

to know the address of the remote destination buffers. For this, each process will

advertise its registered destination buffer addresses to all other processes by writing into

their pre-registered and pre-advertised control buffers. This inherent destination address

advertisement mechanism can be interpreted as a control message to indicate a process

has arrived at the collective call. Therefore, processes can poll their control buffers to

understand which other process has already arrived at the collective call.

The copy-based technique involves a data copy to pre-registered and pre-advertised

intermediate data buffers at both send and receive sides. Therefore, the received data in

the pre-registered intermediate destination buffer can be used as a signal that the sending

process has already arrived at the site. This can be checked out easily by polling the

intermediate destination buffer.

 91

6.4.2 RDMA-based Process Arrival Pattern Aware Alltoall

My base algorithm is the Direct alltoall algorithm. Let N be the total number of

processes involved in the operation. In this algorithm, at step i, process p sends its

message to process (p + i) mod N, and receives from (p – i) mod N. To implement this

algorithm, each processes p first posts its RDMA Writes to all other processes in

sequence (after it receives the destination buffer addresses). It then polls the completion

queues to make sure its messages have been sent to all other processes. Finally it waits to

receive the incoming messages from all processes.

To make this algorithm PAP aware using the zero-copy scheme, each process p polls

its control buffers for the advertised remote destination buffer addresses starting from

process (p + i) mod N. It then sends its data to final destination buffers of the early-

arrived processes using RDMA Write. Subsequently, it waits for the remaining processes

to arrive in order to send its messages to them. Finally, each process waits for all

incoming messages by polling its own destination buffers. The beauty of this PAP aware

algorithm over the non-PAP aware algorithm is that a sending process will never get

stuck for a particular process to arrive in order to proceed with the next message transfer.

Under the copy-based scheme, each process p polls its intermediate destination

buffers, starting from process (p – i) mod N. Any received data indicates that the

corresponding process has already arrived. The process p then copies its messages using

RDMA Write to all early-arrived processes. It then sends its data to the rest of processes

who have not yet arrived. All processes also need to wait to receive messages from all

 92

other processes into their intermediate buffers, and then copy them to their final

destination buffers.

6.4.3 RDMA-based Process Arrival Pattern Aware Allgather

RDMA-based Process Arrival Pattern Aware allgather algorithm is very similar to

the alltoall algorithm explained in Section 6.4.2. It is based on the Direct allgather

algorithm. I have also used the same notification mechanisms for zero-copy and copy-

based schemes used in RDMA-based communications. The only difference is that each

process sends the same data/address to the other processes in the allgather operation.

6.4.4 RDMA-based Process Arrival Pattern and Shared Memory Aware Alltoall

Up to this point, I have utilized the RDMA features of a modern InfiniBand cluster

along with PAP awareness in an effort to improve the performance of MPI_Alltoall().

Previous research has shown that shared memory intra-node communication can improve

the performance of collectives for small to medium messages. However, it is interesting

to see how shared memory intra-node communication might affect the performance under

different process PAP. For this, I propose an SMP-aware and RDMA-based PAP aware

MPI_Alltoall() algorithm that has the following three phases:

Phase 1: Intra-node shared memory gather performed by a Master process

Phase 2: Inter-node PAP aware Direct alltoall among the Masters

Phase 3: Intra-node PAP and shared memory aware scatter by a Master process

A Master process is selected for each node (without loss of generality, the first

process in each node). Phase 1 cannot be PAP aware because the Master process has to

wait for all intra-node messages to arrive into a shared buffer before moving on to the

 93

PAP aware Phase 2. Phase 2 is the same as the algorithm proposed in Section 6.4.2, and

is performed among the Master processes. In Phase 3, an intra-node shared memory and

PAP aware scatter is devised. Because the Master processes may arrive in Phase 2 at

different times, this awareness can be passed on to Phase 3 by allowing the intra-node

processes to copy their destined data available in the shared buffer to their final

destinations without having to wait for data from all other Masters.

In a shared memory but non-PAP aware Phase 3, a Master process waits to receive

the data from all other Master processes. It then copies them all to a shared buffer and

sets a shared done flag. All other intra-node processes poll on this flag, and once set they

start copying their own data from the shared buffer to their final destinations.

In a shared memory and PAP aware Phase 3, we consider multiple shared done flags,

one for data from each Master process (four flags in our 4-node cluster). As soon as a

Master process receives data from any other Master process, it copies it to the shared

buffer and then sets the associated done flag. All other intra-node processes poll on all

done flags, and as soon as any partial data is found in the shared buffer they copy them

out to their final destination buffers.

6.4.5 RDMA-based Process Arrival Pattern and Shared Memory Aware Allgather

Similar to the MPI_Alltoall() algorithm in Section 6.4.4, I propose an SMP-aware

and RDMA-based PAP aware MPI_Allgather() algorithm that has the following three

phases:

Phase 1: Intra-node shared memory gather performed by a Master process

Phase 2: Inter-node PAP aware Direct allgather among the Masters

 94

Phase 3: Intra-node PAP and shared memory aware broadcast by a Master process

Phase 1 is similar to the Phase 1 of the MPI_Alltoall() algorithm, but with less data

movements. Phase 2 employs the same MPI_Allgather() algorithm explained in Section

6.4.3, among the Master processes. In Phase 3, an intra-node shared memory and PAP

aware broadcast is done instead of scatter in MPI_Alltoall().

6.5 Experimental Results

In this section, I present the performance results of the proposed algorithms, the

RDMA-based PAP aware Direct (PAP_Direct) alltoall and allgather, and RDMA-based

PAP and Shared memory aware Direct (PAP_Shm_Direct) alltoall and allgather, and

compare them with the non-PAP aware RDMA-based Direct (Direct) and RDMA-based

and Shared memory aware Direct (Shm_Direct) algorithms as well as with the native

MVAPICH on the cluster.

