ELECTRICAL ENGINEERING

Courses

ELEC 273 Numerical Methods and Optimization Units: 3.50
A balance of theory and practice in numerical methods and optimization. Topics include numerical representations, error analysis, iteration, linear algebraic tools such a singular value and QR decompositions, interpolation, curve fitting, approximation, least squares, single and multivariable optimization, constraint optimization, integration, differentiation, and solving ordinary differential equations. Extensive computer programming using MATLAB. (21/0/0/21/0)
Requirements: Anti Requisites for ELEC 273
Offering Faculty: Fac of Engineering Appl Sci

ELEC 221 Electric Circuits Units: 4.25
This course introduces the circuit analysis techniques which are used in subsequent courses in electronics, power, and signals and systems. Circuits containing resistance, capacitance, inductance, and independent and dependent voltage and current sources will be studied. Emphasis is placed on DC, AC, and transient analysis techniques.
Requirements: PREREQUISITE(S): APSC 112 or APSC 114, APSC 171, APSC 172, APSC 174 COREQUISITE(S): MTHE 235 or MTHE 237 or MTHE 225 or MTHE 232
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 224 Continuous-Time Signals and Systems Units: 3.75
This is a first course on the basic concepts and applications of signals and systems analysis. Continuous time signals and systems are emphasized. Topics include: representations of continuous-time signals; linear time invariant systems; convolution, impulse response, step response; review of Laplace transforms with applications to circuit and system analysis; transfer function; frequency response and Bode plots; filtering concepts; Fourier series and Fourier transforms; signal spectra; AM modulation and demodulation; introduction to angle modulation.
Requirements: PREREQUISITE(S): ELEC 221, MTHE 235 (MATH 235) or MTHE 237 (MATH 237) EXCLUSION(S): ELEC 323
Offering Faculty: Fac of Engineering Appl Sci

ELEC 271 Digital Systems Units: 4.00
Boolean algebra applied to digital systems; logic gates; combinational logic design; electronic circuits for logic gates; arithmetic circuits; latches and flip-flops, registers and counters; synchronous sequential logic and state machine design; implementation in programmable logic chips.
Requirements: PREREQUISITES: APSC 171, APSC 172, APSC 174 and registered in a BSCE or BASC Academic Program.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci
ELEC 274 Computer Architecture Units: 4.00
Requirements: PREREQUISITES: APSC 142 or APSC 143, ELEC 271 or MTHE 217 (MATH 217) or permission of instructor and registration in a BASC Academic Plan.
EXCLUSION: CISC 221
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 278 Fundamentals Of Information Structures Units: 4.00
Fundamentals of Data Structures and Algorithms: arrays, linked lists, stacks, queues, deques, asymptotic notation, hash and scatter tables, recursion, trees and search trees, heaps and priority queues, sorting, and graphs. Advanced programming in the C language. Introduction to object oriented programming concepts in the context of data structures.
Requirements: PREREQUISITE: APSC 142 or APSC 143 or MNTC 313 and registration in a BASC Academic Program is required. EXCLUSION: CISC 235
Offering Faculty: Fac of Engineering Appl Sci

ELEC 279 Introduction to Object Oriented Programming Units: 4.00
Introduction to object-oriented design, architecture, and programming. Use of packages, class libraries, and interfaces. Encapsulation and representational abstraction. Inheritance. Polymorphic programming. Exception handling. Iterators. Introduction to a class design notation. Applications in various areas.
Requirements: Prerequisite: APSC 142 or APSC 143 or MNTC 313, ELEC 278. Must be registered in a BASC Academic Program.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 280 Fundamentals of Electromagnets Units: 3.75
A study of the fundamental aspects of electromagnetic fields. The following topics are covered: partial differential equations for transmission lines and Maxwell's equations; vector analysis, including orthogonal coordinate systems, and the calculus of field quantities; electrostatic fields including the concepts of electric potential, capacitance, and current and current density; magnetostatic fields including inductance; time-varying fields and the complete form of Maxwell's equations; basic transmission line phenomena including steady-state sinusoidal behaviour and standing waves, transient performance and impedance matching.
Requirements: Prerequisite: APSC 112 or APSC 114, APSC 171, APSC 172, APSC 174. Must be registered in a BASC Academic Program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 299 Mechatronics Project Units: 1.50
A team design project based around an autonomous, programmable, robotic vehicle, following on from project activity in APSC 200. Students explore different sensors and software strategies for vehicle control and navigation, in addition to wiring up sensor and motor circuits. The design goal is to configure and program a vehicle to take part in a year-end competition in which robots compete head-to-head on a pre-defined playfield under established competition rules. A final project report must be produced that documents the experimentation, design, and testing. A final exam tests knowledge of sensors and software.
(0/0/0/0/18)
Requirements: Prereq ELEC293 Coreq ELEC294
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 301 Technical Communications Units: 3.50
Requirements: Must be registered in BASC
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci
ELEC 310 Introductory Analog Electronic and Digital Circuits Units: 4.50
This is an introductory course on the design of analog electronic and digital logic circuits, using commonly available devices and integrated circuits. The properties of linear circuits, with particular reference to the applications of feedback, are discussed; operational amplifiers are introduced as the fundamental building block for the design of linear filters and amplifiers. Fundamentals of digital circuits including Boolean algebra, logic gates, combinational logic, sequential logic concepts and implementation are presented. Data acquisition and conversion is introduced, and the issues of noise and electromagnetic compatibility are discussed. Laboratory work is linked with lectures and provides practical experience of the subjects covered in lectures.
Requirements: PREREQ: ELEC 210 or ELEC 221 and must be registered in a BSCE or BASC Academic Program EXCLUSIONS: ENPH 333 and ENPH 334 (PHYS 334)
Offering Faculty: Fac of Engineering Appl Sci

