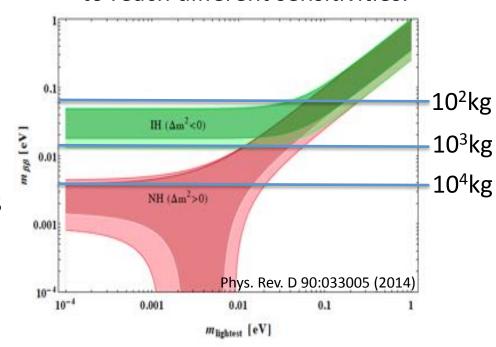


Future Neutinoless Double Beta Decay Search Experiments

Alex Wright

Queen's University & Institute of Particle Physics Neutrino 2016, University College London


With thanks to all who provided material:

Juan Jose Gomez Cadenas, Michel Sorel & Paola Ferrario; Mark Chen & Steve Biller; Nobuhiru Ishihara; Yeongduk Kim & Hyon-Suk Jo; Tadafumi Kishimoto & Saori Umehara; Stefan Schönert; Xiangdong Xi & Han Ke; Qian Yue; Kai Zuber & Stefan Zatschler

Introduction

- Global neutrinoless double beta decay search program includes many experiments using different isotopes and technologies.
- Key detector parameters
 - Mass
 - Energy Resolution
 - Background Control
- The sensitivity of neutrinoless double beta decay experiments is rapidly improving
 - Currently approaching the top of the inverted hierarchy region
 - Next-generation experiments will explore the inverted hierarchy region
- New developments are needed to probe the normal hierarchy region

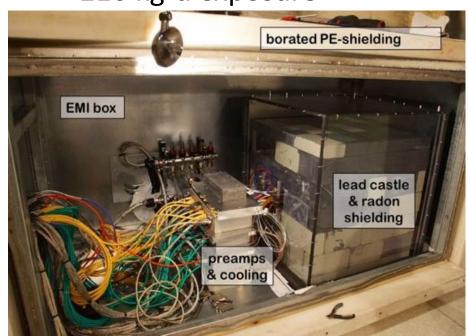
Rough isotope mass requirements to reach different sensitivities.

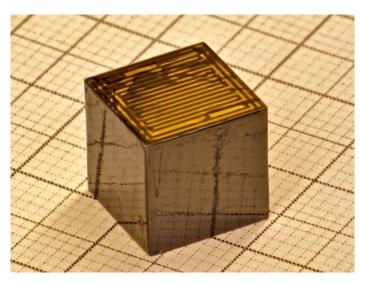
Current experiments and R&D Programs

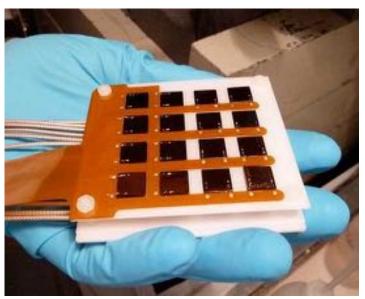
Experiment	Isotope	Technique	Location
Majorana Demonstrator	⁷⁶ Ge	Point contact Ge	Sanford
GERDA II	⁷⁶ Ge	Semicoax/BE Ge + veto	LNGS
CDEX	⁷⁶ Ge	Point contact Ge	CJPL
NG-Ge76	⁷⁶ Ge	Point contact Ge	
COBRA	¹¹⁶ Cd, etc	CdZnTe	LNGS
CANDLES	⁴⁸ Ca	CaF ₂ scintillator + veto	Kamioka
AMoRE	¹⁰⁰ Mo	Low-T MMC	Y2L
DCBA/MTD	¹⁰⁰ Mo	Foils + tracker	KEK
MOON	¹⁰⁰ Mo	Foils + scintillator	
EXO200	¹³⁶ Xe	LXe TPC	WIPP
nEXO	¹³⁶ Xe	LXe TPC	SNOLAB
NEXT	¹³⁶ Xe	High-P TPC	LSC
PandaX III	¹³⁶ Xe	High-P TPC	CJPL
KamLAND-Zen	¹³⁶ Xe	Liquid scintillator	Kamioka
SuperNEMO	⁸² Se	Foils + tracker	
CUPID	¹³⁰ Te, ⁸² Se, ¹⁰⁰ Mo, ¹¹⁶ Cd	Hybrid bolometers	
CUORE/CUORE-0	¹³⁰ Te	TeO ₂ bolometers	LNGS
SNO+	¹³⁰ Te	Liquid scintillator	SNOLAB

I am to focus on those that have not yet presented:

Experiment	Isotope	Technique	Location
COBRA	¹¹⁶ Cd, etc	CdZnTe	LNGS
CANDLES	⁴⁸ Ca	CaF ₂ scintillator + veto	Kamioka
AMoRE	¹⁰⁰ Mo	Low-T MMC	Y2L
DCBA/MTD	¹⁰⁰ Mo	Foils + tracker	KEK
NEXT	¹³⁶ Xe	High-P TPC	LSC
PandaX III	¹³⁶ Xe	High-P TPC	CJPL
SNO+	¹³⁰ Te	Liquid scintillator	SNOLAB


Presentation will be high-level, for details see posters:

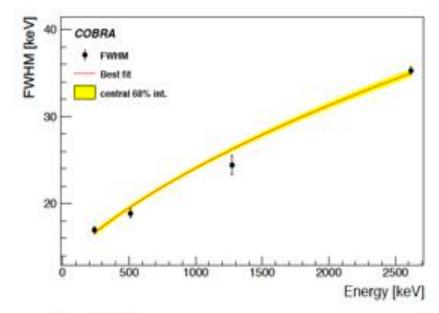

CODDA	D1 OC1 Dules shape discrimination to shape up for the CODDA suggestion and
COBRA	P1.061 - Pulse shape discrimination techniques for the COBRA experiment
CANDLES	P1.060 - Development of scintillating bolometer for 48Ca neutrinoless double beta decay search
AMoRE	P4.049 - Status of the AMoRE experiment
NEXT	P4.064 - Topological signature in the NEXT high pressure xenon TPC
	P4.065 - Sensitivity of the NEXT100 detector to neutrinoless double beta decay
	P4.066 - The NEW detector: construction, commissioning and first results
SNO+	P1.015 - Scattering length monitoring at the SNO+ detector
	P1.072 - Commissioning the SNO+ Detector
	P1.073 - Pulse shape analysis techniques in liquid scintillator for the identification and suppression of radioactive backgrounds to neutrinoless double beta decay
	P1.074 - A new technique to load 130Te in liquid scintillator for neutrinoless double beta decay experiments
	P4.067 - Physics capabilities of the SNO+ experiment
	P4.068 - Background analysis for the SNO+ experiment
	P4.069 - Calibration of the SNO+ experiment

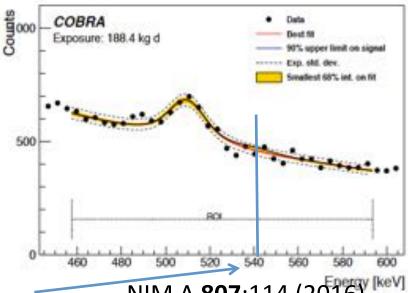

COBRA

(CdZnTe Ov Double Beta Research Apparatus)

- CdZnTe: an intrinsic semiconductor at room temperature
 - Contains 5 double beta isotopes
- COBRA Demonstrator, 4x4x4 array of 1cm³ (6g) detectors operated at LNGS
 - 216 kg-d exposure

NIM A **807**:114 (2016)

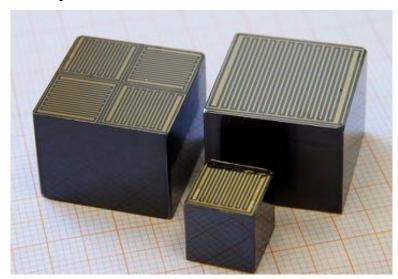

arXiv:1509:04113

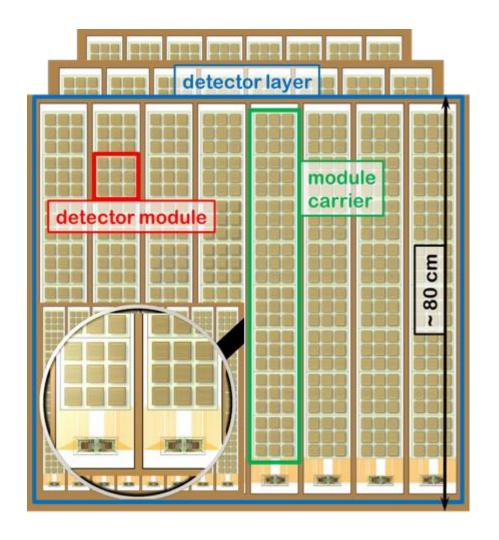

COBRA

(CdZnTe Ov Double Beta Research Apparatus)

- CdZnTe: an intrinsic semiconductor at room temperature
 - Contains 5 double beta isotopes
- COBRA Demonstrator, 4x4x4 array of 1cm³ (6g) detectors operated at LNGS
 - 216 kg-d exposure

Isotope	BI [cts/(keV kg yr)]	90% Cred. limit
114Cd	213.9+1.0	1.8×10 ²¹ yr
128Te	65.5 ^{+0.5}	2.0×10 ²¹ yr
⁷⁰ Zn	45.1 ^{+0.6}	7.4×10 ¹⁸ yr
¹³⁰ Te	$3.6^{+0.1}_{-0.3}$	6.7×10 ²¹ yr
116Cd	2.7 ^{+0.1} 0.2	$1.2 \times 10^{21} yr$




NIM A **807**:114 (2016) arXiv:1509:04113

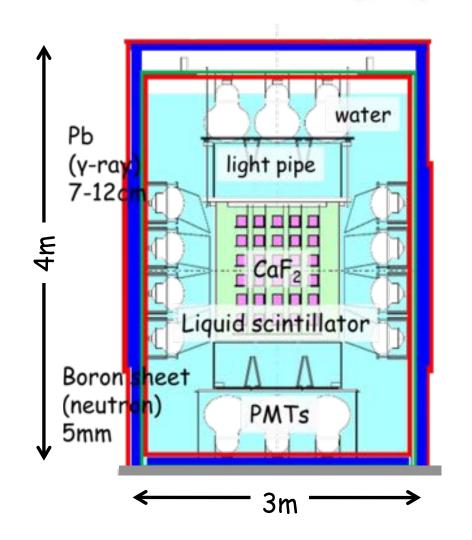
COBRA

(CdZnTe Ov Double Beta Research Apparatus)

- Moving towards a 415kg array
 - Modular 20 layer design
 - Larger 2x2x1.5cm (36g) crystals with segmented readout
- Funding for a 3x3x3 test array of new crystals with improved readout

NIM A 806:159 (2016)

