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o verify the accuracy of or refine potential energy surfaces

@ predict the position (and intensity) of unobserved transitions

@ assign observed spectra



Perturbation Theory

Spectroscopists often use a zeroth-order harmonic model and
perturbation theory

@ For low-lying levels of semi-rigid molecules it works pretty well.

@ Methane vibrational levels in the Octad (~ 4000 cm~! above
the ZPE) computed with fourth and sixth order perturbation
theory differ by about 8 cm~!.

@ Most ab initio programs use second order perturbation theory.

o Nearly degenerate levels cause perturbation theory to break
down.

@ The density of states increases with energy.
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For
@ high-lying states
@ molecules in which coupling and anharmonicity are important

one, instead, needs numerically accurate solutions to the
Schroedinger equation

Fipn = Entpn
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How does one solve the Schroedinger equation ?

@ represent wavefunctions with basis functions

Un(r,0) =Y i fi(r,0)
k

@ compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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r, basis eigenvalues, energies,
H—7H-— _g & .
eigenvectors wavefunctions

— Spectrum



We want to be able to deal with large amplitude motion

Normal coordinates are not appropriate for molecules with large
amplitude motion

For large amplitude motion it is best to :

@ choose N — 1 vectors to describe the shape and orientation

@ use the lengths of the vectors and the associated spherical
polar angles as vibrational coordinates
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For example,
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The general KEO is

T=T;+ Ty
with
. B N—-2 1 62
s = 7 __2
and

Ty = Todiag + Tooff -



1 0 d 1
T . = [B B ————— i e -
bdiag = [Bo(r0) + 1(”)]{ sind; 96, " o0, ez, 2
N-—2
+ > [Bo(ro) + Be(re)] 7
k=2

N-2
—|—Bo(r0) |:2L§+2 Z lkz/k’Z]

k#-k!'=2

N—2
Thoft = Bo(r) {(L+)31+(L)31++ ) (/k+lk/+lklk/+)]
kfkI=2
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A convenient basis is

fk17/1,k2,/27m2"' = Xk1(r1)@71n1 (el)sz(r2)@ZQ(92)¢m2(¢2) T

with my = —my —mz — -+

In this basis

@ there are simple equations for all KEO matrix elements

@ singularities in the KEO cause no trouble.
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Between 10 and 100 1-d functions required for each coordinate.

= > 103V=5 multi-d basis functions required.

The Hamiltonian matrix is
@ too large to calculate
@ too large to store in memory

@ too large to diagonalise
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How large is too large ?

To calculate only the J = 0 levels of HyO, one requires a
~ 103 x 103 matrix, ~ 0.008 GB

Add a single atom :
to calculate only the J = 0 levels of CH>O, one requires a

~ 10% x 10 matrix, ~ 8000 GB

For methane, to calculate the J = 0 levels, one requires a
~ 102 x 10° matrix, ~ 8 x 10° GB
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Lanczos Algorithm

@ Among the eigenvalues of T are eigenvalues of H

o Eigenvectors of H are obtained from those of T
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Limitations of a product basis

Even for J = 0 methane, a product basis calculation is large

‘Oéo a1 Oz3>|/1 /2m2 I3m3 >

It would be necessary to use ~ 20° basis functions (4000 GB for
one vector) !
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Contracted basis functions

It is better to use products of eigenfunctions of reduced-dimension
Hamiltonians.

Eg.,

H = Hpend + Hstreten + Acoupling
Hpeng b(8) = Ep b(8)

Hstretch 5(’) = E s(r)
s(r)b(@) is a contracted basis function.

A small number of the s(r)b(8) are retained.
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H — cut cut
Basis Imax = Mmax Npend Ebu Np ‘ n; Nstretch Esu ns

Basis | 25 3.26M 8090 280 ‘ 10 5049 20000 260

33 x 109 — 72 x 103

reduction of six orders of magnitude
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Ro-vibrational spectrum of methane

Methane is important

@ A greenhouse gas

@ Determining the chemical composition and physical conditions
of atmospheres of Jupiter, Saturn, Uranus, Neptune, Titan,
etc

@ Modelling brown dwarfs
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If the molecule-fixed axes are attached to two vectors the KEO is
still compact :
T = Ts + Tbr + Tcor

with
Tir = Tbr,diag + Tbr,oﬂ? .



