- 1. Jackson 14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit solid angle in non-relativistic motion of a particle with charge *e*, moving
 - a) along the z-axis with instantaneous position $z(t) = a \cos \omega_0 t$,
 - b) in a circle of radius R in the x-y plane with constant angular frequency ω_0 . Sketch the angular distribution of the radiation and determine the total power radiated in each case.

Due: April 9, 2015

- 2. Jackson 14.26 Consider the synchrotron radiation from the Crab nebula. Electrons with energies up to 10^{13} eV move in a magnetic field of the order of 10^{-4} gauss.
 - a) For E = 10^{13} eV, B = 3×10^{-4} gauss, calculate the orbit radius ρ , the fundamental frequency ω_0 = c/ρ , and the critical frequency ω_c . What is the energy hbar ω_c in keV?
 - b) Show that for a relativistic electron of energy E in a constant magnetic field the power spectrum of synchrotron radiation can be written

$$P(E,\omega) = \operatorname{const}\left(\frac{\omega}{E^2}\right)^{1/3} f\left(\frac{\omega}{\omega_c}\right)$$

where f(x) is a cutoff function having the value unity at x=0 and vanishing rapidly for x >> 1 [e.g., f \cong exp($-\omega/\omega_c$)], and ω_c =(3/2)(eB/m)(E/mc²) cos θ , where θ is the pitch angle of the helical path.

- c) If electrons are distributed in energy according to the spectrum $N(E)dE \propto E^{-n} dE$ show that the synchrotron radiation has the power spectrum $\langle P(\omega) \rangle d\omega \propto \omega^{-\alpha} d\omega$ where $\alpha = (n-1)/2$.
- 3. We won't have time to cover Thomson scattering in the lectures, so I want you to study it from Dr. Widrow's notes and from Jackson. Then, consider Thomson scattering of EM waves by free electrons. Unpolarized EM radiation incident from the -x axis direction on a free electron and unpolarized EM radiation incident from the +y axis direction on the same free electron gets scattered to an observer in the +z direction (i.e. 90 degree scattering). Then, show that if the intensity ratio of the two sources is, say, 3:1 (i.e. radiation from the -x direction is 3 times more intense than the radiation from the +y direction), the result is the observer in the +z direction sees *polarized* radiation. That's how Thomson scattering polarizes the CMB (cosmic microwave background), by "encoding" quadrupole anisotropy as linear polarization.