BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

Alex Wright
Princeton University

University of Chicago HEP Seminar May 10th, 2010

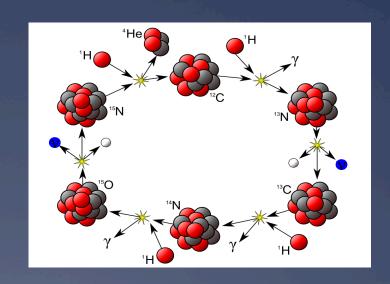
Solar Neutrino Production

p-p Solar Fusion Chain

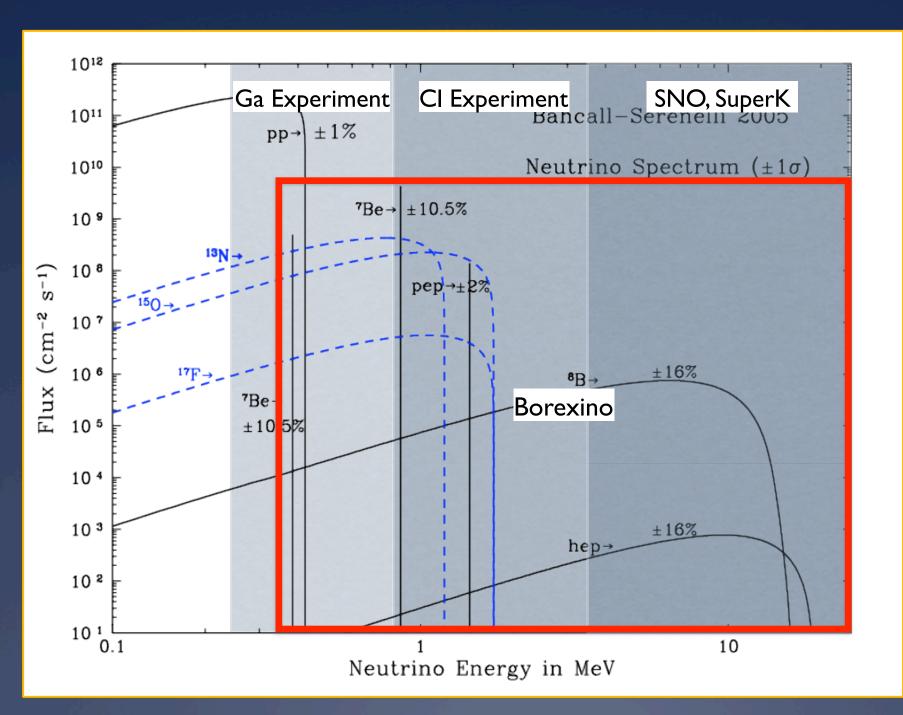
$$p + p \rightarrow {}^{2}H + e^{+} + v_{e} \quad p + e^{-} + p \rightarrow {}^{2}H + v_{e}$$

$${}^{2}H + p \rightarrow {}^{3}He + \gamma$$

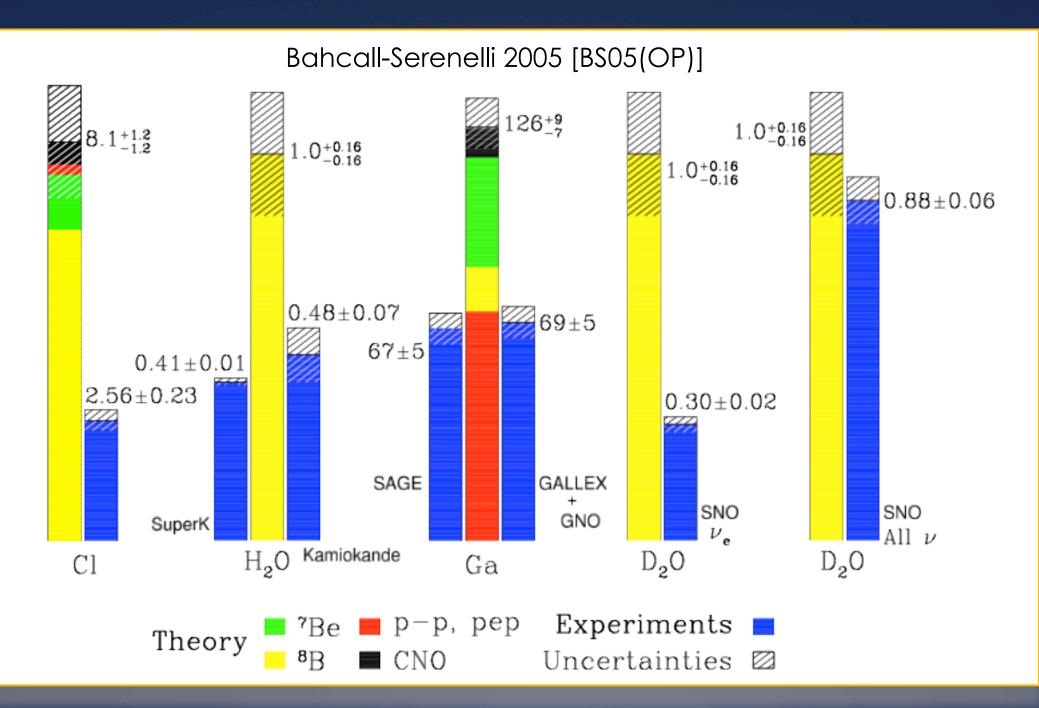
$${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2p \quad {}^{3}He + p \rightarrow {}^{4}He + e^{+} + v_{e}$$


$${}^{3}He + {}^{4}He \rightarrow {}^{7}Be + \gamma$$

$${}^{7}Be + e^{-} \rightarrow {}^{7}Li + \gamma + v_{e} \quad {}^{7}Be + p \rightarrow {}^{8}B + \gamma$$


$${}^{7}Li + p \rightarrow \alpha + \alpha \quad {}^{8}B \rightarrow 2 \alpha + e^{+} + v_{e}$$

CNO Solar Fusion Cycle


$$^{12}C + p \rightarrow ^{13}N + \gamma \qquad ^{13}N \rightarrow ^{13}C + e^{+} + \textcolor{red}{v_{e}}$$

$$^{13}C + p \rightarrow ^{14}N + \gamma$$

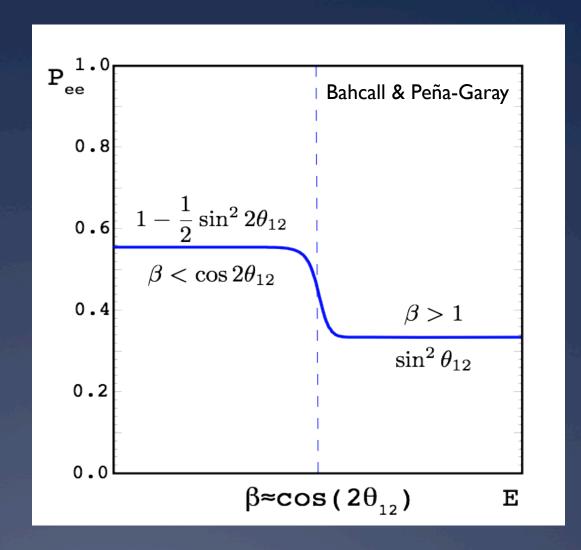
$$^{14}N + p \rightarrow ^{15}O + \gamma \qquad ^{15}O \rightarrow ^{15}N + e^{+} + \textcolor{red}{v_{e}}$$

$$^{15}N + p \rightarrow ^{12}C + \alpha$$

The Solar Neutrinos

Solar Neutrino Oscillations

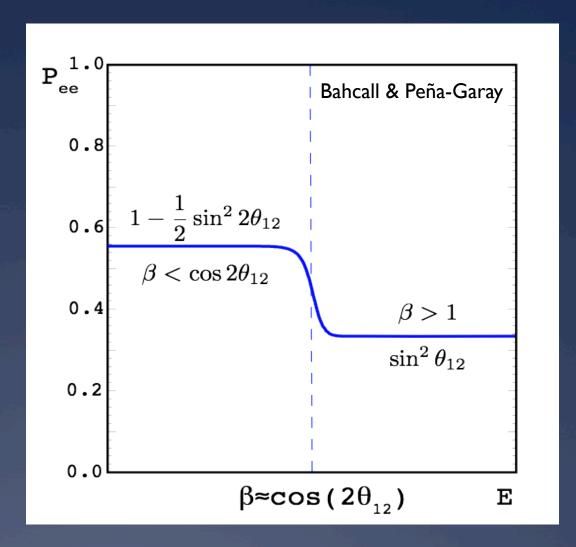
Matter Enhanced Neutrino Oscillations


- The electron neutrino survival probabilities measured by the different solar neutrino experiments are well described by "matter enhanced" oscillations
- Similar to quark oscillations (CKM matrix \rightarrow PMNS matrix), except that charged current interactions with matter add an additional effective mass term to v_e flavour:

$$\begin{pmatrix} -\frac{\Delta m_{12}^2}{4E}\cos 2\theta_{12} + \sqrt{2}G_F N_e & \frac{\Delta m_{12}^2}{4E}\sin 2\theta_{12} \\ \frac{\Delta m_{12}^2}{4E}\sin 2\theta_{12} & \frac{\Delta m_{12}^2}{4E}\cos 2\theta_{12} \end{pmatrix}$$