1 0 .0 1 )
Tbr,dlag = [B()(ro) + Bl(f'l)] |:_SII'191(% Sin 918701 + m(.jz — Lz) :|
N-2
+ Y [Bo(ro) + Bi(ri)] If
k=2

N—-2
+Bo(ro) [ﬁ —2(J = L =24 (L)+2 > /kz/k,Z]

kk! =2
N—-2
Toror = Bo(ro) [(Ly)ay + (L)ay + D (hepho— + he—lios)
k£k!=2
Teor = _BO(rO) [J,(af + L+) + J+(af + L,)}
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For example,
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Flt ko, oy 0, M =Xk (1) O (01) X ky (12) O (02) Py (62) - - -
X Di\l/;(K(aa 187 7)

WithmlzK—mz_m3_...



@ all matrix elements of the KEO are known in closed form

@ singularities in the KEO cause no trouble



However, the basis is a factor of 2J + 1 larger than the already
huge product vibrational basis !



An obvious strategy is to use a basis of products of Dy
and vibrational eigenfunctions

The Hamiltonian may be written
H = Hvib + Hrv .

The basis is |v) Dy, -

Eigenfunctions of H,j, |v), are, in turn, computed in a s(r)b(@)
basis.

The b(@) are computed in a basis of products of angular functions.

| am using nested contractions.
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Two problems

@ Matrix elements in the |v) basis are straightforward if |v) (i.e.
b(@)) is known in the basis in which the KEO matrix is simple
(my =K —mp—m3—---), however, this requires
recomputing |v) many times, for each K

@ In the two-vector embedded KEO, coupling between rotation
and vibration can be so large that the D,{jK v) basis is too big
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Weuse mi =—mp—mz —---

rather than my = K —my —mz — - --



Some of the matrix elements required to compute |v) in
this basis may be infinite

For example, those involving the factor

1
(Ol =%719}")
1 'sin? 6,
are infinite if my, = 0,

6, is the angle between ry and .

As long as all wavefunctions are tiny near 61 = 0,7
the infinite integrals cause no trouble
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Although the contracted basis is much smaller,
the size of the contracted bend-stretch basis

required for J > 5 is too big.



For many molecules, ro-vibrational coupling is smaller in
an Eckart frame.

The orientation of a frame with the z axis along a bond does not
change when a bond is stretched.
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The orientation of an Eckart frame does change when a bond is
stretched

(o, B, 7)
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It is straightforward to use an Eckart frame with normal
coordinates.

How does one use an Eckart frame with polyspherical coordinates?

The best of both worlds : vibrational coordinates
that enable one to deal with large-amplitude
motion AND an Eckart frame that minimizes
ro-vibrational coupling
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For a 3-atom molecule it is possible to derive the Eckart
frame - Radau coordinate KEO

H. Wei and T. Carrington, Chem. Phys. Lett. 287, 289-300 (1998)

T = Tvib + Tl’ot + Jcor
where

19 1 2
2m18,‘:\’12 2m28R22

_ L 1 2(1—62)2
2mR2 ' 2myRZ ) dc dc’
1
T = §[Gxx-/§+nyJ3+Gzsz2+ny(JXJy+JYJX)]’

cor i 0 0
T = _5 Z |:sz + sz:| Jz;

ov  Ov
v=R1,Rx,c

Tvib —
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where

S
G
S
G
1/A

= —/\6,0R2 sin(@ — 96),

ApRysin(0 — 6.),

Asin 9[1—€p2—p(R1/R2—6R2/R1) COS(@—@e)],

A1 — c?)7HSE + S3 /e,
A1 =) + G/,
/\(1 — Cz)_l[—sl G+ 52C2/€],

= A[L+ep?,

sin(0—ne) + ep(Rz2/R1) sin(0e—ne),
cos(0—ne) + €p(R2/Ry) cos(0e —ne),
epsin(0—0e+ne)+(R1/R2) sin e,

€p cos(0—0e+ne)+(R1/Rz) cos ne,
m[R? + (epR2)? + 2epRy Ry cos(6 — 6.)],
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o difficult to use

@ almost impossible to derive for a larger molecule



We want to use

@ a vibrational KEO in polyspherical coordinates
@ the volume element sin61dfsin0>d0y - - -dpp---dry - - -
0 a ©"(01)0)%(02)Pm,(¢2) - - - bend basis.

