
Design and Evaluation of Efficient Collective Communications on 

Modern Interconnects and Multi-core Clusters 

 

 

by 

 

Ying Qian 

 

 

 

 

A thesis submitted to the Department of Electrical and Computer Engineering 

in conformity with the requirements for 

the degree of Doctor of Philosophy 

 

 

 

 

Queen’s University 

Kingston, Ontario, Canada 

(January, 2010) 

 

Copyright ©Ying Qian, 2010 



 ii 

Abstract 

Two driving forces behind high-performance clusters are the availability of modern 

interconnects and the advent of multi-core systems. As multi-core clusters become 

commonplace, where each core will run at least one process with multiple intra-node and 

inter-node connections to several other processes, there will be immense pressure on the 

interconnection network and its communication system software.  

Many parallel scientific applications use Message Passing Interface (MPI) collective 

communications intensively. Therefore, efficient and scalable implementation of MPI 

collective operations is critical to the performance of applications running on clusters. In 

this dissertation, I propose and evaluate a number of efficient collective communication 

algorithms that utilize the modern features of Quadrics and InfiniBand interconnects as 

well as the availability of multiple cores on emerging clusters.  

To overcome bandwidth limitations and to enhance fault tolerance, using multiple 

independent networks known as multi-rail networks is very promising. Quadrics multi-

rail QsNetII network is constructed using multiple network interface cards (NICs) per 

node, where each NIC is connected to a rail.  I design and evaluate a number of Remote 

Direct Memory Access (RDMA) based multi-port collective operations on multi-rail 

QsNetII network. I also extend the gather and allgather algorithms to be shared memory 

aware for small to medium messages. The algorithms prove to be much more efficient 

than the native Quadrics MPI implementation. 

ConnectX is the newest generation of InfiniBand host channel adapters from 

Mellanox Technologies. I provide evidence that ConnectX achieves scalable performance 
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for simultaneous communication over multiple connections. Utilizing this ability of 

ConnectX cards, I propose a number of RDMA based multi-connection and multi-core 

aware allgather algorithms at the MPI level. My algorithms are devised to target different 

message sizes, and the performance results show that they outperform the native 

MVAPICH implementation. 

Recent studies show that MPI processes in real applications could arrive at an MPI 

collective operation at different times. This imbalanced process arrival pattern can 

significantly affect the performance of the collective communication operation. 

Therefore, design and efficient implementation of collectives under different process 

arrival patterns is critical to the performance of scientific applications running on modern 

clusters. I propose novel RDMA-based process arrival pattern aware alltoall and allgather 

for different message sizes over InfiniBand clusters. I also extend the algorithms to be 

shared memory aware for small to medium messages under process arrival patterns.  The 

performance results indicate that the proposed algorithms outperform the native 

MVAPICH implementation as well as other non-process arrival pattern aware algorithms 

when processes arrive at different times.  
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Chapter 1: Introduction 

With the introduction of high-speed networks, the trend in the high-performance 

computing (HPC) community is to use network-based computing systems such as clusters 

of multiprocessors to achieve high performance. Symmetric multiprocessors (SMP) and 

non-uniform memory access (NUMA) clusters are the predominant platforms for HPC 

due to their cost-performance effectiveness [86]. SMP and NUMA nodes are traditionally 

equipped with multiple single-core processors. However, industry has recently adopted 

the development of chip multiprocessors, or multi-cores, for general-purpose 

applications. With the emergence of such multi-core clusters, each core will run at least 

one process with multiple intra-node and inter-node connections to several other 

processes. This will put immense pressure on the interconnection network and its 

communication system software. Therefore, researchers in academia and industry have 

been working on improving the performance of communication subsystems through 

advancements in high-speed networking technologies and messaging layers [4, 6, 7, 16, 

35, 37, 90]. 

1.1 Message Passing and Collective Communications 

Most scientific applications running on HPC use the Message Passing Interface 

(MPI) [45] as the parallel programming paradigm of choice. In MPI, data transfer is done 

using explicit communications. MPI provides two kinds of communications: point-to-

point and collective. Previous studies of application usage show that the performance of 

collective communications is critical to HPC applications, including those in [26, 56, 90]. 

The study in [50] shows that some applications spend more than eighty percent of their 

overall communication time in collective operations. They also use a large number of 
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collective operations, some with very large payloads and some with small payloads 

below 2KB [33]. As such, collective communication has been an active area of research 

[2, 22, 27, 39, 41, 54, 69, 70, 74, 76, 80, 91]. This trend is still ongoing, especially with 

the availability of contemporary interconnects and emerging architectures.  

Collective communications involve a group of MPI processes. They can be 

categorized into one-to-all, all-to-one, alltoall, and synchronization primitives. There are 

two services in the one-to-all category: broadcast and scatter. In broadcast, the same 

message is delivered from a root process to all other processes. In scatter, which is also 

called personalized broadcast, the sending process delivers different messages to all other 

processes. Gather, an all-to-one operation, is the reverse of scatter. In gather, messages 

from different processes are gathered by the root process. In alltoall communications, all 

processes exchange data with each other. In alltoall broadcast, also called allgather, each 

process sends the same data to all other processes. In alltoall personalized exchange, also 

called alltoall, each process has a different data for every other processes. Barrier, a 

synchronization operation, is a global control operation that synchronizes across all 

processes in the group. 

1.2 Modern Interconnects and User-level Messaging 

Currently, several switch-based interconnects provide low latency and high 

bandwidth for HPC. Myrinet [48], Quadrics [65], InfiniBand [31], and iWARP Ethernet 

[68] are the most famous interconnects available today. They use the user-level 

messaging layers GM and MX [81], Elan4lib [65], and OpenFabrics Enterprise 

Distribution (OFED) [82]  respectively. These messaging layers provide protected user-

level access to the network interface. The user-level network protocols offered by these 
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high-speed interconnects are designed to bypass the operating system, and to thereby 

reduce the end-to-end latencies and lower the CPU utilization. These interconnects have 

several new features to provide better performance. They all support one-sided 

communications at the user level known as Remote Direct Memory Access (RDMA) 

Write, RDMA Read and RDMA Atomic operations.  RDMA is a one-sided operation that 

allows a process to access the memory of a remote process.  RDMA has been used in 

enhancing the performance of point-to-point and collective communications in MPI [29, 

36, 42, 51, 67], to name a few, as well as other parallel programming paradigms such as 

Partitioned Global Address Space (PGAS) languages [23]. RDMA has also been used to 

design communication subsystems for databases and file systems [92] and to implement 

web servers on clusters [12].   

1.3 Problem Statement 

With the availability of fast interconnects and the advent of multi-core technology, 

there is a dire demand for improving the performance of communication subsystems in 

modern clusters in general, and collectives in particular.  In essence, this work tries to 

address the following questions:  

(1) How can we effectively utilize the new features of modern interconnects in the 

design of collectives?  

(2) How can we devise collectives that could benefit from the emerging SMP/multi-

core nodes?  

(3) How can we adapt existing collective algorithms on such architectures?  

(4) How can we design collectives under different process arrival patterns? 
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This dissertation seeks to understand the underlying architectures of the systems and 

the contemporary networks, and to efficiently utilize them to improve the performance of 

collective communications. It tackles a number of challenges including efficient data 

transfer mechanisms for intra-node and inter-node communications, efficient algorithms 

and protocols for different message sizes, algorithm adaptations for SMP and multi-core 

systems, process skew time, and scalability. Specifically, features such as RDMA, multi-

rail communication, hardware broadcast, shared memory intra-node vs. inter-node 

message passing, multi-core awareness, multi-connection capability, and process arrival 

pattern awareness have been used to propose novel algorithms and protocols.   

1.4 Contributions 

In this dissertation, I have proposed several contributions to the efficient design and 

implementation of collective communications, as follows: 

 RDMA-based Multi-port Collectives on Multi-rail Quadrics QsNetII 

To overcome bandwidth limitations and to enhance fault tolerance, using multiple 

independent networks known as multi-rail networks is very promising. Quadrics multi-

rail QsNetII network [65] is constructed using multiple network interface cards (NICs) 

per node, each NIC connecting to a rail. However, this feature has been available only for 

point-to-point communications. This dissertation contributes by designing and 

implementing RDMA-based multi-port algorithms for scatter, gather, allgather, and 

alltoall collectives on top of multi-rail Quadrics QsNetII systems.   

Performance results indicate that my multi-port collectives implementations are 

better than the native implementation except for messages less than 512 bytes. The 

proposed multi-port gather gains an improvement of up to 2.15 for 4KB message. The 
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RDMA-based allgather is better than the Quadrics implementation in the elan_gather() 

for messages larger than 2KB. The allgather Direct algorithm gains an improvement of 

up to 1.49 for 32KB messages over the native elan_gahter(). My multi-port Direct 

alltoall algorithm is also much better than the native elan_alltoall() for medium and large 

size messages, with up to a factor of 2.26 improvement for 2KB messages. It should be 

noted that the native library, both in Quadrics [55] and MVAPCH [47], implements well-

known collective communication algorithms. 

 RDMA-based and Shared Memory Aware Multi-port Gather and Allgather on 

Multi-rail Quadrics QsNetII 

Multi-rail communication improves the performance for medium to large messages.  

Shared memory communication improves the performance for short messages.  However, 

simply replacing network communication with shared memory transactions for intra-node 

communication will not enhance the collective performance much. This dissertation 

proposes three optimized SMP aware allgather algorithms for short to medium message 

sizes, SMP-aware Gather and Broadcast algorithm and SMP-aware Direct and Bruck 

[10] algorithm. In the SMP-aware Gather and Broadcast algorithm, I first do an SMP-

aware gather algorithm across all processes in the system and then broadcast the gathered 

data to all processes. In the SMP-aware Direct and Bruck algorithm, I adapt the 

traditional multi-port Direct and Bruck allgather algorithms to SMP clusters by 

performing them across the SMP nodes rather than processes. Shared memory gather and 

broadcast operations are used within the nodes.  

Compared to the native implementation in QsNetII, the SMP-aware Gather and 

Broadcast algorithm is the best algorithm for up to 256-byte messages. For short to 
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medium size messages (512B to 8KB), the SMP-aware Bruck algorithm outperforms all 

other algorithms. An improvement of up to 1.96 for 4KB message can be observed using 

the SMP-aware Bruck algorithm. For medium to large messages (16KB to 1MB), the 

RDMA-based Direct algorithm is superior among all algorithms, gaining an 

improvement of up to 1.49 for 32KB messages. 

 Multi-connection and Multi-core Aware Allgather on InfiniBand Clusters 

This dissertation provides evidence that the latest ConnectX InfiniBand cards [44] 

achieve scalable performance for simultaneous communication over multiple connections 

(up to a certain number of connections). Utilizing this, I propose a number of RDMA 

based multi-connection and multi-core aware allgather algorithms. Specifically, the 

proposed algorithms are Single-group Multi-connection Aware, Multi-group Gather-

based Multi-connection Aware, and Multi-group Multi-connection Aware allgather 

algorithms. The Single-group Multi-connection Aware algorithm is a multi-connection 

extension of the proposed SMP-aware algorithm targeted at small to medium messages. 

Designed for small messages, the Multi-group Gather-based Multi-connection Aware 

allgather algorithm takes advantage of the availability of multiple cores to distribute the 

CPU processing load. Finally, to further utilize the multi-connection capability of the 

InfiniBand network, I propose the Multi-group Multi-connection Aware allgather 

algorithm for medium to large message sizes.  

My algorithms are devised to target different message sizes and the performance 

results show that they outperform the native MVAPICH implementation for up to 128KB 

messages. The gather-based algorithm has the best performance for very small messages 

up to 32 bytes. The single-group multi-connection aware algorithm outperforms all other 



  7 

algorithms from 64 bytes up to 2KB. From 4KB to 64KB, the 2-group multi-connection-

aware algorithm performs the best. 

 Process Arrival Pattern Aware Collectives on Multi-core InfiniBand Clusters 

I provide evidence, and confirm previous observations, that MPI processes in real 

applications could arrive at an MPI collective operation at different times. This 

imbalanced process arrival pattern can significantly affect the performance of the 

collective operation and consequently the application itself. Therefore, its efficient 

implementation under different process arrival patterns is critical to the performance of 

scientific applications running on modern clusters. This dissertation proposes RDMA-

based and process arrival pattern aware allgather and alltoall collectives on top of 

InfiniBand. To boost the performance for small messages, the process arrival pattern 

aware allgather and alltoall algorithms are enhanced with shared memory awareness. 

The process arrival pattern aware alltoall algorithms are better than their non process 

arrival pattern aware counterparts for all message sizes. My algorithms are also superior 

to the native MVAPICH, with an improvement factor of 3.1 at 8KB for the Direct 

algorithm and 3.5 at 4B for shared memory Direct algorithm, with a maximum 

imbalanced factor (MIF) of 32. With a larger MIF of 512, the improvements are 1.5 and 

1.2, respectively. The process arrival pattern aware allgather Direct algorithms are also 

better than their non-process arrival pattern aware counterparts for most of the message 

sizes. The proposed allgather algorithms gain an improvement factor of 3.1 at 8KB 

compared to MVAPICH for RDMA-based version and 2.5 times at 1B for shared 

memory aware version, with MIF equal to 32. With a larger MIF of 512, 1.3 and 1.2 

times improvement are achieved respectively. 
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1.5 Dissertation Outline 

The rest of this dissertation is organized as follows. In Chapter 2, I provide the 

background material for this study. I will discuss the message passing programming 

paradigm and then introduce MPI collective communication primitives in detail. I will 

also introduce two popular high-performance interconnects and their user-level 

messaging protocols. The communication and port modeling used in this dissertation are 

provided at the end of Chapter 2. In Chapter 3, I will present high performance RDMA-

based multi-port collectives on multi-rail QsNetII. RDMA-based and SMP-aware multi-

port allgather on multi-rail QsNetII SMP clusters will be introduced in Chapter 4. In 

Chapter 5, I design and implement multi-connection aware collectives on InfiniBand 

clusters. In Chapter 6, I take the process arrival pattern into consideration for devising 

collectives, and propose process arrival pattern aware alltoall and allgather algorithms. 

Finally I conclude the dissertation in Chapter 7. 
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Chapter 2: Background 

In this chapter, I will summarize the background material that is related to this 

dissertation. In the past couple of decades, several parallel machines with different 

architectures have been built as viable platforms for high-performance computing, such 

as SMPs, NUMAs, distributed shared memory, and clusters of multiprocessors. However, 

with the availability of high-speed networks, the HPC community has adopted network-

based computing clusters as cost-effective platforms to achieve high performance. This 

trend has been accelerated by the advent and use of multi-core processors in high-

performance clusters, shown in Figure 2.1. According to the ranking in June, 2009, more 

than 82% of top 500 supercomputing sites are clusters [86].  Not to mention, clusters are 

also increasingly used in the low-to-medium end of spectrum, as well as in data centers, 

financial institutions, etc.   

Computer Node

p0 p1

p2 p3

Cluster Interconnect

Computer Node

p4 p5

p6 p7

p0 p1

p2 p3

p4 p5

p6 p7

... ...