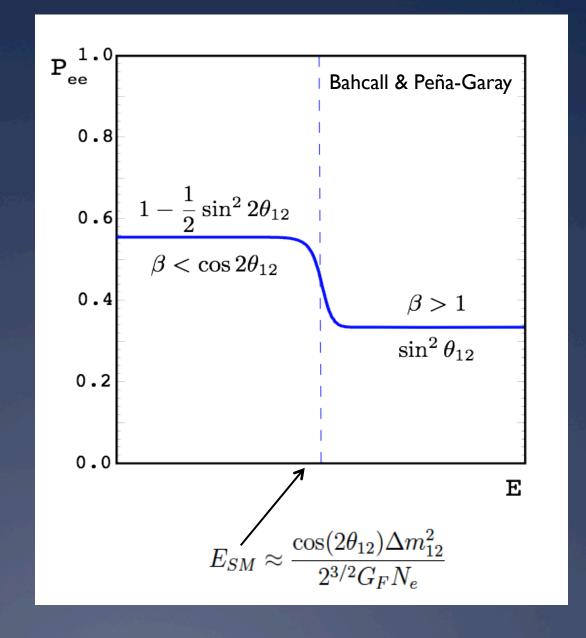
Note that because θ_{13} is small, solar neutrinos are well described by "two-flavour" oscillations

MSW Oscillation Regimes

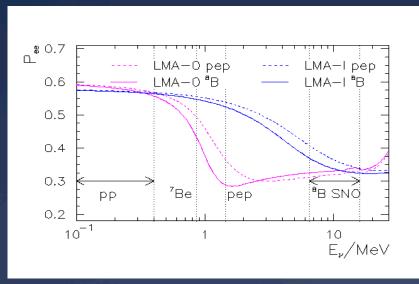

- At low energy (<~0.5
 MeV) the effective
 mass term is small
 compared to the
 mass splitting
 - Solar survival probability is just phase average of (quark-like) 'vacuum oscillations'

$$eta = rac{2^{3/2} G_F N_e E}{\Delta m^2}$$

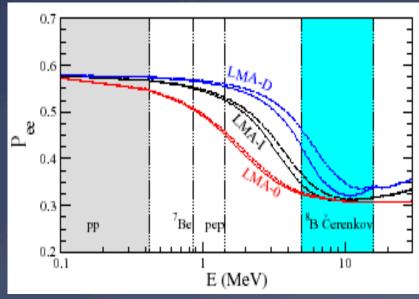
MSW Oscillation Regimes


- At high energy (<~3 MeV) the effective mass term is large compared to the mass splitting
- The PNMS matrix changes, so that v_e is more closely related to (heavier) v_2 's
- Adiabatic transition through solar density profile results in primarily v_2 solar neutrino flux, giving large apparent mixing

$$eta = rac{2^{3/2} G_F N_e E}{\Delta m^2}$$

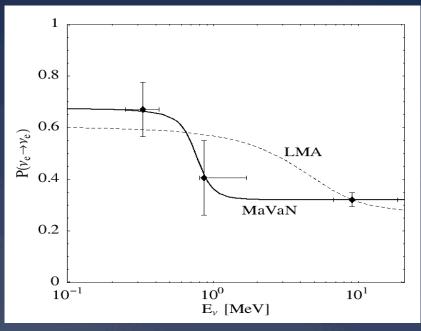

Study MSW Upturn

- To first order, vacuum and matter survival probabilities depend only on θ_{12} :
 - Not on the mechanism through which v_e gains effective mass
 - Not on the mass splitting
- Transition region is sensitive to mass splitting, neutrino-matter coupling, and hence new physics



Possible Transition Region New Physics

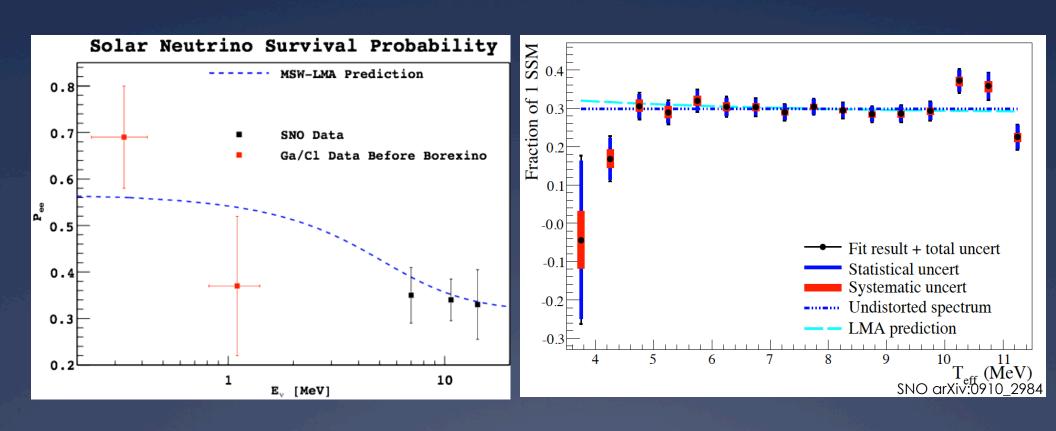
Non-Standard Interactions



Friedland et al., PLB 594 (2004)

Miranda et.al., hep-ph/0406298 (2005)

Mass Varying Neutrinos



Barger et al. PRL 95 (2005)

Other Possibilities:

- CPT violations
- Large Θ_{13}
- Sterile neutrino admixture

(Solar) Experimental Constraints on Transition Region

Real-time measurements below 4MeV can confirm MSW and constrain new physics.

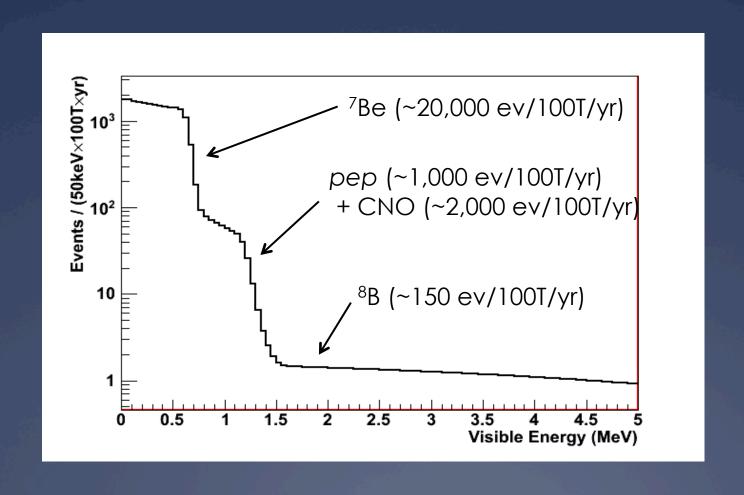
Solar Metallicity Controversy

- "Metallicity" (fraction of Z>2 elements) of the solar interior can be estimated in two ways:
 - Helioseismology vs. sound speed in solar models
 - Spectroscopic measurements of the photosphere, extrapolated via convection models
- "Old" spectroscopic metallicities (Grevesse and Sauval, Space Sci. Rev. 85, 161 (1998)) in SSM gave good agreement with helioseismology
- "New" spectroscopic metallicities (Asplund, Grevesse and Sauval (Nucl. Phys. A **777**, 1 (2006)) are lower by ~1.4, no longer agree with helioseismology

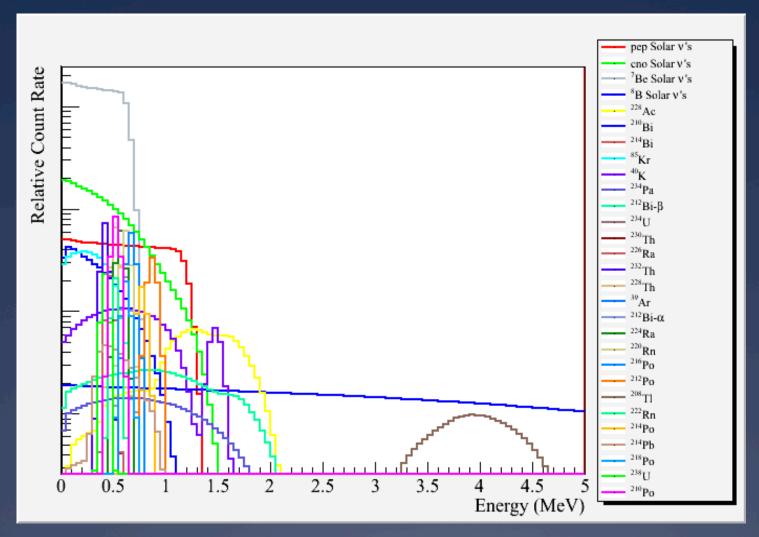
Solar Metallicity Controversy

Bahcall, Serenelli and Basu, AstropJ 621, L85(2005)

Φ (cm ⁻² s ⁻¹)	<i>pp</i> (×10 ¹⁰)	⁷ Be (×10 ⁹)	⁸ B (×10 ⁶)	¹³ N (×10 ⁸)	¹⁵ O (×10 ⁸)	¹⁷ F (×10 ⁶)
BS05 GS 98	5.99	4.84	5.69	3.07	2.33	5.84
BS05 AGS 05	6.05	4.34	4.51	2.01	1.45	3.25
Δ	+1%	-10%	-21%	-35%	-38%	-44%
σ SSM	±1%	±5%	±16%	±15%	±15%	±15%


Neutrino flux measurements can constrain solar metallicity!

