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1. (10 points) An infinite, and infinitely thin, straight wire carries a charge per unit
A and current I as measured in frame K. If the wire is oriented along the x-axis,
then the four-current may be written:

J* = (cA I, 0, 0)4(y)d(2) (1)

(a) Find the electric and magnetic fields in frame K as a function of the distance
from the wire.

(b) Show that if A > I/c, one can find a frame K’ in which the current is zero.
(Hint: You may assume the relative motion of K and K’ is along the x-axis.)
Find the charge per unit length, ', and the electric field, E/, in K’.

(c) Show that the magnetic field vanishes in K’ by explicitly transforming the
fields found in part (a).

2. (15 points) Consider the vector potential

A=A (1+22/zg) 111(1;7.7'2/7@& (2)
where Ag, 29, and 7o are constants.
(a) Show that the components of the magnetic field are
B, = _2.;1;2 In(1 +r'r2/r8) (3)
41 240 1+ 22/22 (4)

8 1+72/r2

(b) A particle of charge g, mass m, and energy U = ymc? orbits about the origin
in the zy-plane. Express the gyration frequency, wg, and the gyration radius,
a, in terms of these quantities, the constants which describe the magnetic field,
and fundamental constants. Note that the relativistic momentum is p = ymv
and that U2 = p%c? + m2c!. Assume a < 7.

(c) Now assume that the particle has a small component to its velocity along the
z-axis. Show that the particle executes simple harmonic motion about z =0
and find the period for this motion.

(d) Assume, instead, that the particle moves in the z = 0 plane but at a radius
R > a. Determine the magnitude and direction of the drift velocity. Does
the particle drift back to its original position? If so, calculate the period for
this motion.



Vector Formulas

a-(bxc)=b-(cxa)=c-(axh)
ax(bxc)=(@a-ch—(a-b)
(@xb)<(exd)y=(a-c)b-d)—(a-d)b-c)
VxVyg=0
V-(Vxa)=0
V x(Vxa)=V(V-a) — Va
V.(¢ya)=a-Vy + ¢yV-.a
VX (ya)=V¢yxa+ gV xXa
Va:b)=(@-Vb+(b-Via+ax (Vxb)+bx(Vxa)
Ve(axb)=b-(Vxa)—a:(Vxb)
Vx(axb)=aV:b)-b(V.-a)+(b-V)a-(a-V)b
If x is the coordinate of a point with respect to some origin, with magnitude

r = |x|, m = x/r is a unit radial vector, and f(r) is a well-behaved function of r,
then

V.x=3 Vxx=0
Vil =2f+ 2 v xmi) =0
£0)

(a-V)nf(r) = ==
V(x-a) =a+ x(V-a) +i(L X a)

[a—n(a-n)]+n(a-n)‘;—]:

where L = % (x x V) is the angular-momentum operator.

In the following ¢, ¢, and A are well-behaved scalar or vector tunctions, V 1s a
three-dimensional volume with volume element d°x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal

n at da.
L V-Adx= L A-nda (Divergence theorem)
3 =
Jv Vi d'x J; yn da
JVxAd’x=jnxAda
v s
JV (¢V¢ + Vo - Vy) d'x = L én -V da (Green’s first identity)

L (Vi — yV?) d’x = L (¢Vy — ¢yV¢) -n da (Green’s theorem)

In the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to S is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VX A):-nda = § A-dl (Stokes’s theorem)
14

Lnwida=i_¢dl



Cartesian
(xlr x2: x3 =X, y’ Z)

Cylindrical
(p &, 2)

(r, 6, ¢)

Spherical

Explicit Forms of
Vector Operations

Let e, e,, e; be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and A,, A;, A, be the corresponding com-
ponents of A. Then

o ad f4'A
=6~ + e +
vw - ox X1 i ox Xy ©s oxs (913
(9 0x2 ox3
VXA_el(eﬁ_a_A_z_)w(ﬁ;_@)W(ﬂ_ﬁ;)
oxy axs 3X3 ox; ox, ax,
Jxl ¢7x2 dx;
Wy 1 W l[l
vy = +ep- ot + ey
y=e — ap p 3 €5
1 194, 6‘A3
v.a=-2 e
pa (P ) + p 3¢ oz

1045 dA, dA; JA; 1{9g A,
VxA=e|l-—"-—)+el——-—")+te—-|— - =
en( 9 9z ) ez( 9z o €3 o \ap (pA,) i

V2w=1i( a¢)+1az¢ A

pdp\ dp 0?2 3p? 972
) oy 1a¢ 1 9y
e 3, 2 1 e A Ay
Ll or 4 r a0 -4 rsin @ d¢
1 9 ; l _ 1 dA,
V- A==S—(rA = A
el )+ 7 sin 6 30 T (sin ) + rsin 0 d¢

1 Az
V X = — = 5
A=e¢e im0 [ (sin 6A4;) ¢7¢]

1 04, 194 114 dA,
+ — - +e-|— - =
ez[r sinf d¢p ror (rA;,)] A r [6r (rA2) a0 ]
19 P 1 ad (. Y 1 ]
VZ — e 2 + — | + —5
IS (r Jr) r* sin 90 (smH 00) r? sin’ 6 d¢?

