Art History & Art Conservation

Department of Art History & Art Conservation

Art Conservation Research Projects  2019/2020


Projects are listed in alphabetical order by students surname, click on image to view poster larger:


Evaluating Nanorestore Gel ® for Removing Ink on the Surface of Albumen Photographs 

Cailin Donohue Cser

Albumen photographs often account for the largest number of 19th-century prints within photographic collections. The thin substrate and inherent moisture sensitivities of albumen prints frequently impose limited treatment options. When there is unwanted media, such as ink, on the surface of an albumen print, there are important treatment considerations. Mechanically removing the ink with solvents and a cotton swab could result in abrasion of the image surface, irreversible damage from excess moisture, or further embedding the ink. While benzyl alcohol solubilizes the most common ballpoint pen inks, only a handful of gels have the ability to absorb polar solvents successfully without desiccating. For this reason, Nanorestore Gel® Medium Water Retention (MWR) and Velvesil Plus were compared as delivery systems for dissolving ballpoint ink with benzyl alcohol on historic albumen photographs. This study focused on the removal of two different inks: Bic® red and Parker® blue. Following various treatment approaches, changes to the topography of the albumen photographs were tracked using a Hirox digital microscope. Fourier transform infrared spectroscopy (FTIR) was used to confirm that no residues were left behind from the various treatment methods, while lateral dispersion of moisture was tracked using a fluorescein sodium salt to support visual analysis. The solvent-loaded Nanorestore Gel® MWR was more successful at clearing ink than the Velvesil Plus emulsification with benzyl alcohol; however, tidelines were a concern. A large part of this study focused on the behaviour of the Nanorestore Gel® MWR as it was loaded with benzyl alcohol and possible protocols for its use on photographic materials. 

Winnifred Daley

Evaluating Water-Resoluble Acrylics for Use in Retouching

Winnifred Daley

Water-resoluble acrylic paints are a recent development in the world of acrylic mediums. Several manufacturers created these water-resoluble formulas to increase options for artists who wished to use wet-in-wet and watercolour techniques while using acrylic paints. Research by Sims, Cross, and Smithen explored the colour stability and reversibility of Lascaux’s Aquacryl™, one of these new generation of paints. This research expanded upon previous work by exploring three clear mediums from two manufacturers to see if they displayed good ageing characteristics and remained water soluble over time. To determine ageing characteristics, samples of various brands of water-resoluble acrylic paints were measured for their colour and gloss, before and after light-based artificial ageing. Samples were also analysed with Fourier transform infrared spectroscopy before ageing to identify components in their formulations. Control and aged samples were tested for water solubility through testing with swabs. The creation of the samples also provided the opportunity to make qualitative judgements about the handling properties of the paints. Information collected on the stability of the paints, their formulation, their handling properties, and their solubility helped establish that these mediums age well, remain reversible, and are appropriate for retouching.



Hope La Farge

Further Research into the Viability of Organosilicon Compounds for the Preservation of Waterlogged Archaeological Wood