Neutrino Detection With Liquid Scintillator


- Neutrinos interact via neutrino-electron elastic scattering
- Detect scintillation light from recoiling electron
 - Good position reconstruction (10-15cm) from time-offlight
 - Low energy threshold (~60keV)
 - Good energy resolution (~500p.e./MeV)
- Calorimetric measurements only, no directional sensitivity
 - Can't distinguish neutrino events from β / γ backgrounds

Neutrino Signal in Liquid Scintillator

Kinematic relationship between the neutrino energy and the electron recoil

Backgrounds in a Liquid Scintillator

Energy range of interest is within the reach of natural radioactivity, and event-by-event background rejection in scintillator is difficult or impossible....

- Internal cosmogenics
 - Short-lived radioactivity induced by muons
- External backgrounds
 - Gamma-rays and neutrons from the rock
- Internal radiogenics
 - Radioactive isotopes in detector materials

- Internal cosmogenics
 - Short-lived radioactivity induced by muons

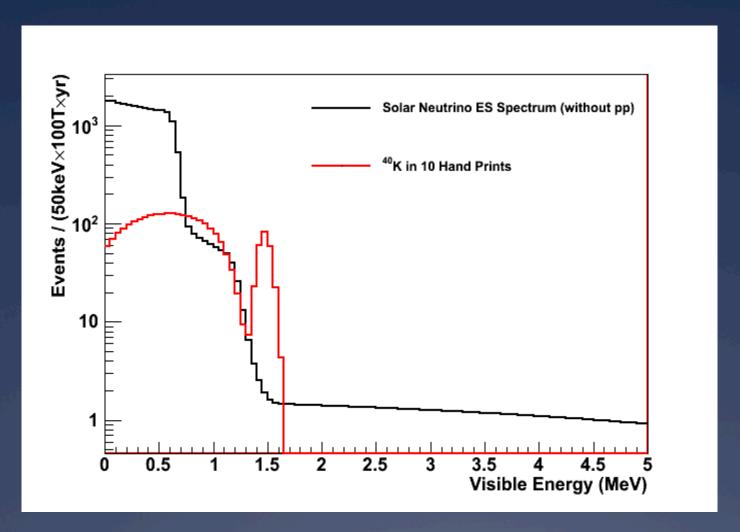
veto

- External backgrounds
 - Gamma-rays and neutrons from the rock
- Internal radiogenics
 - Radioactive isotopes in detector materials

- Internal cosmogenics
 - Short-lived radioactivity induced by muons
- External backgrounds
 - Gamma-rays and neutrons from the rock
- Internal radiogenics
 - Radioactive isotopes in detector materials

Deep site, veto

Shielding, layered design


- Internal cosmogenics
 - Short-lived radioactivity induced by muons
- External backgrounds
 - Gamma-rays and neutrons from the rock
 - Internal radiogenics
 - Radioactive isotopes in detector materials

Deep site veto

Shielding, layered design

CLEAN, CLEAN, CLEAN.

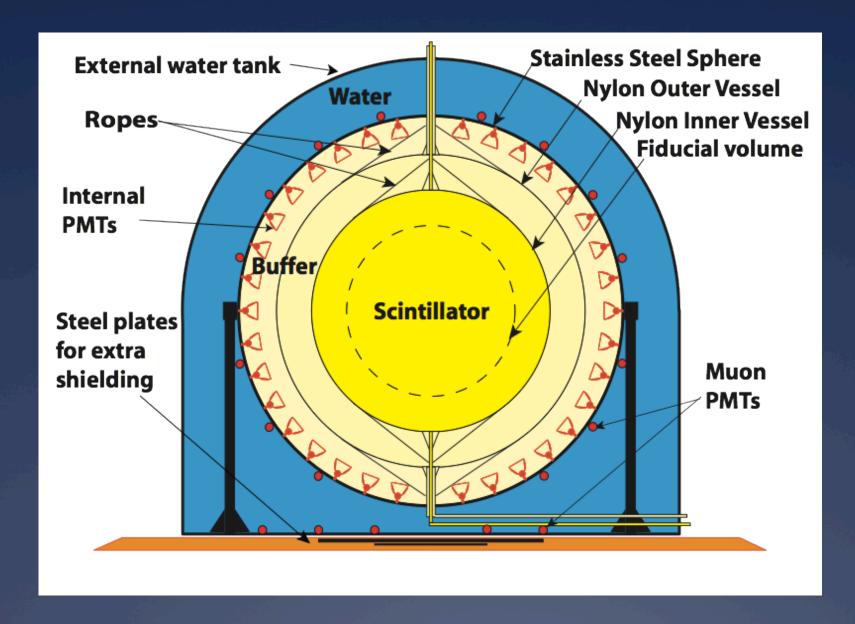
Backgrounds in a Liquid Scintillator

...and signal rates are low.

Suppressing backgrounds from natural radioactivity is key to studying solar neutrinos.

Internal Radiogenic Requirements

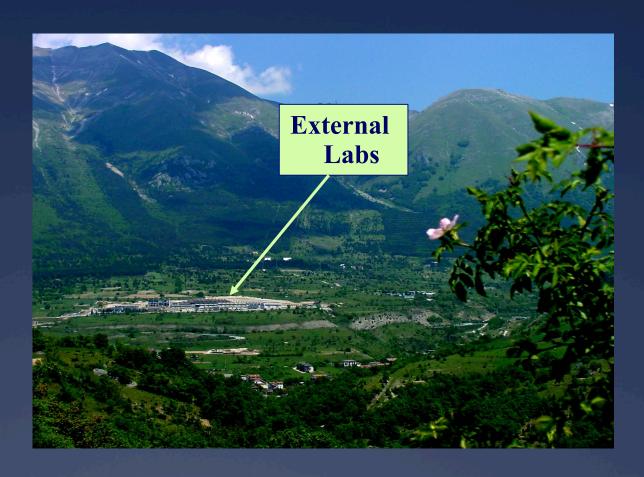
Contaminant	Typical Concentration	Borexino Requirement
¹⁴ C	10 ⁻¹² g/g	10 ⁻¹⁸ g/g
⁸⁵ Kr	1 Bq/m³	<2x10 ⁻⁷ Bq/m ³
238U	10 ⁻⁴ g/g	10 ⁻¹⁶ g/g
²³² Th	10 ⁻⁴ g/g	<10 ⁻¹⁶ g/g

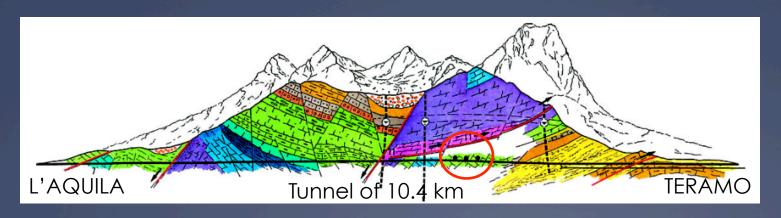

- At the time that Borexino was conceived it was not clear that these purity levels were achievable
- Long program of materials screening and development of purification and clean handling techniques
- Feasibility of overall radiopurity demonstrated with a series of "counting test facilities"

Borexino Backgrounds

- Borexino achieved unprecedented levels of purity and cleanliness
 - Still working to push even lower!
- Enabled not only the Borexino measurements, but established techniques for a generation of neutrino and dark matter experiments

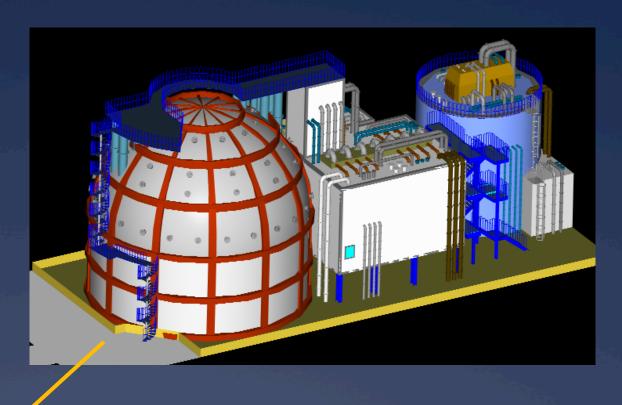
Contaminant	Source	Normal Conc.	Borex Req.	Reduction Method	Borex Achieved
μ	Cosmic	200/(s·m²)	10 ⁻¹⁰ / (s·m ²)	Underground, active veto	<10 ⁻¹⁰ /(s·m ²)
¹⁴ C	Scintillator	10 ⁻¹² g/g	10 ⁻¹⁸ g/g	Old oil	10 ⁻¹⁸ g/g
238∪	Dust	10 -4 g/g	10 ⁻¹⁶ g/g	Purification	<10 ⁻¹⁷ g/g
²³² Th	Dust	10 -4 g/g	<10 ⁻¹⁶ g/g	Purification	<10 ⁻¹⁷ g/g
⁸⁵ Кг	Air	1 Bq/m³	<0.01ppt	LAKN	<0.035 ppt
¹¹ C	Cosmogenic	25 /day/100ton	~10/day	μ+n coincidence	3/day/100ton