I have evaluated the proposed algorithms using both copy-based and zero-copy

techniques for 1B to 1MB messages. The results shown in the section are the best results

of the two schemes for each algorithm. Again, I use a cycle-accurate timer to record the

time spent in the collectives (1000 iterations) for each process, and then calculate the

average alltoall latency across all processes.

6.5.1 MPI_Alltoall() Micro-benchmark Results

Figure 6.4 compares the PAP aware MPI_Alltoall() algorithms with the native

MVAPICH implementation and non-process arrival pattern aware versions, with MIF

equal to 32 and 512. Clearly, the PAP aware algorithms, PAP_Direct and

PAP_Shm_Direct, are better than their non-PAP aware counterparts for all message sizes.

 95

This shows that indeed such algorithms can adapt themselves well with different PAP.

My algorithms are also superior to the native MVAPICH, with an improvement factor of

3.1 at 8KB for PAP_Direct and 3.5 at 4B for PAP_Shm_Direct, with MIF equal to 32.

With a larger MIF of 512, the improvements are 1.5 and 1.2, respectively.

Comparing the PAP_Shm_Direct with PAP_Direct, one can see that the

PAP_Shm_Direct is the algorithm of choice up to 256 bytes for MIF equal to 32.

However, this is not the case for MIF of 512 where processes may arrive at the call with

more delay with respect to each other. This shows that the SMP version of my process

arrival pattern algorithm introduces some sort of implicit synchronization in Phase 1 that

may degrade its performance under large maximum imbalanced factors.

To evaluate the scalability, I compare the performance of the PAP_Direct

MPI_Alltoall() with those of MVAPIVH and Direct algorithm for 4, 8, and 16 processes,

as shown in Figure 6.5 (shared memory algorithms are not shown due to limited data

points). One can see that the proposed PAP aware algorithm has scalable performance

and is always superior to the non-PAP aware algorithms. I have found similar results for

other MIFs and messages sizes.

In the previous micro-benchmark, the arrival time of each process is random. In

another micro-benchmark, I control the number of late processes. In Figure 6.6, I present

the MPI_Alltoall() results for MIF equal to 128 when 25% or 75% of processes arrive

late. My proposed algorithms are always better than their counterparts for the 25% case,

and mostly better in the 75% case. The PAP_Shm_Direct alltoall is always better than

MVAPICH, although with a less margin in the 75% case.

 96

Figure 6.4 Performance of the proposed MPI_Alltoall(), 16 processes on a 4-node,

16-core cluster.

0

50

100

150

200

250

1 4 16 64 256 1K

T
im

e
(µ

s)

Message size (bytes)

MIF = 32
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

500

1000

1500

2000

2500

3000

2K 4K 8K 16K 32K

T
im

e
(µ

s)

Message size (bytes)

MIF = 32
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

15000

30000

45000

60000

75000

90000

64K 128K 256K 512K 1M

T
im

e
(µ

s)

Message size (bytes)

MIF = 32

MVAPICH Direct PAP_Direct

0

350

700

1050

1400

1 4 16 64 256 1K

T
im

e
(µ

s)

Message size (bytes)

MIF = 512
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

2000

4000

6000

8000

10000

2K 4K 8K 16K 32K

T
im

e
(µ

s)

Message size (bytes)

MIF = 512
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

50000

100000

150000

200000

250000

64K 128K 256K 512K 1M

T
im

e
(µ

s)

Message size (bytes)

MIF = 512

MVAPICH Direct PAP_Direct

 97

Figure 6.5 MPI_Alltoall() scalability.

6.5.2 MPI_Allgather() Micro-benchmark Results

The MPI_Allgather() results are shown in Figure 6.7, 6.8 and 6.9. They are also the

best results of the two schemes for each algorithm. Figure 6.7 compares the PAP aware

MPI_Allgather() algorithms with the native MVAPICH implementation and non-PAP

aware version, with MIF equal to 32 and 512. The PAP aware MPI_Allgather()

algorithms, PAP_Direct and PAP_Shm_Direct, are better than their non-process arrival

pattern aware counterparts for all message sizes. This shows that such algorithms can

improve performance for different collective operations. My algorithm is also superior to

the native MVAPICH, with an improvement factor of 3.1 at 8KB for PAP_Direct and 2.5

100

200

300

400

500

4 8 16

Ti
m

e
(µ

s)

Number of processes

Scalability (16B, MIF = 512)

MVAPICH Direct PAP_Direct

1000

2000

3000

4000

5000

6000

4 8 16

T
im

e
(µ

s)

Number of processes

Scalability (8KB, MIF = 512)

MVAPICH Direct PAP_Direct

15000

30000

45000

60000

75000

4 8 16

T
im

e
(µ

s)

Number of processes

Scalability (256KB, MIF = 512)

MVAPICH Direct PAP_Direct

 98

at 1B for PAP_Shm_Direct, with MIF equal to 32. With a larger MIF of 512, the

improvement is 1.3 and 1.2, respectively.

Figure 6.6 Performance of the proposed MPI_Alltoall() with 25% and 75% late

processes.

