Alex Wright, for the DarkSide Collaboration DPF 2011, 10 August 2011 ## The DarkSide Program at LNGS ### DarkSide - Direct-detection dark matter program at LNGS based on 2-phase depleted argon TPCs - Staged approach, with 50 kg and ton-scale detectors (10⁻⁴⁵ cm² and 10⁻⁴⁶ cm² target sensitivities) - Develop technology for ultimate multi-ton detectors - Aim to have very low backgrounds, and be able to demonstrate them in situ ## DarkSide Strategy - Ultra-low background technology - Argon depleted in 39Ar - Low background photodetectors - Active suppression to both reject and assay background: - Electron recoil rejection capability of liquid argon - Highly efficient neutron veto - CTF water tank for suppression of cosmogenics ### **Darkside Collaboration** # **Depleted Argon** - ³⁹Ar is produced by cosmic rays in the atmosphere - ~1 Bq/kg in commercial argon - Underground argon is shielded, so contains less 39Ar - CO2 from Kinder Morgan Doe Canyon Complex (Cortez, CO) contains ~600 ppm Argon - 3 tons Ar produced/day - ~46 kg of argon collected so far For details: NIM A 587:46-51 (2008) ## Depleted Argon Counting - Dedicated "low background detector" - ~o.56 kg liquid Ar active mass - Cryogenic, low background 3" PMT - 2" Cu, 8" Pb shielding - Muon veto ## Depleted Argon Counting - At Princeton, background in the ³⁹Ar region is 0.05 Bq in (200,800 keV) - ³⁹Ar depletion factor of >10 from direct counting, >~50 from spectral fit ## Depleted Argon Counting - At KURF (1400 m.w.e.) background reduced to 0.002 Bq in 300-400 keV - Depletion factor of >50 from counting - Spectral fit in progress ³⁹Ar likely not the dominant source of electron recoils in DarkSide-50! ## Low Background Photo-Detectors ### Quartz Photon Intensifying Device - All fused silica construction - Photoelectrons accelerated directly onto a low background APD - Potential for extremely low background - Cryogenic operation - High quantum efficiency (>35%) R11065 PMT - Metal bulb, fused silica window - <60 mBq gammas</p> - <3 neutrons/PMT/yr</p> - Cryogenic operation - High quantum efficiency (>30%) - To be used in DarkSide-50 before QUPIDs For details: arXiv:1103.3689 # High-Efficiency Neutron Veto - Surround DarkSide with boron-loaded liquid scintillator - Fast neutron captures - Detect nuclear recoil products of neutron capture - Efficiently detect escaping neutrons and veto any associated nuclear recoil backgrounds - >99.5% efficiency for radiogenic neutrons - >95% efficiency for cosmogenic neutrons For details: NIM A **664**:18-26 (2011) ## Cosmogenic Neutrons - Install DarkSide in the Borexino CTF tank in LNGS, Italy - Muon flux reduced by 10⁶ - Detect the Cerenkov light produced by the muons and other shower particles - Veto the (~simultaneous) neutron-induced background events - CTF tank + neutron veto reduce cosmogenic backgrounds by >>10³ ### DarkSide-50 Background Estimates #### Total WIMP background in (ev / 0.1 tonne-yr) for R11065 (QUPIDs): | Detector Element | Electron Recoil
Backgrounds | | Radiogenic Neutron
Recoil Backgrounds | | Cosmogenic Neutron