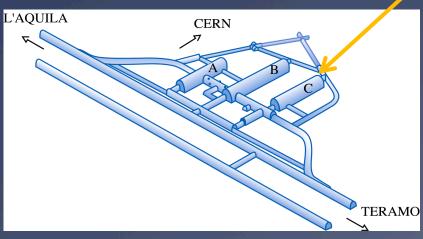

The Borexino Detector



890 tale en la completa de la completa del completa del completa de la completa del completa della completa del

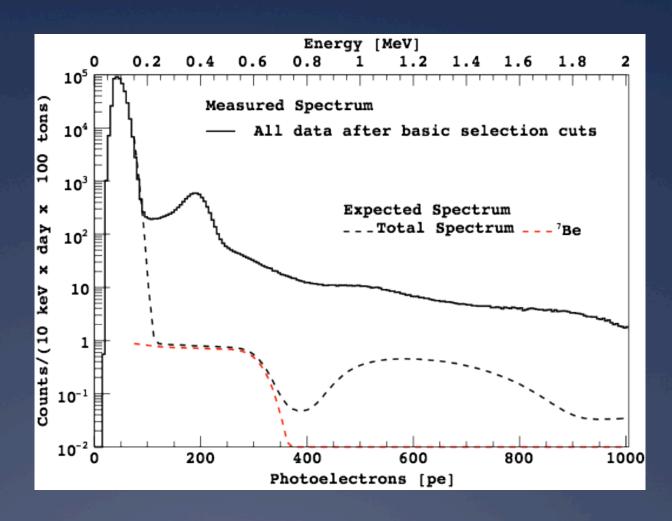
Laboratori Nazionali del Gran Sasso



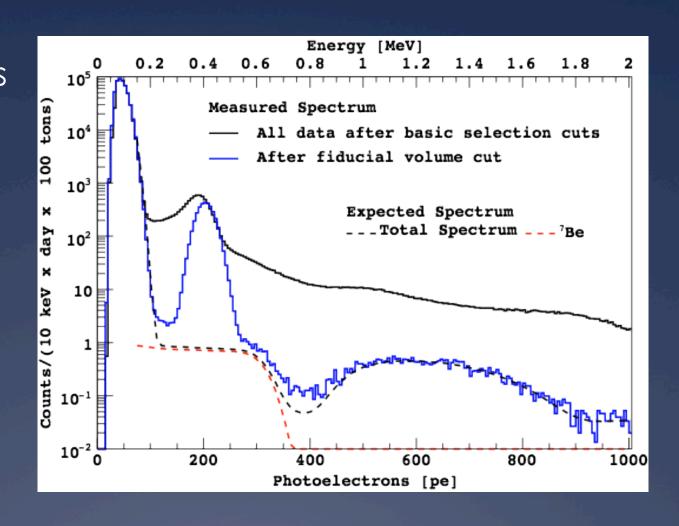


Borexino at LNGS

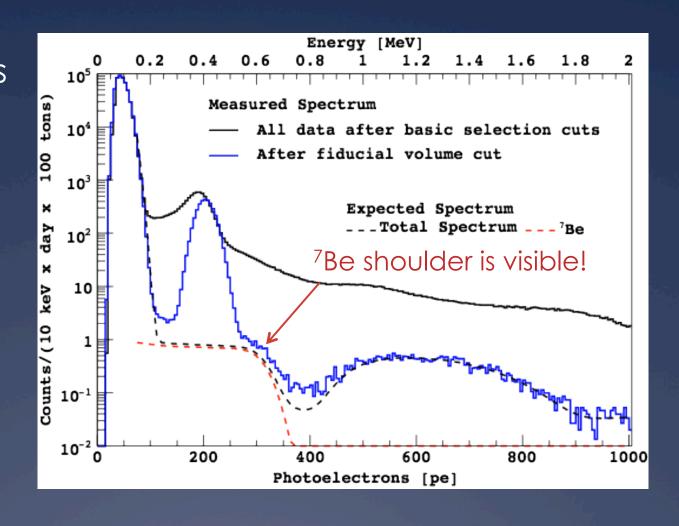
~4600' overburden reduces cosmic ray flux to ~3x10⁻⁸cm⁻²s⁻¹ (~10⁶ lower than on surface)

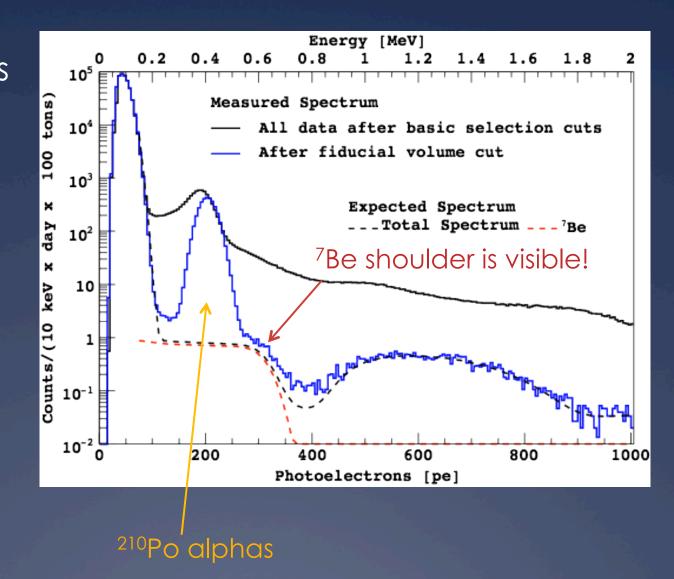

Borexino Physics Results

- * ⁷Be Solar Neutrinos
- * 8B Solar Neutrinos
- * Geo-neutrinos


(PRL 101 9 (2008))

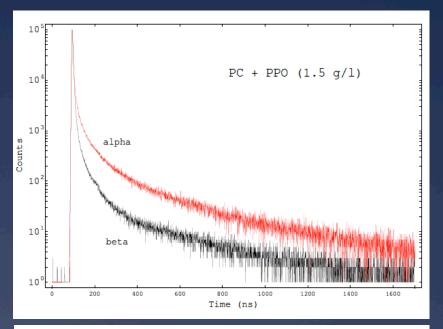
Basic event selection:

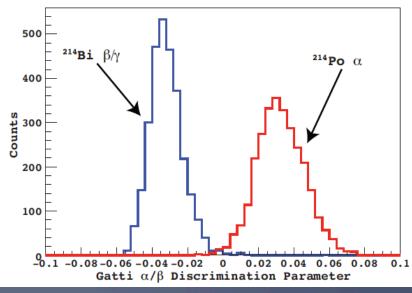

- Veto muons +
 2ms for neutrons
 and fast
 cosmogenics
- Reject events
 within 3hrs and
 85cm of
 ²¹⁴Bi-²¹⁴Po co incidences to
 reduce internal
 radon daughters


- Cut residual external gammas and backgrounds from the nylon vessel by applying a fiducial volume cut
 - r < 3m
 - |z| < 1.8m to reduce backgrounds from the "poles"

- Cut residual external gammas and backgrounds from the nylon vessel by applying a fiducial volume cut
 - \cdot r < 3m
 - |z| < 1.8m to reduce backgrounds from the "poles"

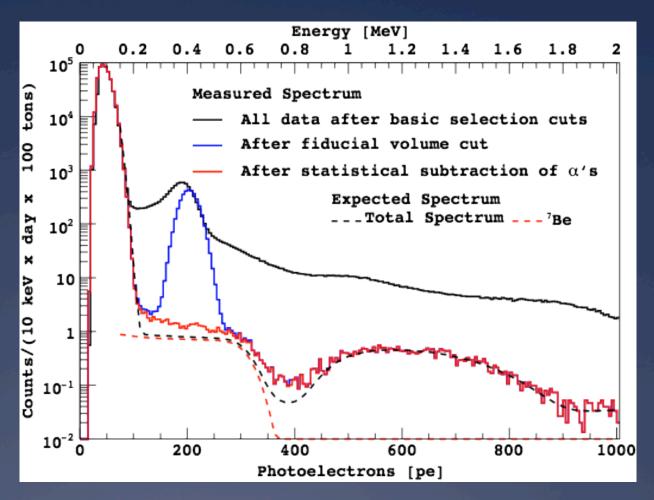
- Cut residual external gammas and backgrounds from the nylon vessel by applying a fiducial volume cut
 - r < 3m
 - |z| < 1.8m toreducebackgroundsfrom the "poles"