ELEC 314 Basic Electronics Units: 3.75
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 324 Discrete-Time Signals and Systems Units: 4.00
This second course on signals and systems studies basic concepts and techniques for analysis and modeling of discrete-time signals and systems. The topics of this course are: sampling, reconstruction, and digitization; representations and properties of discrete-time signals and systems; linear time-invariant (LTI) systems; difference equations; discrete Fourier series; discrete-time Fourier transform; discrete Fourier transform; z-transform; analysis of LTI systems; filtering and spectral analysis. Computational realizations of the analysis tools and their applications are explored in the laboratory.
Requirements: ELEC323 or ELEC 224
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 326 Probability & Random Processes Units: 3.50
This course provides an introduction to probabilistic models and methods for addressing uncertainty and variability in engineering applications. Topics include sample spaces and events, axioms of probability, conditional probability, independence, discrete and continuous random variables, probability density and cumulative distribution functions, functions of random variables, and random processes.
Requirements: APSC171
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 333 Electric Machines Units: 4.25
An introduction to the basic principles, operating characteristics, and design of electric machines. Topics to be studied include: three-phase circuits; magnetic circuits; transformers; steady state behaviours of dc generators and motors; rotating magnetic fields; steady state operation of induction machines and synchronous machines; introduction to fractional horsepower machines; speed control of electric motors.
Requirements: ELEC221
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 344 Sensors and Actuators Units: 3.75
This course provides an introduction to sensing and actuation in mechatronic systems. The topics include physical principles for the measurement and sensing of displacement, motion, force, torque, pressure, flow, humidity, radiation (visible and IR) and temperature using analog and digital transducers; actuating principles using continuous drive actuators, stepper motors, optical encoders and servo motors; and methods for signal collection, conditioning and analysis.
Requirements: ELEC 221 271 299
Offering Faculty: Fac of Engineering Appl Sci

ELEC 353 Electronics II Units: 4.25
Transistor modeling and design of analog and digital electronic circuits. Differential amplifiers, Gilbert Cell multipliers, multistage amplifiers, amplifier frequency response, negative feedback amplifiers, LC tank and crystal oscillators, twoport networks. Advanced concepts in logic design. Students learn the basics of computer aided design (CAD) of integrated circuits including schematic simulation, layout, design rules, layout versus schematic verification and extracted circuit simulation. Laboratory work is design oriented and students are introduced to advanced test and measurement techniques using vector network analyzers.
Requirements: PREREQUISITE(S): ELEC 252 COREQUISITE(S): ELEC 224 or ELEC 323 or MTHE 334
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 355 Solid State Devices Units: 3.50
Requirements: Must be registered in BASC
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 363 Communications Circuits Units: 4.00
Requirements: (ELEC221 AND ELEC252) OR (ELEC221 AND ELEC353)
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 371 Microprocessor Interfacing and Embedded Systems Units: 4.00
Microprocessor bus organization and memory interfaces; parallel input/output interface design; assembly-language and high-level-language programming; interrupts and exceptions; timers; embedded systems organization and design considerations; integration in microcontrollers and programmable logic chips; interfacing with sensors and actuators; embedded system case studies.
Requirements: (ELEC271 AND CISC231) OR (ELEC271 AND ELEC274)
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 372 Numerical Methods and Optimization Units: 3.50
Requirements: PREREQUISITES: APSC 142 or APSC 143, APSC 174, MTHE 235. Must be registered in a BASC Academic Program. EXCLUSIONS: MTHE 272, CIVL 222, CMPE 271
Offering Faculty: Fac of Engineering Appl Sci