0

150

300

450

600

750

1 4 16 64 256 1K

Ti
m

e
(µ

s)

Message size (bytes)

25% Late Processes, MIF = 128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

1500

3000

4500

6000

2K 4K 8K 16K 32K

T
im

e
(µ

s)
Message size (bytes)

25% Late Processes, MIF = 128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

25000

50000

75000

100000

125000

150000

64K 128K 256K 512K 1M

T
im

e
(µ

s)

Message size (bytes)

25% Late Processes, MIF = 128

MVAPICH Direct PAP_Direct

0
50

100
150
200
250
300
350
400

1 4 16 64 256 1K

T
im

e
(µ

s)

Message size (bytes)

75% Late Processes, MIF = 128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

500

1000

1500

2000

2500

3000

3500

2K 4K 8K 16K 32K

T
im

e
(µ

s)

Message size (bytes)

75% Late Processes, MIF = 128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

20000

40000

60000

80000

100000

120000

64K 128K 256K 512K 1M

Ti
m

e
(µ

s)

Message size (bytes)

75% Late Processes, MIF = 128

MVAPICH Direct PAP_Direct

 99

Comparing the PAP_Shm_Direct with PAP_Direct, the PAP_Shm_Direct is the

algorithm of choice up to 1KB for MIF equal to 32. This is better than the one achieved

by MPI_Alltoall(). The reason is because MPI_Alltoall() has more shared memory data

movements than MPI_Allgather(). For MIF of 512, PAP_Shm_Direct and Shm_Direct

perform much better than other algorithms up to 32KB. This indicates that shared

memory implementation can speed up MPI_Allgather() greatly. The performance of

PAP_Shm_Direct and Shm_Direct are very close for MIF=512 results. This indicates that

the SMP version of the algorithm introduces some sort of implicit synchronization, which

may degrade its performance under large maximum imbalanced factors.

I compare the scalability performance of the PAP_Direct MPI_Allgather() with

those of MVAPIVH and Direct algorithm for 4, 8, and 16 processes, as shown in Figure

6.8. The PAP algorithm performs better for large message sizes. The proposed PAP

aware algorithm has scalable performance and is always superior to the non-PAP aware

algorithms.

In Figure 6.9, I present the MPI_Allgather() results for MIF equal to 128 when 25%

or 75% of processes arrive late. My PAP_Direct allgather algorithm is always better than

its counterpart for the 25% case, and for messages larger than 4KB in the 75% case.

PAP_Shm_Direct allgather algorithm is very close to its counterpart for both cases, and it

is the best algorithm up to 8Kbyes for 25% case and 2KB for 75% case.

 100

Figure 6.7 Performance of the proposed MPI_Allgather(), 16 processes on a 4-node,

16-core cluster.

0

50

100

150

200

250

1 4 16 64 256 1K

T
im

e
 (µ

s
)

Message size (bytes)

MIF = 32
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
500

1000
1500
2000
2500
3000

2K 4K 8K 16K 32K

T
im

e
 (µ

s
)

Message size (bytes)

MIF = 32
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
15000
30000
45000
60000
75000
90000

64K 128K 256K 512K 1M

T
im

e
 (
µ

s
)

Message size (bytes)

MIF = 32

MVAPICH Direct PAP_Direct

0
200
400
600
800

1000
1200
1400

1 4 16 64 256 1K

T
im

e
 (µ

s
)

Message size (bytes)

MIF = 512
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
2000
4000
6000
8000

10000
12000

2K 4K 8K 16K 32K

T
im

e
 (µ

s
)

Message size (bytes)

MIF = 512
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
50000

100000
150000
200000
250000
300000

64K 128K 256K 512K 1M

T
im

e
 (
µ

s
)

Message size (bytes)

MIF = 512

MVAPICH Direct PAP_Direct

 101

Figure 6.8 MPI_Allgather() scalability.

6.5.3 Application Results

In this section, I consider the FT application benchmark from NPB, version 2.4 [49],

and N-BODY and RADIX [72] applications to evaluate the performance and scalability

of the proposed PAP aware MPI_Alltoall() and MPI_Allgather(). FT uses MPI_Allltoall()

as well as a few other collectives communications. I have experimented with class B and

C of FT, running with different number of processes, which use payloads larger than

2MB. Table 6.2 shows the PAP aware MPI_Alltoall() speedup over the native

MVAPICH and the Direct algorithms for FT running with 4, 8, and 16 processes. Clearly,

the proposed algorithm outperforms the conventional algorithms. The results also show

0

100

200

300

400

500

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (16B, MIF = 512)

MVAPICH Direct PAP_Direct

0

1000

2000

3000

4000

5000

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (8KB, MIF = 512)

MVAPICH Direct PAP_Direct

0
10000
20000
30000
40000
50000
60000
70000

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (256KB, MIF = 512)

MVAPICH Direct PAP_Direct

 102

that the PAP aware MPI_Alltoall() has modest scalability as speedup improves with

increasing number of processes.

Figure 6.9 Performance of the proposed MPI_Allgather() with 25% and 75% late

processes.

0
100
200
300
400
500
600

1 4 16 64 256 1K

T
im

e
 (µ

s
)

Message size (bytes)

25% Late Processes, MIF=128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
1000
2000
3000
4000
5000
6000

2K 4K 8K 16K 32K
T

im
e

 (µ
s

)
Message size (bytes)

25% Late Processes, MIF=128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

50000

100000

150000

200000

64K 128K 256K 512K 1M

T
im

e
 (
µ

s
)

Message size (bytes)

25% Late Processes, MIF=128

MVAPICH Direct PAP_Direct

0
50

100
150
200
250
300
350
400

1 4 16 64 256 1K

T
im

e
 (µ

s
)

Message size (bytes)

75% Late Processes, MIF=128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0

1000

2000

3000

4000

5000

2K 4K 8K 16K 32K

T
im

e
 (µ

s
)

Message size (bytes)

75% Late Processes, MIF=128
MVAPICH Direct
PAP_Direct Shm_Direct
PAP_Shm_Direct

0
20000
40000
60000
80000

100000
120000
140000

64K 128K 256K 512K 1M

T
im

e
 (
µ

s
)

Message size (bytes)

75% Late Processes, MIF=128

MVAPICH Direct PAP_Direct

 103

Table 6.2 PAP_Direct MPI_Alltoall() speedup over native MVAPICH and the

Direct algorithms for NAS FT running with different number of processes and

classes.

 Speedup over native
MVAPICH algorithm

Speedup over Direct
algorithm

FT (class B) FT (class C) FT (class B) FT (class C)
4 processes 1.08 1.01 1.16 1.04
8 processes 1.10 1.04 1.04 1.14
16 processes 1.14 1.17 1.42 1.63

N-BODY and RADIX mainly use MPI_Allgather() with relatively small message

sizes, 4KB for RADIX and mostly 64B for NBODY (some with less than 1KB payload).