Network Interface Network Interface

 

Figure 2.1 A typical multi-core cluster. 
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Interconnection networks are critical in achieving high performance. Currently, there 

are several switch-based modern interconnects that provide low latency and high 

bandwidth. The most famous and leading products include Myrinet [48], InfiniBand [31], 

Quadrics [55], and Internet Wide Area RDMA Protocol (iWARP) Ethernet [68]. High-

speed interconnects offer their own user-level messaging layers to replace the traditional 

costly TCP/IP protocol stack. The user-level network protocols offered by these high-

speed interconnects are designed to bypass the operating system and to directly access the 

network hardware, thereby reducing the end to end latencies. These user-level network 

protocols move some of the services normally provided by the kernel into the user-level. 

Bypassing the operating system, the user-level protocols avoid the costs associated with 

switching to privileged mode. GM and MX [81] Elan4lib [65] and OpenFabrics [82] and 

the Deep Computing Messaging Framework [37], are the user-level protocols offered by 

Myrinet, Quadrics and InfiniBand and iWARP Ethernet interconnects, and IBM Blue 

Gene/P machines [30], respectively. 

The processes in parallel applications running on clusters mostly communicate with 

each other by explicit message passing through the interconnection network. MPI [45] is 

the de facto standard for parallel programming on clusters. Figure 2.2 shows the layers of 

abstraction for messaging layers for high-performance networks. MPI functions as a 

communication middleware providing the parallel programming environment to the 

application layer. It hides the details of the underlying network hardware and also the 

user-level network protocol. MPI is the critical component bridging the gap between 

network hardware and the user application. Therefore, it is important to have a high-

performance and scalable MPI design. 
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Figure 2.2 Layers of abstraction. 

MPI provides different kinds of communication services to the application: point-to-

point, one-sided, and collective communications. In collective communications, a group 

of processes are involved in a collective communication operation. Previous profiling 

studies of applications show that applications spend more than eighty percent of the 

overall communication time in collective operations [50]. Therefore, performance of 

collective communications becomes critical to HPC. The objective of this research is 

therefore to design and evaluate efficient collective communication algorithms on 

emerging multi-core/SMP clusters with their modern high-performance interconnection 

networks.  

In Section 2.1, I will explain the MPI library and its communication services. In 

Section 2.2, the Quadrics and InfiniBand networks are introduced along with their user-

level messaging layers. Section 2.3 describes the port modeling and the communication 

cost modeling used to analyze the performance of the collective communications.  

2.1 Message Passing Interface 

The most commonly used programming model for clusters is MPI [45]. An 

advantage of the MPI programming model is that the user has complete control over data 

distribution and process synchronization, which can provide optimal data locality and 
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workflow distribution. It is also portable as MPI programs can run on distributed-memory 

multicomputers, shared memory multiprocessors, and clusters.  

MPI specifies an Application Programming Interface to provide different kinds of 

communications, including point-to-point communications, collective communications, 

and one-sided communications. One has to bear in mind that one-sided communication in 

MPI-2 is at the application level to mimic the essence of shared memory programming on 

clusters, while RDMA is a feature at the network-level. For the sake of this dissertation, 

we only discuss point-to-point and collective communications. Point-to-point 

communication is covered because many MPI distributions implement their collectives 

using explicit MPI point-to-point operations. This of course incurs a lot of overhead as 

compared to the RDMA-based communications, which is one of the focuses of this 

dissertation.  

2.1.1 Point-to-point Communications 

Point-to-point communication is the basic communication mechanism used in 

transmitting data between a pair of processes in MPI. The source process initiates the 

communication by calling an MPI_Send() function, and the destination process receives 

this message by issuing an MPI_Recv() function. A message consists of two parts: the 

actual message payload, and the message envelope that helps route the data. The message 

envelope consists of source, destination, a tag field and the communicator.  The tag field 

can be used by the program to distinguish different types of messages. A communicator 

specifies the communication context for a communication operation.  It should be 

mentioned that there are a number of modes available for MPI point-to-point 

communication including the standard, synchronous, buffered, and ready modes. 
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MPI implementations such as MPICH2 [46], MVAPICH [47], and OpenMPI [24] 

treat small and large messages differently. An Eager protocol is used to eagerly transfer 

small messages to the receiver to avoid extra overhead of pre-negotiation. For large-size 

messages, a Rendezvous protocol is used in which a negotiation phase makes the receiver 

ready to receive the message data from the sender. After the data transfer, a finalization 

packet is sent by the sender to inform the receiver that the data is placed in its appropriate 

application buffer. Researchers have proposed different techniques to boost the 

performance of Eager and Rendezvous protocols in RDMA-based interconnects. Sur et 

al. [77] proposed an RDMA Read-based Rendezvous method. Rashti and Afsahi [67] 

proposed a speculative MPI Rendezvous protocol to effectively improve communication 

progress and consequently the overlap ability. Recently, Small and Yuan [75] refined the 

Rendezvous protocol for medium and large messages using three customized protocols. 

2.1.2 Collective Communications 

MPI offers a number of collective communication operations, where a group of 

processes are involved in the operation. Collective communication operations involve 

global control and global data movement. MPI_Barrier() is a global control operation 

that synchronizes all processes in the group. Global data movement operations include 

MPI_Bcast(), MPI_Scatter(), MPI_Gather(), MPI_Allgather(), MPI_Alltoall(), 

MPI_Reduce(), MPI_Allreduce(), and variants of them. Some collective operations are 

shown in Figure 2.3. The actual implementation may differ from those shown. Such 

collectives can be formally defined as follows, where p is the number of processes in the 

group: 

 MPI_Bcast(): a process, the root, sends the same message to all other 
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processes of the group.  

 MPI_Scatter(): the root process sends a different message to every other 

process in the group. This operation is also known as one-to-all personalized 

communication.  

 MPI_Gather(): it is the reverse of MPI_Scatter(). The root gathers data from 

every other process. A gather operation is different from an all-to-one 

MPI_Reduce() in that it does not involve any combination or reduction of 

data. 

 MPI_Allgather(): in this operation, each process sends the same message to 

all other processes. It is also called alltoall broadcast. This data intensive 

operation is heavily used in matrix multiplication kernels. 

 MPI_Alltoall(): In this operation, each process sends a different message to 

every other processes. This operation is used in a variety of parallel 

algorithms such as fast fourier transform, matrix transpose, sample sort, and 

some parallel database join operation. 

 MPI_Reduce(): combines the data received from every other process, using 

the operation, “*”, and returns the combined value to the root process. The 

operation, “*”, can be add, maximum, minimum, etc. 

 MPI_Allreduce(): the result of MPI_Reduce() is returned to all processes in 

the group.  
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Figure 2.3 Some collective communication operations. 

2.2 High-Performance Interconnects 

To have a high-performance cluster computer system, the interconnection network 

that connects the nodes of the system plays a crucial role in performance. This 

dissertation considers Quadrics QsNetII [6], and InfiniBand [31] as representatives of a 

proprietary and an open standard interconnect, respectively. It should be mentioned that 

these two interconnects substantially differ from each other. Brightwell et al. [9] 

discussed some of the differences between the earlier versions of these interconnects. In 

the following, I will discuss both interconnects in detail.   
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2.2.1 Quadrics QsNetII 

Quadrics QsNetII is a butterfly bi-directional multistage interconnection network 

with 4x4 switches, which can be viewed as a quaternary fat-tree [6]. The network 

supports hardware broadcast and barrier, and multiple NICs per node. The latest 

generation, QsNetII, has two building blocks, a low-latency high-bandwidth 

communication switch called Elite4 and a programmable network interface called Elan4 

[6]. Elite switches are connected in a fat tree topology, shown in Figure 2.4 permitting 

4096 nodes in the system. Quadrics switch uses a full crossbar connection and supports 

wormhole routing.   

In addition to generating and accepting packets to and from the network, the Elan4 

provides substantial local processing power to the host processor to implement high-level 

message passing protocols such as MPI. An embedded user-programmable I/O processor 

on Elan4 is used to offload asynchronous protocol handling tasks.  

Switch

node

 

Figure 2.4 Quaternary fat tree structure for 2 dimensions. 

2.2.2 Elan4lib and Elanlib  

Quadrics provides libelan and libelan4 libraries [54], on top of its Elan4 network as 

shown in Figure 2.5. Elan4lib [65] provides the lowest-level, user-space programming 

interface to the network. Elanlib is a higher-level machine independent communication 

library to provide low-level accesses. It provides a global virtual address space by 

integrating the address space of individual nodes.  
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Figure 2.5 Quadrics programming libraries. 

Under these default programming libraries, each parallel job first acquires a job-wise 

capability, it is then allocated a virtual process ID (VPID). The communication between 

the processes is supported by two different models: Queue-based Directed Message 

Access (QDMA) and RDMA. QDMA allows processes to post messages (up to 2KB) to a 

remote queue of another process. RMDA give processes direct access to remote memory 

exposed by other processes. QsNetII provides efficient and protected access to a global 

virtual memory using RDMA operations. 

A general-purpose synchronization mechanism based on events stored in memory is 

provided so that the completion of RDMA operations can be reported. The event 

mechanism allows one operation to be triggered upon the completion of the other 

operations. This event can be utilized to provide fast and asynchronous progress of back-

to-back operations. 

The Quadrics library also provides basic mechanisms for point-to-point message 

passing, called Tagged Message Ports (Tports) [65]. Unlike GM [81] and OFED [82], the 

QsNetII does not require the communication buffers to be pinned. Elanlib also supports 

multi-rail point-to-point communications. It also supports hardware broadcast and barrier 

collective operations. 

User applications 

shmem MPI 

Elanlib T-port

Elan4lib 



 18 

SHMEM [73] is a message passing library very similar to MPI. It was originally 

developed for the Cray T3E series of vector computers. SHMEM uses active messaging, 

where a source process reads from and writes onto a target process's memory directly, 

without any need for the target processor's cooperation. This allows for very low 

latencies and high bandwidth for inter-processor communications.                

2.2.3 InfiniBand Architecture 

InfiniBand Architecture (IBA) [31] is proposed as a generic interconnect for inter-

process communication and I/O. In this section, I will introduce the InfiniBand 

architecture and its features, including the communication semantics provided and the 

associated transport services. This section will show how InfiniBand differs from the 

Quadrics network.  

InfiniBand Architecture Overview 

InfiniBand is an open-standard interconenct. IBA defines a System Area Network to 

connect multiple platforms. In the InfiniBand network, processing nodes and I/O nodes 

are connected to the fabric by Host Channel Adapters (HCAs) and Target Channel 

Adapters (TCAs) respectively, as shown in Figure 2.6. IB Verbs specify the semantic 

interface between HCA and consumers. A Channel Adapter (CA) that is installed in 

processor nodes and I/O units generates and consumes packets as well as initiating DMA 

operations. It connects to the host through the PCI-X or PCI-Express bus.  
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Figure 2.6 IBA System Area Network [31]. 

InfiniBand Protocol Stack 

The communication in InfiniBand is based on the concept of the Queue Pair (QP) 

[31], which serves as a virtual communication port. The structure of IBA communication 

stack is shown in Figure 2.7. Each QP has two queues: a send queue and a receive queue. 

The send queue holds instructions to transmit data and the receive queue holds 

instructions that describe where the received data is to be stored. Two QPs on different 

nodes can be connected to each other by a logical bi-directional communication channel. 

An application can have multiple QPs. Communication operations are described by Work 

Queue Requests (WQR), which are then submitted to the queue pairs. Once submitted, a 

WQR becomes a Work Queue Element (WQE). The completion of communication 

requests is reported through Completion Queues (CQ). 
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Figure 2.7 IBA communication stacks [31]. 

 

InfiniBand Transport Services   

IBA provides five transport services: Reliable Connection (RC), Unreliable 

Connection (UC), Reliable Datagram (RD), Unreliable Datagram (UD), and Raw 

Datagram (RD). The current generation IBA adapters support RC, UC, and RD modes. 

Both RC and UC are connection-oriented services, which require the consumer to initiate 

a communication establishment procedure (a connection) with the target node before any 

data transfer can take place. Both RC and RD are acknowledged services, which means 

both transport protocols guarantee that all data is delivered in order. This dissertation is 

concerned about the RC mode where RDMA is supported. 

Datagram services including RD and UD are connectionless. They allow the 

consumer of the QP to communicate with any unreliable datagram QP on any node. 
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Similarly, the receive operation accepts incoming messages from any unreliable datagram 

QP on any node. The RD is more like a data link service that allows a QP to send and 

receive raw datagram messages. It is connectionless and unreliable. RD has two types of 

raw datagram (EtherType and IPv6).  

When a receiver handles incoming receives on a given QP, RC or UD, the Consumer 

must post the number of receive WQRs. It is difficult when the Consumer cannot predict 

the incoming rate on a given QP. To address this problem, the Shared Receive Queue 

(SRQ) concept, on the other hand, allows a set of receive queues to draw from a common 

pool of receive WQE - the shared receive queue. The SRQ contains WQEs that can be 

used to receive incoming data on any RC or UD QP that is associated with the SRQ.  

The latest InfiniBand network cards from Mellanox Technologies [44] introduce 

support for a new InfiniBand transport service: eXtended Reliable Connection (XRC). 

The XRC transport attempts to give the same feature set of RC while providing additional 

scalability for multi-core clusters. [36] In RC, each process is required to have a 

connection to each other process in the cluster for full connectivity. Instead, XRC allows 

a single process to have only one connection per destination node. Given this capability 

to reduce the number of required connections in RC mode, the connection memory 

required can be potentially reduced by a factor equal to the number of cores per node. 

InfiniBand Channel and Memory Semantics 

IBA offers both channel semantics and memory semantics for communications. 

Channel semantics is also called Send/Receive. In this semantics, the message only 

specifies the destination’s QP without naming the memory space of the destination. On 

the other hand, in the memory semantics the initiating consumer directly writes or read 
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to/from the virtual memory space of a remote node. The remote node is not involved in 

the data transfer. I will be only using the memory semantic in this dissertation, which 

includes RDMA Read, RDMA Write and Atomic operations. 

RDMA Read reads from a virtually contiguous buffer on a remote node and writes 

the data to a local memory buffer. RDMA Write writes a virtually contiguous buffer onto 

a remote node. The virtually contiguous buffer can gather from a list of local buffer 

segments. The RDMA Atomic operation is a combined Read, Modify, and Write atomic 

operation on a remote 64 bit word.  

2.2.4 OFED 

OpenFabrics Enterprise distribution (OFED) [82] is a high-performance server and 

storage connectivity software for RDMA and transport offload hardware solutions. The 

OFED, maintained by OpenFabrics Alliance [82], collaborates the development and 

testing by all major InfiniBand and iWARP Ethernet vendors. 

Verbs is one of the core InfiniBand modules and an abstract description of 

functionalities of a HCA. It provides infrastructure for kernel/user communication, 

handles memory pinning, pass most operations on to device-specific driver and provides 

direct path to the HCA driver. Mellanox Technologies OFED is based on the InfiniBand 

verbs layer. It is a single Virtual Protocol Interconnect (VPI) [90] software stack based 

on the OFED Linux stack, which supports all Mellanox network adapters.  