[Nute lhdl = (r 3—‘5) 71—2 (r). ]




x0 = v(xo — Bxy)

xy = y(x - Bxy)

B (11.16)
X3 =1x;

where we have introduced the suggestive notation x, = c, X, = 2Z,x =x
X3 = y and also the convenient symbols,

»

v
heciage B! (11.17)
y=(1-p)"
The inverse Lorentz transformation is
Xo = y(xg + Bxy)
= "4 ’
2 _ ;é(x' = (11.18)
X3 = X:;
Xo = y(xo — B - x) s
v =x+ U (pnp - ypy,
A, = ')’(Au 2= B . A)
i = 7(Ay = BA,) (11.22)

A=A,

where the parallel and perpendicular signs indicate components relative to the
velocity v = ¢B. The invariance from one inertial frame to another embodied
through the second postulate in (11.15) has its counterpart for any 4-vector in

the invariance,

A‘:)Z - IAIIZ — A‘Z) — IAIZ (1123)
Ei=E, B, = B,
Ey= y\E; - BBy) B! = y(B, + BF, (11.148)

,
|

= y(E\ + BB,) By = y(By - BE,)

Here and below. the subscripts 1, 2, 3 indicate ordinary Cartesian spatial com-
ponents and are not covariant indices. The inverse of (11.148) is found, as usual,
by interchanging primed and unprimed quantities and putting 8 — — 8. For a
general Lorentz transformation from K to a system K’ moving with velocity v

relative to K, the transformation of the fields can be written

2
B =yE+pxB - T pp.E)
3 T e ,
B=yB-gxE) - T oup.m

(11.149)



We begin with the charge density p(x, f) and current density J(x, ) and
the continuity equation

%’ +V.-J=0 (11.127)

From the discussion at the end of Section 11.6 and especially (11.77) it is natural
to postulate that p and J together form a 4-vector J*:

J* = (cp, J) (11.128)

Then the continuity equation (11.127) takes the obviously covariant form,

0J% = (11.129)

In the Lorentz family of gauges the wave equations for the vector potential
A and the scalar potential ® are

3’A
2~ vA=Ta
1 2 (11.130)
? ? i qu) = 47Tp
with the Lorentz condition,
100
;(a—t+V-A=O (11.131)

The differential operator form in (11.130) is the invariant four-dimensional
Laplacian (11.78), while the right-hand sides are the components of a 4-vector.
Obviously, Lorentz covariance requires that the potentials ® and A form a
4-vector potential,

A" = (D, A) (11.132)

Then the wave equations and the Lorentz condition take on the manifestly co-
variant forms,

4

A4 = = Je
and (11.133)
9,A° =0
The fields E and B are expressed in terms of the potentials as
E- -2 _vp
c o (11.134)

B=VxA



VxE+——E=()

10€ X Componenis OI kL ana o arc cxplciy

x = lad. b ~(A' - 3'A%)
c ot ox (11.135)
9A
iy L -(3?A° - PA?)
ay 174

where the second forms follow from (11.132) and 8% = (9/@xo, — V). These equa-
tions imply that the electric and magnetic fields, six components in all, are the
elements of a second-rank, antisymmetric field-strength tensor,

F®® = g°AP — 3fA" (11.136)
Explicitly, the field-strength tensor is, in matrix form,

0 -E, -E, -E,
E. 0 -B, B,
E B, 0 -B (11.137)

E, -B, B, 0

Fo# =

For reference, we record the field-strength tensor with two covariant indices,

0 E E, E

-E, 0 -B, B
Fup = 8,F"80s = | _g' g o - (11.138)
y 2 X

&

~E, -B, B, 0

The clements of F,, are obtained from F*# by putting E — —E. Another useful
quantity is the dual field-strength tensor °°. We first define the totally antisym-
metric fourth-rank tensor e*#7%;

+1 fora=0,=1vy=2,6=23,and

Y — any even permutation 3
: -1 for any odd permutation ()
] if any two indices are equal

Note that the nonvanishing elements all have one time and three (different) space
indices and that €,4,5 = —€"#*™. The tensor €"#** is a pseudotensor under spatial
inversions. This can be secn by contracting it with four different 4-vectors and
examinipg the spacc inversion propertics of the resultant rotationally invariant
quantity. The dual ficld-strength tensor is defined by

0 -B, -B, -B.
B, W E =E
B, -E. O [
B, E, -E. 0

Fob = LeF,, = (11.140)

L}

The clements of the dual tensor F*# are obtained from F* by putting E — B
and B — —E in (11.137). This is a special case of the duality transformation
(6.151).

V. E=dm 4
of — _— B
10E 4 dF = —1
XIBiS Sk =tan
at c

, can be written in terms of the dual field-strength tensor as
d

A i, FP =

(11.142)

In terms of F*%, rather than F*%, these homogeneous equations are the four

equations

aaFHy + '.’IJFyu t+ (.’7[';:/! . U

{11.143)



dt

dE

— “-E

dt H
At e
dt B
s B G
= ymc E

Thus the gradient drift velocity is given by

Vg = a__2 —1—- @ (o X n)
ST 2B, \at)y °
An alternative form, independent of coordinates, is

Vo a

—— =—(BxV
wgad 232 (B ‘LB)
ym ,RXxXB
yelse s v} =2 B%,O (12.57)
With the definition of wgz = eBy/ymc, the curvature drift can be written
5 AU (LT 12,5
©" wsR \ RB, (2
, B(z)

vy = Uy — Vo B,

il



