CHEMICAL ENGINEERING

Courses

NOTE Most courses are one term in length and are 3.0 credit units in weight; however, modules are 6-weeks in length and are 1.5 credit units in weight (as shown in the relevant course descriptions). Not all courses are offered in every session.

APSC 801 Master of Engineering Foundations
An introduction to the Master of Engineering (MEng) graduate studies program at Queen's University. The course provides students with essential administrative information, an introduction to information literacy within the Faculty of Engineering and Applied Science, as well as an overview of the various support services on campus. Additionally, the course contains several modules on professional and career skills. This non-credit course is comprised of a number of individual modules, and its completion is a requirement to graduate from the MEng program. Graded on a Pass/Fail basis.
Prerequisite: Enrolment in the MEng program.
Exclusion: Students not enrolled in the MEng program.

APSC 810 Teaching and Learning in Engineering
This course is an introduction to learning principles and effective teaching in engineering, intended to prepare for roles like teaching assistant, university course instruction, or training in engineering industry. The course includes relevant theories of teaching and learning with practical elements like classroom management, designing sessions and assessments, signature engineering teaching approaches, and using digital pedagogies.

APSC 812 AI Ethics and Society
This course investigates the ethical implications of Artificial Intelligence (AI) as a social, technological and cultural phenomenon. Given the increasing use of intelligent systems for decision-making and autonomous control, it is essential that designers and developers are aware of the ethical and social implications that AI can have. The course materials will examine fundamental ethical principles related to the application of AI and investigate its influence in a number of industries including self-driving vehicles, healthcare, law and defense. The course will also examine the delicate balance between innovations in AI versus regulation, privacy, and individual rights. This course is graded on a Pass/Fail basis.

APSC 877 Engineering Project Management
The course will examine the essential skills and knowledge required for effective engineering project management. The foundational principles of project management including integration, scope, cost, time, human resources, stakeholders and procurement are examined. The course will be delivered online.
Exclusions: MECH 896, APSC 223

APSC 888 Engineering Innovation and Entrepreneurship
This course will help learners from across engineering develop an entrepreneurial mindset capable of turning problems into opportunities. Learners will investigate the relationships between innovation and industrial dynamics, and seek to understand the fundamental forces that drive the science and technology industries' evolution and industry life cycles.
EXCLUSION: CHEE 410

APSC 896 Engineering Leadership
The course is designed to develop a range of leadership skills essential for engineering professional practice. Students will explore their own leadership abilities and develop their competencies in areas such as managing conflict, team dynamics and developing others. The course content will be presented through lectures, case studies, panel discussions and other active learning activities. Fall. P. Hungler

CHEE 801 Strategies for Process Investigations
The statistical design of experiments and the analysis of data in process investigations are considered. Empirical modelling of process behaviour is studied. Applications of factorial and fractional factorial experimental designs in screening studies and methods of response surface exploration are examined. Traditional North American approaches to quality and productivity improvement are compared with those practiced in Japan. Fall. J. McLellan.
PREREQUISITE: CHEE 209 or equivalent.

CHEE 803 Transport Phenomena

CHEE 807 Current Topics in Chemical Engineering
Selected topics in chemical engineering including chemical reaction engineering, combustion, biochemical engineering, process control, environmental engineering, applied statistics, polymer reaction engineering, polymer processing,
fluidization and turbulence. Only topics not covered in other graduate courses will be included. Topics will vary depending on the instructor(s). Not offered 2021-22.
PREREQUISITE: Permission of the Instructor.

CHEE 810 Fuel Cell Systems: Design and Analysis
This course will examine the design of fuel cell systems for a variety of applications ranging from large multimegawatt stationary power systems to milliwatt scale portable electronics systems. Examples will be drawn from actual demonstration and pre-commercial prototype systems operating on a range of fuels including conventional hydrocarbons with integrated external fuel processing subsystems, anaerobic digester gas with external clean-up and preprocessing, natural gas fuelled systems with direct and indirect reforming, direct methanol fuel cells and hydrogen fuel cells. The design of combined heat and power systems (CHP) for large scale industrial applications and for small-scale residential applications will also be examined. In each of these case studies the impact of system configuration and individual component performance on efficiency will be examined and strategies for optimizing performance and minimizing complexity will be developed. In addition the effect of system design on greenhouse gas emissions will be considered. The course will consist of three design projects of increasing complexity and a final examination. Students will be expected to give a presentation on their final design project. Not offered 2021-22.