Three communication operations are provided in OFED: send/receive, RDMA 

operations and Atomic. Both reliable connection and unreliable datagram services have 

been implemented on HCAs. Similar to GM, memory buffers must be registered with 

HCA before being used. For parallel applications, OFED offers MVAPICH [47] MPI 
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implementation from Ohio State University (OSU). Existing designs of MPI over 

InfiniBand use send/receive operations for small data messages and control messages, 

and RDMA operations for large data messages. 

2.3 Communication Modeling 

To design collective communication algorithms on different systems, there is a need 

to have a cost model to estimate the lower bounds for the latency and bandwidth cost of 

collective communication operations. In addition, design and performance of collective 

operations are influenced by the network system characteristics, including the port 

modeling.  

2.3.1 Hockney’s Model 

Hockney has proposed a simple model for point-to-point communication operations, 

[25] as in Equation 2.1: 




r

m
tt 0    (2.1) 

where r  is the asymptotic bandwidth, which is the maximum achievable bandwidth. 

 is the startup time, and m/ r  represents the transmission time in sending an m-byte 

message through a network with bandwidth r . 

Hockney’s model has some advantages. Firstly, it is a simple model that is a linear 

function of the message size m. Secondly, r  and  represent two fundamental 

quantities of the network. Thirdly, it is architecture-independent. It can be applied to 

networks with different architectures by changing the value of parameters. While there 

are other models available such as the postal model [5], LogP model [19], LogGP [1], 

ot

ot
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and PlogP [34]. Hockney’s model is sufficient for the study of the algorithms in chapter 3 

of this dissertation, as we are not concerned with congestion in the network. 

2.3.2 Port Modeling 

In a direct network, each node has a bi-directional link to all other nodes. The port 

model of a system refers to the number of links that can be used at the same time. If each 

node can only send and receive messages over one of its links at a time, this is called a 

one-port communication. In an all-port system, a node can send and receive data over all 

the links at the same time. If the number of links that can be used at once is greater than 

one but less than the number of links available, the port modeling is called k-port.  

2.4 Summary 

In this chapter, I surveyed the related background for this dissertation. I discussed 

the different components of high-performance clusters including MPI parallel 

programming paradigm, the high-performance interconnects and their user-level 

messaging layers. I also introduced Hockney’s communication modeling and port 

modeling. In the following chapters, I will propose and implement different algorithms 

and techniques to improve the performance of collective communication over Quadrics 

and InfiniBand SMP/multi-core clusters. 
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Chapter 3: RDMA-based Multi-port Collectives on Multi-rail QsNetII 

Clusters 

Network bandwidth usually becomes the performance bottleneck for today’s most 

demanding applications [16, 38]. Recently, a new technique has been emerging that uses 

multiple independent networks/rails or multi-port NICs to overcome bandwidth 

limitations and enhance fault tolerance. Existing examples include native multi-rail 

support on Quadrics and dual-port NICs in InfiniBand and Myrinet. Quadrics QsNetII 

uses multiple NICs per node to construct a multi-rail cluster network, in which the i-th 

NIC connects to the i-th rail. 

There are two basic ways in distributing the traffic over multiple rails. One is to use 

multiplexing, where messages are transferred over different rails in a round robin fashion. 

The other method is called message striping, where messages are divided in multiple 

chunks and sent over multiple rails simultaneously. Quadrics has a native support for a 

simple even message striping over multi-rail QsNetII networks only for large point-to-

point messages through its Elan put and get, SHMEM put and get, and Tports 

send/receive functions. However, it does not support multi-rail collectives. In this 

chapter, I devise and evaluate multi-port collective communications on Multi-rail 

Quadrics QsNetII networks [58, 60].  

3.1 Related Work 

Study of collective communication operations has been an active area of research. 

Thakur and his colleagues discussed recent collective algorithms used in MPICH [80]. 

They have shown some algorithms perform better depending on the message size and the 

number of processes. In [88], Vadhiyar et al. introduced the idea of automatically tuned 
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collectives in which collective communications are tuned for a given system by 

conducting a series of experiments on the system. Both works are implemented based on 

MPI point-to-point communications. The authors in [57] analyzed the performance of 

collective communication operations under different communication cost models.  

Petrini, et al. described how they improved the effective performance of ASCI Q 

supercomputer interconnected with a Quadrics QsNet. [56] A number of papers have 

been reported on the use of RDMA in the design and implementation of collectives on 

modern networks. Roweth and his colleagues studied how different collective algorithms 

have been devised and implemented on QsNetII [70, 71]. Sur, et al. proposed efficient 

RDMA-based alltoall broadcast and alltoall personalized exchange for InfiniBand 

clusters [76, 78]. In [84], Tipparaju and Nieplocha used the concurrency available in 

modern networks to optimize MPI_Allgather() on InfiniBand and QsNetII. All the above 

research is done under single-rail systems, while this chapter adapts multi-port algorithms 

over multi-rail Quadrics QsNetII networks. 

On multi-rail systems, Coll and his associates [16] did a comprehensive simulation 

study on static and dynamic allocation schemes for multi-rail systems. The authors in 

[38] designed an MPI-level multi-rail InfiniBand clusters. However, their work addressed 

only point-to-point communications. On multi-port collectives, Chan et al. [15] 

redesigned and re-implemented a number of multi-port MPI collectives for IBM Blue 

Gene/L using MPI point-to-point communications, and not RDMA as studied in this 

chapter. Recently, the New Madeleine communication library [3] is designed for multi-

rail message transfers across multiple heterogeneous high-performance networks. 
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3.2 Experimental Framework 

The experiments were conducted on a 4-node dedicated SMP cluster interconnected 

with two QM500-B Quadrics QsNetII NICs per node, and two QS8A-AA QsNetII E-

series 8-way switches. The QM500-B PCI-X network adapter for Quadrics QsNetII [65]  

uses Elan 4 network processor and has 64 Mbytes onboard DDR-SDRAM memory.  

Each node is a Dell PowerEdge 6650 that has four 1.4 GHz Intel Xeon MP 

Processors with 256KB unified L2 cache, 512KB unified L3 cache, and 2GB of DDR-

SDRAM on a 400 MHz Front Side Bus. Each NIC is inserted in a 64-bit, 100 MHz PCI-

X slot. The operating system is the Vanilla kernel version 2.6.9. The Quadrics software 

installed is the latest “Hawk” release with the kernel patch qsnetp2, kernel module 

5.10.5qsnet, QsNet Library 1.5.9-1, and QsNetII Library 2.2.11-2. Test codes were 

launched by the pdsh [53] task launching tool, version 2.6.1. The MPI implementation is 

the Quadrics MPI, version MPI.1.24-49.intel81. 

3.3 Motivation 

In this section, I will perform a feasibility study of the potential performance that 

could be gained using multi-port message striping in the algorithms on a multi-rail 

system. My intention in this section is to show while point-to-point messages benefit 

from message striping, only a couple (Elan and MPI) collectives that are currently 

implemented on top of point-to-point Tports or elan_put() will gain from multi-rail 

striping. 

In the following, I first present the performance of Elan put and get, Tports 

send/receive, as well as MPI point-to-point under single-rail and dual-rail QsNetII on my 

platform (SHMEM put and get also stripe large messages). I will then demonstrate the 
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performance of Elan collectives, and the MPI_Scatter() that does not have any Elan 

counterpart. Please note that the Elan collectives are directly used by MPI collectives. 

The point-to-point experimentation is done with the uni-directional, bi-directional, 

and both-way traffics. In the uni-directional bandwidth test, the sender transmits a 

message repeatedly to the receiver, and then waits for the last message to be 

acknowledged. The bi-directional test is the ping-pong test where the sender sends a 

message and the receiver upon receiving the message immediately replies with a message 

of the same size. This is repeated a sufficient number of times to eliminate the transient 

conditions of the network. In the both-way test, both the sender and receiver send data 

simultaneously. This test puts more pressure on the communication subsystem and the 

PCI-X bus.  

3.3.1 Elan RDMA Performance 

Figure 3.1 presents the bandwidth performance of the RDMA Write using the pgping 

micro-benchmark available in the Elan Library. It is evident that the bandwidth is 

doubled in the dual-rail system. The both-way single-rail and dual-rail elan_put() 

bandwidths are 670MB/s and 1332 MB/s, respectively. The bandwidth for elan_get() is 

almost the same as elan_put() in each case (not shown). 

The Elan RDMA Write short message latency does not change much between 

single-rail and dual-rail. The latency varies between 2 µs to 2.77 µs for a 4-byte message. 

The elan_get() short message latency is slightly larger than the RDMA write. That is why 

I decided to use elan_put() in the design and implementations of collectives. 
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 Figure 3.1 Elan RDMA Write performance.  

3.3.2 Tports Performance 

Figure 3.2 shows the Tports bandwidth. Tests are done using the tping micro-

benchmark (except for the uni-directional case, where I wrote my own code). Like the 

Elan RDMA, the dual-rail Tports bandwidth outperforms the single-rail bandwidth in 

each case. The single-rail T-ports bandwidth is roughly the same as RDMA bandwidth. 

However, dual-rail bandwidth falls short of RDMA. The short message latency is slightly 

larger than the RDMA.  

3.3.3 MPI Send/Receive Performance 

Figure 3.3 compares the MPI bandwidth under different cases. Unlike the both-way, 

the uni-directional and bi-directional MPI bandwidths for dual-rail are almost doubled. 

This shows that the MPI point-to-point implementation over Tports mostly benefit from 

striping in the dual-rail QsNetII. The short message MPI latency is close to that of the T-

ports (not shown here).  
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Figure 3.2 T-port send/receive performance. 

 

Figure 3.3 MPI send/receive performance. 

3.3.4 Collective Performance 

Figure 3.4 depicts the aggregate bandwidth for the Elan hardware and software 

broadcasts, gather, allgather, and alltoall, as well as MPI_Scatter(). For the Elan 

collectives, I have used the gping micro-benchmark in the Elan Library. For the MPI 

collectives, I have written my own code to measure their performance. From the results, 

except for the gather, all other Elan collectives do not benefit from the dual-rail QsNetII. 
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It should be mentioned that both gather and allgather use single-port algorithms in the 

Elan library. MPI_Scatter() is implemented on top of Tports, so it achieves larger 

bandwidth under dual-rail.  

 

    

Figure 3.4 Elan collectives and MPI_Scatter() bandwidth on dual-rail QsNetII. 
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Efficient implementation of collective operations is one of the keys to the 

performance of parallel applications. Given the multi-rail performance offered at the Elan 

and Tports levels, excellent opportunities exist for devising efficient collectives for such 

systems. Basically, there are two ways to improve the performance of collectives on 

multi-rail systems. One is to implement single-port collective communication algorithms 

that gain multi-rail striping from the underlying communication subsystem. This is the 

approach currently used for MPI_Scatter(). However, this will only improve the 

performance for large messages. The second approach that I propose is to design and 

implement multi-port algorithms for multi-rail systems that also benefit from the striping 

feature supported by QsNetII. In this regard, I have used some known multi-port 

algorithms [10] and implemented them on the dual-rail QsNetII network directly at the 

Elan level using RDMA Write. 

3.4 Collective Algorithms 

In this section, I provide an overview of some well-known algorithms for scatter, 

gather, allgather, and alltoall personalized exchange, and adapt them on top of Quadrics 

QsNetII networks. In the following discussion, N is the number of processors (or 

processes) and k is the number of ports in the multi-port algorithms (equal to the number 

of available rails). In the k-port (or multi-port) modeling, each process has the ability to 

simultaneously send and receive k messages on its k links. The assumption is that the 

communication between any pair of processes has the same cost, and the number of 

processes is a power of (k + 1). Otherwise, dummy processes can be assumed to exist 

until the next power of (k + 1), and the algorithms apply with little or no performance loss.  
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3.4.1 Scatter 

The spanning binomial tree algorithm [43] can be extended for k-port modeling. In 

this algorithm, the scattering process sends k messages of length N/(k + 1) each to its k 

children. Therefore, there are (k + 1) processes having N/(k + 1) different messages. 

These processes, at step 2, send one (k + 1)-th of their initial message to each of their 

immediate k children. This process continues and all processes are informed after 

 Nk 1log   communication steps. Using Hockney’s model [25], the total communication 

time, T, is: 
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where ts is the message startup time, lm is the message size in bytes, and τ is the time 

to transfer one byte. 

The above algorithm has a logarithmic number of steps, therefore suitable for short 

messages. Another algorithm, for large messages, is the Direct algorithm, which is the 

extension of sequential tree algorithm for k-port modeling. At each step, the source 

process sends its k different messages to k other processes. There are a total of (N -1)/k 

communication steps. Therefore, the total communication time, T,  is: 
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3.4.2 Gather 

Gather is the exact reverse of scatter and so the same spanning binomial tree 

algorithm extended for k-port modeling can be used. However, the communication starts 
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from the leaf processes and messages are combined in the intermediate processes until it 

reaches the root. The total communication cost is the same as Equation (3.1). 

3.4.3 Allgather 

I provide an overview of three well-known allgather algorithms: Direct, Standard 

Exchange [8], and Bruck [10]. The Direct algorithm is used for medium to large 

messages. Standard Exchange is targeted for short to medium size messages, while the 

Bruck algorithm typically performs better for short messages. 

Direct Allgather Algorithm: The Direct allgather algorithm is the extension of 

sequential tree algorithm for k-port modeling and suitable for medium to large messages. 

In each step, each process sends its own message to k other processes in a wrap-around 

fashion. There are a total of 



 

k

N 1  communication steps. Using Hockney’s model, the 

total communication cost, T, is: 
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N
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Standard Exchange Allgather Algorithm: The Standard Exchange allgather 

algorithm [8] is the extension of Recursive Doubling algorithm [80] for k-port modeling, 

and works for power of (k+1) processes. It should generally perform well for short and 

medium size messages. In the k-port Standard Exchange algorithm, processes are divided 

into N/(k+1) groups of (k+1) processes each. Processes are grouped as (0, 1, …, k), (k+1, 

k+2, …, 2(k+1)-1), …, (N - (k+1), N - (k+1)+1, …, N - 1). In step 1, all processes within a 

group exchange their messages using k-port. At the end of this step, each process has 

(k+1) messages. In step 2, process p exchanges all its messages with processes (p + 

(k+1)) mod N, (p + 2(k+1)) mod N, …, (p + k(k+1)) mod N. At the end of this step, each 
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process has (k+1)2 messages. This continues to the step logk+1 N. At each step i of this 

algorithm, each process sends messages of size (k+1)i–1 to k other processes. Note this 

algorithm needs correction steps when the number of processes is not a power of (k+1). 

Figure 3.5 illustrates the 2-port Standard Exchange algorithm for nine processes. The 

total communication cost, T, is: 

)(
1

log 1 
  mks l

k

N
NtT                             (3.4) 
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Figure 3.5 Standard Exchange algorithm for 9 processes under 2-port modeling. 

Bruck Allgather Algorithm: The Bruck allgather algorithm [8] works on any 

number of processes, and is proposed to improve the performance for small messages. 

Figure 3.6 illustrates the 2-port Bruck algorithm for nine processes. The allgather 

operation among N processes can be represented as a sequence of process-memory 

configurations. Each process has an N-block output buffer. Initially, local data is placed 

at the top of the output buffer.  
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                               Phase 1: After step 1                                         Phase 2 

Figure 3.6 Bruck allgather algorithm for 9 processes under 2-port modeling. 

