Academic Calendar 2023-2024

Search Results

MECH 321 Solid Mechanics II

MECH 321  Solid Mechanics II  Units: 3.50  

This course continues the study of solid mechanics. On completion of the course students will be able to: Calculate the total normal and shear stress at a point and sketch the stress distributions on a cross-section of a structural component (such as a crank) experiencing 3D combined (axial, transverse and/or moment causing) loads and non-symmetric loads; Calculate the residual normal or shear stress at a point and sketch the stress distribution on a cross-section of a structural component that is experiencing axial, torsional and/or bending loads followed by unloading; Calculate the normal or shear stress at a point on a cross-section of a structural component that is under load (axial, torsional and/or bending) and is supported in a statically indeterminate configuration (using force balance equations together with compatibility equations derived from known boundary conditions); Calculate the normal or shear stress at a point on a cross-section of a structural component that is under load (axial, torsional and/or bending) and contains one or more locations of stress concentration; Calculate, using general equations and/or graphically using a Mohr's circle, the normal and shear stress and/or strain transformations at a point within a structural component under load as a function of the orientation relative to a fixed coordinate system and find the maximum in-plane normal and shear stress and/or strain; Calculate the deflections and angles of deflection at any point on a transversely loaded beam of uniform cross-section using the principle of superposition and the standard equations for single loads acting on simply supported beams; Solve for critical loads in terms of buckling for concentrically and eccentrically loaded columns; Calculate the optimum dimensions (design) for shafts and beams under combined 3D loading based on specified material failure criteria; Design mechanism or structural components to withstand all forces for given loads, maximum deflection tolerances, factor of safety and material properties.
(Lec: 3, Lab: 0, Tut: 0.5)

Requirements: Prerequisites: MECH 221 Corequisites: Exclusions:   
Offering Term: F  
CEAB Units:    
Mathematics 0  
Natural Sciences 0  
Complementary Studies 0  
Engineering Science 30  
Engineering Design 12  
Offering Faculty: Smith Engineering