This enables us to deal with large amplitude vibra-
tional motion
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For any molecule-fixed axis system, the classical kinetic energy is,

1 Grr Grv J
Kelass = 2 (J ,D) <Grtv va> <P>
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How does one compute G,, and G,, in an Eckart frame ?

@ We do not have expressions for the elements.

@ We can calculate the value of G,, and G,, at each
polyspherical point.

e G,=1"1+CG,CT

@ For 171 this is done by finding the orientation of the Eckart
frame and using the Cartesian coordinates of the nuclei.

@ The orientation of the Eckart frame is found from a singular
value decomposition (SVD)
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For H,O numerical and analytic G matrix elements agree
well

At rn = 1.7 bohr, r» = 1.5 bohr, 6 =100°

gv(l,1) 4x107%4
gv(l,2) <1074
gv(13) <1071
gv(3,3) 2x10713

grv(2,1) <1071
grv(2,2) 1x 10714
grv(2,3) <1071

grr(1,1) <1071
grr(3,3) 1x 10714
grr(1,3) <1071
grr(2,2) <1074
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Good convergence for J =1 levels of methane

TABLE I: J = 1: convergence and comparison with previous calculations.

P=2 P=3 P=4 P=5
Nyipb =25 Ny = 80 Vpib = 220 Ny = 551 Theory Expt.
ES=3100. E{*=4600. ES'=6200. ES'*=7800. WC2004 Albert2009
em™! em™! em™! em™!
.014 .001 .001 10.429 10.43 10.48 (F1)
.022 .022 .000 1312.410 1312.41 1311.43 (A2)
.014 .014 .000 1317.250 1317.25 1316.30 (F2)
.020 .018 .000 1326.727 1326.73 1325.82 (F1)
.019 .018 .000 1327.030 1327.03 1326.13 (E )
.015 .014 .000 1543.788 1543.79 1543.93 (F2)
.017 .017 .000 1543.910 1543.91 1544.05 (F1)
122 .025 .023 2600.011 2600.02 2597.37 (F1)
131 .020 .018 3075.813 3075.82 3076.01 (F1)
N.A. .293 .006 3875.859 3875.95 3871.56 (A2)
N.A.
N.A. .160 .002 4606.426 4606.50 4606.55 (F1)
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@ Good convergence with N, 200 is enough for J =1
@ Good agreement with our previous calculations
@ 75 basis functions are sufficient for the 75 states in P =2

1

@ 4 cm™* errors (wrt expt) for Octad
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TABLE I: J = 10 lowest and highest Octad levels, lowest and highest Tetradecad levels, and lowest

Tcosad levels of CHy. The first two columns are errors wrt column 3.

Nyip = 1210 Nyip = 1939 Nyip = 2949
P=3, Octad

0.12 0.08 4322.89 (F2)
0.12 0.08 4323.66 (E)
0.04 0.04 5211.71 (E)
0.04 0.03 5211.74 (F2)

P=4, Tetradecad

2.0 0.04 5568.11 (A)
2.05 0.04 5568.77 (F)
2.06 0.04 5569.54 (F)
1.20 1.08 6755.08 (E)
116 1.05 6755.26 (F)
P=5, Icosad

2.92 2.40 6810.87
2.96 2.41 6811.19
3.06 2.44 6814.01




Convergence of J = 10 tetradecad levels
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@ Red Nvib = 1210
@ Black Nvib = 1939
@ Benchmark Nvib = 2949
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Determine a methane PES

@ Levels computed on pure ab initio surfaces are not accurate
enough

@ For spectroscopic purposes the best pure ab initio surfaces are
those of Schwenke
e Schwenke and Partridge (SP), Spectrochim. Acta A, 57,
887(2001) CCSD(T) + cc-pVTZ

o Schwenke, Spectrochim. Acta A, 58, 849 (2002) FCI
extrapolation, CBS, all-electron, relativistic, Lamb shift,
BODC, non-adiabatic
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TABLE I: 0.— c. errors in cm™ !

V1 V2 V3 V4

Schwenke & Partridge 2001 +2.79 +0.09 +5.90 -0.98
Schwenke 2002 -2.77  -0.52  -4.58 -0.28

NRT 2011 (unadjusted) 354 -1.56 -2.44  -2.57




Fit with the contracted Lanczos method

@ An efficient variational method makes it possible to refine a
PES

@ We adjust 5 parameters of the SP PES, using only vibrational
levels.
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Do not adjust the reference potential

@ To calculate vibrational levels we use a basis of products of
stretch and bend functions.