The algorithm consists of two phases. Phase 1 has  Nk 1log   steps. In each step i of 

phase 1, process p sends all its data to processes (p – (k+1)i ), (p – 2(k+1)i ), …, (p – 

k(k+1)i ), and stores the data it receives from processes (p + (k+1)i ), (p + 2(k+1)i ), …, (p 

+ k(k+1)i ) at the end of the data it already has. An additional step is required if N is not a 

power of (k+1), where each process sends the first  NkkN 1log)1((  ) blocks from the top 

of its output buffer to the destination processes and appends the received data to the end 

of its current data. The second phase consists of a single round local memory shift. The 

total communication cost is the same as Equation (3.4). 
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3.4.4 Alltoall Personalized Exchange 

I also provide an overview of three well-known algorithms for alltoall Personalized 

Exchange: Direct, Standard Exchange [8], and Bruck [10].  

Direct Alltoall Personalized Exchange Algorithm: A lower bound for alltoall 

personalized exchange time is (N -1)/k since each process must receive N – 1 different 

messages and it can only receive at most k messages at a time. A simple algorithm is 

based on the extension of the Direct algorithm for k-port modeling. The processes are 

arranged in a virtual ring. That is, at step i, process p sends its message to processes (p + 

(i – 1)k + 1) mod N, (p + (i – 1)k + 2) mod N, …, (p + ik) mod N. The modulus operation 

avoids sending messages to a single destination. The communication cost is the same as 

Equation (3.3). 

Standard Exchange Alltoall Personalized Exchange Algorithm: The Standard 

Exchange algorithm [8] for alltoall personalized exchange has the same grouping as the 

Standard Exchange algorithm for allgather. However, each node sends N/(k + 1) message 

at a time. The total communication cost, T, is the same as Equation (3.3). 

Bruck Alltoall Personalized Exchange Algorithm: The Bruck algorithm [10] of 

alltoall personalized exchange operation among N processors can be represented as a 

sequence of processor-memory configurations. Each processor-memory configuration has 

N columns of N blocks each. Columns i represents the processor Pi , and the block j 

represents the data j to be sent to processor Pj. 

Bruck algorithm [10] for alltoall personalized exchange operation consists of three 

phases. The first and the third phases only require local memory movement in each 

processor. The first phase does a local copy and shift of the data blocks such that the data 

block to be sent by each processor to itself is at the top of the column. In each 
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communication step j of the second phase, process i sends to rank (i + kj) (with wrap-

around) all those data blocks whose jth bit is 1, receives data from rank (i - kj), and stores 

the incoming data into blocks whose jth bit is 1 (overwriting the data which was just 

sent). All communications are independent, so k communications can be combined 

together under k-port modeling. The final phase does a local inverse shift of the blocks to 

place the data in the right order. This algorithm also takes  Nk 1log   steps 

communications. The total communication cost is same as Equation (3.3). Figure 3.7 

shows the example of this algorithm with four communication steps on nine nodes. 

3.5 Implementation Issues 

The algorithms are devised based on two-port put-based algorithms, where a sending 

process has direct control in sending messages simultaneously over the two rails using 

the elan_doput() function. When a message is larger than a threshold (1KB), even 

message striping is used over the two rails. When a message is sent, the sending process 

uses the elan_wait() to make sure the user buffer can be re-used. Note that in the 

implementation of the algorithms, processes do not synchronize with each other. 

Quadrics supports event notification for both single-rail and multi-rail systems. The 

destination event (devent) is set once in each rail. A target process may call 

elan_initEvent() once for each rail and then wait on each ELAN_EVENT to be returned. 

This guarantees a message has been delivered in order in its entirety. 
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                         Phase 2: After step 2                                    Phase 2: After step 3 

Figure 3.7 Bruck alltoall algorithm for 9 processes under 2-port modeling. 

Memory registration/deregistration is a costly operation. Unlike InfiniBand, QsNetII 

does not need memory registration and address exchange for message transfers. This 

eases the implementation, and effectively reduces the communication latency. Although I 

have implemented the proposed algorithms on dual-rail clusters, the algorithms and 

implementations are robust enough to be used in multi-rail clusters.  
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3.6 Performance Analysis 

In this section, I present the performance of the multi-port collectives introduced in 

Section 3.4 when they are implemented directly at the Elan layer using RDMA Write on 

multi-rail QsNetII clusters with striping support.  

3.6.1 Evaluation of Scatter 

I have implemented the multi-port spanning Binomial tree algorithm and Direct 

algorithm for scatter operation on multi-rail QsNetII systems at the elan level using 

RDMA Write. Figure 3.8 compares the performance of the two scatter algorithms on the 

dual-rail QsNetII. As expected, the Binomial tree algorithm is superior for short 

messages, while the Direct algorithm has a much better performance for medium and 

large messages. Figure 3.8 also presents the scalability of the implementation. The 

scalability figures verify that indeed the Binomial tree algorithm is the better algorithm 

for short messages with increasing system size. 

3.6.2 Evaluation of Gather 

The multi-port spanning Binomial tree algorithm for Gather operation has been 

implemented on multi-rail QsNetII systems using RDMA Write feature. Figure 3.9 

compares the performance of the gather algorithm with the elan_gather(). The results are 

very promising as the implementation is much better than the native implementation 

except slightly for messages less than 512 bytes. The proposed multi-port gather gains an 

improvement of up to 2.15 for 4KB message. The scalability plots in Figure 3.9 verify the 

superiority of the gather algorithm for medium and large messages. However, it does 

show that with increasing number of processes elan_gather() is better for very short 

messages.  
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Figure 3.8 Scatter performance and scalability. 
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Figure 3.9 Gather performance and scalability. 
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superior among the three algorithms for short messages, while the Direct algorithm has a 

much better performance for medium and large messages. The Standard Exchange 

algorithm incurs a penalty, due to correction steps, when the number of processes is not a 

power of k+1 (16 processes in this case).  Otherwise, its performance is better than the 

Bruck algorithm for medium size messages.  

The Quadrics implementation of allgather in the elan_gather() performs better than 

my RDMA-based implementations for messages up to and including 2KB. This is most 

probably because Quadrics uses shared memory point-to-point communication for 

messages up to 2KB, where its performance is better than the intra-node RDMA. This 

confirms the hypothesis that traditional algorithms for short messages, such as Bruck and 

Standard Exchange, are suitable for flat (uniprocessor) clusters, where there is only one 

process per node. For SMP clusters and the emerging multi-core clusters, shared memory 

communication is the preferred method for intra-node communications for short 

messages. I will investigate these techniques to boost the performance of my algorithms 

for such systems in Chapter 4.  

After 2KB, the Direct algorithm performs the best among all algorithms. The multi-

port allgather Direct algorithm gains an improvement of up to 1.49 for 32KB messages 

over the native elan_gahter(). The platform used in my study represents a small cluster. 

However, the scalability plots in Figure 3.10 verify the superiority of the Direct algorithm 

for medium and large messages. It also shows that with increasing number of processes 

elan_gather() outperforms my algorithms for very short messages.  
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Figure 3.10 Allgather performance and scalability. 
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3.6.4 Evaluation of Alltoall Personalized Exchange 

I have also implemented the multi-port Direct algorithm, Standard Exchange 

algorithm, and Bruck’s index algorithm for alltoall personalized exchange on multi-rail 

QsNetII systems using RDMA Write.  

Figure 3.11 compares the performance of the three alltoall algorithms, with the 

elan_alltoall(). The results are again encouraging. My multi-port Direct alltoall algorithm 

and its implementation is much better than the native elan_alltoall() for medium size 

messages. In fact, the improvement is up to a factor of 2.26 for 2KB message. However, 

elan_alltoall() is better than the three algorithms for short messages up to 512 bytes. For 

large message sizes, my two-port algorithm is better. The scalability plots confirm these 

findings.  

3.7 Summary 

Scientific applications written in MPI often use collective communications among 

the parallel processes. In this chapter, I studied the communication performance on a 

QsNetII dual-rail cluster and found that there is potential to improve the performance of 

collective using the multi-rail techniques, with respect to the native implementation that 

uses well-known algorithms. Quadrics MPI directly calls Elan collectives, therefore 

optimizing Elan collectives is crucial to the performance of MPI applications. 

Quadrics supports point-to-point message striping over multi-rail QsNetII. In this 

work, I have devised and implemented a number of multi-port collectives at the Elan 

level over multi-rail QsNetII systems. These collectives include scatter, gather, allgather 

and alltoall personalized exchange. The multi-port Direct implementation outperforms 

elan_gather() as well as the Standard Exchange and Bruck algorithms for messages 
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Figure 3.11 Alltoall performance and scalability. 
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port allgather Direct algorithm gains an improvement of up to 1.49 for 32KB messages 

over the native elan_gather() in the cluster. The proposed multi-port alltoall performs 

better than the elan_alltoall() by a factor of 2.26 for 2KB message.  

The results are encouraging. However, the RDMA-based algorithms did not perform 

well for short messages. The native allgather and alltoall implementation has a better 

latency for up to 2KB and 512B, respectively. To address this deficiency in RDMA-

based algorithms, in the next chapter I will propose shared memory aware algorithms to 

speedup the collectives for co-located processes on SMP/multi-core nodes.  
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Chapter 4: RDMA-based and Shared Memory Aware Multi-port 

Gather and Allgather on Multi-rail QsNetII SMP Clusters 

In Chapter 3, I designed and implemented multi-port RDMA-only scatter, gather, 

allgather and alltoall collectives directly at the Elan level over multi-rail QsNetII. While 

the performance of the algorithms was excellent for medium to large messages, they 

lagged behind the native QsNetII implementations for small size messages. This chapter 

seeks to propose and evaluate efficient gather and allgather for all message sizes, utilizing 

both shared memory and RDMA features [59, 63].  

4.1 Related Work 

On SMP clusters, some recent work has been devoted to improve the performance of 

intra-node communications on SMP nodes [11, 13, 32]. Buntinas et al. [11] have used 

shared buffers, message queues, Ptrace system call, kernel copy, and NIC loopback 

mechanisms to improve large data transfers in SMP systems. In [13], Chai and others 

improved the intra-node communication by using the system cache efficiently and 

requiring no locking mechanisms. In [32], Jin et al. implemented a potable kernel module 

interface to support intra-node communications. Chai et al. [14] used both shared 

memory and OS kernel-assisted direct copy to design efficient MPI intra-node 

communication. An intra-node shared memory communication for Virtual Machine 

environments is proposed in [28]. The shared memory communication is a one-copy 

approach, mapping user buffers between Virtual Machine. This thesis uses shared buffers 

for shared memory communications.  

On collectives for SMP clusters and large SMP nodes, Sistare and his colleagues 

presented new algorithms taking advantage of high backplane bandwidth of shared 
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memory systems [74]. In [85], Tipparaju and his colleagues overlapped shared memory 

intra-node and remote memory access inter-node communications in devising collectives 

for IBM SP. However, this work is on regular clusters with high-speed interconnects. A 

leader-base scheme was proposed in [39] to improve the performance of broadcast over 

InfiniBand. This chapter has looked at a more intensive collective operation, and the 

proposed algorithms use shared memory. In [91], Wu and others used MPI point-to-point 

across the network and shared memory within the SMP node to improve the performance 

of a number of collectives. I use RDMA and multi-rail communications for inter-node 

communication. In [87], Traff devised an optimized allgather algorithm for SMP clusters. 

Ritzdorf and Traff [69] used similar techniques in enhancing NEC’s MPI collectives. It 

should be mentioned that the research in [87, 69] is done at MPI level. Mamidala et al. 

[42] designed allgather over InfiniBand using shared memory for intra-node and single-

port Recursive Doubling algorithm for inter-node communication via RDMA. However, 

in this chapter, I propose a couple of new SMP-aware algorithms. Mamidala et al. [40] 

systematically evaluated Intel's Clovertown and AMD's Opteron multi-core architectures 

and used these insights to develop efficient collective operations. 

4.2 Native Gather and Allgather implementation on Quadrics QsNetII 

QsNetII elan_gather() in the Elan library takes care of the gather and allgather 

collectives. The gather algorithm uses a tree-based algorithm among the processes [70]. 

Leaf processes send data to their parents. Intermediate processes add their own data and 

forward to their parents. This process continues until the root process gathers all data. To 

reduce host processor involvement, the Elan event processor on the NIC is used to chain 

the RDMA puts [71]. In SMP clusters, data up to 2KB are gathered in the node’s shared 
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memory buffer. Inter-node gather is then performed on a tree formed by the first process 

of each node. For medium size messages, a tree-based algorithm is used among all 

processes in the system. For messages larger than 4KB, Tports Send/Recv is used among 

all processes, which benefits from message striping in multi-rail QsNetII. For allgather, 

elan_gather() uses the gather algorithm followed by broadcast for messages up to 32KB. 

For larger messages, it switches to the ring algorithm. Note that all the algorithms in 

elan-gather() are single-port algorithms. 

4.3 Motivation 

In this section, I do a feasibility study of the potential performance that could be 

gained in the algorithms by using multi-port message striping and shared memory 

communication.  

4.3.1 Shared Memory vs. RDMA 

Intra-node communication can be done using shared memory copying via shared 

buffers/queues, kernel-based copying, and copying through the NIC [11]. In the shared 

memory copying approach, a memory region is shared between the two processes. The 

sending process copies its message into the shared buffer and then sets a shared, 

synchronization flag. The receiving process polls on the flag to realize whether the 

sending process has finished writing. It then copies the data from the shared buffer to its 

own buffer. Finally, it resets the flag. The mechanism used guarantees that no race 

condition occurs.    

The NIC-based copying method is basically an intra-node RDMA Write operation. 

The kernel-based copying method eliminates one of the two copies associated with the 
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shared memory method. However, it requires an expensive system call. Therefore, I do 

not consider it in my work.  

I have implemented a shared memory point-to-point communication mechanism 

based on shared buffers.  My implementation requires no locking, and uses the memcpy() 

function. Figure 4.1 compares my shared memory implementation (shm_p2p) with intra-

node RDMA Write, elan_put(), and with the concurrent memcpy() operations. My 

experimental platform is the same as the one in Chapter 3. For all the tests, results are 

averaged over 1000 iterations. By k-memcpy(), I mean k processes simultaneously writing 

data onto k sections of a shared memory region. I present up to four concurrent memcpy() 

operations as my experimental cluster uses quad-way SMP nodes.  

From Figure 4.1, one can conclude that the shared memory implementation is the 

preferred method for intra-node communication, but only up to 2KB messages; 

afterwards, RDMA is better. In implementing collectives, this is the main reason why 

Quadrics uses shared memory intra-node communication among co-located processes 

only for messages smaller than 2KB.  