Hope La Farge

The preservation and treatment of waterlogged archeological wood is an important topic to address because of changing climates. More and more wet archaeological materials have been exposed due to melting glaciers. For some time, waterlogged archeological wood have been most commonly treated with polyethylene glycol (PEG) or sucrose. The use of both of these compounds is known to prevents dimensional change and further degradation of wet wooden artifacts. However, each material has drawbacks. PEG has a long application process, color shifts have been observed, and more recently high relative humidity has been shown to degrade the wood compound. Sucrose has a tendency to be a pest attractant and migrates with temperature fluctuations and high relative humidity changes. Thus, due to In lieu of these preservation issues, it is pertinent to look at other materials. Recent research has been published into the application of organosilicon compounds with added active groups on waterlogged wood. Organosilicon compounds have the potential to support and stabilize dimensional change, reduce flammability, protect against decay, and reduce the impact from weathering. More recently the compounds have also been used as surface modifiers, binding agents, and adhesion builders in conjunction with nanoparticles in other conservation applications.  Preliminary results showed that (3-mercaptopropyl) trimethoxysilane (MPTES) had the highest potential for the treatment of waterlogged archaeological wood, with little dimensional or color change occurring. This proposed research project further investigates the effects of MPTES on waterlogged archaeological wood after accelerated aging, by exposing prepared wood samples to high relative humidity, at 100% RH for four days. The long-term preservation capabilities of the MPTES were analyzed by examining weight gain, color change, dimensional changes, and biodeterioration of the wood samples. These changes were examined with various techniques including Fourier transform infrared spectroscopy, Hirox microscopy, light microscopy, scanning electron microscopy, color photometry, and a digital scale. Results indicate there was a significant decrease between initial weight and after airdrying for MPTES/ethanol treated samples, however the difference is not as drastic as untreated samples. Color difference is minimal in both the treated and untreated samples. Initial visual observations indicate minimal dimensional changes to the treated wood, however drastic detrimental changes to the untreated samples.


Emilee Lawrence

Investigating a Living Heritage Approach to Conservation: The cultural landscape and rock-art of Writing-On-Stone/Áísínai’pi, Alberta

Emilee Lawrence

 Writing-On-Stone/Áísínai’pi (“it is written”) Provincial Park, a UNESCO World Heritage site, is an important site of petroglyphs and pictographs. Located in Southern Alberta, the rock art and rock formations are extremely culturally and spiritually significant to many First Nations communities. However, due to environmental weathering, the inherent instabilities of certain rock substrates, as well as biological and anthropogenic impacts, there has been a loss of rock art panels. This research presents the preliminary evaluation of a Living Heritage Approach to conservation, using ethnographic methods to determine factors affecting the continuity of the original or intended function of the site, to inform future conservation practices and protocols at Writing-On-Stone/Áísínai’pi. Data collected from consultations with Elders of the Blackfoot Confederacy, which focused on the site significance, relationships with the site and landscape, traditional materials, and perceptions of conservation treatment and protocols, identified these factors which were then evaluated within Poulios’ (2014) Living Heritage framework. The results from this evaluation determined that in prioritizing the ties by the core community with Writing-On-Stone/Áísínai’pi and focusing on the preservation of the intangible and living qualities of the heritage, it was possible to identify meaningful and spiritually appropriate conservation and preservation strategies, allowing heritage to resume its’ active role in contemporary society. Additionally, through a Living Heritage Approach to conservation, it is possible to understand how the conservator can support sustainable conservation, by assisting the core or living communities in enacting their conceptions of conservation and preservation.


Technical Investigation of Materials Used in a Mid-Nineteenth-Century Berlin Work Needlepainting Reproduction of Horace Vernet’s Raphael at the Vatican

Marianne LeBel

Berlin work is a type of embroidery in which yarn is stitched onto an open-weave canvas, usually by following a grid pattern. It was the most popular form of needlework in the nineteenth century, being a very accessible craft due to its simple technique and to the wide availability of patterns. Among the frequent subjects embroidered by the practitioners of Berlin work is the reproduction of famous paintings. An example of these ‘needlepaintings’ is a large Berlin work, dated 1850, which reproduces Horace Vernet’s 1832 painting Raphael at the Vatican. Berlin work materials, like coloured yarn, were sold in specialized stores, ready to use by clients. Although wool was the most common fibre to be used for such embroideries, Berlin work repositories also sold other types of yarns which could be used for Berlin work. Before 1856, the yarn was usually coloured with natural dyes, which are known not to be lightfast and cause damage to the fibres during the dyeing process. The Berlin work of Raphael at the Vatican shows preferential degradation of certain grey yarns and discolouration of the middle portion of the object. The object was also exposed to moisture and possibly to pests. A technical investigation of the embroidery’s materials and degradation shed light on the causes of deterioration and informed the textile’s recommended treatment (procedures and materials for cleaning and repairs) as well as measures to be taken for its preventive conservation. Fibres were identified and their morphologies were assessed by polarizing light microscopy and scanning electron microscopy (SEM). The state of more degraded embroidered areas was compared to that of more intact areas by SEM and colorimetry. X-ray fluorescence (XRF) was used to give information on mordanting, and gas chromatography-mass spectrometry may be used at a later date to determine whether a purple dye is synthetic or natural in order to confirm the dating of the textile. It was found that the textile was created by embroidering wool yarn on cotton canvas. Quantifying the fading allowed to make informed guesses regarding the identity of certain dyes. The dark discolouration likely occurred because of chemical deterioration, and the selectively deteriorated wool was damaged because of corrosive iron mordants. Observations were made regarding the object’s materials and construction which might contribute to the emerging body of literature on Berlin work embroidery. 