Therefore, the best choice will be PAP_Shm_Direct algorithm. Table 6.2 shows the SMP

version of PAP aware MPI_Allgather() speedup over the native MVAPICH and the SMP

version of Direct algorithms for N-BODY and RADIX running with 4, 8, and 16

processes. The proposed PAP algorithm outperforms the conventional algorithms. The

improvement increases with more number of processes.

Table 6.3 PAP_Shm_Direct MPI_Allgather() speedup over native MVAPICH and

the shared memory aware Direct algorithms for N-BODY and RADIX running with

different number of processes.

 Speedup over native
MVAPICH algorithm

Speedup over Shm_Direct
algorithm

N-BODY RADIX N-BODY RADIX
4 processes 1.01 0.92 0.97 1.11
8 processes 1.03 1.53 0.92 1.19
16 processes 1.52 1.62 1.31 1.22

 104

6.6 Summary

MPI_Alltoall() and MPI_Allgather() are two of the most communication-intensive

primitives in MPI. Imbalanced PAP has an adverse impact on their performance. In this

chapter, I have proposed RDMA-based PAP aware MPI_Alltoall() and MPI_Allgather()

algorithms and extended them to be shared memory aware without introducing any extra

control messages.

The performance results indicate that the proposed PAP aware MPI_Alltoall() and

MPI_Allgather() algorithms perform better than the native MVAPICH and the traditional

Direct and SMP-aware algorithms when processes arrive at different times. They also

improve the communication performance in the applications studied.

While this study was focused at MPI_Alltoall() and MPI_Allgather(), it can be

directly extended to other collectives. The proposed techniques can be applied to other

alltoall and allgather algorithms such as Bruck or Recursive Doubling. However, one has

to bear in mind that due to synchronization between different steps of these algorithms

they may not achieve the highest performance as in the Direct algorithm.

 105

Chapter 7: Conclusion and Future Work

In this dissertation, I have proposed and evaluated a number of algorithms for MPI

collective operations over high-performance interconnects. I have proposed how to take

advantage of advanced features provided by modern interconnects such as RDMA, multi-

rail communication, and multi-connection capability in order to design efficient

collective operations. My work has also taken into account the multi-core and SMP

clusters architectures, as well as the runtime process arrival pattern issue.

In Chapter 3, I have presented new designs that exploit multi-rail communication

techniques over multiple independent networks/rails, or multi-port NICs, to overcome

bandwidth limitations. I have adapted well-kown multi-port algorithms for a number of

collective operations, including scatter, gather, allgather and alltoall personalized

exchange to work over multi-rail networks using RDMA techniques. I have evaluated in

detail the performance improvement offered by the new approaches over QsNetII dual-rail

systems. The proposed techniques can achieve superior bandwidth improvement. The

RDMA-based multi-port scatter and gather algorithms include a tree-based and a Direct

algorithm. The allgather and alltoall algorithms include the Direct, Standard Exchange,

and Bruck algorithms. The performance results show that the algorithms are superior

over the native implementations. In fact, the multi-port RDMA-based Direct algorithms

for gather and allgather collectives gain an improvement of up to 2.15 for 4KB messages

and 1.49 for 32KB messages over elan_gather(), respectively. In addition, the RDMA-

based Direct alltoall outperforms elan_alltoall() up to 2.26 for 2KB messages

 106

The RDMA-based algorithms, however, did not perform well for short messages.

The native gather, allgather and alltoall implementation had a better latency for up to

512B, 2KB, and 512B, respectively. The reason is because shared memory operations

have absolute advantage over RDMA Reads or Writes for small messages on SMP/multi-

core nodes. To address this deficiency, in Chapter 4, I proposed RDMA-based and shared

memory aware multi-port algorithms to speedup the collectives for co-located processes

on SMP/multi-core nodes. I showed that concurrent shared memory transfer can greatly

improve the collectives performance for small to medium size messages. I proposed two

classes of SMP-aware allgather algorithms: SMP-aware Gather and Broadcast algorithm

and SMP-aware Direct and Bruck algorithms.

The SMP-aware Gather and Broadcast algorithm performed best for very short

messages up to 256B. The SMP-aware Bruck algorithm outperformed all algorithms

including elan_gather() for 512B to 8KB messages, with a 1.96 improvement factor for

4KB messages. The multi-port Direct allgather proposed in Chapter 3 was still the best

algorithm for 16KB to 1MB. The scalability results verifed the superiority of the

algorithms for various message sizes. In addition, the performance of NBODY and

RADIX applications as well as their communication performance was improved using

the proposed algorithms.

InfiniBand has been proposed as a high-performance interconnect. I showed that the

latest InfiniBand cards can provide much better performance and salability for

simultaneous communication over multiple connections. By taking advantage of this

feature, in Chapter 5, I proposed three multi-core and/or multi-connection aware

 107

MPI_Allgather() algorithms over ConnectX InfiniBand networks: (1) the Multi-group

Gather-based Multi-connection Aware MPI_Allgather() algorithm targeted at very small

messages. (2) the Single-group Multi-connection Aware MPI_Allgather() algorithm

targeted at small to medium messages, and (3) the Multi-group Multi-connection Aware

MPI_Allgather() algorithm for medium to large message sizes. I also compared the per-

node complexity of each of the proposed algorithm to estimate their performance.

The multi-group multi-connection aware algorithms performed better than the native

allgather implementation from 4KB to 64KB, mostly due to the use of multiple

concurrent connections and multiple cores. The gather-based algorithm showed the best

performance for very small messages, up to 32 bytes, mostly because this algorithm

efficiently used the available cores and lightly utilized the network communications.