Prior research [11, 13] has mostly focused on efficient shared memory 

communication only for point-to-point transactions (such as shm_p2p). However, to 

implement an SMP-aware per-node collective, such as gather, co-located processes just 

need to concurrently transfer their messages to different sections of a shared memory 

region using memcpy() operations; and then the root process copies the entire shared 

memory buffer into its own destination buffer using another memcpy() operation 

(synchronization is also needed). Typically, SMP nodes support concurrent memcpy() 

operations efficiently for short to medium size messages. This is clear from the results in 
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Figure 4.1 as all k-memcpy() operations take much less time than an intra-node RDMA 

operation (in fact, this is true up to 128KB messages). Intuitively, one can argue shared 

memory regions can be effectively used for per-node collectives for messages larger than 

2KB as well, where they should potentially provide better performance than RDMA 

implementations. 

 

 

Figure 4.1 Comparison of intra-node communications: RDMA (elan_put), shared 

memory (shm-p2p) and memory copy. 

The proposed SMP-aware allgather algorithms in Section 4.4 use per-node shared 

memory gather and broadcast. I have implemented these primitives on the 4-way SMP 

node in order to empirically find the maximum message size that should be transferred 

via shared memory for an efficient gather and broadcast operation. The per-node shared 

memory gather described above includes an optimization (as shown in Figure 4.3). For 

the shared memory broadcast, the Master (root) process copies its data to the shared 
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Figure 4.2 presents the results for the shared memory gather and broadcast 

operations on the 4-way SMP node. While the proposed shared memory broadcast 

(shm_bcast) outperforms Elan hardware broadcast (elan_hbcast) and Elan software 

broadcast (elan_bcast) for 256B to 32KB messages (with comparable results for very 

short messages), the proposed shared memory gather (shm_gather) is better than, or 

comparable to, the native elan_gather() for up to 8KB messages. Therefore, I use shared 

memory for messages up to 8KB in my experiments. It is clear that this message size can 

be found empirically for other single-core/multi-core SMPs, which may have different 

architectural characteristics than our platform. 

   

 

Figure 4.2 Intra-node gather and broadcast. 
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4.4 SMP-aware Allgather Algorithms  

In this section, I propose SMP-aware allgather algorithms. In these algorithms, I 

distinguish between the intra-node and inter-node communications. However, I do not 

just simply replace the intra-node communications in the traditional algorithms with 

shared memory communications. I propose two classes of SMP-aware allgather 

algorithms. In the first class, I essentially do an SMP-aware gather algorithm across all 

processes in the system and then broadcast the gathered data to all processes, hence the 

name SMP-aware Gather and Broadcast algorithm. 

In the second class, I adapt the traditional multi-port Direct and Bruck allgather 

algorithms to SMP clusters by performing them across the SMP nodes rather than 

processes. I also do shared memory gather and broadcast operations within the nodes. I 

call these algorithms SMP-aware Direct and Bruck algorithms. 

4.4.1 SMP-aware Gather and Broadcast Algorithm 

This algorithm is essentially done in three phases as follows: 

Phase 1:  Per-node shared memory gather 

Phase 2:  Inter-node gather among the Master processes (Tree-based or Direct)    

Phase 3:  Broadcasting gathered data to all processes 

Figure 4.3 shows Phase 1 and Phase 2 of this algorithm for a cluster of four 4-way 

SMP nodes. Without loss of generality, I assume process 0 is the root process. I choose 

the first process of each node as the local Master process, in this case processes 0, 4, 8, 

and 12. In Phase 1, a local shared memory gather is done among the processes of each 

node. The size of the shared memory buffer is equal to the number of local processes 

times the message size. Each process has a shared memory flag. Local processes 
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concurrently copy their data, using memcpy(), to the corresponding locations in the 

shared buffer, and then set their own shared memory flag. The Master process polls on all 

the local flags and will move on to Phase 2 once all flags are set. Note the optimization for 

node 0 in Figure 4.3. 

In Phase 2, the Master processes involve in a Direct or tree-based inter-node gather 

operation. For instance, in a Direct inter-node gather algorithm, each Master writes the 

contents of its local shared memory to the corresponding position in the final destination 

buffer of the root process. Messages from different Masters are sent on different rails 

with message striping using RDMA Write. At the end, all processes synchronize using 

elan_hgsync(), and move on to Phase 3 where the root process broadcasts the gathered 

data to all processes using QsNetII hardware broadcast primitive.  

In principle, the proposed SMP-aware Gather (Direct) and Broadcast algorithm is 

similar to the allgather algorithm in elan_gather() for short messages. However, the 

proposed  algorithm is host-based, while Quadrics uses a single-port tree-based, NIC-

based approach that does not use striping. While NIC-based techniques alleviate cache 

flushing problems in host-based methods, they incur higher latencies as the NIC 

processor is slower than the host processors. Moreover, on-board SDRAM is a limited 

source in NIC-based approaches, which limits the scalability. The proposed algorithms 

are all multi-port and use striping. For instance, a 256B message with four processes per 

node will be merged into a 1KB message in the shared buffer. This 1KB message will 

then be sent in Phase 2 over the two rails using striping. This is not the case in the 

Quadrics approach. 
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4.4.2 SMP-aware Direct/Bruck Algorithms 

The SMP-aware Direct or Bruck allgather algorithms can be done in three steps as 

follows: 

Phase 1:   Per-node shared memory gather 

Phase 2:   Inter-node allgather among the Master processes (Direct or Bruck)    

Phase 3:   Per-node shared memory broadcast  

Figure 4.4 shows the proposed SMP-aware Direct allgather algorithm on a quad 4-

way SMP cluster. In Phase 1, each SMP node does a shared memory gather operation. 

However, the size of the shared buffer for this algorithm is four times larger than its 

counterpart in Section 4.4.1. In Phase 2, Master processes involve in a Direct or Bruck 

inter-node allgather operation. Each Master writes the gathered data in Phase 1 to the 

respective shared memory buffers of the other nodes using the corresponding multi-port 

allgather algorithm. Each Master then waits for all devents to make sure it has received 

all the data. In Phase 3, Masters use a local shared memory broadcast to copy out the 

overall contents of the shared buffer to the destination buffers of each process. A final 

synchronization among all processes completes the collective operation. 

In Phase 2, right after posting the RDMA Write operations, I copy the messages in 

the shared buffer, which have been deposited by local processes, to the destination 

buffers. This way, I overlap some memory copy operations in Phase 3 with the inter-node 

communication in Phase 2. Meanwhile, at the end of Phase 2 of the SMP-aware Bruck 

algorithm, all data is available in the shared buffer. However data is not in the right order. 

Instead of doing a local memory shift, I copy each message from the shared buffer to the 

right position of the destination buffer for every process. 
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The experimental platform represents a small cluster. However, the scalability plots 

in Figure 4.6 verify the superiority of the proposed algorithms for various message sizes. 

I have considered 4, 8, and 16 processes in the scalability analysis, where processes are 

evenly distributed across the nodes. This nicely resembles clusters of four uni-processor 

nodes, dual-processor nodes, and quad-processor nodes, respectively.      

4.4.3 Application Performance 

In this section, I will consider two real MPI applications, N-BODY and RADIX 

[72]. These applications are irregularly structured and use MPI_Allgather() collective as 

well as point-to-point communications. N-BODY simulates the interaction of a system of 

bodies in three dimensions over a number of time steps, using the Barnes-Hut algorithm. 

Radix sorts a series of integer keys in ascending order using the radix algorithm. 

Table 4.1 shows the application speedup and the communication speedup of N-

BODY and RADIX running with 16 processes when using the proposed allgather 

algorithms. The achieved speedups are within expectation given the size of messages that 

the MPI_Allgather() uses in these applications. MPI_Allgather() in RADIX only uses 

4KB payload, and the communication speedup of 1.47 is close to the 1.96 speedup that 

the SMP-aware Bruck algorithm achieves in the micro-benchmark test. On the contrary, 

although N-BODY uses a larger number of MPI_Allgather() collectives, 91% of the 

payloads are less than 64 bytes. The remaining payloads are less than 1KB. Given that 

the proposed SMP-aware Gather and Broadcast algorithm is only slightly better than the  

 



 

 61 

 

     

   

 

F
ig

u
re

 4
.6

 S
ca

la
b

il
it

y 
of

 t
h

e 
p

ro
p

os
ed

 a
ll

ga
th

er
 a

lg
or

it
h

m
s 

on
 a

 c
lu

st
er

 o
f 

fo
u

r 
4-

w
ay

 S
M

P
 n

od
es

 w
it

h
 

d
u

al
-r

ai
l Q

sN
et

II
. 



 

 62 

native elan_gather() for messages up to 64 bytes, the 9% communication speedup for N-

BODY is justified. One has to bear in mind that the micro-benchmark allgather tests at 

the Elan level were run in a controlled and a synchronized fashion, while real 

applications may typically suffer from process skew and different process arrival pattern 

due to imbalanced computation. I will study this and propose process arrival pattern 

aware allgather and alltoall algorithms in Chapter 6 of this dissertation. 

Table 4.1 Application and communication speedup (16 processes) when using the 

proposed allgather algorithms. 

 N-BODY RADIX 

Application speedup 1.01 1.13 

Communication speedup 1.09 1.47 

 

4.5 Summary 

In this chapter, I have proposed and evaluated a number of multi-port allgather 

algorithms using both RDMA and shared memory communication over multi-rail QsNetII 

SMP clusters directly at the Elan level. For the allgather operation, and for very short 

messages up to 256B, the SMP-aware Gather and Broadcast algorithm performs slightly 

better than the native elan_gather(). The SMP-aware Bruck algorithm outperforms all 

algorithms including elan_gather() for 512B to 8KB messages, with a 1.96 improvement 

factor for 4KB messages.  The multi-port Direct allgather is the best algorithm for 16KB 

to 1MB, and outperforms elan_gather() by a factor of 1.49 for 32KB messages. The 

proposed allgather algorithms also improve the communication performance of the 

applications studied in this chapter of dissertation.  



 

 63 

It should be mentioned that while this work was focused at gather and allgather 

collectives, the proposed techniques and algorithms can be adapted to other collective 

communications such as alltoall. 
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Chapter 5: Multi-connection and Multi-core Aware Allgather on 

InfiniBand Clusters 

In this chapter, I turn my attention to InfiniBand [31], a leading high-performance 

networking technology that provides low latency, high bandwidth and good scalability 

for HPC clusters with thousands of nodes. I provide evidence that the latest generation of 

InfiniBand HCAs can provide better performance, and to some scalability for 

simultaneous communication over multiple connections [79] with respect to previous 

generation of InfiniBand cards [66]. I will then take on the challenge in designing 

efficient allgather algorithms by utilizing the multi-connection scalability feature of 

ConnectX InfiniBand networks for inter-node communications using RDMA Write, 

shared memory operations for intra-node communications in multi-core SMP nodes, as 

well as multiple cores for better system and network utilization. Specifically, I propose 

and evaluate three multi-connection and multi-core aware allgather algorithms [64]. 

5.1 Related Work 

In [84], Tipparaju and Nieplocha used the concurrency available in modern networks 

to optimize MPI_Allgather() on InfiniBand and QsNetII.  This work, similar to [63], uses 

multiple outstanding RDMA operations, and perhaps is the closest to my work. However, 

they do not study the network systematically as I have done in this study, and they do not 

use shared memory communication and multi-core systems either. 

On multi-connection capability of modern interconnects [66], Rashti and Afsahi 

established a number of connections at the verbs level between two processes running on 
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two nodes (each node having a NetEffect iWARP or Mellanox InfiniHost III InfiniBand 

NIC), and then performed point-to-point communications over those connections. It was 

observed that the normalized multiple-connection latency of small messages is decreased 

and throughput is increased up to a certain number of connections.  In a similar work 

[79], Sur and others measured the multi-pair RDMA-Write latency and aggregate 

bandwidth at the InfiniBand verbs level over ConnectX HCAs between multi-core 

platforms. They established a connection between each pair of processes on different 

nodes. With increasing number of pairs, the results showed that the network is able to 

provide almost the same latency for small messages for up to 8 communicating pairs. 

Both the work in [66] and [79] were focused at point-to-point communication. 

5.2 Allgather in MVAPICH 

MVAPICH [47] implements the Recursive-Doubling algorithm for MPI_Allgather() 

for power of two number of processes directly using RDMA operations. No shared 

memory operation is used in this approach. An MPI send-recv approach is used for any 

other number of processes. Based on the message size, the RDMA-based approach uses 

two different schemes: (1) a copy-based approach for small messages into a pre-

registered buffer to avoid buffer registration cost, and (2) a zero-copy method for large 

messages, where the cost of data copy is prohibitive [76].  

5.3 Experimental Platform 

The experiments in Chapter 5 and Chapter 6 were conducted on a 4-node dedicated 

multi-core SMP cluster, where each node is a Dell PowerEdge 2850 server having two 

dual-core 2.8GHz Intel Xeon EM64T processors (2MB of L2 cache per core) and 4GB of 
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DDR-2 SDRAM. Each node has a two-port Mellanox ConnectX InfiniBand HCA 

installed on an x8 PCI-Express slot. The experiments were done under only one port of 

the ConnectX HCA. The machines are interconnected through a Mellanox 24-port 

MT47396 Infiniscale-III switch. In terms of software, I used the OpenFabrics Enterprise 

Distribution, OFED1.2.5, installed over Linux Fedora Core 5, kernel 2.6.20. For MPI, I 

used MVAPICH-1.0.0-1625. 

ConnectX [17] is the latest generation of InfiniBand HCAs from Mellanox 

Technologies. It is a two-port HCA that could operate as 4X InfiniBand or 10-Gigabit 

Ethernet. In this work, I am only concerned with the InfiniBand mode of the ConnectX. 

In addition, ConnectX supports a number of enhanced InfiniBand features [17]  including 

hardware-based reliable multicast, enhanced atomic operations, fine-grain end-to-end 

QoS, and extended reliable connection. Such features will enhance the performance and 

scalability of the communication subsystem. However, to my knowledge, not all these 

features have been enabled by the ConnectX drivers and firmware.  

5.4 Motivation 

In multi-core clusters, each core will run at least one process with possible 

connections to other processes. Therefore, it is very important for the NIC hardware and 

its communication software to provide scalable performance with the increasing number 

of connections. In the following, I will show that point-to-point communications as well 

as collective communications can enjoy scalable performance (up to a certain number of 

connections) on ConnectX InfiniBand cards. This feature will be useful in devising 

collectives over multi-core clusters. 
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I will start with the point-to-point tests. In this experiment, multiple pairs of 

connections are pre-established between two processes running on different nodes. I 

perform a ping-pong test using all of the connections in parallel. A message is sent and 

received over each connection in a round-robin fashion. I vary the number of connections 

(up to 256 connections in total) and message sizes and report half of the cumulative 

round trip time divided by the number of connections as the normalized average latency 

in Figures 5.1. This shows how well communications over multiple connections can be 

performed simultaneously.  