Corrine Long

Technical Analysis of Acrylic Gel Mediums

Corrine Long

This a preliminary assessment of acrylic gel mediums. An assortment of acrylic gel mediums within the same brand were analyzed to understand them better as materials for artists and conservators. The main interest was to identify the thickening agent or agents and compare their chemical components to other acrylic paint using Fourier transform infrared spectroscopy (FTIR). Liquitex offers several different kinds of acrylic gel mediums that have variations in sheen and viscosity. The behavior of acrylic gel mediums as a paint film was studied by making samples of various acrylic gel mediums. These mediums were examined in three different thicknesses (6 mil, 12 mil, 0.5 cm). Historic and contemporary additives that have been identified and published in conservation literature on acrylics aided in identifying what additives are used in Liquitex gels and paints a picture of the evolution of the material. The samples were studied for hardness, color and gloss, before and after accelerated aging. The gloss gels were softer and the matte gels were harder; all gels yellowed after drying in the dark and no differences were noticed after accelerated aging. The properties of acrylic gel mediums are revealed from this study to help conservators understand them more so that measures can be taken to prevent damage; such as controlled storage and display methods.



Sydney Schaffer

Diluted Acrylic Emulsion on Paper: Effects of Gellan Gum Washing

Sydney Schaffer

Acrylic emulsion paint is a common media used for canvas artwork; however, the lesser researched artwork is that of acrylic on paper. Identification of this technique can be difficult and can lead to a misidentification of the work, most commonly as a watercolor. Washing acrylic emulsion paint on paper could lead to irreversible changes in gloss and morphology of the acrylic surface; however, research into the use of gellan gum for cleaning is ongoing within the realm of conserving acrylic paint. This project explored the implications of gellan gum washing and identify if there was deterioration or changes in morphology to acrylic emulsion media on a paper substrate after cleaning. Gellan gum cleaning was to be compared with samples that did not undergo cleaning. The media of the samples examined were acrylic emulsion paints from Golden Artist Heavy Body Colors (titanium white, carbon black, phthalo green) diluted in distilled water at intervals of 2.5%, 5%, and 15% weight by volume. Two paper substrates were used: hot-press watercolour paper and cold-pressed paper. The onset of the coronavirus in March 2020 halted the research project. A pilot study was conducted and samples were prepared for future research. The eraser crumbs and gellan gum seemed to be the least disruptive to the surface of the acrylic wash under visual observation. In the initial findings of the experiment, gellan gum may be a suitable candidate for cleaning diluted acrylic paint on paper. In future research, cockling of the paper with the use of gellan gum should be addressed.