ELEC 373 Computer Networks Units: 3.50
Network architecture with physical, data link, network, and transport layers for frame transmission and packet switching, standards such as Ethernet and 802.11 for wired and wireless networks, protocols such as TCP/IP, internetworking, routing, and socket programming.
Requirements: Prerequisite: ELEC 326 or MTHE 251 (STAT 351), ELEC 274 or CISC 221 Exclusions: CISC 435
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 374 Digital Systems Engineering Units: 4.25
High-performance logic design for arithmetic circuits; memory system designs based on static and dynamic RAMs; computer bus protocols and standard I/O interfaces; mass storage devices; hardware description languages (VHDL, Verilog); fault testing, design for testability, built-in self-test, memory testing, and boundary-scan architectures; asynchronous sequential circuit design; introduction to GPU architectures and GPU computing. The course is supplemented by a CPU design project that allows students to become proficient with Field Programmable Gate Array (FPGA) devices and associated CAD tools, as well as with GPU computing through nVidia CUDA or OpenCL languages.
Requirements: PREREQUISITES: ELEC 252, ELEC 271, ELEC 274 or permission of the instructor. Must be registered in a BSCE or BASC Academic Program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 377 Operating Systems Units: 4.00
Operating systems for conventional shared memory computers. System services and system calls, concurrent processes and scheduling, synchronization and communication, deadlock. File systems and protection, memory management and virtual memory, device management and drivers. Unix operating system. Introduction to real-time and distributed systems.
Requirements: Prerequisite of (ELEC274 or CISC231) and (ELEC 278 or CISC 235) and registration in a BSCE or BASC Academic Program is required.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 381 Applications of Electromagnetics Units: 3.75
Review of phasors, vector analysis; transmission lines; Partial differential equation solutions to Maxwell’s Equations; Introduction to the Smith chart; uniform plane waves; reflection of plane waves; normal and oblique incidence; analysis and applications of rectangular waveguides; resonant cavities; optical fibres; introduction to antennas; aperture antennas.
Requirements: Prerequisite of ELEC280 or ENPH231 or PHYS235 and registered in a BSCE or BASC Academic Program.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci
ELEC 390 Principles of Design and Development Units: 3.50
The goal of this course is to prepare students for definition, design, management, and development of engineering projects and products. Students will learn about problem definition and impact analysis from an economic standpoint as well as other perspectives. Different design principles, management techniques, and development methodologies will be described. Culture and communication in teams will be discussed, followed by important concepts in ethics and intellectual property. Specific software and tools that are available for facilitating design/development activity will be introduced and utilized throughout the term. Students will apply concepts and explore issues through projects and laboratory activity.
Requirements: PREREQUISITES: Successful completion of Fall term 3rd year studies in either the Electrical Engineering program, or the Computer Engineering program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 391 Technical Communications II Units: 2.00
This course provides advanced instruction and practice in effective engineering writing and speaking skills with the emphasis on technical proposals, product specifications and evaluations, professional correspondence, design reports, poster presentations, and oral briefings. These skills are demonstrated in lectures and developed hands on in small group tutorials. Assignments are linked to the technical content of other core courses. (0/0/24/0/0)~COURSE DELETED IN 2010-2011~
Requirements: Must be registered in BASC
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 408 Biomedical Signal and Image Processing Units: 3.00
This is an introductory course in biomedical signal and image processing. Topics include: biopotential generation and detection; the biomedical signals with a focus on the electrocardiogram and electroencephalogram; and electroencephalogram; recording artifacts and signal compression; major medical imaging modalities; 2D and 3D image formation; image processing techniques including spatial and frequency domain filtering, feature extraction and convolutional neural networks; applications in diagnostics, therapeutics, and interventions.
Requirements: Prerequisite: ELEC 224 or ELEC 323 or permission of the instructor. Must be registered in a BASC Academic Program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 409 Bioinformatic Analytics Units: 3.00
The course surveys: microarray data analysis methods; pattern discovery, clustering and classification methods; applications to prediction of clinical outcome and treatment response; coding region detection and protein family prediction. At the end of this course, students should be able to appreciate some approaches related to individualizing medical treatment, as well as to apply some of the methods, such as alternatives to PCA, to more traditional engineering problems.
Requirements: Prerequisite: APSC 174, ELEC 224 or ELEC 323, and ELEC 326 or ENPH 252. Must be registered in a BASC program.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 421 Digital Signal Processing: Filters and System Design Units: 4.00
Sampling theorem, filter realization structures, quantization errors and finite word length effects, digital signal processor programming, finite and infinite impulse response filter design techniques, discrete and fast Fourier transform.
Requirements: ELEC 324 or MTHE 335 and registered in a BSCE or BASC Academic Program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 422 Digital Signal Processing: Random Models and Applications Units: 3.50
Recent DSP topics including: bandpass sampling, oversampling A/D conversion, quantization noise modelling, multi-rate signal processing, filterbanks, quadrature mirror filters, applications to communications systems, speech and image compression; processing of discrete-time random signals.
Requirements: Prerequisite: (ELEC 323 and ELEC 324 and ELEC 326) or (MTHE 334 (MATH 334) and MTHE 335 (MATH 335) and MTHE 351)
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 425 Machine Learning and Deep Learning Units: 3.50
Requirements: Prerequisite: ELEC 278 or CISC 235, ELEC 326 or permission of the instructor.
Offering Faculty: Fac of Engineering Appl Sci
ELEC 431 Power Electronics Units: 3.25
This course introduces the basic concepts of power electronics, which include power semiconductor devices and switching power converters. Emphasis is placed on the analysis and design of various power electronics circuits. Their industrial application, such as in telecommunications and computing, will also be discussed. More specifically, the course will cover the characteristics of switching devices, especially that of MOSFET. The course will also cover the operation of various switching converters such as phase controlled AC-to-DC converters, AC voltage controllers, DC-to-DC switching converters, DC-to-AC inverters and switching power supplies. The requirements and configurations of power systems for telecommunications will be introduced. The techniques to analyze and design these power systems using available components will also be discussed. Computer simulation will be used to analyze the detailed operation of switching converters.

Requirements: ELEC252
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 433 Energy And Power Systems Units: 3.50
Energy resources and electric power generation with particular emphasis on renewable energy systems such as solar, wind, and biomass; review of balanced and unbalanced 3-phase systems; review of per-unit systems; real and reactive power, sequence networks and unsymmetrical analysis; transmission line parameters; basic system models; steady state performance; network calculations; power flow solutions; symmetrical components; fault studies; short circuit analysis; economic dispatch; introduction to power system stability, operating strategies and control; modern power systems and power converters; DC/AC and AC/DC conversion; and introduction to DC transmission.

Requirements: ELEC333
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 434 Power Systems II Units: 3.00

Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 435 Industrial Power Processing Units: 3.00

Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 436 Electric Machines And Control Units: 3.00
Review of basic electric machines. Salient pole synchronous machines. Transient and dynamic behaviour of electric machines. Characteristics and applications of special motors such as servo motors, stepper motors, PM-motors, brushless dc motors, switched reluctance motors and linear motors. Solid state speed and torque control of motors.

Requirements: Prerequisite of ELEC 333 and registered in a BASC Academic Program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 443 Linear Control Systems Units: 4.25
Introduction to linear systems and feedback control. Analysis is done in both the time and frequency domains. Topics include time-domain specifications of second-order systems, PID control, steady-state error and disturbance rejection, root locus analysis, stability analysis using the Routh-Hurwitz criterion and the Nyquist criterion, and state-space analysis. These methods are applied and tested using software such as MATLAB/Simulink, and laboratory experiments.

Requirements: Prerequisite of ELEC 323 or MTHE 335 (MATH 335) and registered in a BSCE or BASC Academic Program.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 448 Introduction To Robotics Units: 3.50
Robotics is an interdisciplinary subject concerning areas of mechanics, electronics, information theory, control systems and automation. This course provides an introduction to robotics and covers fundamental aspects of modeling and control of robot manipulators. Topics include history and application of robotics in industry, rigid body kinematics, manipulator forward, inverse and differential kinematics, workspace, singularity, redundancy, manipulator dynamics, trajectory generation, actuators, sensors, and manipulator position and contact force control strategies. Applications studied using MATLAB/Simulink software simulation and laboratory experiments.

