Calculating eigenvalues of non-hermitian matrices to determine resonance energies and widths

Jean Christophe Tremblay

and

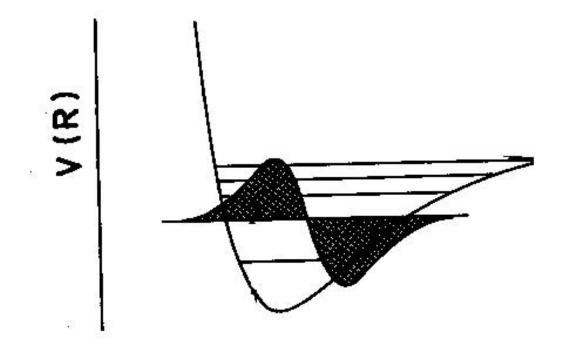
Tucker Carrington Jr.

Université de Montréal

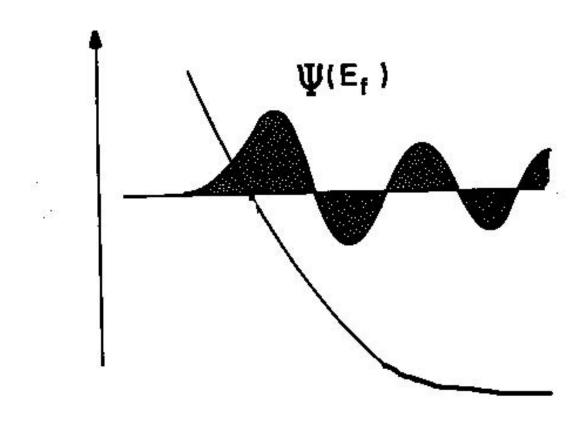
What is a resonance?

Solutions of the Schroedinger equation

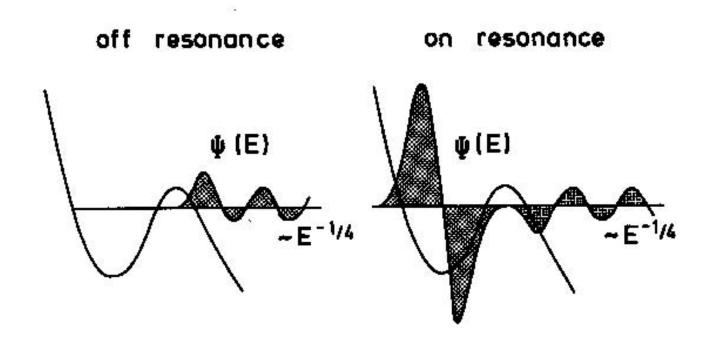
A bound state



A scattering state



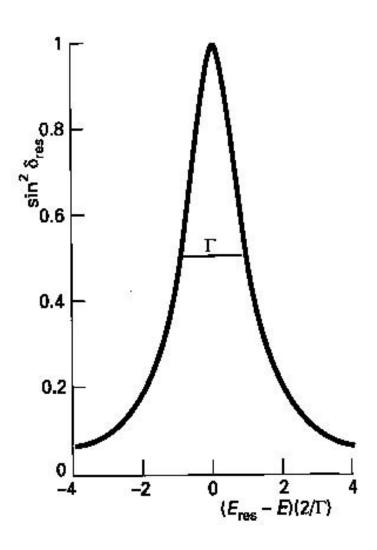
A resonance state



A molecule or complex with a finite lifetime

Resonances are the continuation of the bound states into the continuum

A resonance peak in a spectrum looks like:



It is possible to show that if outgoing boundary conditions are imposed

i.e.

