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Calculating spectra is useful because it enables
spectroscopists to

verify the accuracy of or refine potential energy surfaces

predict the position (and intensity) of unobserved transitions

assign observed spectra
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Perturbation Theory

Spectroscopists often use a zeroth-order harmonic model and
perturbation theory

For low-lying levels of semi-rigid molecules it works pretty well.

Methane vibrational levels in the Octad (∼ 4000 cm−1 above
the ZPE) computed with fourth and sixth order perturbation
theory differ by about 8 cm−1.

Most ab initio programs use second order perturbation theory.

Nearly degenerate levels cause perturbation theory to break
down.

The density of states increases with energy.
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For

high-lying states

molecules in which coupling and anharmonicity are important

one, instead, needs numerically accurate solutions to the
Schroedinger equation

Ĥψn = Enψn
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How does one solve the Schroedinger equation ?

represent wavefunctions with basis functions

ψn(r,θ) =
∑

k

cn
k fk(r,θ)

compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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Fundamental Recipe

K̂ + V̂ → Ĥ
basis−−−→ H→ eigenvalues,

eigenvectors
→ energies,

wavefunctions

→ Spectrum
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We want to be able to deal with large amplitude motion

Normal coordinates are not appropriate for molecules with large
amplitude motion

For large amplitude motion it is best to :

choose N − 1 vectors to describe the shape and orientation

use the lengths of the vectors and the associated spherical
polar angles as vibrational coordinates
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For example,
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Consider first the J = 0 problem

The general KEO is

T = Ts + Tb

with

Ts = −
N−2∑
k=0

1

2µk

∂2

∂r2k

and

Tb = Tb,diag + Tb,off .
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Tb,diag = [B0(r0) + B1(r1)]

[
− 1

sin θ1

∂

∂θ1
sin θ1

∂

∂θ1
+

1

sin2 θ1
L2z

]

+
N−2∑
k=2

[B0(r0) + Bk(rk)] l2k

+B0(r0)

2L2z + 2
N−2∑

k 6=k′=2

lkz lk′z


Tb,off = B0(r0)

(L+)a−1 + (L−)a+1 +
N−2∑

k 6=k′=2

(lk+lk′− + lk−lk′+)


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A convenient basis is

fk1,l1,k2,l2,m2··· = χk1(r1)Θm1
l1

(θ1)χk2(r2)Θm2
l2

(θ2)Φm2(φ2) · · ·

with m1 = −m2 −m3 − · · ·

In this basis

there are simple equations for all KEO matrix elements

singularities in the KEO cause no trouble.
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Between 10 and 100 1-d functions required for each coordinate.

⇒ > 103N−6 multi-d basis functions required.

The Hamiltonian matrix is

too large to calculate

too large to store in memory

too large to diagonalise
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How large is too large ?

To calculate only the J = 0 levels of H2O, one requires a
∼ 103 × 103 matrix, ∼ 0.008 GB

Add a single atom :
to calculate only the J = 0 levels of CH2O, one requires a
∼ 106 × 106 matrix, ∼ 8000 GB

For methane, to calculate the J = 0 levels, one requires a
∼ 109 × 109 matrix, ∼ 8× 109 GB
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Lanczos Algorithm

H =



· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

→

· · 0 0
· · · 0
0 · · ·
0 0 · ·

 = T

Among the eigenvalues of T are eigenvalues of H

Eigenvectors of H are obtained from those of T
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Limitations of a product basis

Even for J = 0 methane, a product basis calculation is large

|α0 α1 α2 α3〉|l1 l2m2 l3m3 〉

It would be necessary to use ∼ 209 basis functions (4000 GB for
one vector) !
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Contracted basis functions

It is better to use products of eigenfunctions of reduced-dimension
Hamiltonians.

E.g.,

H = Hbend + Hstretch + ∆coupling

Hbend b(θθθ) = Eb b(θθθ)

Hstretch s(rrr) = Es s(rrr)

s(rrr)b(θθθ) is a contracted basis function.

A small number of the s(rrr)b(θθθ) are retained.

16 / 61



Basis lmax = mmax nbend E cut
b nb ni nstretch E cut

s ns nfinal

Basis I 25 3.26M 8090 280 10 5049 20000 260 72800
∗ 1 M = 1 million. ni is the number of PODVR basis functions for ri with i = 0, 1, 2, 3.