Requirements: Corequisite: ELEC 443 or MTHE 332 (MTHE 332) or MECH 350. Must be registered in a BASC Academic Program. Exclusion: MECH 456
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

Electrical Engineering queensu.ca/academic-calendar
ELEC 451 Digital Integrated Circuit Engineering Units: 3.25
Review of MOS transistor structure and operation; overview of wafer processing and device implementation, layout and design rules. CMOS gate design; static and dynamic logic; modelling of transients and delays. Clocked circuits; interconnect effects; and I/O. Memory and programmable logic arrays. Technology scaling effects; design styles and flow.
Requirements: ELEC 252, ELEC 271
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 454 Analog Electronics Units: 3.25
Topics include: an introduction to noise and distortion in electronic circuits, analysis and design of biasing circuits, references, ADCs and DACs, power amps, mixers, modulators and PLLs along with a short introduction to analog filter design.
Requirements: (ELEC353 AND ELEC321) OR (ELEC353 AND MATH332) OR (ELEC353 AND ELEC323)
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 455 Electronic Circuits in Comms. Units: 3.00
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 457 Integrated Circuits and System Application Units: 3.25
In the first part of this course modern microelectronic circuits are covered and in the second part these circuits are used in new and emerging applications. Topics include: active and passive filtering circuits, phase locked loops, frequency synthesizers, RF modulators, clock and data recovery circuits, RF energy harvesting, ultra low-power circuits, biotelemetry systems, biological sensors, neurostimulator circuits, introduction to radiometry and radar imaging.
Requirements: Prerequisite: ELEC 353, ELEC 224 or ELEC 323 or MTHE 335
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 459 Solid-State Electronics Units: 3.00
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 461 Digital Communications Units: 3.50
Representation of signals and noise, Gaussian processes, correlation functions and power spectra. Linear systems and random processes. Performance analysis and design of coherent and noncoherent communication systems, phase-shift-keying, frequency-shift-keying, and M-ary communication systems. Optimum receivers and signal space concepts. Information and its measure, source encoding, channel capacity and error correcting coding.
Requirements: PREREQUISITE(S): ELEC 324 or MTHE 335, ELEC 326 or MTHE 351, or permission of instructor
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 464 Wireless Communications Units: 3.00
Fundamental principles and practice of current wireless communications systems and technologies. Historical context, the wireless channel including path loss, shadowing, fading, and system modes in use. Capacity limitations on transmission rate, transmission of data by signaling over wireless channels via digital modulation, optimum receivers, countermeasures to fading and interference via diversity and equalization, multiple user systems including multiple access FDMA, TDMA, CDMA, FDMA/TDMA, uplink and downlink; capacity and power control, design of cellular networks. Selected standards and emerging trends are also surveyed.
Requirements: ELEC 324, 326
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 470 Computer System Architecture Units: 3.50
This course covers advanced topics in computer architecture with a quantitative perspective. Topics include: instruction set design; memory hierarchy design; instruction-level parallelism (ILP), pipelining, superscalar processors, hardware multithreading; thread-level parallelism (TLP), multiprocessors, cache coherency; clusters; introduction to shared-memory and message-passing parallel programming; data-level parallelism (DLP), GPU architectures.
Requirements: Prerequisite: ELEC 371, ELEC 274 or CISC 221. Must be registered in a BASC or BSCE program.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 472 Artificial Intelligence and Interactive Systems Units: 3.50
Fundamental concepts and applications of intelligent and interactive system design, implementation, and testing. Topics include: problem formulation and experiment design, decision making and reasoning (search, logic, Bayesian reasoning), data acquisition, data pre-processing (denoising, missing data, source separation, feature extraction, feature selection, temporal alignment), supervised learning, unsupervised learning, and swarm intelligence.
Requirements: Prerequisite: ELEC 278, ELEC 326, or permission of the instructor
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 473 Cryptography and Network Security Units: 3.00
Cryptography topics include: block ciphers, advanced encryption standard, public key encryption, hash functions, message authentication codes, digital signatures, key management and distribution, and public-key infrastructure. Network security topics include: user authentication, network access control, Kerberos protocol, transport layer security (TLS), IP security (IPSec), electronic mail security, and wireless network security.
Requirements: Prerequisite ELEC 373 or CISC 435/335 and ELEC 270 or CISC-102 or permission of instructor
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 474 Machine Vision Units: 3.50
Image acquisition and representation, spatial domain filtering, edge detection, motion segmentation, interest operators and feature extraction, camera models, epipolar geometry and stereovision, machine learning approaches and convolutional neural networks, classification, object detection, semantic segmentation, and GANs. The lab and assignments will emphasize practical examples of machine vision techniques to industrial and mechatronic applications.
Requirements: ELEC 278 or CISC 235 Excl CISC
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 481 Applications of Photonics Units: 3.00
Overview of light-matter interaction, design of optical waveguides, modeling of photonic devices, light propagation in periodic and subwavelength structures. Applications of photonics in LIDAR for autonomous vehicles, design of optical phased array, design of holography, medical imaging and sensing, optoelectronics and renewable energy.
Requirements: Pre-requisite ELEC 381
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 483 Microwave and RF Circuits and Systems Units: 4.25
This course introduces the analysis and design of microwave components and systems. Topics include: modelling of high frequency circuits; transmission lines; scattering parameters; impedance matching; passive microwave components; amplifiers, mixers and oscillators; noise in receivers; elemental antennas and simple and phased arrays; communication links - microwave land, cellular and satellite systems; performance and link budget analysis.
Requirements: PREREQUISITES: ELEC 353, ELEC 381 or ENPH 332 (PHYS 332) and registered in a BSCE or BASC Academic Program.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 486 Fiber Optic Communication Units: 3.75
This course introduces fundamental principles and applications of fiber optic communication systems. Topics include Fabry-Perot and distributed feedback semiconductor lasers, planar dielectric waveguides, propagation characteristics of single-mode optical fibers, p-i-n and avalanche photodiodes, and digital receiver performance. Device technology and system design applications are considered.
Requirements: ELEC 381 or ENPH 431
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 490 Electrical Engineering Project Units: 7.00
Students work in groups of three on the design and implementation of electrical engineering projects, with the advice of faculty members. This course is intended to give students an opportunity to practice independent design and analysis. Each group is required to prepare an initial engineering proposal, regular progress reports, and a final report together with a formal seminar on the project and its results.
Requirements: PREREQUISITES: ELEC 324, ELEC 326, ELEC 353, ELEC 371, ELEC 372, ELEC 381, ELEC 390, or permission of the department. and registered in a BSCE or BASC Academic Program.
Offering Term: FW
Offering Faculty: Fac of Engineering Appl Sci