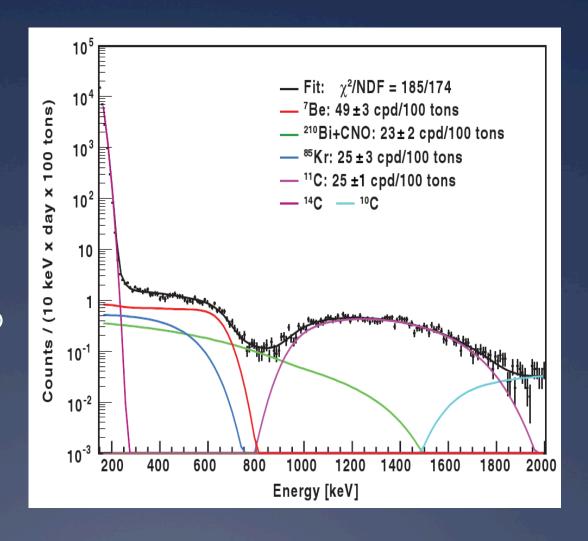



α - β Separation by PSA

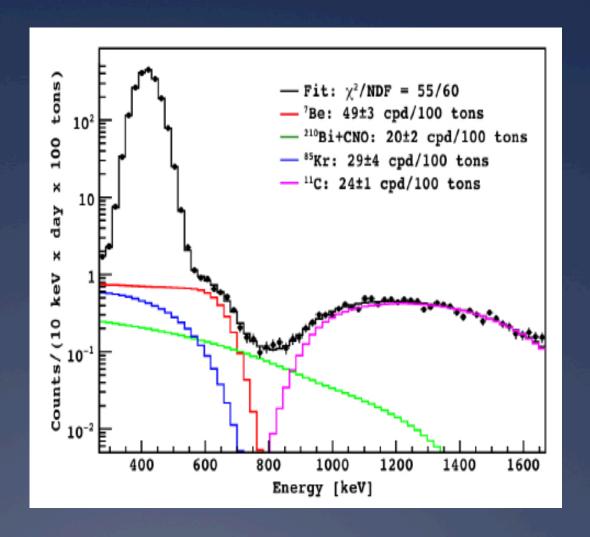
- In organic scintillator, particles with higher ionization density produce more "slow" light
- Separation based on "Gatti Parameter"
 - Weight signal, S, in time bin i by difference ratio of average α and β pulse shapes in bin i

$$G = \sum_{i} P_{i} S_{i}$$


$$P_i = \frac{(\overline{\alpha_i} - \overline{\beta_i})}{(\overline{\alpha_i} + \overline{\beta_i})}$$


'Statistical Selection' by PSA

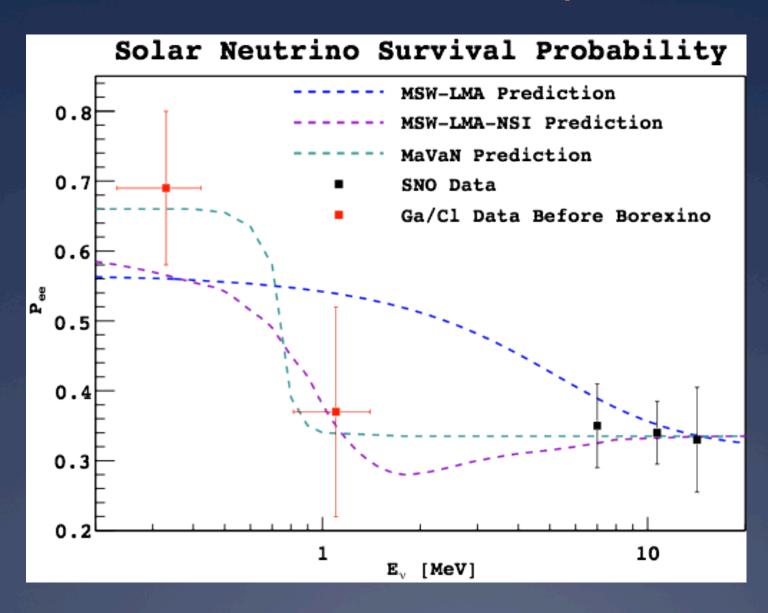
- Determine the number of electron-like events bin-by-bin using the Gatti distribution
- All that remains is signal and small residual backgrounds:
- Long-lived
 cosmogenics (11Be,
 11C, 10C, etc)
- Unvetoed radiogenics (²¹⁰Bi, ⁸⁵Kr, ²⁰⁸Tl, etc)


Borexino ⁷Be Signal Extraction

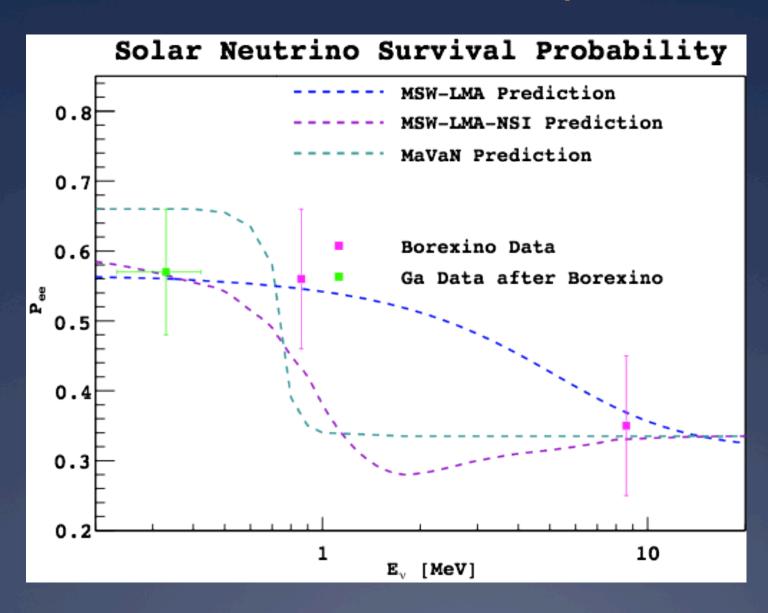
- Likelihood fit to the energy spectrum
- Combine ²¹⁰Bi +
 CNO due to similar
 spectra
- Fix pep, pp fluxes to SSM
- Include residual
 210Po

Borexino ⁷Be Signal Extraction

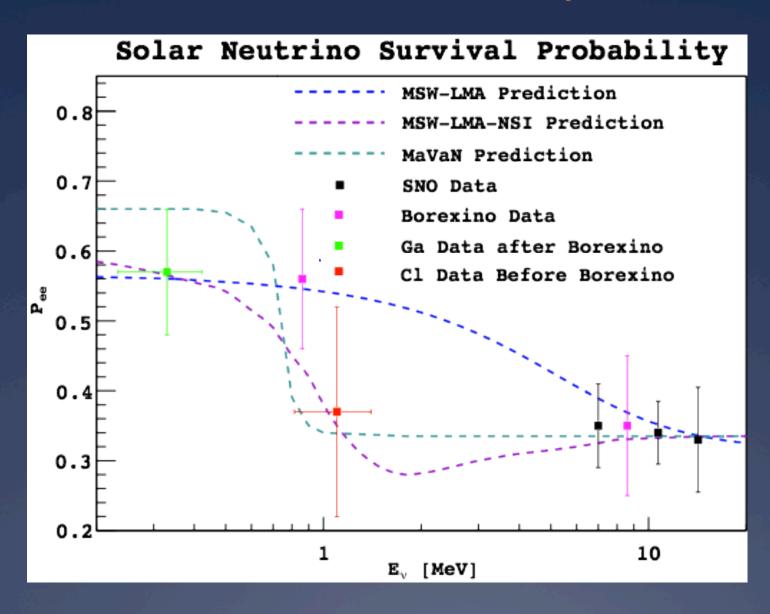
Consistent results
 without using alpha
 rejection


Borexino ⁷Be Flux Result

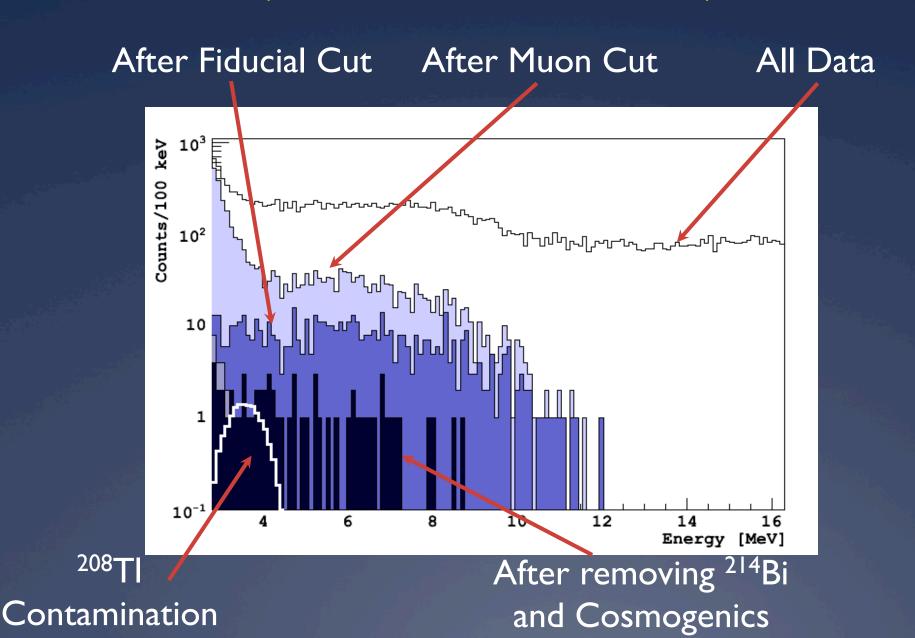
- Based on first 192 live-days
- Before internal calibrations, so dominant systematics were fiducial volume (6%) and detector response (6%)


Total Scintillator Mass	0.2 Fiducial Mass Ratio	6.0
Live Time	0.1 Detector Resp. Function	6.0
Efficiency of Cuts	0.3	
Total Systematic Error		8.5

Borexino ⁷Be counting rate: $49 \pm 3_{stat} \pm 4_{sys}$ /(d 100T)