CANDLES

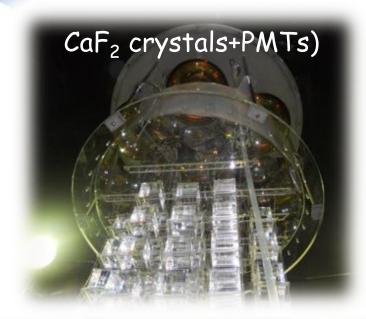

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

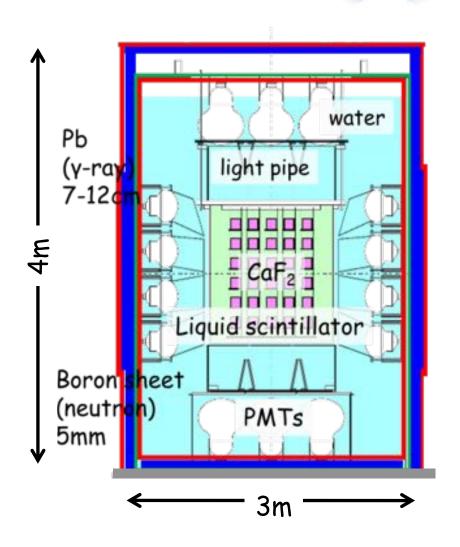
CANDLES System

- \ref{phi} for 48 Ca(Q_{\beta\beta}4.3MeV, 0.187%)
- CaF₂ detector
- \clubsuit 4π active shield

Candles III

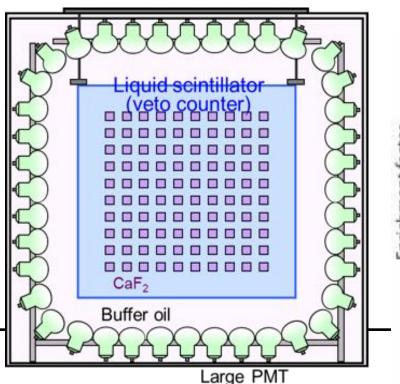
- (305kg,0.187%⁴⁸Ca) + 2T liquid scintillator
- Improvement : Installation of the shielding system (Pb, B)
 - To reduce γ-ray backgrounds from neutron capture
- Expected sensitivity <m_v> = 0.5eV

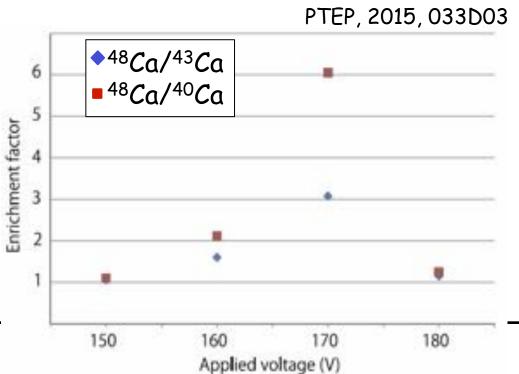



CANDLES

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

CANDLES

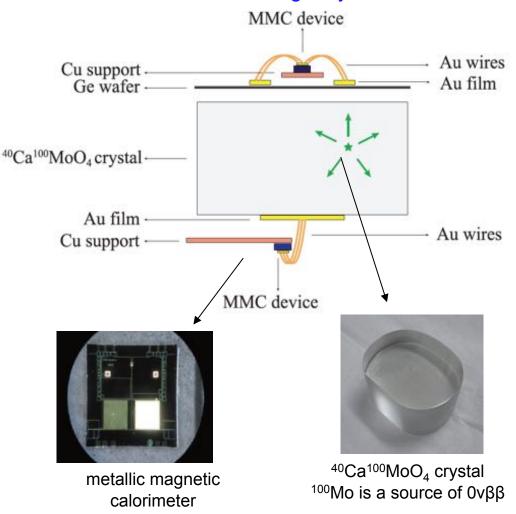


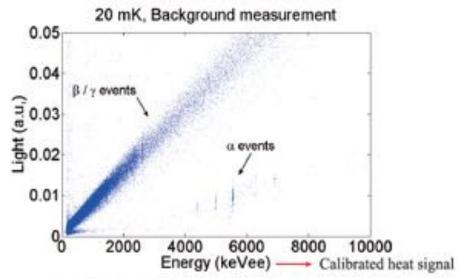

- Enrichment of 48Ca by electrophoresis demonstrated
- Scintillating 48CaF₂ bolometers under investigation

Sensitivity by next CANDLES system

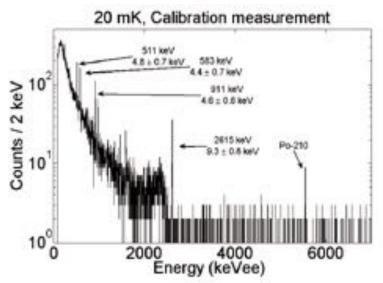
 $\langle m_v \rangle \sim 0.1 \text{ eV}$: CaF_2 scintillator system

*<m_v> ~ 0.01eV : 48CaF₂ bolometer system




AMoRE

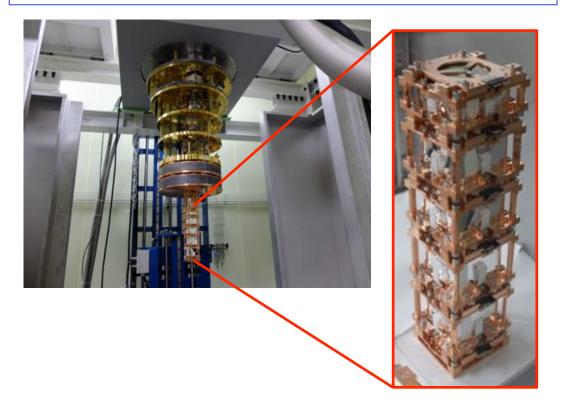
AMoRE (Advanced Mo-based Rare process Experiment) is a project searching for neutrinoless double beta decay (0v $\beta\beta$) of 100 Mo using Mo-based crystals and metallic magnetic calorimeters (MMCs) at low temperatures