Finally, the single-group multi-connection aware algorithm outperformed all other

algorithms from 64B to 2KB, since it had a lighter shared memory volume.

Lastly, in Chapter 6, I took into account the process arrival pattern impact on the

collective communications. I studied the process arrival pattern behavior of NAS parallel

benchmarks and showed that indeed processes arrive at different times at collectives. I

then evaluated the impact of the process arrival pattern on the performance of collectives.

The results confirmed that it is essential to have process arrival pattern aware collecives.

For this, I proposed RDMA-based process arrival pattern aware alltoall and allgather

algorithms and then extended them to be shared memory aware. For performance

reasons, I utilized the inherent features of RDMA data transfer mechanisms for

notification purposes to avoid introducing any extra control messages.

 108

The performance results indicated that the proposed PAP aware MPI_Alltoall() and

MPI_Allgather() algorithms perform better than the native MVAPICH and the traditional

non PAP aware Direct and shared memory algorithms when processes arrive at different

times. The shared memory and RDMA-based PAP aware algorithms were designed to

target smaller message size. The proposed MPI_Alltoall() algorithms outperformed the

native implementation by up to 3.1 times at 8KB for PAP_Direct and 3.5 times at 4B for

PAP_Shm_Direct. The proposed MPI_Allgather() algorithms gained an improvement

factor of 3.1 at 8KB for PAP_Direct and 2.5 times at 1B for PAP_Shm_Direct. In

addition, the communication performance of NAS FT, NBODY and RADIX applications

were improved by up to 63% over the native and non PAP aware implementations.

It should be mentioned while this dissertation was focused at Quadrics and

InfiniBand networks, the proposed collective algorithms can be used on top of any

RDMA-based interconnects. For instance, the work proposed on InfiniBand can be

directly applied to iWARP Ethernet without any modifications, as the algorithms were

designed on top of OFED, and thus they are portable.

7.1 Future Work

The high-performance and rich features offered by modern interconnects such as

QsNetII and InfiniBand make them very attractive for large scale system design. In this

dissertation, I have exploited such modern features along with multi-core/SMP

architectures to design efficient and scalable MPI collective communications. I would

like to extend this work and also explore several other interesting research topics in the

future.

 109

 Extension of Multi-connection and Multi-core Aware Algorithms

I would like to extend my work in this area to other collective communications of

interest such as MPI_Reduce(), MPI_Allreduce(), etc. It is also interesting to discover

how such algorithms behave on emerging large multi-core clusters with new architectures

(such as NUMA) and more number of cores per nodes. I would also like to investigate

the performance of the proposed collectives over other InfiniBand transport protocols.

 Extension of PAP Aware Algorithms to Other Collectives

My PAP algorithms are based on the Direct algorithm. I would like to extend it to

PAP Bruck and Recursive Doubling algorithms for allgather and alltoall operations. I am

interested in devising other process arrival pattern aware collectives over emerging multi-

core clusters. I would also like to use a larger multi-core SMP cluster in the future to

evaluate the algorithms as the process arrival pattern will become even more crucial for

larger systems. It is very important to optimize the algorithms for such large systems.

 Collectives for Next-Generation Programming Models

One of the challenges to petascale computing is the programmer productivity. The

Partitioned Global Address Space (PGAS) programming model [23] has been gaining

rising attention due to its prospects as the basis for productive parallel programming. The

PGAS model provides for ease-of-use through its global shared address space view. The

DARPA HPCS [20] program has also introduced new promising PGAS languages, such

as X10 [83] and Chapel [18]. Devising efficient collective communications for such

languages is crucial for their performance. I would like to exploit the techniques used in

 110

this dissertation as well as new novel techniques designed according to the specific

features offered by these languages.

 Onloading vs. Offloading vs. Hybrid Communication Stacks

Some of the networking companies such as Mellanox have consistently tried to

offload most of the communication tasks to programmable processors on the network

interface cards. On the contrary, some other companies like QLogic have designed their

host channel adapters with limited offloading capability. Their argument is that

computing nodes are becoming more powerful due to the availability of multi- and soon

many-core processors. Therefore, it is better to onload most of the protocol processing

tasks. There is right now a debate among the research community as towhether we should

move toward onloading or offloading. There is also a middle-ground, where some

communication tasks should be offloaded while others are handled by the host

processors. I would like to investigate the impact of these design alternatives on the

performance of collective communications.

 111

References

[1] A. Alexandrov, M. Ionescu, K.E. Schauser, and C. Scheiman, “LogGP: Incorporating

Long Messages into the LogP model - One step closer towards a realistic model for

parallel computation,” Proc. of 7th Annual Symposium on Parallel Algorithms and

Architecture (SPAA), July, 1995.

[2] Q. Ali, S.P. Midkiff, and V.S. Pai, “Efficient High Performance Collective

Communication for the Cell Blade,” Proc. of 23rd ACM International Conference on

Supercomputing (ICS), 2009.

[3] O. Aumage, E. Brunet, G. Mercier, and R. Namyst, “High-Performance Multi-Rail

Support with the NewMadeleine Communication Library,” 16th International

Heterogeneity in Computing Workshop (HCW), Proc. of 21st International Parallel

and Distributed Processing Symposium (IPDPS), Long Beach, CA, 2007.

[4] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur, and J.

L. Traeff, “MPI on a Million Processors,” 16th EuroPVM/MPI, Lecture Notes in

Computer Science (LNCS) 5759, Espoo, Finland, September, 2009.

[5] A. Bar-Noy and S. Kipnis, “Designing Broadcasting Algorithms in the Postal Model

for Message Passing Systems,” Proc. of 4th Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA), San Diego, CA, pages 13-22, 1992.

[6] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D. Roweth, F. Petrini, and J.

Nieplocha, “QsNetII: Defining High-performance Network Design,” IEEE Micro,

25(4): 34-47, 2005.