Results on MSW Upturn

Results on MSW Upturn

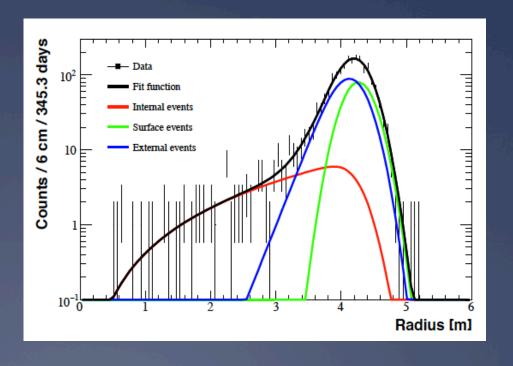


Results on MSW Upturn

Borexino High Energy Analysis (8B)

(arXiv:0808.2868, submitted to PRD)

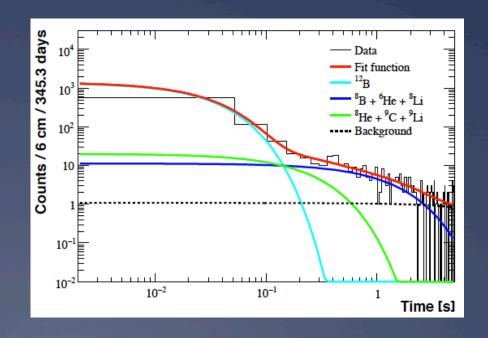
Cut	Counts	Counts
	3.0-16.3 MeV	5.0-16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8
		. ~ .


Residuals		
Background	Rate [10 ⁻⁴ cpd/100 t]	
	>3 MeV	>5 MeV
Muons	4.5±0.9	3.5±0.8
Neutrons	0.86 ± 0.01	0
External background	64±2	0.03 ± 0.11
Fast cosmogenic	17±2	13 ± 2
¹⁰ C	22±2	0
²¹⁴ Bi	1.1±0.4	0

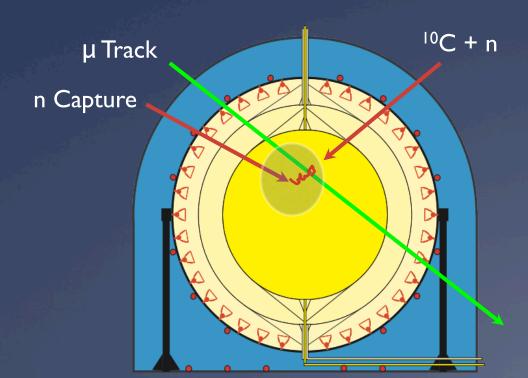
- Inner detector muons can be detected in two ways:
 - Pulse shape (extended tracks have different time profile)
 - Outer detector
- Comparing the two methods gives overall detection efficiency
- 2ms cut after O.D. muons rejects neutrons from water tank

Cut	Counts	Counts
	3.0-16.3 MeV	5.0-16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8

Re	esiduals	
Background	Rate [10 ⁻⁴ cpd/100 t]	
	>3 MeV	>5 MeV
Muons	4.5±0.9	3.5±0.8
Neutrons	0.86 ± 0.01	0
External background	64±2	0.03 ± 0.11
Fast cosmogenic	17±2	13±2
¹⁰ C	22±2	0
²¹⁴ Bi	1.1±0.4	0


- "Standard" r< 3m, |z| <1.8m fiducial volume
- Contamination estimated from radial profile

Cut	Counts	Counts
	3.0-16.3 MeV	5.0–16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8


Re	esiduals	
Background	Rate [10 ⁻⁴ cpd/100 t]	
	>3 MeV	>5 MeV
Muons	4.5±0.9	3.5±0.8
Neutrons	0.86 ± 0.01	0
External background	64±2	0.03 ± 0.11
Fast cosmogenic	17±2	13±2
¹⁰ C	22±2	0
²¹⁴ Bi	1.1±0.4	0

- Fast cosmogenics targeted by 6.5s cut after I.D. muons
 - 29.2% deadtime
- Residual estimated from time profile of events following muons

Cut	Counts	Counts
	3.0-16.3 MeV	5.0–16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8

Residuals		
Background	Rate $[10^{-4} \text{cpd}/100 \text{ t}]$	
	>3 MeV	>5 MeV
Muons	4.5±0.9	3.5±0.8
Neutrons	0.86 ± 0.01	0
External background	64±2	0.03 ± 0.11
Fast cosmogenic	17±2	13±2
¹⁰ C	22±2	0
²¹⁴ Bi	1.1±0.4	0

- ¹⁰C has ~30s half-live (too long to veto)
- Often produce via emission of neutron (captures $\sim 250 \,\mu$ s later)

	*	
Cut	Counts	Counts
	3.0-16.3 MeV	5.0–16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8
		1.72

Residuals		
Background	Rate $[10^{-4} \text{cpd}/100 \text{ t}]$	
	>3 MeV	>5 MeV
Muons	4.5±0.9	3.5±0.8
Neutrons	0.86 ± 0.01	0
External background	64±2	0.03 ± 0.11
Fast cosmogenic	17±2	13±2
¹⁰ C	22±2	0
²¹⁴ Bi	1.1 ± 0.4	0

- Neutrons following muons are detected by dedicated flash-ADC DAQ systems triggered by O.D.
 - 94% neutron detection efficiency
 - 67 muon-neutron co-incidences per day
- Veto all events within 85cm of neutron capture point for 120s after muon
 - Cut efficiency 0.7±0.1
- Residual set by inefficiencies + "neutronless" channels ¹²C(p,t)

Cut	Counts	Counts
	3.0-16.3 MeV	5.0-16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8

Residuals			
Background	Rate $[10^{-4} \text{cpd}/100 \text{ t}]$		
	>3 MeV	>5 MeV	
Muons	4.5±0.9	3.5±0.8	
Neutrons	0.86 ± 0.01	0	
External background	64±2	0.03 ± 0.11	
Fast cosmogenic	17±2	13±2	
¹⁰ C	22±2	0	
²¹⁴ Bi	1.1±0.4	0	

- Reject 214 Bi using 214 Bi- 214 Po $^{234}\mu$ s delayed coincidence
- Efficiency of 91% (based on the time window used)

Cut	Counts	Counts
	3.0-16.3 MeV	5.0–16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ Tl subtraction	90 ± 13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8

Residuals				
Background Rate [10 ⁻⁴ cpd/100 t]				
	>3 MeV	>5 MeV		
Muons	4.5±0.9	3.5±0.8		
Neutrons	0.86 ± 0.01	0		
External background	64±2	0.03 ± 0.11		
Fast cosmogenic	17±2	13±2		
¹⁰ C	22±2	0		
²¹⁴ Bi	1.1±0.4	0		

Sum x 345.3 days

- Reject 214 Bi using 214 Bi- 214 Po $^{234}\mu$ s delayed coincidence
- Efficiency of 91% (based on the time window used)

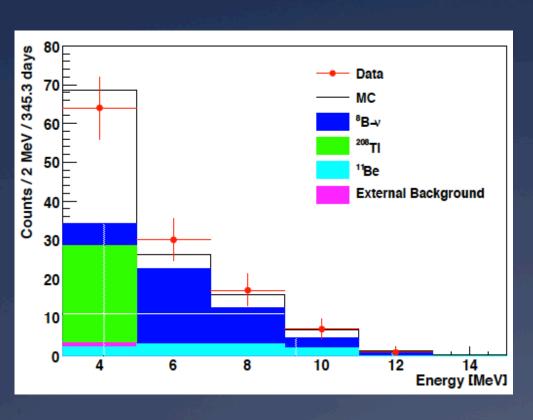
Cut	Counts	Counts
	3.0-16.3 MeV	5.0-16.3 MeV
All counts	1932181	1824858
Muon and neutron cuts	6552	2679
FV cut	1329	970
Cosmogenic cut	131	55
¹⁰ C removal	128	55
²¹⁴ Bi removal	119	55
²⁰⁸ TI subtraction	90±13	55±7
¹¹ Be subtraction	79 ± 13	47±8
Residual subtraction	75 ± 13	46±8
Final sample	75±13	46±8

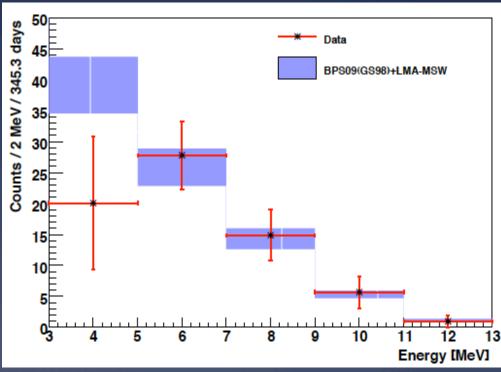
Residuals				
Background Rate [10 ⁻⁴ cpd/100 t]				
	>3 MeV	>5 MeV		
Muons	4.5±0.9	3.5±0.8		
Neutrons	0.86 ± 0.01	0		
External background	64±2	0.03 ± 0.11		
Fast cosmogenic	17±2	13±2		
¹⁰ C	22±2	0		
²¹⁴ Bi	1.1±0.4	0		