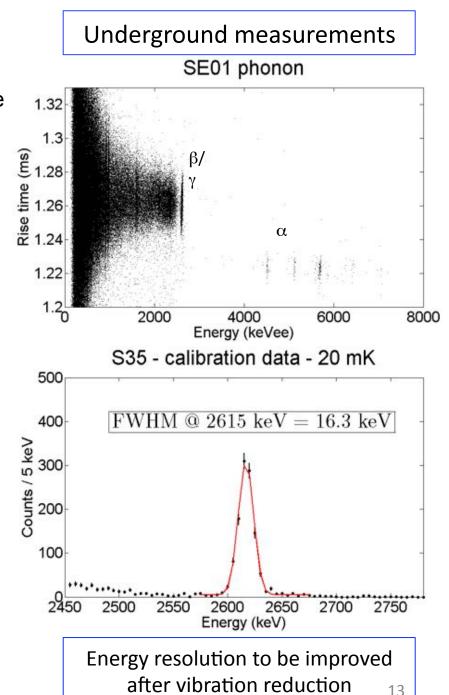

Simultaneous measurement of heat and light by MMCs

Above-ground measurements

Heat/light simultaneous measurement : separation of α and β/γ

Energy spectrum obtained with a 232 Th external source $\Delta E_{\text{FWHM}} \approx 9 \text{ keV} \ @ 2.6 \text{ MeV}$

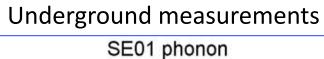

AMoRE-pilot experiment at Yangyang underground laboratory (Y2L)

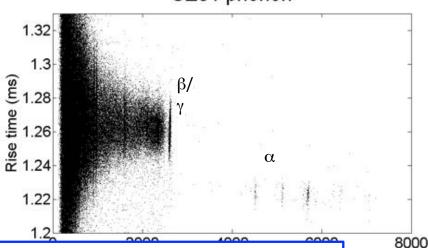


YangYang Underground Laboratory (Y2L, South Korea):

- Located in a tunnel of the Yangyang pumped storage power plant
- Minimum vertical depth :700 m

AMoRE-pilot: five ⁴⁰Ca¹⁰⁰MoO₄ crystals (1.5 kg) 5 phonon detectors + 6 photon detectors


AMoRE-pilot experiment at Yangyang underground laboratory (Y2L)

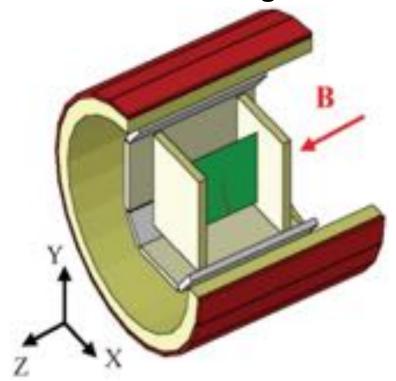


YangYang Underground Laboratory (Y2L, South Korea):

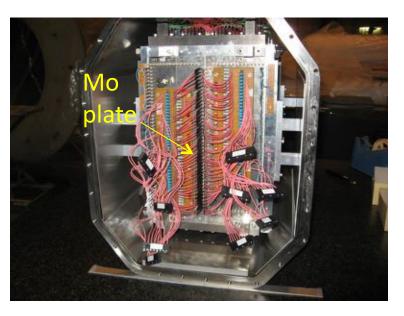
- Located in a tunnel of the Yangyang pumped storage power plant
- Minimum vertical depth :700 m

AMoRE-pilot: five ⁴⁰Ca¹⁰⁰MoO₄ crystals (1.5 kg) 5 phonon detectors + 6 photon detectors

Future AMoRE Program


	⁴⁰ Ca ¹⁰⁰ MoO ₄ Mass (kg)	Projected $< m_{\beta\beta} >$ Sensitivity (meV)
Amore Pilot (Current)	1.5	210 - 400
Amore I (~2016)	5.0	70 - 140
Amore II (2018+)	200	12 - 22

arXiv:1512.05957


Present & future of DCBA and MTD

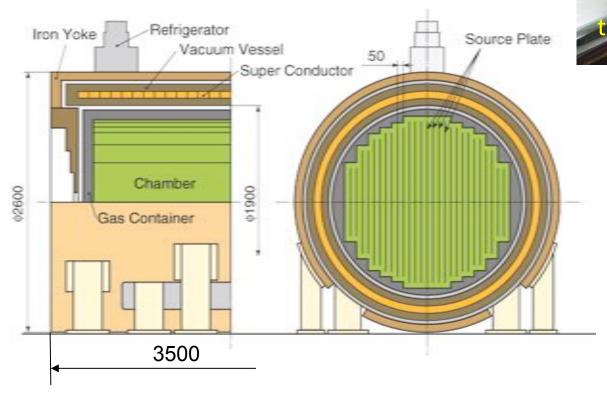
(Drift Chamber Beta-ray Analyzer and Magnetic Tracking Detector)

A tracking detector with source foils in the tracking volume.