[7] R. A.F. Bhoedjang, T. Rühl, and H. E. Bal, “User-Level Network Interface

Protocols,” IEEE Computer, 31(11): 53-60, November, 1998.

[8] S.H. Bokhari, “Multiphase Complete Exchange on Paragon, SP2, and CS-2,” IEEE

Parallel and Distributed Technology, 4(3): 45-59, 1996.

[9] R. Brightwell, D. Doerfler, and K.D. Underwood, “A Comparison of 4X InfiniBand

and Quadrics elan-4 Technologies,” Proc. of 6th IEEE International Conference on

Cluster Computing (Cluster), pages 193-204, 2004.

 112

[10] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient Algorithms

for All-to-all Communications in Multiport Message-passing Systems,” IEEE Trans.

Parallel and Distributed Systems, 8(11): 1143-1156, 1997.

[11] D. Buntinas, G. Mercier, and W. Gropp, “Data Transfers between Processes in an

SMP System: Performance Study and Application to MPI,” Proc. of 35th

International Conference on Parallel Processing (ICPP), 2006.

[12] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini, “User-level Communication in

Cluster-based Servers,” Proc. of the 8th Symposium on High-Performance

Architecture (HPCA), February 2002.

[13] L. Chai, A. Hartono, and D.K. Panda, “Designing High Performance and Scalable

MPI Intra-node Communication Support for Clusters,” Proc. of 8th IEEE

International Conf. on Cluster Computing (Cluster), Barcelona, Spain, 2006.

[14] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “Designing An Efficient Kernel-level

and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core

Systems,” Proc. of 37th International Conference on Parallel Processing (ICPP),

Portland, Oregon, September, 2008.

[15] E. Chan, R. Van de Geijn, W. Gropp, and R. Thakur, “Collective Communication on

Architectures that Support Simultaneous Communication over Multiple Links,”

Proc. of 11th ACM SIGPLAN Symposium on Principles and practice of parallel

programming (PPoPP), New York City, NY, pages 2-11, 2006.

[16] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L. Gurvits, “Using Multirail

Networks in High Performance Clusters,” Concurrency and Computation: Practice

and Experience, 15(7-8): 625-651, 2003.

[17] ConnectX InfiniBand Adapters, product brief, Mellanox Technologies, Inc.

http://www.mellanox.com/pdf/products/hca/ConnectX_IB_Card.pdf

[18] Cray, Inc. Chapel Programming Language, http://chapel.cs.washington.edu/.

[19] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R.

Subramonian, and T. von Eiken, “LogP: Towards a Realistic Model of Parallel

Computation,” Proc. of 4th ACM SIGPLAN Symposium on Principles and Practice of

 113

Parallel Programming (PPoPP), 1993.

[20] DARPA. High Productivity Computer Systems, http://www.highproductivity.org/.

[21] A. Faraj, P. Patarasuk, X. Yuan, “A Study of Process Arrival Patterns for MPI

Collective Operations,” International Journal of Parallel Programming, 36(6): 543-

570, 2008.

[22] A. Faraj, P. Patarasuk, and X. Yuan, “Bandwidth Efficient All-to-All Broadcast on

Switched Clusters,” International Journal of Parallel Programming 36(4): 426-453,

2008.

[23] M. Farreras, G. Almasi, C. Cascaval, and T. Cortes, “Scalable RDMA performance

in PGAS languages,” Proc.of 23rd IEEE International Parallel and Distributed

Processing Symposium (IPDPS), Rome, Italy, May, 2009.

[24] E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J. D. J. Squyres, V. Sahay, P.

Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and

T.Woodall, “OpenMPI: Goals, Concept, and Design of a Next Generation MPI

Implementation,” Proc. of 11th European PVM/MPI, 2004.

[25] R. Hockney, “The Communication Challenge for MPP, Intel Paragon and Meiko CS-

2,” Parallel Computing, 20(3): 389–398, 1994.

[26] T. Hoefler, T. Schneider, and A. Lumsdaine, “Accurately Measuring Collective

Operations at Massive Scale,” Proc. of 22nd IEEE International Parallel &

Distributed Processing Symposium (IPDPS), Miami, FL, pages 1-8, April, 2008.

[27] T. Hoefler and J.L. Traff, “Sparse Collective Operations for MPI,” International

Workshop on High-level Parallel Programming Models and Supportive

Environments, Proc. of 23rd IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Rome, Italy, May, 2009.

[28] W. Huang, M. Koop, and D.K. Panda, “Efficient One-Copy MPI Shared Memory

Communication in Virtual Machines,” Proc. of 10th IEEE International Conf. on

Cluster Computing (Cluster), Tsukuba, Japan, September, 2008.

[29] W. Huang, G. Santhanaraman, H. -W. Jin, and D. K. Panda, “Scheduling of MPI-2

One Sided Operations over InfiniBand,” Workshop on Communication Architecture

 114

on Clusters (CAC),), Proc. of 19th International Parallel and Distributed Processing

Symposium (IPDPS), pages 215, 2005.

[30] IBM BlueGene/P, IBM, Http://www.research.ibm.com/journal/rd/521/team.html.

[31] InfiniBand Architecture, http://www.infinibandta.org.

[32] H.-W. Jin, S. Sur, L. Chai, and D.K. Panda, “LiMIC: Support for High-performance

MPI Intra-node Communication on Linux Clusters,” Proc. of 34th International

Conference. on Parallel Processing (ICPP), Denver, Colorado, 2005.

[33] S. Kamil, J. Shalf, L. Oliker, and D. Skinner, “Understanding Ultra-Scale

Application Communication Requirements,” Proc. of IEEE International Workload

Characterization Symposium (IISWC), pages 178 – 187, October, 2005.

[34] T. Kielmann, H.E. Bal, and K. Verstoep, “Fast Measurement of LogP Parameters for

Message Passing Platforms,” 4th Workshop on Runtime Systems for Parallel

Programming (RTSPP), Proc. of 14th International Parallel and Distributed

Processing Symposium (IPDPS), 2000.