Recoil Backgrounds | | |-------------------------------|--------------------------------|----------------------|--|----------------------|--|----------------------| | | Raw | After Cuts | Raw | After Cuts | Raw | After Cuts | | ³⁹ Ar (0.04 Bq/kg) | $<2.5 \times 10^{7}$ | < 0.016 | - | - | - | - | | Fused Silica | 3.3×10^{4} | 2.0×10^{-5} | 0.17 | 4.3×10^{-4} | 0.21 | 1.3×10^{-5} | | PTFE | 4,800 | 3.0×10^{-6} | 0.39 | 9.8×10^{-4} | 2.7 | 1.6×10^{-4} | | Copper | 4,500 | 2.8×10^{-6} | 5.0×10^{-3} | 1.3×10^{-5} | 1.5 | 9.0×10^{-5} | | R11065 PMTs | 2.6×10^{6} | 1.6×10^{-3} | 19.4 | 4.8×10^{-2} | 0.34 | 2.0×10^{-5} | | QUPIDs (1 mBq) | 7.0×10^4 | 4.2×10^{-5} | 0.31 | 7.8×10^{-4} | 0.34 | 2.0×10^{-5} | | Stainless Steel | 5.5×10^{4} | 3.4×10^{-5} | 2.5 | 6.3×10^{-3} | 30 | 0.0018 | | Veto Scintillator | 70 | 4.3×10^{-8} | 0.030 | 7.5×10^{-5} | 26 | 0.0016 | | Veto PMTs | 2.5×10^{6} | 1.6×10^{-3} | 0.023 | 5.8×10^{-5} | - | 2 | | Veto tank | 1.7×10^{5} | 1.1×10^{-4} | 6.7×10^{-5} | 1.7×10^{-7} | 19 | 0.0071 | | Water | 6,100 | 3.8×10^{-6} | 6.7×10^{-4} | 1.7×10^{-6} | 19 | 0.0071 | | CTF tank | 8,300 | 5.1×10^{-6} | 3.5×10^{-3} | 8.7×10^{-6} | 0.068 | 2.6×10^{-5} | | LNGS Rock | 920 | 5.7×10^{-7} | 0.061 | 1.5×10^{-4} | 0.31 | 0.012 | | Total | - | 0.019 (0.017) | - | 0.055 (0.008) | - | 0.030 (0.030) | | Surface Backgrounds | | | | | |-----------------------|------------|--|--|--| | Raw | After cuts | | | | | 4.5 X 10 ³ | <0.01 | | | | Very conservative estimates: DarkSide should demonstrate background free ton-yr exposures! ### **Demonstrating Discrimination Power** - DarkSide designed to have the ability to calibrate each major background rejection technique: - Compare PSD to charge/light, use γ sources (or refill with "normal" Ar!) to demonstrate electron rejection - Use neutron sources to calibrate neutron veto efficiency - Spike surfaces with ²²⁰Rn daughters to demonstrate surface background rejection - Compare water and neutron veto with each other and with calculations to calibrate cosmogenic veto efficiency ## 10 kg Prototype - Test some important DarkSide technologies - Control of gas layer - Charge drift and S2 light collection - Light yield - Background suppression studies - Give us experience building and operating an argon TPC - Two runs, seven months total, during 2010-2011 - Good light yield - Good control of gas pocket - Successful 2-phase operation! - Two runs, seven months total, during 2010-2011 - Good light yield - Good control of gas pocket - Successful 2-phase operation! - Two runs, seven months total, during 2010-2011 - Good light yield - Good control of gas pocket - Successful 2-phase operation! - Two runs, seven months total, during 2010-2011 - Good light yield - Good control of gas pocket - Successful 2-phase operation! - Two runs, seven months total, during 2010-2011 - Good light yield - Good control of gas pocket - Successful 2-phase operation! ### DarkSide-10 at LNGS - DarkSide-10 upgraded, moved to LNGS - Water shielding to reduce background rate - Study low background operation - Electron recoil rejection - Surface backgrounds - Commissioning in progress! ## DarkSide-10 at LNGS - DarkSide-10 upgraded, moved to LNGS - Water shielding to reduce background rate - Study low background operation - Electron recoil rejection - Surface backgrounds - Commissioning in progress! ## Summary - DarkSide designed to have very low, very well understood backgrounds - DarkSide-10 operating at LNGS - DarkSide-50 under construction - Designs mostly final, material screening underway - Deployment in late 2012 - Neutron veto will be large enough for a 5T detector - DarkSide is well positioned to contribute to the continuing program of ever more sensitive experiments