ELEC 491 Advanced ECE Thesis I Units: 6.00
Students will be assigned individual Research Topics. Students must work under the supervision of a faculty member. Grade will be based on the progress in arriving at a solution to the assigned problem.
Requirements: Permission of Thesis Supervisor
Offering Faculty: Fac of Engineering Appl Sci
ELEC 492 Computer Engineering Project Units: 7.00
Students work in groups of three on the design and implementation of computer engineering projects, with the advice of faculty members. This course is intended to give students an opportunity to practice independent design and analysis. Each group is required to prepare an initial engineering proposal, regular progress reports, and a final report together with a formal seminar on the project and its results. (0/0/21/0/63)
Requirements: PREREQUISITE: ELEC 491. Must be registered in a BSCE or BASC Academic Program.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 499 Software Engineering Project Units: 7.50
Requirements: (ELEC371 AND CISC322) OR (ELEC371 AND CISC332) OR (ELEC371 AND CISC365) OR (ELEC371 AND ELEC374) OR (ELEC371 AND ELEC377) OR (ELEC371 AND STAT356) OR (ELEC371 AND CISC204) OR (ELEC371 AND CISC223) OR (ELEC371 AND CISC322) OR (ELEC371 AND CISC332) OR (ELEC371 AND CISC365) OR (ELEC371 AND ELEC374) OR (ELEC371 AND ELEC377) OR (ELEC371 AND STAT356) OR (ELEC371 AND CISC204) OR (ELEC371 AND CISC223)
Offering Term: FW
Offering Faculty: Fac of Engineering Appl Sci

ELEC 497 Research Project Units: 3.50
The student works on a research project under the supervision of a faculty member. A research problem is formulated and the problem is contextualized within the discipline. The student does a current literature review, and explores in detail a solution to the research problem. Subject to Department approval.
Requirements: Prerequisite: Must be registered in a BSCE or BASC Academic Program.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 498 Computer Engineering Project Units: 7.00
Students work in groups of three on the design and implementation of computer engineering projects, with the advice of faculty members. This course is intended to give students an opportunity to practice independent design and analysis. Each group is required to prepare an initial engineering proposal, regular progress reports, and a final report together with a formal seminar on the project and its results.
Requirements: Prerequisite of ELEC326 ELEC371 ELEC374 ELEC377 (CMPE223 or CMPE320), or permission of the Department and registered in a BSCE or BASC Academic Program.
Offering Term: FW
Offering Faculty: Fac of Engineering Appl Sci

ELEC 811 Biological Signal Analysis Units: 3.00
The course begins with a general discussion of the electrical signals which arise in biological systems. Mechanisms of biological signal generation and models of signal production are introduced, with an emphasis on the neuromuscular system and the myoelectric signal. Signal acquisition and instrumentation are discussed. Signal processing of the myoelectric signal, in the time and frequency domains, is covered. A basic knowledge of random signal processing is recommended. Three term-hours; lectures, Fall. E.L. Morin
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 821 Analog Filter Design Units: 3.00
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 822 Linear Active Network Analysis Units: 3.00
Offering Faculty: Fac of Engineering Appl Sci

ELEC 823 Signal Processing Units: 3.00
This course covers basic topics in statistical signal processing and machine learning with applications in speech, communication, and biomedical signal processing. The student is assumed to be familiar with digital signal processing rudiments such as discrete Fourier transforms and design and analysis of digital filters. Topics covered include: spectral modeling, linear prediction, optimal filtering, adaptive filters, Bayesian inference, linear models, support vector machines, neural networks, and hidden Markov models.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 825 Machine Learning and Deep Learning Units: 3.00
Basic machine learning concepts in supervised and unsupervised learning; discriminative and generative models; backpropagation, FFN, CNN, RNN, autoencoders; regularization technologies; attention-based models, Transformer, Capsule Networks; pretraining and self-supervised models; Generative Adversarial Networks (GANs), variational autoencoders; applications. PREREQUISITE: ELEC 326 or equivalent, or permission of the instructor.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 827 Multimedia Signal Processing Units: 3.00
Study of multimedia signal processing for network mediated human-human communication and human machine interaction (HMI). Topics covered include: overview of multimedia applications and processing functions; speech production; human auditory and speech perception; image formation; human visual perception; perceptual quality and user experience modeling; speech and image analysis and synthesis methods; lossless and lossy compression techniques; coding for communication and storage; sensing modalities for HMI; machine learning algorithms for information extraction and understanding.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 830 Emerging Technologies in Power Grid Units: 3.00
Renewable energy generation; wind and Photovoltaic energy conversion; energy storage; distributed energy generation; hybrid systems; Power electronics interfaces and control. Grid- connected distributed sources. Stand-alone operation of distributed sources and micro-grid systems. System protection. Economical dispatch. Centralized and decentralized control. Smart grid.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 831 Power Electronics Units: 3.00
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 832 Switching Power Converters Units: 3.00
This course covers the modeling and control techniques for switching power converters. Small signal models and large signal models will be presented. Peak current mode control and average current mode control for switching power converters will be investigated. System stability issues when several power supplies are connected together are investigated and solutions are presented and analyzed. Digital control techniques, using FPGA or DSP, will be investigated and analyzed. Conventional fuzzy logic control and improved version of fuzzy logic control will be analyzed in detail. Sliding mode control and sliding mode like control will be analyzed. Digital control techniques for AC-DC converter with power factor correction will be analyzed. It is expected the students will do a project based one or more of the above mentioned techniques. Three term-hours, lectures. Y.F. Liu.
Offering Faculty: Faculty of Arts and Science