CHEE 811 Mathematical Modeling of Chemical Processes
The steps that are required to build comprehensive mathematical models are examined. These steps include: definition of the intended model use and user requirements; formulation of model equations; determination of model parameters from correlations and experimental data; parameter sensitivity and estimability analysis; solution of model equations using numerical techniques; model validation; and potential model applications. While the focus is on the development of fundamental models, empirical modeling techniques are also discussed. Process examples are selected from: reactive distillation, polymerization, bioreactors, heat exchangers, and fuel cells. Students complete a mathematical modeling project related to their research interests. Not offered 2021-22.
PREREQUISITE: Permission of the Instructor.

CHEE 820 Topics in Advanced Process Control
Researchers at Queen’s and visiting professors will present selected topics in advanced process control, including control of distributed parameter systems, control of bioprocesses, control of polymer reactors, and hybrid systems. Not offered 2021-22.

PREREQUISITE: Permission of the Instructor.

CHEE 821 Process Control II
This is a second course in process control techniques. Topics covered will include: frequency response methods for stability analysis and controller design, deadtime compensation (e.g., Smith predictor), feedforward/cascade control, the Internal Model Control formulation, introduction to multivariable control, and interaction analysis using the concept of relative gain. Specific applications to chemical processes will be presented. (Offered jointly with CHEE 434, with additional lectures and assignments.) Winter. M. Guay
PREREQUISITE: CHEE 319 or permission of the instructor.

CHEE 822 Model-Based Control
The course focuses on the use of explicit process models for multi-variable controller design. Linear and nonlinear control approaches are discussed in both discrete and continuous time formulations. Stability, performance and robustness issues are addressed. The role of observers for state estimation is considered. Not offered 2021-22.
PREREQUISITE: CHEE 319 and CHEE 821 or equivalent.

CHEE 827 System Optimization
A survey of optimization problems is made and mathematical procedures for their solutions are discussed. Comparisons of optimization techniques for various classes of problems are made using industrial examples and computer studies. Both linear and nonlinear programming methods are studied. Topics include the role of optimization, definitions of objective functions and constraints, conditions for existence of an optimum; one-dimensional strategies; analytical procedures for unconstrained and constrained multi-dimensional problems, numerical procedures for unconstrained and constrained multidimensional problems, introduction to multistage optimization. Winter. X. Li.
PREREQUISITE: Permission of the instructor

CHEE 828 Polymer Reaction Engineering
The fundamentals of polymerization kinetics are reviewed. The equations for batch and continuous flow reactors are developed and used in the calculation of polymerization rate and polymer quality measures. Process parameters which affect reaction rate, chain composition and molecular weight distribution are examined, and the design of polymer reactor systems is discussed. Consideration is also given to the problems of reactor design in heterophase polymerization. Winter. R.A. Hutchinson

CHEE 835 Turbulent Diffusion in the Environment
Turbulent diffusion from both air and water emission sources are considered in this course. Fundamental concepts of diffusion and the statistical theory of turbulent flows are reviewed. Topics include simple modelling systems,
CHEE 837 Transport & Kinetics with Application to Fuel Cells
The fundamentals of transport phenomena and reaction kinetics are considered and applied to fuel cells, with a view to a mechanistic understanding of fuel cell operation and limitations. Material covered includes the basic axioms of mechanics (conservation of mass, momentum, energy and charge) presented in indicial notation and applied to porous media. Emphasis is placed on the description of porous materials and the implications of porous media on transport, including the notion of effective transport coefficients. Ion transport in solid and polymer electrolytes due to electrochemical potential differences is considered. Diffusion models covered include Fick’s law, Stefan Maxwell and Knudsen. Electrochemical reaction kinetics and mechanism are covered including rate-limiting steps, exchange current density and the fundamental definition of over potential. The course will include individual projects. Not offered 2021-22.
EXCLUSION: MECH 837