[35] M. Koop, T. Jones, and D. K. Panda, “MVAPICH-Aptus: Scalable High-

Performance Multi-Transport MPI over InfiniBand,” International Parallel and

Distributed Processing Symposium (IPDPS 2008), Miami, Florida, April, 2008.

[36] M. Koop, J. Sridhar, and D.K. Panda, “Scalable MPI Design over InfiniBand using

eXtended Reliable Connection,” Proc. of 10th IEEE International Conf. on Cluster

Computing (Cluster), Tsukuba, Japan, September, 2008.

[37] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, M.

Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith, and C. J. Archer, “The deep

Computing Messaging Framework: generalized Scalable Message Passing on the

Blue Gene/P Supercomputer,” Proc. of 22nd International Conference on

Supercomputing (ICS), 2008.

[38] J. Liu, A. Vishnu, and D.K. Panda, “Building Multirail InfiniBand Clusters: MPI-

level Design and Performance Evaluation,” Proc. of 2004 ACM/IEEE Conf. on

Supercomputing (SC 2004), 2004.

[39] A.R. Mamidala, L. Chai, H.-W. Jin, and D.K. Panda, “Efficient SMP-aware MPI-

 115

level Broadcast over InfiniBand's Hardware Multicast,” Workshop on

Communication Architecture on Clusters (CAC), Proc. of 20th International Parallel

and Distributed Processing Symposium (IPDPS), Pittsburgh, PA, November, 2006.

[40] A. Mamidala, R. Kumar, D. De, and D. K. Panda, “MPI Collectives on Modern

Multicore Clusters: Performance Optimizations and Communication

Characteristics,” Proc. of 8th International Symposium on Cluster Computing and the

Grid (CCGrid), Lyon, France, May, 2008.

[41] A. Mamidala, J. Liu, and D. K. Panda, “Efficient Barrier and Allreduce on IBA

clusters using hardware multicast and adaptive algorithms,” Proc. of 6th IEEE

International Conf. on Cluster Computing (Cluster), San Diego, California,

September, 2004.

[42] A.R. Mamidala, A. Vishnu, and D.K. Panda, “Efficient Shared Memory and RDMA

based Design for MPI-allgather over InfiniBand,” Proc. of EuroPVM/MPI, pages 66-

75, Bonn, Germany, September, 2006.

[43] P.K. Mckinley, Y.-J. Tsai, and D.F. Robinson, “Collective communication in

wormhole-routed massively parallel computers.” IEEE Computer, 28(12):39-50,

1995.

[44] Mellanox technologies, http://www.mellanox.com/.

[45] MPI: Message Passing Interface Forum, http://www.mpi-forum.org/.

[46] MPICH - A Portable MPI Implementation, http://www.mcs.anl.gov/mpi/mpich.

[47] MVAPICH, http://mvapich.cse.ohio-state.edu/.

[48] Myricom, http://www.myri.com/.

[49] NPB, http://www.nas.nasa.gov/Resources/Software/npb.html

[50] R. Rabenseifner, “Automatic MPI counter profiling of all users First results on a

CRAY T3E 900-512,” the Message Passing Interface Developer’s and User’s

Conference, pages 77–85, 1999.

[51] S. Pakin, “Receiver-initiated Message Passing over RDMA Networks,” Proc. of the

22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS),

Miami, Florida, April, 2008.

 116

[52] P. Patarasuk and X. Yuan, “Efficient MPI_Bcast across Different Process Arrival

Patterns,” Proc. of 22nd International Parallel and Distributed Processing

Symposium (IPDPS), Miami, Florida, April, 2008

[53] PDSH, http://www.llnl.gov/linux/pdsh/.

[54] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Hardware- and Software-Based

Collective Communication on the Quadrics Network,” Proc. of 2001 IEEE

International Symposium on Network Computing and Applications (NCA),

Cambridge, MA, pages 24, October, 2001.

[55] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Performance Evaluation of the

Quadrics Interconnection Network,” Journal of Cluster Computing, 6(12): 125-142,

2003.

[56] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing Supercomputer

Performance: Identifying and Eliminating the Performance Variability on the ASCI

Q Machine,” Proc. of the 2003 Conference on High Performance Networking and

Computing (SC), November 2003.

[57] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G.E. Fagg, E. Gabriel, and J.J.

Dongarra, “Performance Analysis of MPI Collective Operations,” Proc. of 19th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), Denver,

Colorado, April, 2005.

[58] Y. Qian and A. Afsahi, “Efficient RDMA-based Multi-port Collectives on Multi-rail

QsNetII Clusters,” 6th Workshop on Communication Architecture for Clusters

(CAC), Proc. of 20th International Parallel and Distributed Processing Symposium

(IPDPS), Rhodes Island, Greece, April, 2006.

[59] Y. Qian and A. Afsahi, “Efficient Shared Memory and RDMA based Collectives on

Multi-rail QsNetII SMP Clusters,” Cluster Computing, Journal of Networks, Software

Tools and Applications, 11(4): 341-354, 2008.

[60] Y. Qian and A. Afsahi, “High Performance RDMA-based Multi-port All-gather on

Multi-rail QsNetII,” Proc. of the 21st International Symposium on High Performance

Computing Systems and Applications (HPCS), Saskatoon, SK, Canada, May, 2007.

 117

[61] Y. Qian and A. Afsahi, “Process Arrival Pattern Aware Alltoall and Allgather on

InfiniBand Clusters”, International Journal of Parallel Programming, under review.

[62] Y. Qian and A. Afsahi, “Process Arrival Pattern and Shared Memory Aware Alltoall

on InfiniBand”, 16th EuroPVM/MPI, Lecture Notes in Computer Science (LNCS)

5759, 250-260, Espoo, Finland, September, 2009.