- Subtract 208 Tl using rate estimated from 212 Bi- 212 Po 431ns co-incidence (29 ± 7)
- Subtract ¹¹Be using KamLAND production rate scaled (via FLUKA) to Borexino flux and average muon energy
 - Borexino ¹¹Be measurement agrees with scaled value but is less precise
 - Scaling other KamLAND cosmogenic production rates gives good agreement with the observed rates in Borexino

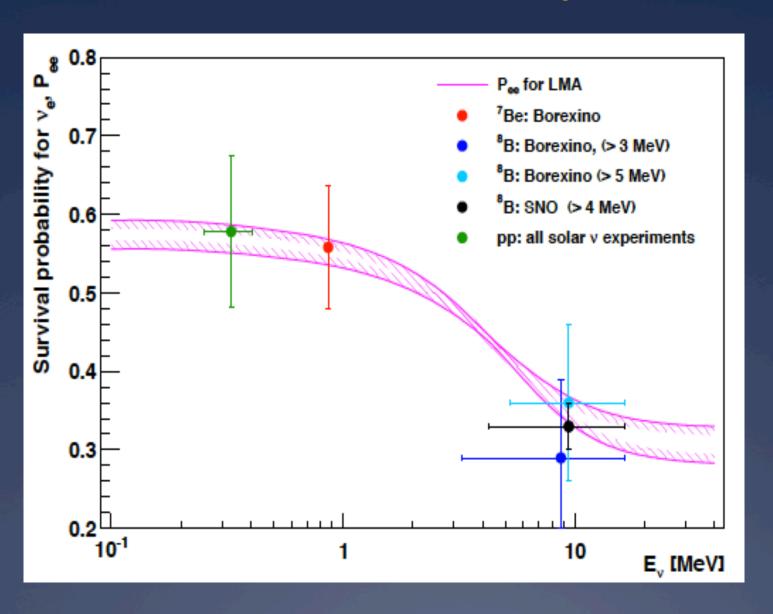
Borexino 8B Flux Result

⁸B Counting Rate:

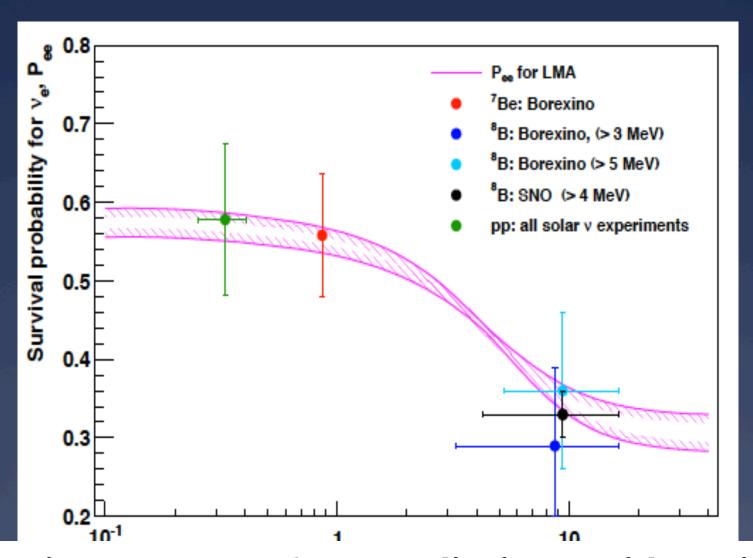

$$0.217 \pm 0.038(stat)^{+0.008}_{-0.008}(syst) c/d/100t$$
 >3MeV


$$0.134 \pm 0.022(stat)^{+0.008}_{-0.007}(syst) \ c/d/100 \ t$$
 >5MeV

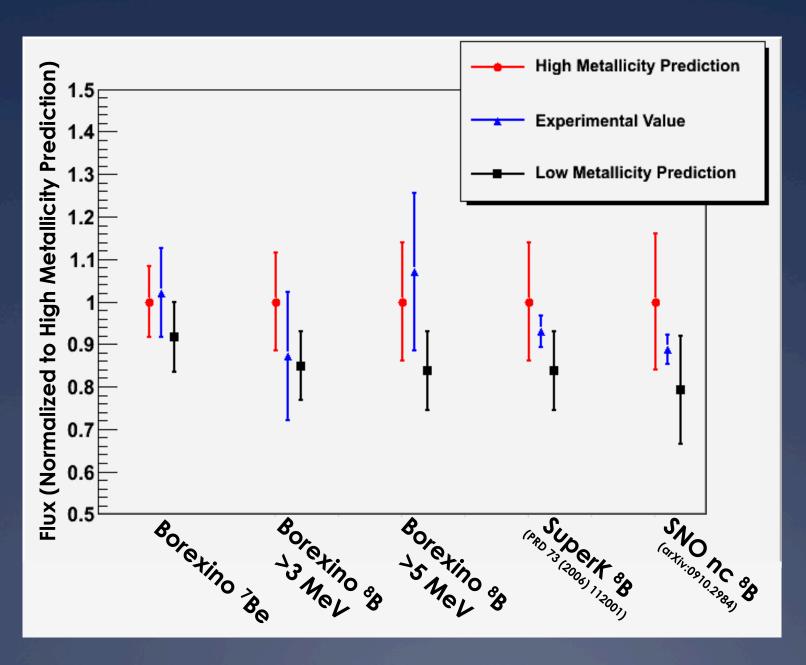
Source	E>3 MeV		E>5 MeV	
	σ_+	σ_{-}	σ_+	σ
Energy threshold	3.6%	3.2%	6.1%	4.8%
Fiducial mass	3.8%	3.8%	3.8%	3.8%
Total	5.2%	5.0%	7.2%	6.1%


	Threshold	$\Phi_{8_{ m R}}^{ m ES}$
	[MeV]	$[10^6 \text{ cm}^{-2} \text{ s}^{-1}]$
SuperKamiokaNDE I [7]	5.0	$2.35\pm0.02\pm0.08$
SuperKamiokaNDE II [2]	7.0	$2.38\pm0.05^{+0.16}_{-0.15}$
SNO D ₂ O [3]	5.0	$2.39^{+0.24}_{-0.23} {}^{+0.12}_{-0.12}$
SNO Salt Phase [26]	5.5	$2.35\pm0.22\pm0.15$
SNO Prop. Counter [27]	6.0	$1.77^{+0.24}_{-0.21}^{+0.09}_{-0.10}$
Borexino	3.0	$2.4\pm0.4\pm0.1$
Borexino	5.0	$2.7 \pm 0.4 \pm 0.1$

Borexino ⁸B Elastic Scattering Spectrum



Results on MSW Upturn



Results on MSW Upturn

Beginning to test MSW predictions with a single experiment: Borexino 7 Be and 8 B P_{ee} 's differ by 1.9 σ

Solar Metallicity

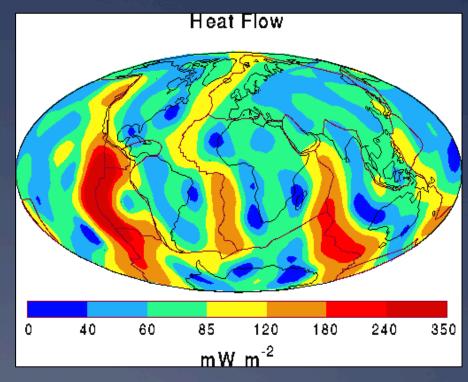
Geo-Neutrinos

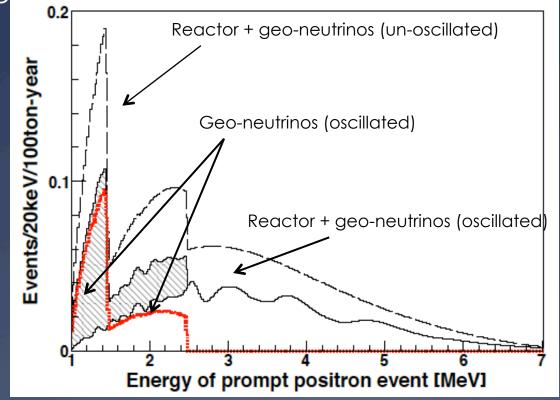
- Antineutrinos from β decay of K, U and Th in the earth's mantle and crust
- Models suggest that these decays are responsible for 40-100% of the earth's heat

Not well known!

 Use geoneutrinos to measure the earth's radiogenic heat and chemical composition

Geophysics with neutrinos!