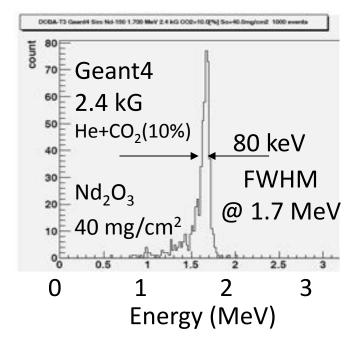

DCBA-T2.5 (30g ^{nat}Mo, 0.8kG) has been running at KEK surface exp. room

Two electron events taken by DCBA-T2.5 (T2 chamber + T3 magnet)

(after eliminating cosmic-rays with track shape separation, but still including backgrounds)


MTD

Chamber cell: the same as DCBA-T3,


Source plate: 80 m²/module

Thickness: 40 mg/cm²,

Source weight: 32kg/module

Expected Energy Resolution

$$\frac{\text{FWHM}(E_{sum}) = \sqrt{2} \times 80 \text{keV}}{Q_{\text{Nd-150}}(3370 \text{keV})} \approx 3.4\%$$

NEXT Experiment

(Neutrino Experiment with a Xenon TPC)

Search for the neutrinoless double beta decay of ¹³⁶Xe at the Laboratorio
 Subterraneo de Canfranc with a TPC filled with 100 kg of high-pressure xenon gas

(2010-2014) Demonstration of detector concept

(2015-2018)
Underground and radio-pure operations, background, ββ2ν

(2018-2021) Neutrinoless double beta decay search

NEW (NEXT-WHITE) at glance

Time Projection Chamber:

10 kg active region(@10bar), 50 cm drift length

Tracking plane:

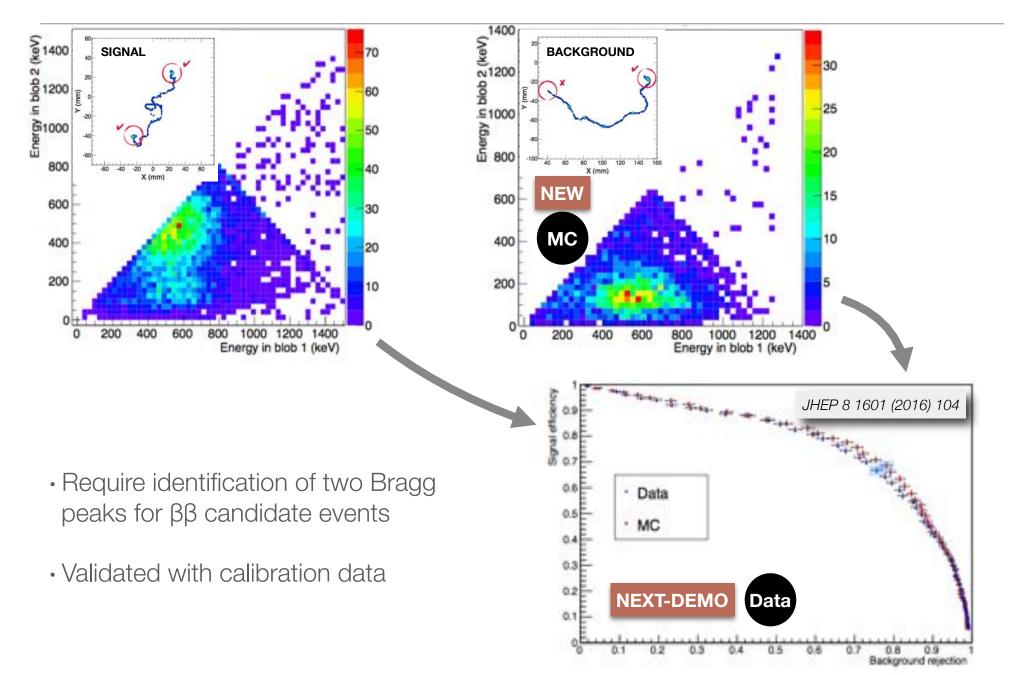
1,800 SiPMs, 1 cm pitch

Pressure vessel:

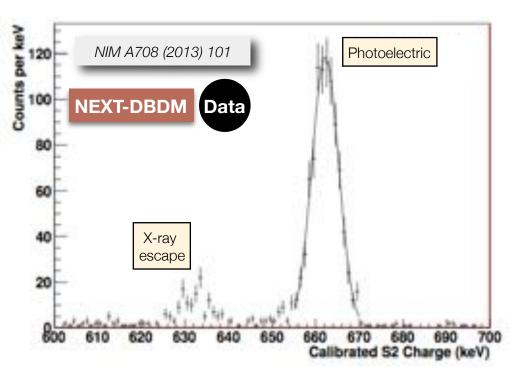
316-Ti steel, 30 bar max pressure

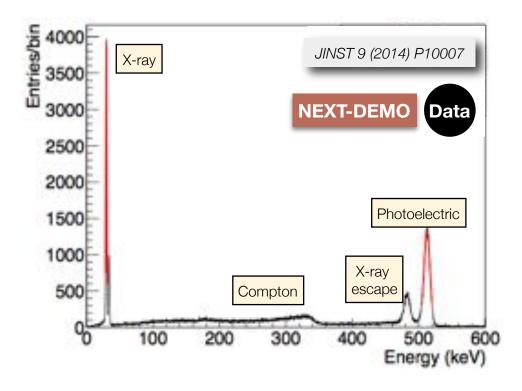
Energy plane:

12 PMTs,operating at vacuum.30% coverage



Inner shield: copper, 6 cm thick


Mother can:

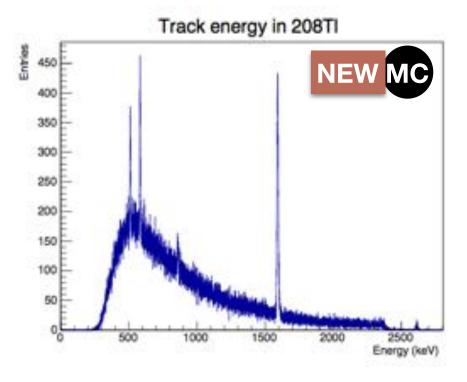

12 cm copper plate that separates pressure from vacuum and adds shielding.