ELEC 834 Micro-Grid Technology Units: 3.00
This course covers various power electronics technologies for micro-grids, nano-grids and energy harvesting systems. In this course various types of micro-grids will be covered (e.g., AC microgrids, hybrid micro-grids, and DC micro-grids), along with their respective architectures and control systems. PREREQUISITES: ELEC 431 and ELEC 443, or equivalent, or permission of the instructor.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 835 Nonlinear Control for Power Electronics Units: 3.00
This course provides an overview of advanced nonlinear control and its application in power electronics. It covers mathematical background and major topics in this area. Students will be introduced to the rigorous mathematical background for nonlinear systems particularly differential geometry. Then, the design of nonlinear control systems will be covered for power electronics applications. PREREQUISITES: ELEC 431 (Power Electronics) or equivalent or permission of the instructor, and ELEC 443 (Linear Control Systems) or equivalent.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 836 Power Systems Design/Telecom. Units: 3.00
Overview of advanced telecommunication networks and powering requirements: central office equipment, optical networks, Fiber-In-The-Loop systems, and hybrid fiber/coax networks. Powering alternatives: low frequency distribution, dc distribution and high frequency distribution. System modeling and simulation. Stability of the power system. Special emphasis will be placed on the design techniques using practical examples. Three term-hours, lectures. P. Jain.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci
ELEC 837 High Power Electronics Units: 3.00
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 841 Nonlinear Sys. Identification Units: 3.00
Analytical methods for nonlinear systems; nonlinear difference equation models: functional expansions and Volterra, Wiener and Fourier-Hermite kernels; kernel estimation techniques; identification of cascades of linear and static nonlinear systems; use of Volterra series to find region of stability of nonlinear differential equations; applications to pattern recognition, communications, physiological systems, and non-destructive testing. Three term-hours; lectures, Fall. M.J. Korenberg
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 843 Control Of Discrete-Event Sys. Units: 3.00
Study of discrete-event processes that require control to induce desirable behaviour. Topics include: basic automata and language theory; modeling of processes using automata (finite-state machines, directed graphs); centralized and decentralized problems; nonblocking supervisors; partial observation; and computational complexity. Connections with manufacturing systems and communication protocols are emphasized. Three term-hours; lectures, Fall. K. Rudie
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 845 Vehicle Control and Navigation Units: 3.00
The objective of this course is to introduce graduate-level engineering students to the fundamentals of autonomous vehicles engineering. The course focuses on those tasks usually carried out by autonomy engineers, including sensor selection, applied control (e.g., trajectory and path following) and navigation techniques for autonomous vehicles that operate in real environments (e.g., mining, construction, warehouses, roadways, etc.). Although the focus in this course is on ground vehicles, the presented methods are also applicable more broadly. The audience is engineers from all relevant engineering and applied science disciplines who have an interest in mobile robotics, applied control and estimation, and robotic vehicle applications. EXCLUSION: MINE-855
Requirements: ELEC422_MECH 350 or equivalent
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 846 Intro. To Optimal Control Units: 3.00
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 848 Design For Robots & Telerobots Units: 3.00
This course provides an overview of manipulator modeling, and presents and analyzes many different control architectures designed for robots and telerobots. Topics include introduction to robotics and telerobotics; serial manipulator forward and inverse kinematics, Jacobian, singularities and dynamics; robot position and force control methodologies and their stability analyses; bilateral teleoperation control architectures, stability and performance issues due to communication delays and environment uncertainties. Three term hours, Lectures, Winter. Dr. K Hashtrudl-Zaad
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 852 Broadband Integrated Circuits Units: 3.00
Topics covered include broadband and ultra wide band circuit design techniques with applications to wireless and lightwave systems. Broadband amplifiers, mixers and active filters are discussed through radio frequency, microwave and millimetre-wave techniques. Lightwave broadband adaptive filtering, transmitters and receivers are also discussed. Three term-hours; lectures A.P. Freundorfer.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 853 Silicon RF & Microwave Circuit Units: 3.00
This course presents an introduction to the design of RF and microwave circuits using silicon technologies. Topics include: an overview of silicon technologies; the design of passive structures including transmission lines, inductors, and couplers; considerations in the layout of active devices; examples of the design of circuit components on silicon; system design including integrated system-on-chip designs; and a look at the future of silicon high-speed circuits. Three term-hours; lectures; Winter. B. Frank
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 854 Microwave Circuits & Systems Units: 3.00
Investigation of the design and performance of wireless circuits and systems at microwave and millimeter-wave frequencies. Topics include: communications transceivers, millimeter-wave imaging systems, RFID, radar systems, transmission lines and passive circuits, resonators, microstrip and lumped element low-pass and bandpass filters, amplifier noise and linearity, diode and transistor mixers, LC and relaxation oscillators, frequency multipliers and dividers, phase shifters, FSK QPSK and GMSK modulators and demodulators. Three term hours; lectures. C. Saavedra.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 855 Nanoelectronics and Nano-Devices Units: 3.00
This course teaches the fundamentals of electron devices in nanometer regime. The course will cover introduction to the nanoelectronics, basics of quantum mechanics and band theory of solids. The concept of Coulomb blockade, many electrons phenomenon, ballistic and spin transport will be discussed and single electron transistor, quantum dots, nanowire and quantum wells based devices will be taught.
PREREQUISITES: ELEC 252, ENPH 336 or equivalent courses.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 856 Introduction to Nanophotonics Units: 3.00
The course will provide an overview of the principles of operation of current nanophotonic devices, and recent advances in nanophotonics. Topics covered will include: light-matter interaction, optical waveguides, modeling of nanophotonic devices, light propagation in periodic and anisotropic media, coupled mode devices, plasmonics, metamaterial and metasurface. Emphasis of the course will be on the underlying physics behind the operation and design of nanophotonic devices.
PREREQUISITES: ELEC 381 or PHYS 239 or their equivalents.
Offering Faculty: Fac of Engineering Appl Sci