For small to medium messages up to 8KB and up to 64 connections, significant time 

is saved in sending messages over multiple connections. The best performance is 

achieved at 8 connections. Too many connections will degrade the performance for some 

message sizes. For messages larger than 8KB, the average latency to send a message over 

multiple connections is the same as the latency for one pair of connection. This indicates 

no overlapping is taking place among the connections and that the communication is 

serialized. One reason behind this is that the ConnectX architecture includes a stateless 

offload engine for NIC-based protocol processing. Compared to the previous generation 

of InfiniBand cards, ConnectX improves the processing rate of incoming packets by 

having hardware schedule the packet processing directly. This technique allows 

ConnectX to have a better performance for processing simultaneous network 

transactions. 
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Figure 5.1 Normalized average latency of a 1-byte message sent simultaneously over 

multiple connections. 
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To understand whether the multi-connection ability of ConnectX can help allgather 

(and collectives in general), I have devised a second micro-benchmark in which MPI 

processes on a set of multi-core nodes are grouped into a number of groups where each 

group concurrently performs an independent MPI_Allgather() operation. Processes of 

each group are mapped on four different nodes. Therefore, all the communications of an 

allgather operation within a group are across the network. I have designed the individual 

allgather algorithm in such a way that each process transfers its own data to the other 

three members of the group using three back-to-back RDMA operations in a ring-based 

fashion, leading to three simultaneous active connections per process. With four groups, I 

will have up to 12 bi-directional active connections per card. 

I consider a single-group single-connection ring-based allgather as the baseline 

operation. I then compare the single- and multiple-group multi-connection allgather with 

the baseline allgather, as shown in Figure 5.2. The aggregate bandwidth plot in Figure 5.2 

shows the total volume of data per second that passes through the ConnectX HCA. To 

have a better understanding of how multi-connection could enhance the performance, the 

bandwidth ratio plot in Figure 5.2 shows the bandwidth ratio of the single- and multiple-

group multi-connection allgather over the baseline collective operation.  

It is evident that the multi-connection allgather operations achieve higher aggregate 

bandwidth, and can saturate the network card more than a single-connection allgather up 

to 64KB. The single-group multi-connection case improves the throughput up to 1.8 

times the baseline, while the two, three and four groups can achieve up to 2.6, 2.7 and 2.7 

times, respectively. The results for the 3-group and 4-group allgather are fairly close to 
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each other, indicating that the network is almost saturated with nine simultaneous 

connections. For all multi-connection tests, the ratio drops below one for 64KB messages 

and above, which shows a performance degradation for very large messages when 

multiple connections are simultaneously active. 

 

 
 

 

Figure 5.2 Aggregate bandwidth of multiple independent allgather operations. 
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The results clearly show that the network is capable of providing scalable 

performance when multiple connections are concurrently active, at least for small to 

medium size messages and up to a certain number of connections. The message is that 

there is now a potential to improve the performance of collectives by devising efficient 

algorithms that use multiple connections concurrently on multi-core systems. 

5.5 The Proposed Allgather Algorithms 

In this section, I present a number of algorithms for the MPI_Allgather() operation. I 

first propose the Single-group Multi-connection Aware allgather algorithm, which is a 

multi-connection extension of the SMP-aware algorithm proposed in Section 4.4 [59, 63] 

and is targeted at small to medium messages.  

I then propose two different classes of algorithms to enhance the allgather 

performance for different message sizes. I propose the Multi-group Gather-based Multi-

connection Aware allgather algorithm to achieve efficient performance for very small 

messages. This algorithm takes advantage of the availability of multiple cores on the 

node to distribute the CPU processing load. Finally, to further utilize the multi-

connection capability of the InfiniBand network, I propose the Multi-group Multi-

connection Aware allgather algorithm for medium to large message sizes. This algorithm 

has less shared memory communication volume, but uses more connections per node. 

5.5.1 Single-group Multi-connection Aware Algorithm 

Single-connection SMP-aware collective communication algorithms can greatly 

improve the performance for small to medium message sizes [42, 63]. With the 

availability of scalable multi-connection performance in modern networks, there is now 
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an opportunity to improve the performance further. For this, I modify the inter-node 

communication phase of the SMP-aware allgather algorithm [63] to use multiple 

connections simultaneously. The algorithm has three phases as follows:  

Phase 1: Per-node shared memory gather 

Phase 2: Inter-node multi-connection aware allgather among the Master processes  

Phase 3: Per-node shared memory broadcast 

Each node has a Master process. All node Masters form a group for the inter-node 

communication in Phase 2 of the algorithm. In Phase 1, the Master process of each node 

gathers the data from the processes on the same node by a shared memory gather 

operation. In Phase 2, the Master processes participate in an inter-node allgather 

operation. Each Master process sends the gathered data in Phase 1, in a multi-connection 

aware fashion, concurrently over all connections to the other Master processes using 

RDMA Write operations. In Phase 3, the Master processes perform a shared memory 

broadcast. They copy out their received data to a shared buffer, from which each process 

copies the final data to its own destination buffer. 

5.5.2 Multi-group Gather-based Multi-connection Aware Algorithm 

In Phase 2 of the Single-group Multi-connection Aware algorithm, each Master 

process is responsible for communication with the Master processes on other nodes. 

However, the other processes of each node are idle, waiting for the combined data to be 

shared by their respective Master process. For small messages, the ConnectX has the 

ability to carry the message data on the work request using programmed input/output 

(PIO) instead of DMA [79]. This reduces the communication latency, but the CPU/core is 
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more involved with the communication process, especially when there are multiple 

simultaneously active connections. Therefore, to take advantage of the multi-core 

systems and evenly distribute the communication workload on the available cores, I 

design a multi-group allgather algorithm, in which the outbound connections of each 

node are now distributed among the cores. 

As shown in Figure 5.3, in this algorithm I group the processes across the nodes 

whose intra-node rank is equal. Each group has a Master process that gathers the data 

from the processes of the group. The algorithm is performed in three phases: 

Phase 1: Per-node shared memory allgather 

Phase 2: Per-group inter-node multi-connection aware gather 

Phase 3: Per-node shared memory broadcast 
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Figure 5.3 Group structure for gather-based allgather algorithm on a 4-node, 16-

core cluster. 

 

In Phase 1, an intra-node shared memory allgather is performed among processes on 

the same node. In Phase 2, each group Master process gathers the data from the processes 

of its group. This means that at the end of Phase 2 each Master process will have the 
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entire data from all processes. In Phase 3, each Master process will then broadcast the 

data to all processes on its own node. 

The only limitation of this algorithm is that each node should have at least a group 

Master process. If the number of nodes is more than the number of groups, some nodes 

will remain without a Master. To cover this, some groups may need to have two Master 

processes, with the same duties. 

5.5.3 Multi-group Multi-connection Aware Algorithm 

Up to this point, I have utilized both multi-connection and multi-core features of a 

modern InfiniBand cluster in an effort to improve the performance of the allgather 

collective operation. However, with the 4-node cluster, both the proposed algorithms in 

Section 5.5.1 and Section 5.5.2 use only a maximum of three simultaneously active 

connections per card. To examine the multi-connection ability of the NIC more 

aggressively, I propose the Multi-group Multi-connection aware allgather algorithm, in 

which an additional number of concurrent active connections is used during the allgather 

operation. Basically, with an increasing number of cores per node, more groups can be 

formed in this algorithm, which will even put more pressure on the NIC. I first propose 

an algorithm with only two independent groups. 

Two-group allgather: As discussed earlier in Section 5.4, two independent multi-

connection allgather operations achieve a much higher bandwidth than a single allgather 

case, at least for small to medium size messages. Therefore, I expect this algorithm to 

perform well for a range of message sizes. Figure 5.4 shows the group structure for a 

two-group multi-connection allgather on the cluster. Each group has a Master process on 
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each node, and includes half of each node’s processes. The algorithm is performed in 

three phases as follows: 

Phase 1: Per-node/per-group shared memory gather by each group Master process 

Phase 2: Per-group inter-node multi-connection aware allgather among group 

Master processes 

Phase 3: Per-node shared memory broadcast from each group Master process 
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Figure 5.4 Group structure for 2-group allgather algorithm on a 4-node, 16-core 

cluster. 

In Phase 1, each Master process gathers the data of all intra-node processes that 

belong to its group. For example in Figure 5.4, process 0 and 2 gather the data from 

process 1 and 3, respectively. In Phase 2, an inter-node allgather is done in each group 

among Master processes to transfer the data gathered in Phase 1. Each Master process in 

Phase 2 concurrently performs RDMA Write operations on all its connections. For 

example in Figure 5.4, Master process 2 concurrently sends data to Master processes 6, 

10, and 14. Therefore, there will be six concurrently active connections for this case. In 

Phase 3, all Master processes broadcast their received data to all the other processes on 

the same node.  
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Four-group allgather: A more connection-intensive algorithm that can be 

implemented on the platform is a 4-group multi-connection aware algorithm. Figure 5.5 

shows the group structure for such an algorithm on the cluster. The algorithm is done in 

two phases as follows: 

Phase 1: Per-group inter-node multi-connection aware allgather  

Phase 2: Per-node shared memory allgather 

In Phase 1, each process performs an inter-node allgather within its group. This 

operation is done in a way similar to Phase 2 of the 2-group algorithm. However, this 

time 12 concurrent active connections exist per NIC. In Phase 2, each process shares the 

combined data received from Phase 1 with all other processes on its own node. Based on 

the preliminary results in Figure 5.2, I do not expect the cards to scale well with this 

number of connections, at least on the platform I have experimented with. 
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Figure 5.5 Group structure for 4-group allgather algorithm on a 4-node, 16-core 

cluster. 

5.5.4 Complexity Analysis of the Algorithms 

In order to estimate the performance, in this section I compare the per-node 

complexity of the proposed algorithms. The analysis is done based on a 4-node cluster, 

each node having 4 cores. I compare the number of active connections, the amount of 
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shared memory Read/Write operations, and the volume of messages communicated 

through the network in the algorithms. I assume the message size for the allgather 

operation is M bytes. The following notation is used to present the complexity of the 

algorithms in Table 5.1:  

αM_βS: α×M bytes of data are communicated in each of β consecutive steps. 

αM_βC: There are β active connections, and α×M bytes of data are concurrently 

communicated over each connection.  

αM_βW / αM_βR: There are β concurrent shared memory Writes/Reads of α×M 

bytes of data each. 

As shown in Table 5.1, the inter-node communication volume is fixed and equal to 

12M for all cases. Moving from the 1-group single-connection algorithm to the 1-group 

multi-connection algorithm, I just change the way the inter-node communication is done. 

In essence, instead of sending 4M data in three consecutive steps, I send it over three 

concurrent active connections.  

The other notable difference among the algorithms is in their shared memory 

transactions. Consider the 1-group algorithms on a 4-node (16-core) cluster. In Phase 1 of 

the 1-group algorithms, all processes first write their data to the shared memory 

(1M_4W), and the Master process then reads the data into its send buffer (4M_1R). In 

Phase 3, the Master process will share all the data that it has received, from all other 

Master processes in Phase 2 of the algorithm, with its local processes (16M_1W). The 

local processes will then read the data into their own destination buffers (16M_4R).  
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Table 5.1 Per-node complexity of the proposed allgather algorithms on a 4-node, 16-

core cluster. 

 

    

1-group    

single-

connection

1-group     

multi-

connection 

4-group     

gather-based   

multi-

connection 

2-group 

multi-

connection  

4-group 

multi-

connection 

Concurrent active 

connections 

1 In 3 In 3 In 6 In 12 In 

1 Out 3 Out 3 Out 6 Out 12 Out 

Network – 

outbound or 

inbound data 

4M_3S 4M_3C 4M_3C 2M_6C 1M_12C 

 

Shared 

memory 

Read/Write 

operations  

Phase 

1 

1M_4W + 

4M_1R 

1M_4W + 

4M_1R 

1M_4W + 

4M_4R 

1M_4W + 

2M_2R 
- 

Phase 

2 
- - - - 

4M_4W + 

16M_4R 

Phase 

3 

16M_1W 

+ 16M_4R 

16M_1W + 

16M_4R 

16M_1W+ 

16M_4R 

8M_2W + 

16M_4R 
- 

 

The gather-based algorithm has a slightly higher shared memory volume than the 1-

group and 2-group algorithms. This means that for larger size messages, I do not expect 

the gather-based algorithm to perform better. With almost the same level of shared 

memory volume in the 1-group and 2-group algorithms, the 2-group algorithm has an 

edge over the 1-group and gather-based algorithms, mostly due to distribution of its inter-

node communication among more cores, effectively utilizing both multi-connection and 

multi-core ability of the InfiniBand cluster. The 4-group algorithm has the lowest shared 

memory volume. However, I expect to see some overhead due to its aggressive use of 

simultaneous network connections (over 12 connections). 
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5.6 Performance Results 

In this section, I present the performance results of the proposed algorithms and the 

native MVAPICH on the cluster, along with a brief description of the implementation. I 

use a cycle-accurate timer to record the time spent in an allgather operation (1000 

iterations) for each process, and then calculate the average allgather latency among all 

processes. 

For the implementation, I am directly using RDMA Write operations. I have 

implemented two different schemes: zero-copy and copy-based schemes in RDMA-based 

communications. The zero-copy approach is designed for large messages to avoid the 

extra data copy. To be able to have a direct data movement, the application buffers are 

required be registered. Also, each source process needs to know the address of the remote 

destination buffers before the RDMA communications can take place. For this, each 

process will advertise its registered destination buffer addresses to all other processes by 

writing into their pre-registered and pre-advertised control buffers.  

To avoid the high cost of application buffer registration and address advertisement 

for small messages, the copy-based technique involves a data copy to pre-registered and 

pre-advertised intermediate data buffers at both send and receive sides. The sending 

process can copy its messages to the pre-registered intermediate destination buffers using 

RDMA Write. 

To find the switching point of two schemes, I have implemented the proposed 

algorithms using both copy-based and zero-copy techniques, and evaluated them for 1B 
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to 512KB messages. The results shown in Figure 5.6, for 16 processes on the test cluster, 

are the best results of the two schemes for each algorithm.  

In general, the proposed multi-connection aware algorithms perform much better 

than the native MVAPICH implementation except for 128KB messages and above, 

mostly due to shared memory bottleneck and poor multi-connection performance for very 

large messages. As expected, the gather-based algorithm has the best performance for 

very small messages up to 32 bytes, mostly because this algorithm is using multiple cores 

on the node and lightly utilizes the multi-connection ability of the cards for network 

communication. The 1-group multi-connection aware algorithm outperforms all other 

algorithms from 64 bytes up to 2KB, since it has a lighter shared memory volume. From 

4KB to 64KB, the 2-group multi-connection-aware algorithm performs the best, due to a 

lighter shared memory volume compared to 1-group algorithms, and use of multiple 

concurrent connections and multi-cores.  

5.7 Summary 

Collective operations are the most data intensive communication primitives in MPI. 

In this chapter, I proposed three multi-core and/or multi-connection aware allgather 

algorithms over ConnectX InfiniBand networks. The implementation results confirm that 

utilizing the advanced features of modern network cards to process the communication 

over multiple simultaneously active connections can greatly improve the performance of 

collective operations. The proposed 1-group multi-connection aware algorithm performs 

better than the 1-group single-connection method for most of the message sizes. 
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Using the gather-based algorithm, I could also improve the performance by 

distributing the communication load over multiple cores for small message sizes that 

involve CPU in communication processing. Another factor that has affected the achieved 

performance compared to the pure RDMA-based implementation is the use of shared 

memory. In general, the multi-group multi-connection aware algorithms perform better 

than the RDMA-only allgather, except for very large message sizes. 
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Chapter 6: Process Arrival Pattern Aware Collectives on InfiniBand 

In preceding chapters, I have proposed a number of collective operations on top of 

modern interconnects. The micro-benchmark studies, and not the application studies, 

were done when processes arrived at the collective call almost simultaneously. However, 

this is not the case in real-life running applications. Recent research has shown that 

process arrival pattern (PAP) for collective operations have significant influence on the 

performance of collectives and consequently on the applications [21]. In this chapter, I 

will take another important factor into account, that is PAP awareness, and propose PAP-

aware alltoall [62] and algather collectives on top of InfiniBand [61]. 