Image from H.N. Pollack, S.J. Hurter and J.R. Johnson, *Revie of Geophysics* **31**(3), 267-280, 1993

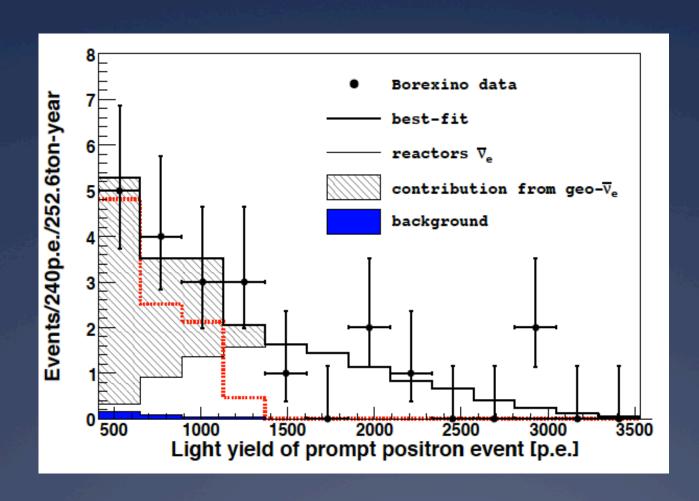
Geo-Neutrinos in Borexino

(PLB687:229 (2010))

Antineutrino detection via $v_e + p \rightarrow n + e^+ (1.8 \text{ MeV})$ threshold)

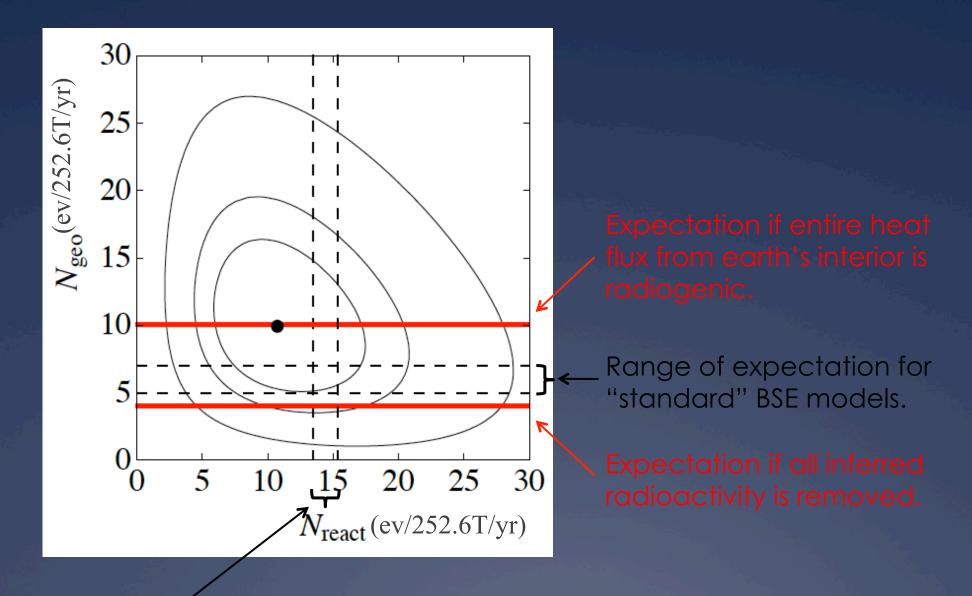
Positron gives antineutring energy (F = F - 0.782 MeV)

Only a handful of events in 100T-yr!


Geo-Neutrinos in Borexino

Powerful background rejection from delayed co-incidence between prompt e⁺ and delayed (~256 μ s) n capture

Delayed Co-incidence Backgrounds			
Source	Background		
	$[\text{events}/(100\text{ton}\cdot\text{yr})]$		
⁹ Li ^{_8} He	0.03 ± 0.02		
Fast n 's (μ 's in WT)	< 0.01		
Fast n 's (μ 's in rock)	< 0.04		
Untagged muons	0.011 ± 0.001		
Accidental coincidences	0.080 ± 0.001		
Time corr. background	< 0.026		
(γ, \mathbf{n})	< 0.003		
Spontaneous fission in PMTs	0.0030 ± 0.0003		
(α, n) in scintillator	0.014 ± 0.001		
(α, \mathbf{n}) in the buffer	< 0.061		
Total	0.14 ± 0.02		


Very low background using almost the full 270T active

Borexino Geo-Neutino Result

Borexino Geo-Neutrino Flux: 3.9^{+1.6}-1.3 ev/100T/yr

Borexino Geo-Neutino Result

Reactor neutrino expectation from reactor power outputs.

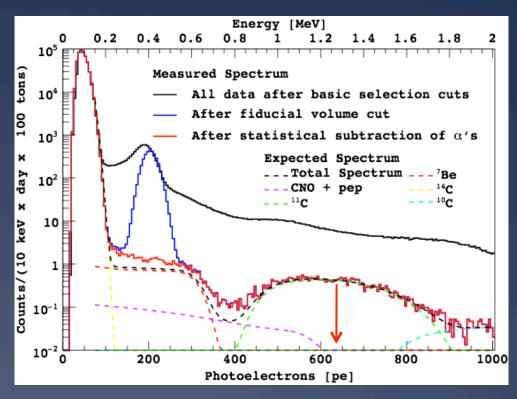
The Future of Borexino

- Updated ⁷Be result with higher statistics, reduced systematics
 - Aiming to have a total uncertainty <5%

⁸B After Calibrations

⁷Be Before Calibration

Source	E>3 MeV		E>5 MeV	
	σ_+	σ_{-}	σ_+	σ
Energy threshold	3.6%	3.2%	6.1%	4.8%
Fiducial mass	3.8%	3.8%	3.8%	3.8%
Total	5.2%	5.0%	7.2%	6.1%

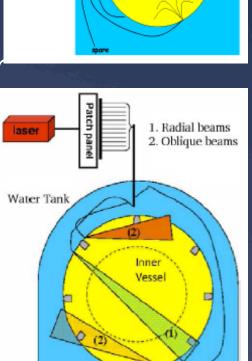

Fiducial Mass Ratio Detector Resp. Function	6.0
	8.5

A 5% ⁷Be measurement appears to be within reach!

Longer Term

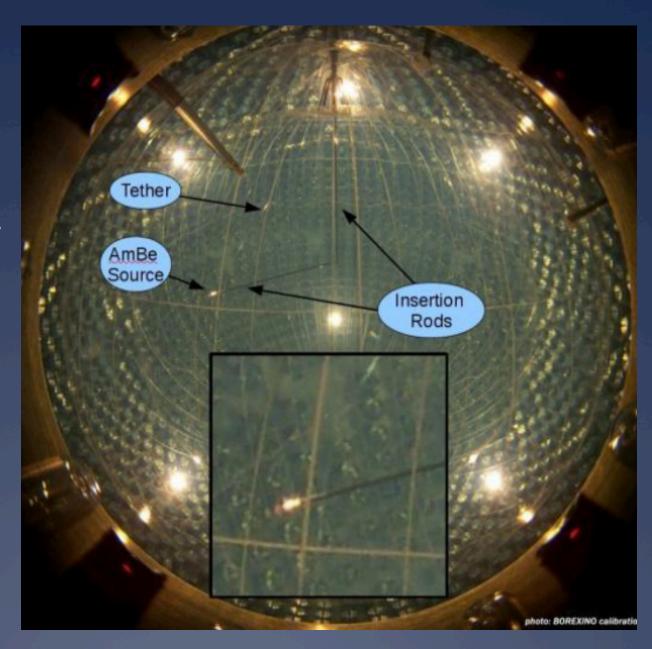
- Re-purification of the scintillator
 - Reduce ⁸⁵Kr, maybe ²¹⁰Bi and ²¹⁰Po
 - Improve the ⁷Be number even further
- Perhaps other solar neutrino fluxes?
 - The neutron tagging technique that was used on ¹⁰C will also work on ¹¹C
 - Pep flux measurement could give high-precision test on SSM + MSW upturn
 - CNO measurement could help constrain solar metallicity

Calibrating the Borexino Detector


Fiber-Based Optical Calibration

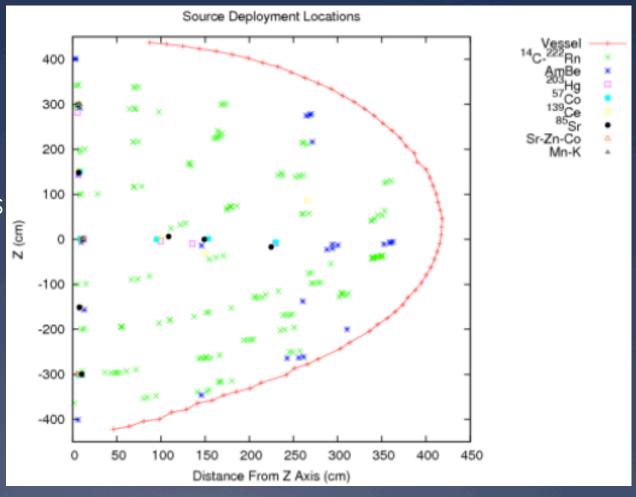
- Optical fibers deliver light to each PMT to monitor gain and measure timing offsets
 - Tubes are pulsed at the beginning of each run as well as during the runs

Other fibers deliver light across the detector to monitor scintillator optics



Internal Calibrations

- Radioactive and laser sources deployed throughout the F.V. using stainless steel insertion rods
- Source position known to 2-3cm using a camerabased reconstruction system



Internal Calibrations

- 4 major calibration campaigns (Oct '08, Jan '09, June '09, July '09)
- 35 livedays of calibration data with sources in 295 positions

Sources:

- laser diffuser ball
- AmBe (neutron)
- ²²²Rn alpha
- 14C beta
- 54Mn, 85Sr, 65Zn, 60Co, 203Hg, 40K, 57Co, 139Ce gamma

Calibration Contamination Control

- Sources flame sealed in quartz vials
- Deployed through a glove-port inside a class 10 clean room
- No significant long term effect on detector backgrounds observed after calibrations

Conclusions

- Extremely low backgrounds achieved by Borexino have allowed re-time measurement of the low energy solar neutrinos
- * Beginning to test the solar neutrino survival probability in the "MSW upturn"
- * More interesting physics to come

Borexino Collaboration