CHEE 840 Introduction to Learning and Teaching in Engineering
This course is intended to help students understand the basic issues of learning and teaching in engineering disciplines from a practical perspective. We will consider teaching practices which facilitate the development of knowledge, skills and professional attitudes in engineering students. We will explore all common forms of teaching e.g. laboratory classes, tutorials, lectures, project work as well as more innovative forms of teaching. Drawing on recent engineering education and education literature this course will be discussion based, with key weekly readings. Not offered 2021-22.

CHEE 841 Engineering Education: Theory into Practice
This course is intended for students who are interested in developing their understanding of pedagogy within engineering. It is framed around the idea of a scholarship of teaching – basing teaching on the research base of how students learn. It forms a useful base for anyone who is teaching or is interested in pursuing an engineering teaching career. It draws on recent education literature from 1970s to the present within the ‘experiential student learning’ field of educational development and research and applies this to an engineering context. We will explore examples of research into students’ experiences of learning and how this informs the way we design curricula, teach and assess engineering students. Participants in the course will be expected to apply the theory to their own engineering teaching practices by conducting a term long project. Not offered 2021-22.

CHEE 872 Polymeric Biomaterials
This course is designed to appeal to students in all fields of this interdisciplinary field, from biomechanics to polymer chemistry. It will provide a thorough background in the underlying fundamental biological and polymer science principles involved in the use of polymers as medical materials. Topics include surface and bulk polymer properties, applications of polymeric biomaterials, the biological principles that dictate host response to a material, and biopolymer degradation. Winter. B. Amsden
PREREQUISITE: Permission of the Instructor.

CHEE 874 Tissue Engineering
This course is designed as a graduate level introductory course in tissue engineering; the interdisciplinary field that encompasses biology, chemistry, medical sciences and engineering to design and fabricate living systems to replace damaged or diseased tissues and organs. Topics to be discussed include: tissue anatomy, basic cell biology, cell scaffolds, cell sources and differentiation, design considerations, diffusion and mass transfer limitations, effects of external stimuli, bioreactors, methods used to evaluate the engineered product(s), and implantation. Case studies of specific tissue engineering applications will also be discussed. Students will be required to participate in as well as lead discussions on the course material as well as relevant journal articles. No previous background in biology is required. Winter. L. Fitzpatrick

CHEE 882 Bioreactor Design
This course examines the important factors in the design and operation of stirred tank bioreactors. A variety of biokinetic models are examined and used in the design of ideal and non-ideal bioreactors. The effect of the rheology of fermentation broths on mass transfer, mixing, power requirement, etc. is considered, along with Residence Time Distribution Analysis as a tool for quantifying non-ideal behaviour. Novel fermentor designs and immobilized enzyme/cell systems are discussed. Scale-up criteria are examined. Not offered 2021-22.
PREREQUISITE: CHEE 380 or equivalent courses or experience.

CHEE 884 Bioremediation
Bioremediation as an option to treat contaminated soils, ground water, fresh water and the marine environments. Advantages and disadvantages of bioremediation compared to nonbiological processes. Factors affecting choice of in situ or ex situ processes. Assessment of biodegradability; biostimulation vs. bioaugmentation; mineralization vs. partial degradation; factors affecting microbial activity (choice
of electron acceptor, toxicity of pollutant, C/N/P ratio, co-substrates, soil humidity, pH and temperature; bioavailability of pollutant. Biodegradation of specific contaminants (e.g. diesel fuel, polychlorinated biphenyls, dyestuffs, aromatic and polyaromatic hydrocarbons) will be studied in detail. This course is co-taught with CIVL 889. Winter. L. Meunier. PREREQUISITE: Permission of the instructor. EXCLUSION: CIVL 889.