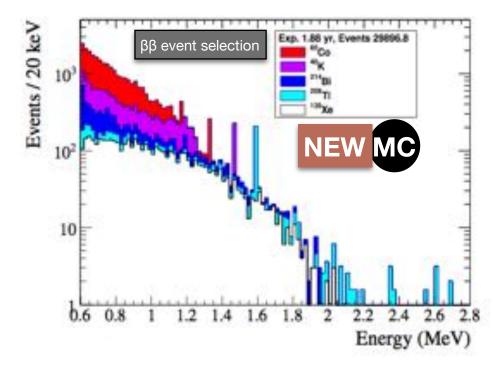
NEXT Topological Rejection

NEXT Energy Resolution

 1.1% FWHM resolution for 662 keV electrons

1.6% FWHM resolution for 511 keV electrons

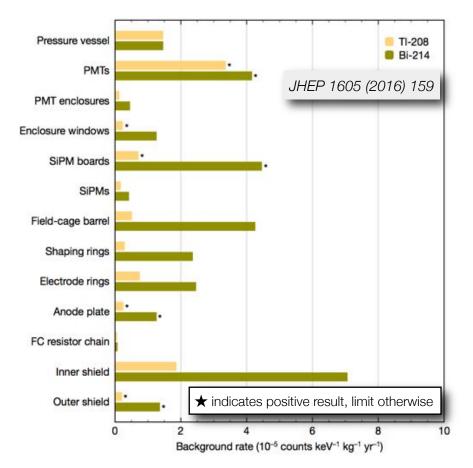



NEXT measurements extrapolate to 0.5-0.7% FWHM energy resolution at Q_{ββ}

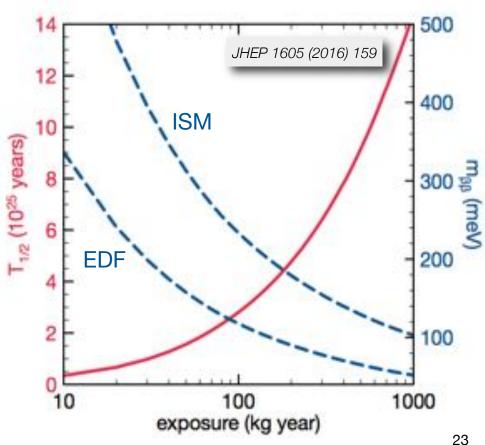
NEXT-White (NEW) Science Goals

Period	Configuration	Goals
2016 (2nd half)	Depleted Xe	Calibration, energy resolution, topological rejection
2017 (1st half)	Depleted Xe	Background rate and energy spectrum
2017 (2nd half)	Enriched Xe	ββ2v rate

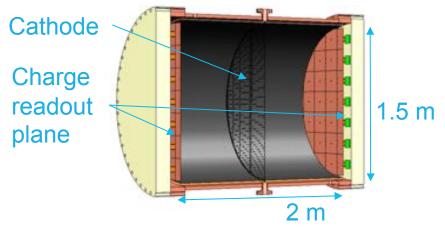
0.58% FWHM resolution at Q_{ββ} expected


10% (stat.) accuracy after 200 days for ββ2ν

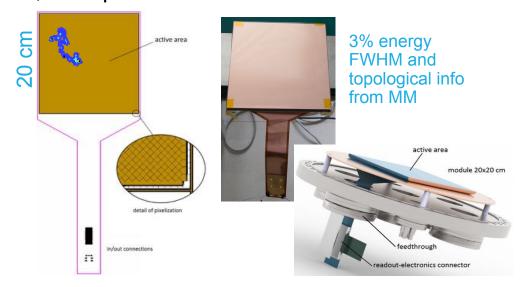
NEXT-100 Sensitivity to ββ0ν



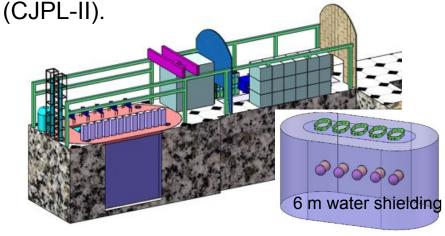
 \cdot < 4×10⁻⁴ counts keV⁻¹ kg⁻¹ yr⁻¹ overall background rate in ROI expected



 \cdot T_{1/2} = 6×10²⁵ yr sensitivity expected in 3 yr (90% CL)

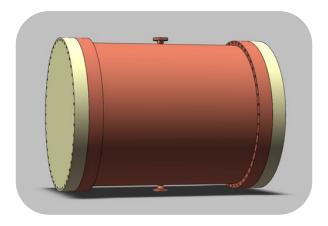


PandaX-III: high pressure gas TPC for neutrinoless double beta decay of ¹³⁶Xe

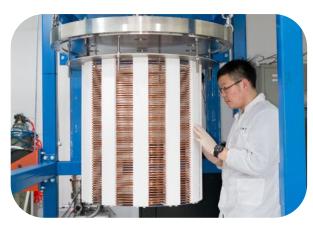

TPC: 200 kg scale, symmetric, doubleended charge readout with cathode in the middle

Charge readout plane: tiles of square microbulk Micromegas (MM) modules with X, Y strips

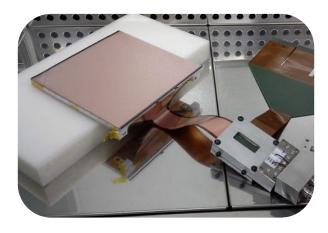
PandaX-III will be located at Hall #B4 at China Jin Ping underground Laboratory



- 200 kg enriched ¹³⁶Xe purchased
- Prototype TPC commissioned at SJTU
- First module will be installed in 2017
- Four more upgraded modules for a ton scale experiment (projected in 2022)
- Expected half-life sensitivity at 10²⁶ year (3yr, 90% CL) with background rate of 10⁻⁴ c/keV/kg/yr in the ROI