33× 109 → 72× 103

reduction of six orders of magnitude
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Ro-vibrational spectrum of methane

Methane is important

A greenhouse gas

Determining the chemical composition and physical conditions
of atmospheres of Jupiter, Saturn, Uranus, Neptune, Titan,
etc

Modelling brown dwarfs
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III

FEATURES METHANE IN TITAN’S ATMOSPHERE

This conception of Titan mainly comes form the
observations and measurements made by spacecraft
like Voyager 1 in 1980 and, essentially by the Cassini-
Huygens mission (NASA/ESA/ASI) which, since July
2004, has revolutionized our knowledge of Saturn’s sys-
tem including Titan. One of its main features was the
EuropeanHuygens probe descent in Titan’s atmosphere
and its landing on the surface on January 14, 2005 after
a two and a half hour descent.TheCassini orbiter conti-
nues to regularly flyby Titan and the other kronian

satellites with a host of different instruments (cameras,
spectrometers, radar,…), supplementing observations
made from Earth orbit (Hubble Space Telescope, ISO
satellite) or from the ground, often at higher spectral
resolution.
A series of large and regularly spaced absorption bands
due tomethane dominate the Titan spectra recorded by
the DISR (Descent Imager/Spectral Radiometer) of the
Huygens probe during its descent, and byVIMS (Visual
and Infrared Mapping Spectrometer) on the orbiter.
Images taken during the Huygens descent combined
with radar images from the Cassini orbiter provide
valuable information. Fluvial networks cover around
1 % of the surface (see Figure 1). Large smooth areas,
interpreted as methane and ethane lakes or seas, cover
important parts of the polar regions.
Furthermore, methane decomposition in the upper
atmosphere leads to a series of chemical reactions pro-
ducing various organic compounds such as ethane
(C2H6) and other more complex hydrocarbons. Nitro-
gen (N2) dissociation and its recombination with
methane leads to the formation of nitriles like hydrogen
cyanide (HCN). Polymerization of some compounds
produces a complex material, which constitutes the
solid particles of the orange haze that fills the atmos-
phere. These particles become condensation cores for
ethane and other gases and continuously fall on Titan’s
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J > 0

If the molecule-fixed axes are attached to two vectors the KEO is
still compact :

T = Ts + Tbr + Tcor

with
Tbr = Tbr,diag + Tbr,off .
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Tbr,diag = [B0(r0) + B1(r1)]

[
− 1

sin θ1

∂

∂θ1
sin θ1

∂

∂θ1
+

1

sin2 θ1
(Jz − Lz )2

]

+
N−2∑
k=2

[B0(r0) + Bk (rk )] l2k

+B0(r0)

J2 − 2(Jz − Lz )2 − 2Jz (Lz ) + 2
N−2∑

k 6=k′=2

lkz lk′z


Tbr,off = B0(r0)

(L+)a−1 + (L−)a+1 +
N−2∑

k 6=k′=2

(lk+lk′− + lk−lk′+)


Tcor = −B0(r0)

[
J−(a+1 + L+) + J+(a−1 + L−)

]
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For example,
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J > 0 basis

fk1,l1,k2,l2,m2··· ,J,K ,M =χk1(r1)Θm1
l1

(θ1)χk2(r2)Θm2
l2

(θ2)Φm2(φ2) · · ·
× DJ∗

MK (α, β, γ)

with m1 = K −m2 −m3 − · · ·
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With m1 = K −m2 −m3 − · · ·

all matrix elements of the KEO are known in closed form

singularities in the KEO cause no trouble
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However, the basis is a factor of 2J + 1 larger than the already
huge product vibrational basis !
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An obvious strategy is to use a basis of products of DJ∗
MK

and vibrational eigenfunctions

The Hamiltonian may be written

H = Hvib + Hrv .

The basis is |v〉 DJ∗
MK .

Eigenfunctions of Hvib, |v〉, are, in turn, computed in a s(rrr)b(θθθ)
basis.

The b(θθθ) are computed in a basis of products of angular functions.