CHEE 885 Current Topics in Biochemical Engineering
The course surveys recent advances in Biochemical Engineering, through lecture material and seminars based on recent published advances, critical analysis and in depth review of recent published literature, academic and industrial guest speakers outlining advances in their respective research areas and through student presented seminars on assigned papers or topics. Not offered 2021-22.

CHEE 887 Cellular Bioengineering
This course will focus on applied cellular and molecular biology for the development of cell-based therapeutics in regenerative medicine. Emphasis will be placed on how engineering principles can be applied, in combination with an understanding of mammalian morphogenesis and physiology, to control and manipulate cellular responses in vitro and in vivo. Not offered 2021-22.

CHEE 890 Advanced Polymer Structure, Properties and Processing
The first half of the course examines the elements of polymer science that relate to engineering applications. The second half examines polymer processing operations with an emphasis placed on the analysis of polymer flow. Specific topics include the rheology of thermoplastic melts, viscoelasticity, constitutive equations and polymer blends. Not offered 2021-22.

CHEE 897 Seminar
Graduate students working on theses must give a seminar on their research. The seminar carries no course credit but all graduate students are required to attend.

CHEE 898 Master’s Project

CHEE 899 Master’s Thesis Research

CHEE 901 Principles and Applications of Polymer Rheology
Rheology provides a valuable tool for the assessment of the processability of polymers in various operations, as well as the identification of their structure. This 6 week (3 hours/week) module will discuss the fundamental relations between the rheology and structure of polymers and the principles of rheometry. (1.5 credit unit weight). Winter. J. Giacomin.

CHEE 902 Bulk and Solution Polymerisation Processes
This course is intended to help the student to understand how the fundamentals acquired in CHEE 828, are used in the design and operation of melt or solution polymerisation processes of different types (chemistries, operational modes, etc.) Emphasis will be placed on reactor design and operation, but separation technology for product purification will also be studied. Case studies of specific commodity polymers will be used to illustrate the important concepts. (1.5 credit unit weight). Not offered 2021-22.

CHEE 903 Polymerisation in Dispersed Media
This is a product-focused course that will include use different (non-polyolefin) concrete examples to help the students understand the reasons for producing polymer in dispersed media, the types of product one can make and the relationship between process operation and polymer structure. Emphasis is placed on reactor design, advanced modelling of dispersed phases systems, and issues related to industrial production such as characterisation, scale-up and control. (1.5 credit unit weight). Winter. M. Cunningham.

CHEE 905 Advanced Chemical Engineering Thermodynamics and Applications
This module presents fundamentals of thermodynamics and advanced applications relevant in Chemical Engineering. The calculus of thermodynamics, equilibrium and stability criteria are derived. Properties of real fluids and mixtures are established. Statistical foundations are introduced, and the thermodynamics of polymers, electrochemical systems, and biological systems are presented. (1.5 credit units). Fall. N. Hudon.
PREREQUISITES: CHEE 210 and CHEE 311 or equivalent (or permission from the instructor).

CHEE 906 Entrepreneurship for Chemical Engineers
This course module focuses on assessing entrepreneurial opportunities in chemical engineering. This includes: business opportunity screening, IP issues, market and competitive analysis, regulatory/ legal issues and financial analysis. Students evaluate the commercial potential of a technology or opportunity of their choice. (1.5 credit unit weight). Not offered 2021-22.

CHEE 907 Current Topics in Chemical Engineering
Selected topics in chemical engineering including chemical reaction engineering, combustion, biochemical engineering, process control, environmental engineering, applied statistics, polymer reaction engineering, polymer processing, fluidization and turbulence. Only topics not covered in other graduate courses will be included. Topics will vary depending on the instructor(s). (1.5 credit unit weight). Fall. L. Wells

CHEE 908 Green Engineering

queensu.ca/academic-calendar
This 6 week (3 hours/week) module will discuss the fundamental principles of green engineering in the context of a chemical sciences environment. Students will learn how to apply green chemistry principles and efficient process design principles (with respect to both energy and materials consumption) to ensure new or existing processes minimize their overall impact on the environment. (1.5 credit unit weight). Not offered 2021-22.