ELEC 858 Principles Of Remote Sensing Units: 3.00
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 860 Communication Network Analysis Units: 3.00
This course provides an analytical study of communication networks that covers many of the major advances made in this area. Students will be introduced to the mathematical preliminaries in queueing theory, optimization and control, followed by a rigorous treatment of network architectures, protocols and algorithms, including resource allocation, congestion control, routing, and scheduling that are essential to existing and future communication networks and the Internet.
PREREQUISITE: ELEC 326 (Probability and Random Processes) or equivalent.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 861 Random Processes & Probability Units: 3.00
The review of probability theory including probability spaces, random variables, probability distribution and density functions, characteristic functions, convergence of random sequences, and laws of large numbers. Fundamental concepts of random processes including stationarity, ergodicity, autocorrelation function and power spectral density, and transmission of random processes through linear systems. Special random processes, including Gaussian processes, with applications to electrical and computer engineering at a rigorous level. Three term-hours; lectures. S. Gazor
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 862 Wireless Mobile Communications Units: 3.00
This course covers wireless mobile and satellite communication systems. The main topics of this course are: Introduction to the basic concepts of wireless mobile systems and standards, Propagation modeling, Co-channel interference, Modulation techniques with applications to mobile communications (PSK, ASK, OFDM, etc.), Digital signaling on flat fading channels and diversity techniques, Equalization and digital signaling on ISI channels, Error probability performance analysis, CDMA and multi-user detection, Cellular coverage planning, Link quality measurements and handoff initiation, Introduction to satellite mobile communications, Third generation global mobile communication standards. Three term-hours; lectures. M. Ibnkahla
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci
ELEC 863 Topics - Optical Communication Units: 3.00
Selected topics in optical communications will be studied. Possible topics include semiconductor lasers, optical modulators, modulation formats, multiplexing and demultiplexing techniques, optical fibers, dispersion compensation, optical amplifiers, optical receivers, system performance, optical time division multiplexing, optical signal processing (e.g., wavelength conversion, optical regeneration, clock recovery), passive components, optical networks, and applications (e.g., access, metro, long-haul, ultra-long haul). Three term-hours, lectures, Fall. J.C. Cartledge
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 864 Wdm Fiber Optic Comm. Systems Units: 3.00
This course presents the fundamentals of fiber optic communications, with focus on dense wavelength division multiplexed (DWDM) systems. Topics: components (lasers, modulators, receivers, and optical fibers) and detailed study of system issues in DWDM transmission (interplay between fiber dispersion and non-linearities, transmitter chirp, optical amplification, and polarization mode dispersion). Three term hours, lectures. S. Yam
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 865 Coding Theory Units: 3.00
The problem of reliable data transmission; communication and coding; error-detecting and error-correcting codes; classification of codes; introduction to algebra; linear block codes; cyclic codes; algebraic decoding, shift register encoding and decoding of cyclic codes; convolutional codes; Viterbi decoder; trellis codes; trellis decoding, trellis structure of codes; graphical representation of codes, block- and trellis-coded modulation, codes defined on graphs, turbo codes, iterative decoding, low-density parity-check codes. Three term-hours, lectures. S. Yousefi
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 866 Signal Detection & Estimation Units: 3.00
Vector space concepts. Hypothesis testing. Signal detection in discrete time including performance evaluation methods and sequential detection. Parameter estimation, including Bayesian, maximum-likelihood and minimum-variance unbiased estimation. Signal estimation in discrete time, including Kalman filtering, linear estimation, and Wiener filtering. Applications include communications, sensor array, image processing, and target tracking. Three term-hours; lectures. S.D. Blostein.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 867 Data Communication Units: 3.00
Channel characterization and transmission impairments, performance evaluation, baseband pulse transmission, linear modulation, frequency and phase modulation, detection theory and system optimization, equalization, coded modulation. Three term-hours; lectures. P.J. McLane.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 868 Simulation of Optical Communications Systems Units: 3.00
Offering Faculty: Faculty of Arts and Science

ELEC 869 Mimo Communications Systems Units: 3.00
This course introduces fundamental theories of multiple-input multiple-output (MIMO) communications systems and design of space-time codes. Topic includes: MIMO channel models; capacity of MIMO systems; transmit and receive diversity; design criteria for space-time codes; space-time block codes; space-time trellis codes; layered space-time codes; differential space-time block codes; combined space-time codes and interference suppression; super-orthogonal space-time codes; variable rate space-time block codes. Three term-hours, lectures. I. Kim
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 870 Human-Robot Interaction Units: 3.00
This course focuses on the study and design of human-robot interactions (HRIs). Students will gain exposure to a broad cross-section of HRI research, exploring topics such as sensors and actuators, software architectures and design and evaluation tools. Selected HRI subdomains will be examined, including nonverbal communication, trust, and ethics. (3.0 credit units)
PREREQUISITE: ELEC 344 or similar course
CO-REQUISITES: ELEC 448 or MECH 456 or MREN 348 or similar from another university, OR permission of the instructor.
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 871 Shared-Memory Multiprocessing Units: 3.00
This course provides a comprehensive overview of shared-memory multiprocessing. Topics include: shared-memory programming, system and application software considerations, cache coherence protocols, memory consistency models, small-scale and large-scale shared-memory architectures, and case studies to explore practical considerations in multiprocessor systems ranging from single-chip implementations to scalable high-performance platforms. Three term hours; lectures. Winter.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 872 Artificial Intelligence and Interactive Systems Units: 3.00
Fundamental concepts and applications of intelligent and interactive system design and implementation. Topics include: (1) Sensors and Signals in Interactive Systems (2) Data Preprocessing: data acquisition, filtering, missing data, source separation, feature extraction, feature selection, dimensionality reduction; (3) Machine Learning: supervised learning, ensemble learning, multi-task learning, unsupervised learning; (4) Identity Recognition; (5) Activity Recognition and Analysis; (6) Affective Computing. PREREQUISITE: ELEC 326 or equivalent, or permission of the instructor.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 873 Cluster Computing Units: 3.00
This course covers topics related to network-based parallel computing systems. Issues related to clusters and computational "grid" such as interprocessor communications, message-passing and mixed mode paradigms and programming techniques, high performance interconnects, efficient host-network interface for fast messaging, lightweight user-level messaging layers and protocols, (network interface-assisted based) collective communications, communication latency tolerance techniques, power-aware high-performance computing, high performance file systems and I/O, benchmarking and performance evaluation, scheduling and load balancing, system-level middleware and computational grid applications and services will be discussed. Research papers from literature, a term paper and hands-on programming and experiments on a network of workstations will supplement the course. Three term-hours; lectures. A. Afsahi
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 874 Deep Learning in Computer Vision Units: 3.00
This course will study advances in Deep Learning as applied to the field of Computer Vision. The course will start with the introduction of AlexNet in 2012, and will advance chronologically, exploring the innovations that led to the significant improvements in performance. Topics covered will include object detection and recognition, region proposal networks, instance and semantic segmentation, depth and video processing.
PREREQUISITES: ELEC-474, ELEC-425 or equivalent, or permission of instructor.
Offering Faculty: School of Graduate Studies