$$\psi \sim e^{+ikr}$$

$$\psi \sim e^{+ikr}$$
$$k = \sqrt{2mE}$$

there are solutions of the Schroedinger equation with complex energies

$$E = E_r - i\frac{\Gamma}{2}$$

energy at which resonance occurs width of the resonance

Our goal is to find these states

Problem: ψ diverges

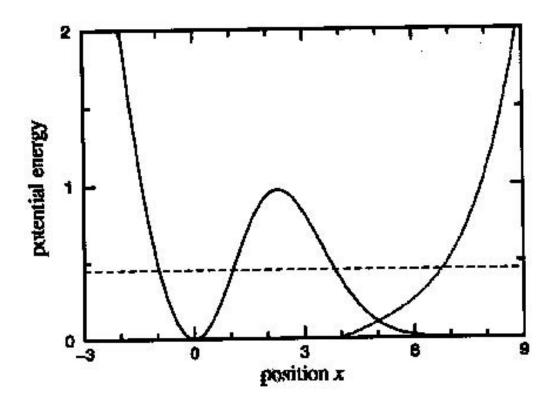
$$E = E_r - i\frac{\Gamma}{2}$$

$$k = k_r - ik_i \quad ; \qquad k_i > 0$$

$$e^{+ikr} \rightarrow e^{+irk_r}e^{+rk_i}$$

Standard Approach

$$H \to H - i\eta W \qquad \eta > 0.$$



Choose W so that it does not perturb ψ in the interaction region

 η is a parameter that is varied to minimise the perturbation

We discretize to obtain a matrix eigenvalue problem

$$(H - i\eta W)Y = YE$$

How do we compute the (complex) eigenvalues?

Complex symmetric Lanczos with no re-orthogonalization

Cullum and Willoughby

This works quite well

Deficiencies of usual implementation

• Complex matrix-vector products

ullet No eigenvectors o no wavefunctions

New approach

$$(H - i\eta W)x_k = E_k x_k$$

$$-i\eta W = \frac{u_k}{2}(I - D_1) + \frac{1}{2u_k}(I - D_2)$$

where u_k is defined by $E_k = \left(\frac{u_k}{2} + \frac{1}{2u_k}\right)$

Neumaier and Mandelshtam, Phy. Rev. Lett. 86 5031 (2001)

 ${f H}$ is scaled so that its eigenvalues are between -1 and +1

Quadratic eigenvalue problem

$$(u_k^2 \mathbf{D_1} - 2\mathbf{H}u_k + \mathbf{D_2})\mathbf{x}_k = 0$$
.

 \Downarrow

Linearize

$$\mathbf{U}\hat{\mathbf{x}}_k = u_k \hat{\mathbf{x}}_k$$

where
$$\hat{\mathbf{x}}_k = \begin{pmatrix} \mathbf{x}_\mathbf{k} \\ \mathbf{y}_\mathbf{k} \end{pmatrix}$$

Advantages of U

 \bullet U = real

 \bullet cost of a matrix-vector product with $\mathbf{U}\sim \text{cost}$ of a matrix-vector product with \mathbf{H}

• Ideal for Lanczos because desired eigenvalues are extremal

"Symmetric Indefinite Lanczos Method"

Bai, Ericsson, Kowalski, Templates for the Solution of Algebraic Eigenvalue Problems

$$\mathbf{U}\hat{\mathbf{x}}_k = u_k\hat{\mathbf{x}}_k \to \mathbf{U}\mathbf{X} = \mathbf{X}\mathbf{u}$$

$$DUX = DXu$$

where

$$\mathrm{D} = \left(egin{array}{cc} \mathrm{D}_2 & 0 \\ 0 & -\mathrm{D}_1 \end{array}
ight) \;\;$$
 is symmetric

Also

$$(DU)^T = U^TD^T = U^TD = DU$$

so (DU) is symmetric

But BOTH (DU) and D are not positive definite

The key idea is to use a D inner product

Basis vectors are orthogonal wrt an indefinite inner product

- loss of linear independence
- failure of the method

It works best for small matrices and for isolated eigenvalues (shift and invert)

For my purpose it fails

Go back to attempting to solve

$$\mathbf{U}\hat{\mathbf{x}}_k = u_k\hat{\mathbf{x}}_k \to \mathbf{U}\mathbf{X} = \mathbf{X}\mathbf{u}$$

Non-hermitian Lanczos

Two sets of bi-orthogonal vectors formed from the Krylov spaces

$$[\mathbf{q},\mathbf{U}\mathbf{q},\mathbf{U}^2\mathbf{q},\cdots] \qquad [\mathbf{p},\mathbf{U}^T\mathbf{p},(\mathbf{U}^T)^2\mathbf{p},\cdots]$$

The columns of V and W are Lanczos vectors

They are generated with three-term recurrence relations

The coefficients are chosen according to the recipe of Freund and Nachtigal

There are different ways to choose the coefficients consistent with the requirement $\mathbf{v}_{i+1}^T\mathbf{w}_{i+1}=1$

In matrix form the recurrence relations are

$$UV_{M} = V_{M+1}T_{M+1}$$

$$\mathbf{U}^{\mathrm{T}}\mathbf{W}_{\mathrm{M}} = \mathbf{W}_{\mathrm{M}+1}(\Gamma^{-1}\mathbf{T}_{\mathrm{M}+1}\Gamma)$$

 $\Gamma=$ diagonal matrix related to the way the vectors are normalized eigenvalues of $\mathbf{T}_M\to$ eigenvalues of \mathbf{U}

To increase stability and avoid the need to balance we compute eigenvalues of $G^{-1}T_MG$, where G= diagonal and $G^{-1}T_MG$ is symmetric

Chemist's dream

No reorthogonalization

Copied eigenvalues are accurate

This does not work

Near copies are produced but

norm [copied e'val of largest norm - copied e'val of smallest norm]

increases as we increase the number of matrix-vector products

What is the best estimate of the eigenvalue?