@ The stretch potential is V;(8"f, r) and the bend potential is
Vb(0, r’ef).
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@ Adjusting the parameters makes minor changes in the shape
of the potential and therefore it is not necessary to adjust the
reference Vs and V.

@ During the fit only

(s'b'|AV(A1, Aa, -+ )| sb)
needs to be recomputed.

@ Obtaining the |b) functions takes about five times as long as
computing the eigenvalues in the contracted basis.
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What are the parameters?

The SP potential is a sum of two terms

V= VO + Vcrxn

VO_ZV R)+ZVbR R;,0;)

i<j

VS(Rf) = Z Ck_y,-k yYi = 1— e_a(Ri_Re)
k

Vi(R;, R;, 05) = e PlR=RIHR=RITN™ Dy (cos 0 + %)k
k=2

We optimize stretch parameters C;, (; and bend parameters Dy,
D,, D3 of Vj to 40 vibrational levels of CHy.
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I: A comparison of the Schwenke-Partridge surface and the fitted surface.

SP PES fitted PES

RMSD (cm™!) 4.80 0.28
|AEmay| (em™1) 13.53 0.85
R. (A) 1.08900  1.08609




How good is the PES for other isotopologues ?

O. N. Ulenikov, E. S. Bekhtereva, S Albert, H.-M. Niederer, S.
Bauerecker, and M. Quack have studied many bands of
CH3D, CHD3, and CH2D2.
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CHsD

|AE| (cm™)

2 [ .
1 _ .
0 ° . , L) L I ...,' ) % o ‘A:l. :( o ..‘ h..: ° s ....T -
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@ 78 "experimental” levels (either P(1) or from a fit)
@ Excluding one level : RMSD is 0.33 cm™!; |AE x| = 0.88

cm L,
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1A E](CM )

(TS . . . .
- e o . cae .]'."‘0.,.."0

000 2000 3000 4000 5000 6000

@ 46 "experimental” levels (either P(1) or from a fit)
o Excluding 3 levels : RMSD is 0.47 cm™!; |AE x| = 1.25
-1
cm~

@ Possible assignment error
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CH;,D,

< 2r

E .

(&)

= 1r .

w . .0. .. . .0.'..:... .o . os. . . . . . .
ﬂ 0 d . .'.'. % c. .o“..'. .:og: .‘..'. . °e, -:. . ,- . .

1000 2000 3000 4000 5000 6000
E (cm™)

@ 93 “experimental” levels (either P(1) or from a fit)

® RMSD is 0.47 cm™!; |AEmax| = 1.25 cm L.

55 / 61



13CH,

T 2r 1
£
(2]
= 1} 5
w . «
< . %
- 0 . > e o .‘0 ¢ 8 . hd hd
1000 2000 3000 4000 5000 6000
E (cm™)

@ 37 “experimental” levels (either P(1) or from a fit)
@ RMSD is 0.27 cm™!; |AEmax| = 0.77 cm™L.
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Conclusion

@ Two problems impede the calculation of a ro-vibrational
spectrum using a KEO in polyspherical coordinates and a
contracted basis.

e In the standard basis vibrational eigenfunctions must be
computed for each K. For molecules for which vectors can be
defined so that 6; = 0, 7 is inaccessible, this problem is solved
by taking my = —my —msz — - --

e With the standard choice of molecule-fixed axes the
ro-vibrational coupling is large. This problem can be solved by
using Eckart axes and computing G matrix elements
numerically.
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e We can (finally) compute numerically exact ro-vibrational
levels of methane for high J.

@ A new PES is obtained by adjusting 5 parameters of SP PES

@ The errors on the new PES for the vibrational levels of 5
methane isotopologues are consistently below 1 cm-1.

@ The same techniques can be applied to any molecule with 5
atoms.
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Because the basis is huge it would be far too costly to form the
potential matrix and explicitly multiply the matrix with vectors.

To illustrate the computation of a matrix-vector product consider
Wirm = Z Vl’m’,/m Xim
Im

replace

Vit im = / do / &Yy (0, D)V (0, 8) Yim(0, &)

~ Z T/’}}; Qmry V(05,94) Qmy Tig
B
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o = S5 T Qi V(0526) Qo Th 51

Im By

Wim =Y T Qun V(05:05) Y Quy Y T/B xim
y m /

B

The largest vector is labelled by the grid indices.
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