I am using nested contractions.
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Two problems

Matrix elements in the |v〉 basis are straightforward if |v〉 (i.e.
b(θθθ)) is known in the basis in which the KEO matrix is simple
(m1 = K −m2 −m3 − · · · ), however, this requires
recomputing |v〉 many times, for each K

In the two-vector embedded KEO, coupling between rotation
and vibration can be so large that the DJ∗

MK |v〉 basis is too big
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A K -independent bend basis

We use m1 = −m2 −m3 − · · ·

rather than m1 = K −m2 −m3 − · · ·
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Some of the matrix elements required to compute |v〉 in
this basis may be infinite

For example, those involving the factor

〈Θm2
l1
| 1

sin2 θ1
|Θm2

l ′1
〉 ,

are infinite if m2 = 0,

θ1 is the angle between ~r0 and ~r1.

As long as all wavefunctions are tiny near θ1 = 0, π
the infinite integrals cause no trouble
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Ro-vibrational coupling is too strong

Although the contracted basis is much smaller,

the size of the contracted bend-stretch basis

required for J > 5 is too big.
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For many molecules, ro-vibrational coupling is smaller in
an Eckart frame.

The orientation of a frame with the z axis along a bond does not
change when a bond is stretched.
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The orientation of an Eckart frame does change when a bond is
stretched
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It is straightforward to use an Eckart frame with normal
coordinates.

How does one use an Eckart frame with polyspherical coordinates ?

The best of both worlds : vibrational coordinates
that enable one to deal with large-amplitude
motion AND an Eckart frame that minimizes
ro-vibrational coupling

33 / 61



For a 3-atom molecule it is possible to derive the Eckart
frame - Radau coordinate KEO

H. Wei and T. Carrington, Chem. Phys. Lett. 287, 289-300 (1998)

T = T vib + T rot + T cor,

where

T vib = − 1

2m1

∂2

∂R2
1

− 1

2m2

∂2

∂R2
2

−
(

1

2m1R2
1

+
1

2m2R2
2

)
∂

∂c
(1− c2)

∂

∂c
,

T rot =
1

2
[GxxJ

2
x +GyyJ

2
y +GzzJ

2
z +Gxy (JxJy +JyJx )],

T cor = − i

2

∑
v=R1,R2,c

[
Gvz

∂

∂v
+

∂

∂v
Gvz

]
Jz ,
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GR1z = −ΛερR2 sin(θ − θe),

GR2z = ΛρR1 sin(θ − θe),

Gcz = Λ sin θ[1−ερ2−ρ(R1/R2−εR2/R1) cos(θ−θe)],

Gxx = Λ(1− c2)−1[S2
1 + S2

2/ε],

Gyy = Λ(1− c2)−1[C 2
1 + C 2

2 /ε],

Gxy = Λ(1− c2)−1[−S1C1 + S2C2/ε],

Gzz = Λ[1 + ερ2],

where

S1 = sin(θ−ηe) + ερ(R2/R1) sin(θe−ηe),

C1 = cos(θ−ηe) + ερ(R2/R1) cos(θe−ηe),

S2 = ερ sin(θ−θe +ηe)+(R1/R2) sin ηe ,

C2 = ερ cos(θ−θe +ηe)+(R1/R2) cos ηe ,

1/Λ = m1[R2
1 + (ερR2)2 + 2ερR1R2 cos(θ − θe)],
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difficult to use

almost impossible to derive for a larger molecule
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We want to use

a vibrational KEO in polyspherical coordinates

the volume element sin θ1dθ1 sin θ2dθ2 · · · dφ2 · · · dr1 · · ·
a Θm1

l1
(θ1)Θm2

l2
(θ2)Φm2(φ2) · · · bend basis.

This enables us to deal with large amplitude vibra-
tional motion
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For any molecule-fixed axis system, the classical kinetic energy is,

Kclass =
1

2

(
J p

)(Grr Grv

G t
rv Gvv

)(
J
p

)
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How does one compute Grv and Grr in an Eckart frame ?

We do not have expressions for the elements.

We can calculate the value of Grv and Grr at each
polyspherical point.

Grr = I−1 + CGvvCT

For I−1 this is done by finding the orientation of the Eckart
frame and using the Cartesian coordinates of the nuclei.