ELEC 875 Software Design Recovery Units: 3.00
Design recovery is the extraction of a design model from the artifacts of an existing software system. This design model is used to continue the evolution of the system. The model can be used in the planning and impact analysis stage, while making the changes and to test the result. The extracted design model can also be used to automate each of these tasks to varying degrees. Topics include design models, design recovery techniques, software evolution tasks, the semantics of programming languages and execution environments, and source code transformation. Three term-hours; lectures, Winter, T. Dean.
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 876 Software Reengineering Units: 3.00
This course covers software reengineering techniques and tools that facilitate the evolution of legacy systems. This course is broken into three major parts. In the first part, the course discusses the terminology and the processes pertaining to software evolution. In the second part, the course provides the fundamental reengineering techniques to modernize legacy systems. These techniques include source code analysis, architecture recovery, and code restructuring. The last part of the course focuses on specific topics in software reengineering research. The topics include software refactoring strategies, migration to Object Oriented platforms, quality issues in reengineering processes, migration to network-centric environments, and software integration. Three term-hours; lectures, Fall, Y. Zou
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 877 AI for Cybersecurity Units: 3.00
This course covers the fundamentals of cybersecurity and machine learning, selected topics in machine learning for cybersecurity, including anomaly detection, malware analysis, network traffic analysis, and fake news defense, and the advanced topics in artificial intelligence (AI) security, including privacy-preserving AI, fairness in AI, and adversarial machine learning.
PREREQUISITE: ELEC-425 or equivalent, or permission of the instructor
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci
ELEC 879 Wearable and IoT Computing **Units: 3.00**
This course focuses on recent advances and computing trends in wearable technologies, mobile devices, the Internet of Things (IoT), smart homes, and smart vehicles. The history, background, and applications of these systems are reviewed, followed by the description of common sensing technologies often utilized in these devices. Signal/time-series analysis techniques, machine learning algorithms, and computing methods that are often utilized in such applications will be covered in detail. The course is highly applied and students will complete a project and present their results.

Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 880 Machine Learning for Natural Language Processing **Units: 3.00**
Human (or natural) language data permeate almost all aspects of our daily life. This course covers basic machine learning approaches to modelling natural language, including fundamental supervised and unsupervised methods for modelling sequences and structures in the data. Based on this, students learn how to develop various applications such as chatbots and information extraction systems. The course will also include state-of-the-art artificial intelligence and deep learning approaches to natural language processing.

Offering Faculty: Fac of Engineering Appl Sci

ELEC 886 Integrated Optical Waveguides **Units: 3.00**
Offering Term: F
Offering Faculty: Fac of Engineering Appl Sci

ELEC 891 Seminar **Units: 0.00**
ECE graduate students must register in this non-credit course for the duration of their degree program. The student is given a Pass grade for this course upon attending a majority of seminars designated by ECE.

Offering Faculty: Fac of Engineering Appl Sci

ELEC 895 Industrial Internship I **Units: 3.00**
The industrial internship involves spending a minimum of 4 months and a maximum of 8 months in a funded internship position in industry or government. Students in the 4 month internship must register in ELEC-895*. Students in the 8 month internship must register in ELEC-895* and ELEC-896*. Successful completion of the course requires submission of a report on the industrial project within thirty days of completion of the work period. Each project must be approved by the academic supervisor. Queen’s University Career Services manages the non-academic aspects of the course.

Offering Faculty: Fac of Engineering Appl Sci

ELEC 896 Industrial Internship II **Units: 3.00**
The industrial internship involves spending a minimum of 4 months and a maximum of 8 months in a funded internship position in industry or government. Students in the 4 month internship must register in ELEC-895*. Students in the 8 month internship must register in ELEC-895* and ELEC-896*. Successful completion of the course requires submission of a report on the industrial project within thirty days of completion of the work period. Each project must be approved by the academic supervisor. Queen’s University Career Services manages the non-academic aspects of the course.

Offering Faculty: Fac of Engineering Appl Sci

ELEC 897 Electrical Eng. Seminar **Units: 3.00**
Offering Term: FWS
Offering Faculty: Fac of Engineering Appl Sci

ELEC 898 M. Eng. Project **Units: 6.00**
Offering Term: FWS
Offering Faculty: Fac of Engineering Appl Sci

ELEC 899 M.Sc. Thesis Research **Units: 6.00**
Offering Term: FWS
Offering Faculty: Fac of Engineering Appl Sci

ELEC 958 Adv. Integrated Circuit Design **Units: 3.00**
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 967 Data Communication **Units: 3.00**
Offering Term: W
Offering Faculty: Fac of Engineering Appl Sci

ELEC 999 Ph. D. Thesis Research **Units: 6.00**
Offering Term: FWS
Offering Faculty: Fac of Engineering Appl Sci

queensu.ca/academic-calendar Electrical Engineering 15