CHEE 909 Colloid and Surface Science Fundamentals
Various established theories on Colloids (e.g., DLVO, XDLVO) will be analyzed and subsequently used as tools towards the understanding and prediction of phenomena relevant to contact angles, surface wetting, emulsion or particle dispersion stability, and surfactant self-assembly. (1.5 credit units). Fall. A. Docoslis.

CHEE 910 Special Topics in Colloid and Surface Phenomena
This course provides an in-depth examination of selected topics in colloids of great interest to sciences and technology, such as emulsion stability, adsorption, particles electrokinetics and light scattering. In-class discussions and presentations, literature reviews, and individual projects, will provide graduate students with the solid fundamental knowledge and critical thinking required to approach problems related to these phenomena in a rigorous manner. This is not intended to be an introductory course in Colloids. Prior knowledge of Colloids and Surface Science principles is required. (1.5 credit units). Fall. A. Docoslis.

CHEE 911 Microscale Transport Phenomena
This 6 week (3 hours/week) module will provide in-depth coverage of microscale transport phenomena motivated by the emerging fields of Microfluidics and Lab-on-a-Chip. During this course, students will intensify and expand their knowledge of the fundamentals of heat, mass, charge and momentum transfer with emphasis on microscale geometries. The difference of macro- and microscale transport phenomena and the limitation of classical mechanics will be highlighted by scaling analysis. Additionally, an introduction into the fundamentals of selected electrohydrodynamic phenomena will be given. (1.5 credit units). Winter. D. Barz.

CHEE 912 Applied Lab-on-Chip Technologies
This 6 week (3 hours/week) module will provide an overview on the latest developments, fabrication techniques, and principles of operation of contemporary micro- and nanotechnologies used in lab-on-chip (LOC) type platforms. Small-scale subunit operations required in LOC systems, equally relevant across several disciplines in both life sciences and engineering fields, will be covered in detail. The knowledge acquired in these topics will be used during the last part of the course to analyze the design of LOC-based systems in key applications in different areas including biosensing, biotechnology and emerging energy technologies. (1.5 credit units). Winter. C. Escobedo.

PREREQUISITE: CHEE 911, or permission of instructor

CHEE 927 Global Optimization
This 6-week course introduces global optimization principles and methods for nonconvex continuous or mixed-integer programs, which can arise from a wide range of process systems engineering problems. The course consists of three parts. The first part discusses convex sets, convex functions, and Lagrangian duality theory. The second part introduces classical branch-and-bound based global optimization methods, along with convex relaxation and domain reduction techniques. The third part gives an overview of decomposition based large-scale global optimization. This course, although placed in the Department of Chemical Engineering, is designed for graduate students from across Queen's University. (1.5 credit units). Not offered 2021-22.

PREREQUISITES: CHEE 827 or permission of the instructor.

CHEE 990 Structure-Property Relationships of Polymer Materials
This six-week graduate module provides students with background in physical polymer science as it relates to the formulation of materials to satisfy engineering applications. Starting from the characterization of molecular weight and composition distributions, the fundamentals of phase transitions, solubility, adhesion and thermo-oxidative stabilization are discussed. (1.5 credit unit weight). Fall. M. Kontopoulou.

EXCLUSION: CHEE 490

CHEE 991 Introduction to the Processing and Rheology of Polymeric Materials
This six-week graduate module examines polymer processing operations. Specific topics include extrusion and injection moulding, modeling approaches, polymer blends and composites. Particular emphasis is placed on the analysis of polymer flow. Principles of the rheology of thermoplastic melts and rheometry are presented. (1.5 credit unit weight). Not offered 2021-22.

CHEE 992 Polymeric Biomaterials
This six-week graduate module provides a thorough background in the underlying fundamental biological and polymer science principles involved in the use of polymers as medical materials. (1.5 credit unit weight). Not offered 2021-22.

CHEE 999 Ph.D. Thesis Research