The orientation of the Eckart frame is found from a singular
value decomposition (SVD)
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For H2O numerical and analytic G matrix elements agree
well

At r1 = 1.7 bohr, r2 = 1.5 bohr, θ = 100◦

gv(1,1) 4× 10−14

gv(1,2) < 10−14

gv(1,3) < 10−14

gv(3,3) 2× 10−13

grv(2,1) < 10−14

grv(2,2) 1× 10−14

grv(2,3) < 10−14

grr(1,1) < 10−14

grr(3,3) 1× 10−14

grr(1,3) < 10−14

grr(2,2) < 10−14
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Good convergence for J = 1 levels of methane

TABLE I: J = 1: convergence and comparison with previous calculations. Nb = 437

P = 2 P = 3 P = 4 P = 5

Nvib = 25 Nvib = 80 Nvib = 220 Nvib = 551 Theory Expt.

Ecut
v =3100.

cm−1

Ecut
v =4600.

cm−1

Ecut
v =6200.

cm−1

Ecut
v =7800.

cm−1

WC2004 Albert2009

.014 .001 .001 10.429 10.43 10.48 (F1)

.022 .022 .000 1312.410 1312.41 1311.43 (A2)

.014 .014 .000 1317.250 1317.25 1316.30 (F2)

.020 .018 .000 1326.727 1326.73 1325.82 (F1)

.019 .018 .000 1327.030 1327.03 1326.13 (E )

.015 .014 .000 1543.788 1543.79 1543.93 (F2)

.017 .017 .000 1543.910 1543.91 1544.05 (F1)

.122 .025 .023 2600.011 2600.02 2597.37 (F1) P=2 starts

· · · · · · · · · · · · · · · · · ·

.131 .020 .018 3075.813 3075.82 3076.01 (F1) P=2 ends

N.A. .293 .006 3875.859 3875.95 3871.56 (A2) P=3 starts

N.A. · · · · · · · · · · · · · · ·

N.A. .160 .002 4606.426 4606.50 4606.55 (F1) P=3 ends

1

41 / 61



Good convergence with Nvib, 200 is enough for J = 1

Good agreement with our previous calculations

75 basis functions are sufficient for the 75 states in P = 2

4 cm−1 errors (wrt expt) for Octad
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TABLE I: J = 10 lowest and highest Octad levels, lowest and highest Tetradecad levels, and lowest

Icosad levels of CH4. The first two columns are errors wrt column 3.

Nvib = 1210 Nvib = 1939 Nvib = 2949

P=3, Octad

0.12 0.08 4322.89 (F2)

0.12 0.08 4323.66 (E)

· · · · · · · · ·

0.04 0.04 5211.71 (E)

0.04 0.03 5211.74 (F2)

P=4, Tetradecad

2.05 0.04 5568.11 (A)

2.05 0.04 5568.77 (F)

2.06 0.04 5569.54 (F)

· · · · · ·

1.20 1.08 6755.08 (E)

1.16 1.05 6755.26 (F)

P=5, Icosad

2.92 2.40 6810.87

2.96 2.41 6811.19

3.06 2.44 6814.01

1
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Convergence of J = 10 tetradecad levels

Red Nvib = 1210

Black Nvib = 1939

Benchmark Nvib = 2949

44 / 61



Determine a methane PES

Levels computed on pure ab initio surfaces are not accurate
enough

For spectroscopic purposes the best pure ab initio surfaces are
those of Schwenke

Schwenke and Partridge (SP), Spectrochim. Acta A, 57,
887(2001) CCSD(T) + cc-pVTZ

Schwenke, Spectrochim. Acta A, 58, 849 (2002) FCI
extrapolation, CBS, all-electron, relativistic, Lamb shift,
BODC, non-adiabatic
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Ab initio surfaces are not good enough

TABLE I: o.− c. errors in cm−1

ν1 ν2 ν3 ν4

Schwenke & Partridge 2001 +2.79 +0.09 +5.90 -0.98

Schwenke 2002 -2.77 -0.52 -4.58 -0.28

NRT 2011 (unadjusted) -3.54 -1.56 -2.44 -2.57

1
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Fit with the contracted Lanczos method

An efficient variational method makes it possible to refine a
PES

We adjust 5 parameters of the SP PES, using only vibrational
levels.
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Do not adjust the reference potential

To calculate vibrational levels we use a basis of products of
stretch and bend functions.