6.1 Related work 

Most research on developing and implementing efficient collective communication 

algorithms assume all MPI processes involved in the operation arrive at the same time at 

the collective call. However, recent studies have shown that processes in real applications 

can arrive at the collective calls at different times. This imbalanced process arrival pattern 

can significantly affect the performance of the collective operations [21]. In addition, it 

has been found that different collective communication algorithms react differently to 

PAP [21]. In this regard, the authors in [52] have recently proposed PAP aware MPI-

Bcast() algorithms and implemented them using MPI point-to-point primitives.  

My research is similar to the work in [52]. However it has a number of significant 

differences. First, the authors in [52] have incorporated control messages in their 

algorithms at the MPI layer to make the processes aware of and adapt to the PAP. These 

control messages incur high overhead, especially for short messages. My proposed PAP 
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aware MPI_Alltoall() and MPI_Allgather() instead are RDMA-based, and I use its 

inherent mechanism for notification purposes. Therefore, there are no control messages 

involved and thus there is no overhead. Secondly, while [52] is targeted at large 

messages, I propose and evaluate two RDMA-based schemes for small and large 

messages. Thirdly, I propose an intra-node PAP and shared memory aware scatter 

operation to boost the performance for small messages. 

6.2 MPI_Alltoall() and MPI_Allgather() in MVAPICH 

The study in this chapter is done on an InfiniBand ConnectX cluster, and the 

platform is described in Chapter 5. MVAPICH is the native MPI implementation. In 

MVAPICH, point-to-point and some MPI collective communications have been 

implemented directly using RDMA operations. However, MPI_Alltoall() uses the two-

sided MPI send and receive primitives, which transparently uses RDMA. Different 

alltoall algorithms are employed for different message sizes: the Bruck algorithm for 

small messages, the Recursive-Doubling algorithm for large messages and power of two 

number of processes, and the Direct algorithm for large messages and non-power of two 

number of processes. The MVAPICH MPI_Allgather() implementation was discussed in 

Chapter 5.  

dsfasdfas 

6.3 Motivation 

In this section, I first show that indeed MPI processes arrive at collective calls at 

different times at runtime. Then, I present the impact of this skew time on the 

performance of MPI_Alltoall() and MPI_Alllgather(). 
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6.3.1 Process arrival pattern 

I first describe the parameters that are used to characterize PAP, similar to [21]. An 

example for four processes is given in Figure 6.1. Let n processes, 0p , …, 1np  be 

involved in the collective operations. ia  represents the arrival time of ip , and ie  

represents the time when ip  exits the collective. Let id  be the time difference between 

each process’s arrival time ia  and the average arrival time a . Average arrival time a , 

average-case imbalance time d  and worst-case imbalance time   are defined in 

Equation (6.1) (6.2) and (6.3), respectively. 

                  
n

aa
a n 10 ... 
                                                                 (6.1) 

aad ii                                                                                              

n

dd
d n 10 ... 
                                                                (6.2) 

   iiii aa minmax                                                     (6.3)                 

Arrival time

Exit time

0a 1a
2a

3a

 
0p 3p2p1p

0e

2e
3e

 a
3d

2d
1d0d



1e

 

Figure 6.1 Process arrival pattern for 4 processes.                                      
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The worst-case imbalance time and the average-case imbalance time are normalized 

over the time it takes to communicate a message (the size of this message is equal to the 

collective payload). These new metrics are called the average-case imbalance factor 
T

d
 

and the worst-case imbalance factor 
T


 [21]. 

To investigate the PAP behavior of MPI collectives in real applications, I have 

developed a profiling tool using the MPI wrapper facility. Using MPI_Wtime(), the 

wrapper records the arrival and exit times for each collective. An MPI_Barrier() 

operation is used in the MPI initialization phase in MPI_Init() to synchronize all the 

processes.  

I have chosen several benchmarks from NAS Parallel Benchmarks (NPB), version 

2.4 [49]. The average-case imbalance factor and worst-case imbalance factor results 

running for 16 processes are shown in Table 6.1. The results show that the averages-case 

and worst-case imbalance factors for all applications are quite large. For larger class C, 

the imbalance factors are even larger. The results confirm previous studies [21] that 

processes arrive at collective sites at different times.   

6.3.2 Impact of Process Arrival Pattern on Collectives 

To show how the native MVAPICH MPI_Alltoall() and MPI_Allgather() perform on 

the platform under random PAP, I use a micro-benchmark similar to [52]. Processes first 

synchronize using an MPI_Barrier(). Then, they execute a random computation before 

entering the MPI_Alltoall() and MPI_Allgather() operations. The random computation 
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time is bounded by a maximum value MIF (maximum imbalanced factor [52]) times the 

time it takes to send a message.  

Table 6.1 The average of worst-case and the average-case imbalance factors for FT 

LU and MG benchmarks. 

  
Major 
routine 

Number 
of calls 

Average 
message size 

(bytes) 

Average-case 
imbalance factor  

T

d
 

Worst-case 
imbalance factor 

T


 

FT (class B)  alltoall  22  2097152  597  1,812

   reduce  20  16  438,701  1,460,811

FT (class C)  alltoall  22  8388608  614  1,871

   reduce  20  16  1,888,964  5,732,913

LU (class B)  allreduce  9  22  56,033  163,523

   bcast  10  10  2,799  9,553

LU (class C)  allreduce  9  22  118,695  388,537

   bcast  10  10  11,519  32,938

MG (class B)  allreduce  12 89 9,101  2917

MG (class C)  allreduce  12  89  162,146  560,769

 

To get the performance of MPI_Alltoall() and MPI_Allgather(), a high-resolution 

timer is inserted before and after the MPI_Alltoall() and MPI_Allgather() operations. The 

completion time is reported as the average execution time across all the processes. Figure 

6.2 and Figure 6.3 present the performance of MVAPICH MPI_Alltoall() and 

MPI_Allgather() when MIF is 1, 32, 128 and 512, respectively. Clearly, the completion 

time is greatly affected by the increasing amount of random computation. The results 

confirm that the PAP can have significant impact on the performance of collectives. It is 

therefore crucial to design and implement PAP aware collectives to improve their 
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performance and consequently the performance of the applications that use them 

frequently. 

   
 

 

Figure 6.2 Completion time of MVAPICH Alltoall under different process arrival 

patterns. 
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the collective call. Previous work on PAP aware MPI_Bcast() [52] has introduced control 

messages that would add extra overhead, especially for small messages. However, in my 

work I do not send distinct control messages and instead I utilize the inherent features of 

RDMA-based communication to notify the arrival of a process. In the following, I first 

propose my RDMA-based PAP aware MPI_Alltoall() and MPI_Allgather(), and then 

extend them to be shared memory aware for better performance for small messages. 

 

Figure 6.3 Completion time of MVAPICH Allgather under different process arrival 

patterns. 
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6.4.1 Notification Mechanisms for Early-arrival Processes 

The basic idea in my PAP aware algorithms is for each process to send its distinct 

data to the already-arrived processes as soon as possible. It is therefore very important to 

have an efficient mechanism in place to inform others of the early-arrival processes. For 

this, I have devised two different notification mechanisms for zero-copy and copy-based 

schemes used in RDMA-based communications. These notification mechanisms do not 

incur any communication overhead.   

In the zero-copy approach, where the cost of data copy is prohibitive for large 

messages, the application buffers are registered to be directly used for data transfer. 

However, for an RDMA Write message transfer to take place each source process needs 

to know the address of the remote destination buffers. For this, each process will 

advertise its registered destination buffer addresses to all other processes by writing into 

their pre-registered and pre-advertised control buffers. This inherent destination address 

advertisement mechanism can be interpreted as a control message to indicate a process 

has arrived at the collective call. Therefore, processes can poll their control buffers to 

understand which other process has already arrived at the collective call.  

The copy-based technique involves a data copy to pre-registered and pre-advertised 

intermediate data buffers at both send and receive sides. Therefore, the received data in 

the pre-registered intermediate destination buffer can be used as a signal that the sending 

process has already arrived at the site. This can be checked out easily by polling the 

intermediate destination buffer. 
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6.4.2 RDMA-based Process Arrival Pattern Aware Alltoall 

My base algorithm is the Direct alltoall algorithm. Let N be the total number of 

processes involved in the operation. In this algorithm, at step i, process p sends its 

message to process (p + i) mod N, and receives from (p – i) mod N. To implement this 

algorithm, each processes p first posts its RDMA Writes to all other processes in 

sequence (after it receives the destination buffer addresses). It then polls the completion 

queues to make sure its messages have been sent to all other processes. Finally it waits to 

receive the incoming messages from all processes.  

To make this algorithm PAP aware using the zero-copy scheme, each process p polls 

its control buffers for the advertised remote destination buffer addresses starting from 

process (p + i) mod N. It then sends its data to final destination buffers of the early-

arrived processes using RDMA Write. Subsequently, it waits for the remaining processes 

to arrive in order to send its messages to them. Finally, each process waits for all 

incoming messages by polling its own destination buffers. The beauty of this PAP aware 

algorithm over the non-PAP aware algorithm is that a sending process will never get 

stuck for a particular process to arrive in order to proceed with the next message transfer.   

Under the copy-based scheme, each process p polls its intermediate destination 

buffers, starting from process (p – i) mod N. Any received data indicates that the 

corresponding process has already arrived. The process p then copies its messages using 

RDMA Write to all early-arrived processes. It then sends its data to the rest of processes 

who have not yet arrived. All processes also need to wait to receive messages from all 
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other processes into their intermediate buffers, and then copy them to their final 

destination buffers. 

6.4.3 RDMA-based Process Arrival Pattern Aware Allgather 

RDMA-based Process Arrival Pattern Aware allgather algorithm is very similar to 

the alltoall algorithm explained in Section 6.4.2. It is based on the Direct allgather 

algorithm. I have also used the same notification mechanisms for zero-copy and copy-

based schemes used in RDMA-based communications. The only difference is that each 

process sends the same data/address to the other processes in the allgather operation. 

6.4.4 RDMA-based Process Arrival Pattern and Shared Memory Aware Alltoall 

Up to this point, I have utilized the RDMA features of a modern InfiniBand cluster 

along with PAP awareness in an effort to improve the performance of MPI_Alltoall(). 

Previous research has shown that shared memory intra-node communication can improve 

the performance of collectives for small to medium messages. However, it is interesting 

to see how shared memory intra-node communication might affect the performance under 

different process PAP. For this, I propose an SMP-aware and RDMA-based PAP aware 

MPI_Alltoall() algorithm that has the following three phases: 

Phase 1: Intra-node shared memory gather performed by a Master process 

Phase 2: Inter-node PAP aware Direct alltoall among the Masters 

Phase 3: Intra-node PAP and shared memory aware scatter by a Master process 

A Master process is selected for each node (without loss of generality, the first 

process in each node). Phase 1 cannot be PAP aware because the Master process has to 

wait for all intra-node messages to arrive into a shared buffer before moving on to the 
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PAP aware Phase 2. Phase 2 is the same as the algorithm proposed in Section 6.4.2, and 

is performed among the Master processes. In Phase 3, an intra-node shared memory and 

PAP aware scatter is devised. Because the Master processes may arrive in Phase 2 at 

different times, this awareness can be passed on to Phase 3 by allowing the intra-node 

processes to copy their destined data available in the shared buffer to their final 

destinations without having to wait for data from all other Masters. 

In a shared memory but non-PAP aware Phase 3, a Master process waits to receive 

the data from all other Master processes. It then copies them all to a shared buffer and 

sets a shared done flag. All other intra-node processes poll on this flag, and once set they 

start copying their own data from the shared buffer to their final destinations.   

In a shared memory and PAP aware Phase 3, we consider multiple shared done flags, 

one for data from each Master process (four flags in our 4-node cluster). As soon as a 

Master process receives data from any other Master process, it copies it to the shared 

buffer and then sets the associated done flag. All other intra-node processes poll on all 

done flags, and as soon as any partial data is found in the shared buffer they copy them 

out to their final destination buffers.  

6.4.5 RDMA-based Process Arrival Pattern and Shared Memory Aware Allgather 

Similar to the MPI_Alltoall() algorithm in Section 6.4.4, I propose an SMP-aware 

and RDMA-based PAP aware MPI_Allgather() algorithm that has the following three 

phases: 

Phase 1: Intra-node shared memory gather performed by a Master process 

Phase 2: Inter-node PAP aware Direct allgather among the Masters 
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Phase 3: Intra-node PAP and shared memory aware broadcast by a Master process 

Phase 1 is similar to the Phase 1 of the MPI_Alltoall() algorithm, but with less data 

movements. Phase 2 employs the same MPI_Allgather() algorithm explained in Section 

6.4.3, among the Master processes. In Phase 3, an intra-node shared memory and PAP 

aware broadcast is done instead of scatter in MPI_Alltoall().  

6.5 Experimental Results  

In this section, I present the performance results of the proposed algorithms, the 

RDMA-based PAP aware Direct (PAP_Direct) alltoall and allgather, and RDMA-based 

PAP and Shared memory aware Direct (PAP_Shm_Direct) alltoall and allgather, and 

compare them with the non-PAP aware RDMA-based Direct (Direct) and RDMA-based 

and Shared memory aware Direct (Shm_Direct) algorithms as well as with the native 

MVAPICH on the cluster.  

I have evaluated the proposed algorithms using both copy-based and zero-copy 

techniques for 1B to 1MB messages. The results shown in the section are the best results 

of the two schemes for each algorithm. Again, I use a cycle-accurate timer to record the 

time spent in the collectives (1000 iterations) for each process, and then calculate the 

average alltoall latency across all processes. 

6.5.1 MPI_Alltoall() Micro-benchmark Results 

Figure 6.4 compares the PAP aware MPI_Alltoall() algorithms with the native 

MVAPICH implementation and non-process arrival pattern aware versions, with MIF 

equal to 32 and 512. Clearly, the PAP aware algorithms, PAP_Direct and 

PAP_Shm_Direct, are better than their non-PAP aware counterparts for all message sizes. 
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This shows that indeed such algorithms can adapt themselves well with different PAP. 

My algorithms are also superior to the native MVAPICH, with an improvement factor of 

3.1 at 8KB for PAP_Direct and 3.5 at 4B for PAP_Shm_Direct, with MIF equal to 32. 

With a larger MIF of 512, the improvements are 1.5 and 1.2, respectively.  

Comparing the PAP_Shm_Direct with PAP_Direct, one can see that the 

PAP_Shm_Direct is the algorithm of choice up to 256 bytes for MIF equal to 32. 

However, this is not the case for MIF of 512 where processes may arrive at the call with 

more delay with respect to each other. This shows that the SMP version of my process 

arrival pattern algorithm introduces some sort of implicit synchronization in Phase 1 that 

may degrade its performance under large maximum imbalanced factors.  