If we use the coupled-two-term approach the situation is somewhat better

Generate \mathbf{p} vectors with \mathbf{v} vectors

Generate q vectors with w vectors

The four recursion relations for the four sets of factors each involve only 2 vectors

It is not necessary to do matrix-vector products with both \mathbf{U} and \mathbf{U}^T

Because $U^TD = DU$

$$\tilde{\mathbf{w}}_{k+1} = \theta_k \mathbf{D} \tilde{\mathbf{v}}_{k+1}$$

$$q_k = \theta_k Dp_k$$

 $\theta_k = \text{constant related to the norms of the vectors}$

Coupled-two-term is better but not good enough (copies are not nearly perfect)

How to compute accurate eigenvalues

 For e'values with norms close to one we identify groups of eigenvalues with almost identical norms

ullet Average of eigenvalues in a group is $ilde{u}$

 $\tilde{u} = approximate eigenvalue$

 \bullet Compute approximate right eigenvectors of T_M by inverse iteration using LU decomposition of $(\tilde{\it u}I-T_M)\to R$

 $\bullet~X_{Lan}^R=V_{ID}R,$ where ID = optimal iteration depth (between the number of iterations at which first copy occurs and number at which second copy occurs)

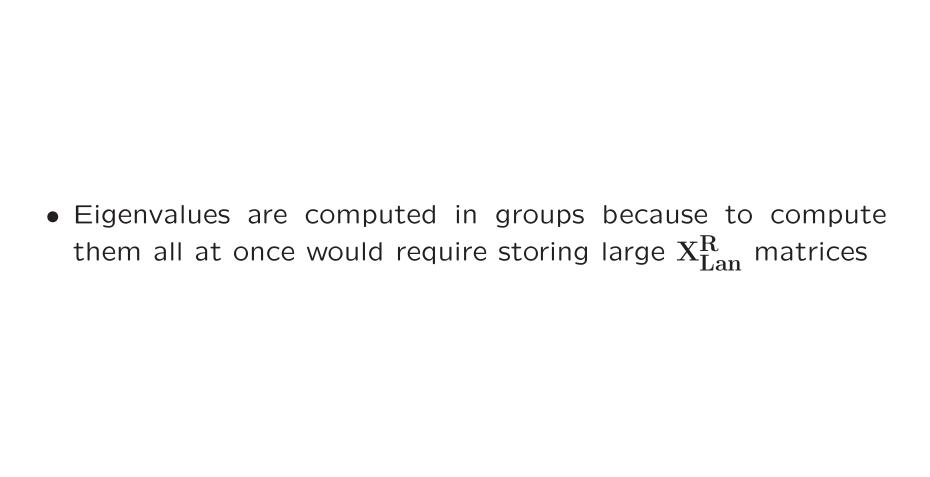
•
$$X_{Lan}^{L} = DX_{Lan}^{R}$$

$$UX = Xu$$

$$UX_{Lan}^{R}Z = X_{Lan}^{R}Zu$$

$$[(\mathbf{X}_{\mathrm{Lan}}^{\mathrm{L}})^{\mathrm{T}}\mathbf{U}\mathbf{X}_{\mathrm{Lan}}^{\mathrm{R}}]\mathbf{Z} = [(\mathbf{X}_{\mathrm{Lan}}^{\mathrm{L}})^{\mathrm{T}}\mathbf{X}_{\mathrm{Lan}}^{\mathrm{R}}]\mathbf{Z}\mathbf{u}$$

$$[(\mathbf{X}_{Lan}^{L})^T\mathbf{X}_{Lan}^R]$$
 is nearly diagonal



Key idea: We use non-hermitian Lanczos ideas to determine a very good subspace and then extract eigenvalues from it

Disadvantage

We must store Lanczos vectors on disk

Advantage

- No troubles with instability and inaccuracy
- no complex arithmetic

This work has been supported by the Natural Sciences and Engineering

Research Council of Canada