The stretch potential is Vs(θrefθrefθref , rrr) and the bend potential is
Vb(θθθ, r refr refr ref ).
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Adjusting the parameters makes minor changes in the shape
of the potential and therefore it is not necessary to adjust the
reference Vs and Vb.

During the fit only

〈s ′b′|∆V (λ1, λ2, · · · )|sb〉

needs to be recomputed.

Obtaining the |b〉 functions takes about five times as long as
computing the eigenvalues in the contracted basis.
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What are the parameters ?

The SP potential is a sum of two terms

V = V0 + Vcrxn

V0 =
4∑

i=1

Vs(Ri ) +
4∑

i<j

Vb(Ri ,Rj , θij )

Vs(Ri ) =
∑

k

Cky
k
i ; yi = 1− e−α(Ri−Re)

Vb(Ri ,Rj , θij ) = e−βb[(Ri−Re)2+(Rj−Re)2]
∑
k=2

Dk(cos θij +
1

3
)k

We optimize stretch parameters C1, C2 and bend parameters D1,
D2, D3 of V0 to 40 vibrational levels of CH4.
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How good is the new surface ?

TABLE I: A comparison of the Schwenke-Partridge surface and the fitted surface.

SP PES fitted PES

RMSD (cm−1) 4.80 0.28

|∆Emax| (cm−1) 13.53 0.85

Re (Å) 1.08900 1.08609

1

Re on the new surface agrees well with the best ab initio value
(1.0859± 0.0003 (J. Stanton, Mol. Phys. 97, 841 (1999))).

51 / 61



How good is the PES for other isotopologues ?

O. N. Ulenikov, E. S. Bekhtereva, S Albert, H.-M. Niederer, S.
Bauerecker, and M. Quack have studied many bands of
CH3D, CHD3, and CH2D2.
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CH3D

78 “experimental” levels (either P(1) or from a fit)

Excluding one level : RMSD is 0.33 cm−1 ; |∆Emax | = 0.88
cm−1.
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CHD3

46 “experimental” levels (either P(1) or from a fit)

Excluding 3 levels : RMSD is 0.47 cm−1 ; |∆Emax | = 1.25
cm−1.

Possible assignment error
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CH2D2

93 “experimental” levels (either P(1) or from a fit)

RMSD is 0.47 cm−1 ; |∆Emax | = 1.25 cm−1.
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13CH4

37 “experimental” levels (either P(1) or from a fit)

RMSD is 0.27 cm−1 ; |∆Emax | = 0.77 cm−1.
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Conclusion

Two problems impede the calculation of a ro-vibrational
spectrum using a KEO in polyspherical coordinates and a
contracted basis.

In the standard basis vibrational eigenfunctions must be
computed for each K . For molecules for which vectors can be
defined so that θ1 = 0, π is inaccessible, this problem is solved
by taking m1 = −m2 −m3 − · · ·

With the standard choice of molecule-fixed axes the
ro-vibrational coupling is large. This problem can be solved by
using Eckart axes and computing G matrix elements
numerically.
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We can (finally) compute numerically exact ro-vibrational
levels of methane for high J.

A new PES is obtained by adjusting 5 parameters of SP PES

The errors on the new PES for the vibrational levels of 5
methane isotopologues are consistently below 1 cm-1.

The same techniques can be applied to any molecule with 5
atoms.
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Because the basis is huge it would be far too costly to form the
potential matrix and explicitly multiply the matrix with vectors.

To illustrate the computation of a matrix-vector product consider

wl ′m′ =
∑
lm

Vl ′m′,lm xlm

replace

Vl ′m′,lm =

∫
dθ

∫
dφYl ′m′(θ, φ)V (θ, φ)Ylm(θ, φ)

≈
∑
βγ

Tm′
l ′β Qm′γ V (θβ, φγ) Qmγ Tm

lβ
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wl ′m′ =
∑
lm

∑
βγ

Tm′
l ′β Qm′γ V (θβ, φγ) Qmγ Tm

lβ xlm

wl ′m′ =
∑
β

Tm′
l ′β

∑
γ

Qm′γ V (θβ, φγ)
∑

m

Qmγ

∑
l

Tm
lβ xlm

The largest vector is labelled by the grid indices.
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