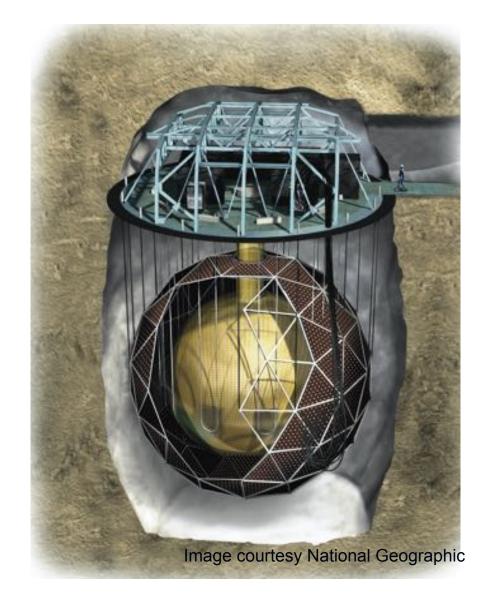

Status

150 kg of 90% enriched ¹³⁶Xe purchased

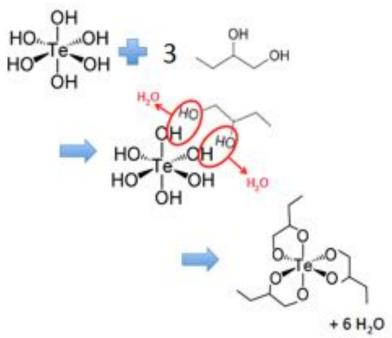

High pressure vessel made of OFHC copper designed

20 kg scale prototype TPC made and taking data with MicroMegas

Front end electronics are being designed and tested

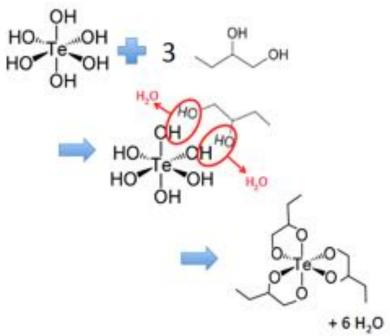

First batch of 20 cm square MicroMegas modules made and commissioned

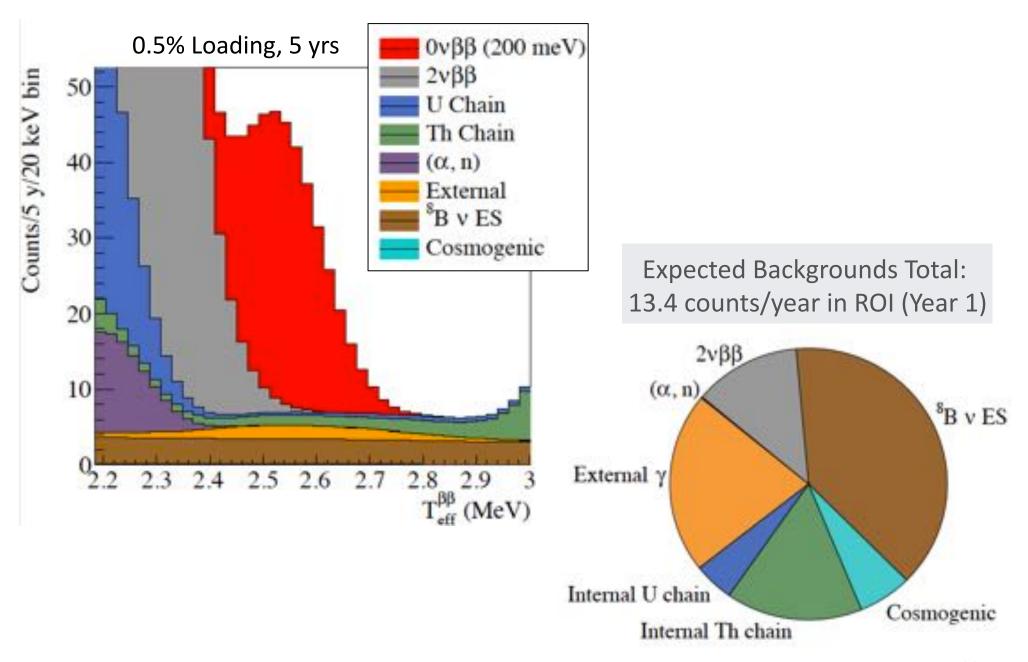
Excavation of water pit finished. Finalizing the layout of Hall B4 at CJPL-II



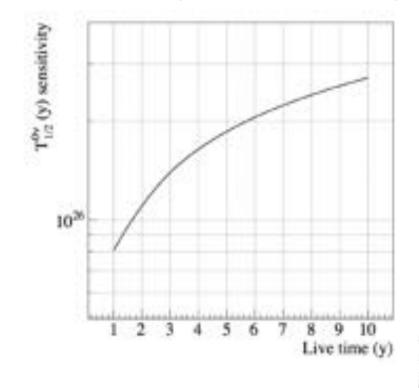
- Refill the SNO detector with 780 tonnes of linear alkylbenzene liquid scintillator
- Broad physics program:
 - Solar neutrinos
 - Reactor neutrinos
 - Geo-neutrinos
 - Supernova neutrinos
 - Neutrinoless double beta decay