[63] Y. Qian and A. Afsahi, “RDMA-based and SMP-aware Multi-port Allgather on

Multi-rail QsNetII SMP Clusters”, Proc. of 36th International Conference on Parallel

Processing (ICPP), XiAn, China, September, 2007.

[64] Y. Qian, M.J. Rashti, and A. Afsahi, “Multi-connection and Multi-core Aware All-

Gather on InfiniBand Clusters”, Proc. of 20th IASTED International Conference on

Parallel and Distributed Computing and Systems (PDCS), Orlando, Florida, USA,

November, 2008.

[65] Quadrics, http://www.quadrics.com/.

[66] M.J. Rashti and A. Afsahi, “10-Gigabit iWARP Ethernet: Comparative Performance

Analysis with InfiniBand and Myrinet-10G”, 7th Workshop on Communication

Architecture for Clusters (CAC), Proc. of 21st International Parallel and Distributed

Processing Symposium (IPDPS), Long Beach, California, USA, March, 2007.

[67] M.J. Rashti and A. Afsahi, “A Speculative and Adaptive MPI Rendezvous Protocol

over RDMA-enabled Interconnects”, International Journal of Parallel

Programming, 37(2): 223-246, April, 2009.

[68] RDMA Consortium. iWARP protocol specification,

http://www.rdmaconsortium.org/

[69] H. Ritzdorf and J.L. Traff, “Collective Operations in NEC’s High-performance MPI

Libraries,” Proc. of 20th International Parallel and Distributed Processing

Symposium (IPDPS), April, 2006.

[70] D. Roweth and D. Addison, “Optimized Gather Collectives on QsNetII,” Proc. of

EuroPVM/MPI, pages 407-414, 2005.

[71] D. Roweth, A. Pittman, and J. Beecroft, “Performance of All-to-all on QsNetII,”

Quadrics White Paper, 2005, http://www.quadrics.com/.

 118

[72] H. Shan, J.P. Singh, L. Oliker, and R. Biswas, “Message Passing and Shared Address

Space Parallelism on an SMP Cluster,” Parallel Computing, 29(2): 167–186, 2003.

[73] SHMEM: Shared Memory Access, Cray Man Page Collection: S-2383-23,

Available: http://docs.cray.com/.

[74] S. Sistare, R. vandeVaart, and E. Loh, “Optimization of MPI Collectives on Clusters

of Large-scale SMPs,” Proc. of 1999 ACM/IEEE Conf. on Supercomputing (SC),

1999.

[75] M. Small and X. Yuan, “Maximizing MPI Point-to-Point Communication

Performance on RDMA-enabled Clusters with Customized Protocols,” Proc. of 23rd

International Conference on Supercomputing (ICS), 2009

[76] S. Sur, U.K.R. Bondhugula, A. Mamidala, H.-W. Jin, and D.K. Panda, “High

Performance RDMA based All-to-all Broadcast for InfiniBand Clusters,” Proc. of

12th International Conference on High Performance Computing (HiPC), 2005.

[77] S. Sur, H. Jin, L. Chai, and D.K. Panda, “RDMA Read based Rendezvous Protocol

for MPI over InfiniBand: Design Alternatives and Benefits,” Proc. of 11th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 32-39, 2006.

[78] S. Sur, H.-W. Jin, and D.K. Panda, “Efficient and Scalable All-to-all Personalized

Exchange for InfiniBand Clusters,” Proc. of 33rd International Conf. on Parallel

Processing (ICPP), pages 275-282, 2004.

[79] S. Sur, M. Koop, L. Chai, and D.K. Panda, “Performance Analysis and Evaluation of

Mellanox ConnectX InfiniBand Architecture with Multi-core Platforms,” Proc. of

15th IEEE International Symposium on Hot Interconnects (HotI), Palo Alto, CA,

2007.

[80] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective

communication operations in MPICH,” International Journal of High Performance

Computing Applications, 19(1): 49-66, 2005.

[81] The GM and MX API. Available: http://www.myri.com.

[82] The OpenFabrics Alliance, http://www.openfabrics.org.

 119

[83] The X10 Programming Language, http://www.research.ibm.com/x10/.

[84] V. Tipparaju and J. Nieplocha,” Optimizing All-to-all Collective Communication by

Exploiting Concurrency in Modern Networks,” Proc. of 2005 ACM/IEEE Conf. on

Supercomputing (SC), 2005.

[85] V. Tipparaju, J. Nieplocha and D.K. Panda, “Fast Collective Operations using Shared

and Remote Memory Access Protocols on Clusters,” Proc. of 17th IEEE International

Parallel and Distributed Processing Symposium (IPDPS 2003), 2003.

[86] Top 500 Supercomputing Sites, http://www.top500.org/

[87] J.L. Traff, “Efficient Allgather for Regular SMP-clusters”, Proc. of EuroPVM/MPI,

pages 58-65, 2006.

[88] S.S. Vadhiyar, G.E.Fagg and J. Dongarra, “Automatically Tuned Collective

Communications,” Proc. of 2000 ACM/IEEE Conf. on Supercomputing (SC), 2000.

[89] J.S. Vetter and F. Mueller, “Communication Characteristics of Large-scale Scientific

Applications for Contemporary Cluster Architectures,” Journal of Parallel and

Distributed Computing, 63(9): 853-865, 2003.

[90] Virtual Protocol Interconnect (VPI), Whitepaper, Mellanox Technologies, Inc.

http://www.mellanox.com/pdf/prod_architecture/Virtual_Protocol_Interconnect_VPI

.pdf

[91] M. Wu, R.A. Kendall and K. Wright, “Optimizing Collective Communications on

SMP Clusters,” Proc. of 34th International Conference on Parallel Processing (ICPP),

pages 399- 407, 2005.

[92] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin, and K. Li,

“Expericences with VI communication for Database Storage.” Proc. of International

Symposium on Computer Architecture (ISCA), 2002.