To evaluate the scalability, I compare the performance of the PAP_Direct 

MPI_Alltoall() with those of MVAPIVH and Direct algorithm for 4, 8, and 16 processes, 

as shown in Figure 6.5 (shared memory algorithms are not shown due to limited data 

points). One can see that the proposed PAP aware algorithm has scalable performance 

and is always superior to the non-PAP aware algorithms. I have found similar results for 

other MIFs and messages sizes. 

In the previous micro-benchmark, the arrival time of each process is random. In 

another micro-benchmark, I control the number of late processes. In Figure 6.6, I present 

the MPI_Alltoall() results for MIF equal to 128 when 25% or 75% of processes arrive 

late. My proposed algorithms are always better than their counterparts for the 25% case, 

and mostly better in the 75% case. The PAP_Shm_Direct alltoall is always better than 

MVAPICH, although with a less margin in the 75% case.  
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Figure 6.4 Performance of the proposed MPI_Alltoall(), 16 processes on a 4-node, 

16-core cluster. 
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Figure 6.5 MPI_Alltoall() scalability. 
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at 1B for PAP_Shm_Direct, with MIF equal to 32. With a larger MIF of 512, the 

improvement is 1.3 and 1.2, respectively.  

   
 

   
 

   

Figure 6.6 Performance of the proposed MPI_Alltoall() with 25% and 75% late 

processes. 
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Comparing the PAP_Shm_Direct with PAP_Direct, the PAP_Shm_Direct is the 

algorithm of choice up to 1KB for MIF equal to 32. This is better than the one achieved 

by MPI_Alltoall(). The reason is because MPI_Alltoall() has more shared memory data 

movements than MPI_Allgather(). For MIF of 512, PAP_Shm_Direct and Shm_Direct 

perform much better than other algorithms up to 32KB. This indicates that shared 

memory implementation can speed up MPI_Allgather() greatly. The performance of 

PAP_Shm_Direct and Shm_Direct are very close for MIF=512 results. This indicates that 

the SMP version of the algorithm introduces some sort of implicit synchronization, which 

may degrade its performance under large maximum imbalanced factors.  

I compare the scalability performance of the PAP_Direct MPI_Allgather() with 

those of MVAPIVH and Direct algorithm for 4, 8, and 16 processes, as shown in Figure 

6.8. The PAP algorithm performs better for large message sizes. The proposed PAP 

aware algorithm has scalable performance and is always superior to the non-PAP aware 

algorithms. 

In Figure 6.9, I present the MPI_Allgather() results for MIF equal to 128 when 25% 

or 75% of processes arrive late. My PAP_Direct allgather algorithm is always better than 

its counterpart for the 25% case, and for messages larger than 4KB in the 75% case. 

PAP_Shm_Direct allgather algorithm is very close to its counterpart for both cases, and it 

is the best algorithm up to 8Kbyes for 25% case and 2KB for 75% case. 
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Figure 6.7 Performance of the proposed MPI_Allgather(), 16 processes on a 4-node, 

16-core cluster. 
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Figure 6.8 MPI_Allgather() scalability. 

6.5.3 Application Results 

In this section, I consider the FT application benchmark from NPB, version 2.4 [49], 

and N-BODY and RADIX [72] applications to evaluate the performance and scalability 

of the proposed PAP aware MPI_Alltoall() and MPI_Allgather(). FT uses MPI_Allltoall() 

as well as a few other collectives communications. I have experimented with class B and 

C of FT, running with different number of processes, which use payloads larger than 

2MB. Table 6.2 shows the PAP aware MPI_Alltoall() speedup over the native 

MVAPICH and the Direct algorithms for FT running with 4, 8, and 16 processes.  Clearly, 

the proposed algorithm outperforms the conventional algorithms. The results also show 

0

100

200

300

400

500

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (16B, MIF = 512)

MVAPICH Direct PAP_Direct

0

1000

2000

3000

4000

5000

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (8KB, MIF = 512)

MVAPICH Direct PAP_Direct

0
10000
20000
30000
40000
50000
60000
70000

4 8 16

T
im

e
 (
µ

s
)

Number of processes

Scalability (256KB, MIF = 512)

MVAPICH Direct PAP_Direct



 

 102 

that the PAP aware MPI_Alltoall() has modest scalability as speedup improves with 

increasing number of processes. 

 

Figure 6.9 Performance of the proposed MPI_Allgather() with 25% and 75% late 

processes. 
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Table 6.2 PAP_Direct MPI_Alltoall() speedup over native MVAPICH and the 

Direct algorithms for NAS FT running with different number of processes and 

classes. 

 Speedup over native 
MVAPICH algorithm 

Speedup over Direct 
algorithm 

FT (class B) FT (class C) FT (class B) FT (class C) 
4 processes 1.08 1.01 1.16 1.04 
8 processes 1.10 1.04 1.04 1.14 
16 processes 1.14 1.17 1.42 1.63 

 

N-BODY and RADIX mainly use MPI_Allgather() with relatively small message 

sizes, 4KB for RADIX and mostly 64B for NBODY (some with less than 1KB payload). 

Therefore, the best choice will be PAP_Shm_Direct algorithm. Table 6.2 shows the SMP 

version of PAP aware MPI_Allgather() speedup over the native MVAPICH and the SMP 

version of Direct algorithms for N-BODY and RADIX running with 4, 8, and 16 

processes.  The proposed PAP algorithm outperforms the conventional algorithms. The 

improvement increases with more number of processes.  

Table 6.3 PAP_Shm_Direct MPI_Allgather() speedup over native MVAPICH and 

the shared memory aware Direct algorithms for N-BODY and RADIX running with 

different number of processes. 

 Speedup over native 
MVAPICH algorithm 

Speedup over Shm_Direct 
algorithm 

N-BODY RADIX N-BODY RADIX 
4 processes 1.01 0.92 0.97 1.11 
8 processes 1.03 1.53 0.92 1.19 
16 processes 1.52 1.62 1.31 1.22 
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6.6 Summary 

MPI_Alltoall() and MPI_Allgather() are two of the most communication-intensive 

primitives in MPI. Imbalanced PAP has an adverse impact on their performance. In this 

chapter, I have proposed RDMA-based PAP aware MPI_Alltoall() and MPI_Allgather() 

algorithms and extended them to be shared memory aware without introducing any extra 

control messages. 

The performance results indicate that the proposed PAP aware MPI_Alltoall() and 

MPI_Allgather() algorithms perform better than the native MVAPICH and the traditional 

Direct and SMP-aware algorithms when processes arrive at different times. They also 

improve the communication performance in the applications studied.  

While this study was focused at MPI_Alltoall() and MPI_Allgather(), it can be 

directly extended to other collectives. The proposed techniques can be applied to other 

alltoall and allgather algorithms such as Bruck or Recursive Doubling. However, one has 

to bear in mind that due to synchronization between different steps of these algorithms 

they may not achieve the highest performance as in the Direct algorithm. 
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Chapter 7: Conclusion and Future Work 

In this dissertation, I have proposed and evaluated a number of algorithms for MPI 

collective operations over high-performance interconnects. I have proposed how to take 

advantage of advanced features provided by modern interconnects such as RDMA, multi-

rail communication, and multi-connection capability in order to design efficient 

collective operations. My work has also taken into account the multi-core and SMP 

clusters architectures, as well as the runtime process arrival pattern issue.  

In Chapter 3, I have presented new designs that exploit multi-rail communication 

techniques over multiple independent networks/rails, or multi-port NICs, to overcome 

bandwidth limitations. I have adapted well-kown multi-port algorithms for a number of 

collective operations, including scatter, gather, allgather and alltoall personalized 

exchange to work over multi-rail networks using RDMA techniques. I have evaluated in 

detail the performance improvement offered by the new approaches over QsNetII dual-rail 

systems. The proposed techniques can achieve superior bandwidth improvement. The 

RDMA-based multi-port scatter and gather algorithms include a tree-based and a Direct 

algorithm. The allgather and alltoall algorithms include the Direct, Standard Exchange, 

and Bruck algorithms. The performance results show that the algorithms are superior 

over the native implementations. In fact, the multi-port RDMA-based Direct algorithms 

for gather and allgather collectives gain an improvement of up to 2.15 for 4KB messages 

and 1.49 for 32KB messages over elan_gather(), respectively. In addition, the RDMA-

based Direct alltoall outperforms elan_alltoall() up to 2.26 for 2KB messages  
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The RDMA-based algorithms, however, did not perform well for short messages. 

The native gather, allgather and alltoall implementation had a better latency for up to 

512B, 2KB, and 512B, respectively. The reason is because shared memory operations 

have absolute advantage over RDMA Reads or Writes for small messages on SMP/multi-

core nodes. To address this deficiency, in Chapter 4, I proposed RDMA-based and shared 

memory aware multi-port algorithms to speedup the collectives for co-located processes 

on SMP/multi-core nodes. I showed that concurrent shared memory transfer can greatly 

improve the collectives performance for small to medium size messages. I proposed two 

classes of SMP-aware allgather algorithms: SMP-aware Gather and Broadcast algorithm 

and SMP-aware Direct and Bruck algorithms. 

The SMP-aware Gather and Broadcast algorithm performed best for very short 

messages up to 256B. The SMP-aware Bruck algorithm outperformed all algorithms 

including elan_gather() for 512B to 8KB messages, with a 1.96 improvement factor for 

4KB messages. The multi-port Direct allgather proposed in Chapter 3 was still the best 

algorithm for 16KB to 1MB. The scalability results verifed the superiority of the 

algorithms for various message sizes. In addition, the performance of NBODY and 

RADIX applications as well as their communication performance was improved using 

the proposed algorithms.  

InfiniBand has been proposed as a high-performance interconnect. I showed that the 

latest InfiniBand cards can provide much better performance and salability for 

simultaneous communication over multiple connections. By taking advantage of this 

feature, in Chapter 5, I proposed three multi-core and/or multi-connection aware 
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MPI_Allgather() algorithms over ConnectX InfiniBand networks: (1) the Multi-group 

Gather-based Multi-connection Aware MPI_Allgather() algorithm targeted at very small 

messages. (2) the Single-group Multi-connection Aware MPI_Allgather() algorithm 

targeted at small to medium messages, and (3) the Multi-group Multi-connection Aware 

MPI_Allgather() algorithm for medium to large message sizes. I also compared the per-

node complexity of each of the proposed algorithm to estimate their performance.  

The multi-group multi-connection aware algorithms performed better than the native 

allgather implementation from 4KB to 64KB, mostly due to the use of multiple 

concurrent connections and multiple cores. The gather-based algorithm showed the best 

performance for very small messages, up to 32 bytes, mostly because this algorithm 

efficiently used the available cores and lightly utilized the network communications. 

Finally, the single-group multi-connection aware algorithm outperformed all other 

algorithms from 64B to 2KB, since it had a lighter shared memory volume.  

Lastly, in Chapter 6, I took into account the process arrival pattern impact on the 

collective communications. I studied the process arrival pattern behavior of NAS parallel 

benchmarks and showed that indeed processes arrive at different times at collectives. I 

then evaluated the impact of the process arrival pattern on the performance of collectives. 

The results confirmed that it is essential to have process arrival pattern aware collecives. 

For this, I proposed RDMA-based process arrival pattern aware alltoall and allgather 

algorithms and then extended them to be shared memory aware. For performance 

reasons, I utilized the inherent features of RDMA data transfer mechanisms for 

notification purposes to avoid introducing any extra control messages. 
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The performance results indicated that the proposed PAP aware MPI_Alltoall() and 

MPI_Allgather() algorithms perform better than the native MVAPICH and the traditional 

non PAP aware Direct and shared memory algorithms when processes arrive at different 

times. The shared memory and RDMA-based PAP aware algorithms were designed to 

target smaller message size. The proposed MPI_Alltoall() algorithms outperformed the 

native implementation by up to 3.1 times at 8KB for PAP_Direct and 3.5 times at 4B for 

PAP_Shm_Direct. The proposed MPI_Allgather() algorithms gained an improvement 

factor of 3.1 at 8KB for PAP_Direct and 2.5 times at 1B for PAP_Shm_Direct. In 

addition, the communication performance of NAS FT, NBODY and RADIX applications 

were improved by up to 63% over the native and non PAP aware implementations. 

It should be mentioned while this dissertation was focused at Quadrics and 

InfiniBand networks, the proposed collective algorithms can be used on top of any 

RDMA-based interconnects. For instance, the work proposed on InfiniBand can be 

directly applied to iWARP Ethernet without any modifications, as the algorithms were 

designed on top of OFED, and thus they are portable. 

7.1 Future Work 

The high-performance and rich features offered by modern interconnects such as 

QsNetII and InfiniBand make them very attractive for large scale system design. In this 

dissertation, I have exploited such modern features along with multi-core/SMP 

architectures to design efficient and scalable MPI collective communications. I would 

like to extend this work and also explore several other interesting research topics in the 

future. 
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 Extension of Multi-connection and Multi-core Aware Algorithms 

I would like to extend my work in this area to other collective communications of 

interest such as MPI_Reduce(), MPI_Allreduce(), etc. It is also interesting to discover 

how such algorithms behave on emerging large multi-core clusters with new architectures 

(such as NUMA) and more number of cores per nodes. I would also like to investigate 

the performance of the proposed collectives over other InfiniBand transport protocols. 

 Extension of PAP Aware Algorithms to Other Collectives 

My PAP algorithms are based on the Direct algorithm. I would like to extend it to 

PAP Bruck and Recursive Doubling algorithms for allgather and alltoall operations. I am 

interested in devising other process arrival pattern aware collectives over emerging multi-

core clusters. I would also like to use a larger multi-core SMP cluster in the future to 

evaluate the algorithms as the process arrival pattern will become even more crucial for 

larger systems. It is very important to optimize the algorithms for such large systems. 

 Collectives for Next-Generation Programming Models  

One of the challenges to petascale computing is the programmer productivity. The 

Partitioned Global Address Space (PGAS) programming model [23] has been gaining 

rising attention due to its prospects as the basis for productive parallel programming. The 

PGAS model provides for ease-of-use through its global shared address space view. The 

DARPA HPCS [20] program has also introduced new promising PGAS languages, such 

as X10 [83] and Chapel [18]. Devising efficient collective communications for such 

languages is crucial for their performance. I would like to exploit the techniques used in 
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this dissertation as well as new novel techniques designed according to the specific 

features offered by these languages. 

 Onloading vs. Offloading vs. Hybrid Communication Stacks 

Some of the networking companies such as Mellanox have consistently tried to 

offload most of the communication tasks to programmable processors on the network 

interface cards. On the contrary, some other companies like QLogic have designed their 

host channel adapters with limited offloading capability. Their argument is that 

computing nodes are becoming more powerful due to the availability of multi- and soon 

many-core processors. Therefore, it is better to onload most of the protocol processing 

tasks. There is right now a debate among the research community as towhether we should 

move toward onloading or offloading. There is also a middle-ground, where some 

communication tasks should be offloaded while others are handled by the host 

processors. I would like to investigate the impact of these design alternatives on the 

performance of collective communications.    
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