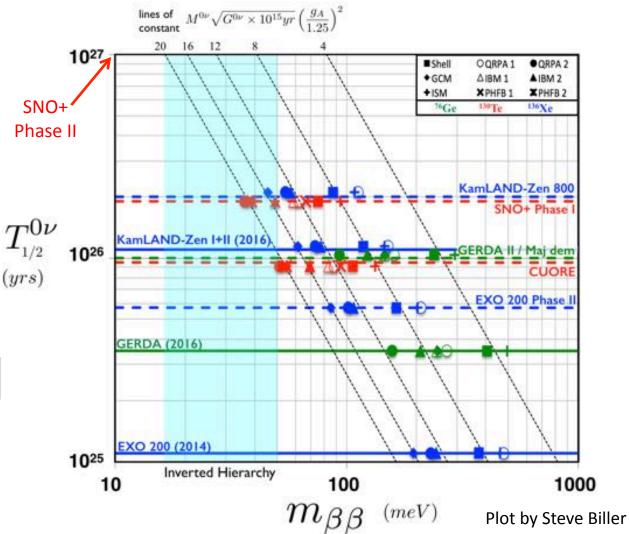
Load Tellurium into the SNO+ Scintillator


- 780 tonne detector and high ¹³⁰Te isotopic abundance gives large isotope mass
 - 0.5% (w/w) Te in SNO+ Phase I is 3.9 tonnes of Te or 1333 kg of ¹³⁰Te (260kg fiducial)
 - Could increase to percent-level loading in future phases
- Tellurium can be dissolved into LAB scintillator as an organometallic complex
 - Tellurium-butanediol complex is very transparent, shows some quenching


Load Tellurium into the SNO+ Scintillator

- Expect ~400 p.e./MeV in SNO+ at 0.5% Te loading
 - 2% loading workable with current quenching & upgraded PMTs & reflectors; work to reduce quenching ongoing
- Very low backgrounds are achievable
 - Scintillator backgrounds low
 - Te can be purified underground via recrystallization (NIM A 795:132 (2015))
 - Butanediol can be distilled
 - Fiducialization, delayed co-incidence rejection, and PSD further reduce backgrounds




Expected Backgrounds & Spectrum

SNO+ Expected Sensitivity

Comparison with Other Experiments

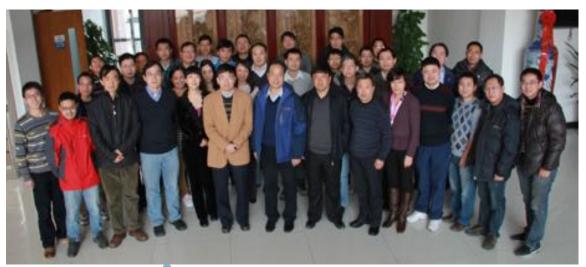
 $T_{1/2} \ge 1.96 \times 10^{26} \text{ yr (90\% CL, 5 yr)}$

SNO+ Status

- Scintillator purification plant installed, commissioning under way
 - First LAB on site in a few months
 - Scintillator fill beginning spring 2017
- In the process of re-filling the detector with ultra-pure water
 - A few leaks in the cavity liner identified and repaired
 - New hold-down system for the acrylic vessel installed and fully tested
 - Making PMT repairs along the way
- Tellurium purification, installation underground beginning later this year
 - Loading system to follow in 2017
 - 1.8 T telluric acid (=1 T Te) stored underground for ~1 year now, 2.0 T telluric acid currently being shipped from supplier
- Tellurium loading early in 2018

Conclusion

- There is a rich program of upcoming double beta decay experiments and R&D projects
- Experiments currently in construction/ commissioning should reach the top of the inverted hierarchy region
- Next generation experiments should substantially probe the inverted hierarchy


Presentation will be high-level, for details see posters:

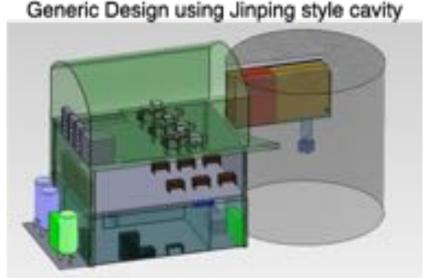
CODDA	D1 OC1 Dules shape discrimination to shape up for the CODDA suggestion and
COBRA	P1.061 - Pulse shape discrimination techniques for the COBRA experiment
CANDLES	P1.060 - Development of scintillating bolometer for 48Ca neutrinoless double beta decay search
AMoRE	P4.049 - Status of the AMoRE experiment
NEXT	P4.064 - Topological signature in the NEXT high pressure xenon TPC
	P4.065 - Sensitivity of the NEXT100 detector to neutrinoless double beta decay
	P4.066 - The NEW detector: construction, commissioning and first results
SNO+	P1.015 - Scattering length monitoring at the SNO+ detector
	P1.072 - Commissioning the SNO+ Detector
	P1.073 - Pulse shape analysis techniques in liquid scintillator for the identification and suppression of radioactive backgrounds to neutrinoless double beta decay
	P1.074 - A new technique to load 130Te in liquid scintillator for neutrinoless double beta decay experiments
	P4.067 - Physics capabilities of the SNO+ experiment
	P4.068 - Background analysis for the SNO+ experiment
	P4.069 - Calibration of the SNO+ experiment

CDEX

(China Dark Matter Experiment)

- Developing low background Ge detector capabilities through a staged detector program
 - Ge enrichment
 - Crystal growth
 - PCGe fabrication
 - Electroformed copper
- 10kg PC^{nat}Ge currently operating in LAr veto
- Envision a 1T double beta decay & dark matter experiment at CJPL

- Large Pit (Φ18m×18m) in CJPL now available
- LN₂ tank (Φ13m×13m) for cooling and shielding
- Tens of Kg HPGE array will begin to be deployed in several years



NG-Ge76

(Next Generation Ge76)

- New collaboration forming to move towards a single tonne-scale Ge project
 - Select best technologies from existing experiments
 - Envision a phased implementation
 - Perhaps 200→500→1000 kg
 - Target >6×10²⁷yr sensitivity (5 yr 90% CL), with background ~0.1 c/ROI-T-yr