Effect of Conductivity Changes during the Preparation of Calcium Propionate-infused Gellan Gum on the Surface Swell of Works of Art on PaperAuthorship 

Lindsay Sisson

Developments in the use of rigid polysaccharide gels for targeted cleaning of works of art on paper over the past twenty years have provided conservators with more control and flexibility for modifying their treatment options to the needs of the individual objects. Rigid polysaccharides such as gellan gum (Gg) have many advantages including flexibility in their preparation (different aqueous solutions and the addition of organic solvents to the gel); modification of their concentration and thickness; precise and localized control of the gels; and easy removal from the object’s surface. Recent research has been focusing on the ability to introduce additives into the Gg to modify its efficiency; however, it is unclear how these additives affect the surface swelling of paper, potentially and irrevocably affecting the paper surface. In addition, the conductivity and pH of the water used in preparing the rigid polysaccharide gels may also affect the degree to which paper fibres swell. This study explored the surface swell behaviour of Gg infused with a deacidification additive, calcium propionate, using adjusted water at various conductivity levels. Two kinds of paper, a smooth, kaolin-containing calendered paper and a rough, gelatin-sized cold press Arches watercolour paper, were used to assess any differences in the conformability of modified Gg to the surface of different paper surface topographies. The two sample sets of paper were examined before and after treatment for topographical changes using a Hirox RH 2000 3D-microscope (Hirox). The Hirox captured a digital three-dimensional model of the paper surface that allowed for closer examination of surface swelling characteristics. Originally, this research expected to provide further information regarding the properties of modified Gg; however, there were several limitations and variables that appeared during these experiments including concerns with the sample preparation, instrumentation errors associated with the pH and conductivity measurements, and issues concerning reproducibility with the Hirox. As a result of these limitations and variables, it was difficult to draw any valuable conclusions from the data collected and each of these issues must be examined in order for future research of this nature to yield accurate results. 


Annick Tremblay

A Technical Analysis of a Painting on a Copper Support in the Style of Guido Reni (1575-1642) 

Annick Tremblay

The aim of this research was the analysis of an oil on copper painting that was possibly painted by Italian painter Guido Reni (1575-1642), with the purpose of obtaining information about its materials and construction technique and finding any possible similarities with paintings by Reni or his studio. Non-destructive and micro-invasive methods were selected to characterise the painting’s components and its copper support. Non-destructive analyses included photo-documentation (normal light, raking light, ultraviolet radiation, infrared reflectography, X-radiography, electron-emission radiography [EER]) and X-ray fluorescence (XRF). Micro-invasive analyses included Fourier transform infrared spectroscopy (FTIR) and polarised light microscopy (PLM). XRF provided preliminary results about the elemental composition of the copper panel and the pigments – lead white and an arsenic-containing pigment such as cinnabar – but the information was limited due to the interference with the metallic substrate. FTIR provided further evidence about the pigments, especially earth pigments, a natural resin as a possible binder and confirmed the presence of copper carboxylate, a deterioration product of copper. Interestingly, no peak for drying oils was found, thus demonstrating the necessity of further analysis with gas chromatography – mass spectroscopy (GC-MS) to refine the results. All samples were then examined under PLM to characterise all found pigments. This study confirmed the use of Prussian blue, a pigment traditionally found in historical paintings from the late 1730s onward, therefore eliminating Guido Reni as a potential artist. Unfortunately, energy-dispersive X-ray spectroscopy could not be carried out as planned due to the limited access to laboratories during the COVID-19 crisis.


The Identification and Conservation Treatment of a Third-Intermediate White-Type Coffin 

Kaoru Yui

In 2014-2015, the Master of Art Conservation program at Queen's University obtained three Egyptian coffins dating to the Third-Intermediate Period. Both technical analysis and digital imaging were performed on the white-type anthropoid inner coffin, which is recognized as a rare type of coffin. The materials, layering structure, and areas of loss and vulnerability of the coffin were examined. This project focused on the white coffin to identify materials that remain unstudied, including the species of wood used for dowels and splines with polarized light microscopy (PLM), Hirox digital microscopy and environmental scanning electron microscopy (ESEM); and the binding medium for the pigments with chemical spot tests and Fourier transform infrared spectroscopy (FTIR). The wood was identified as tamarisk. The binding medium was identified to be proteinaceous or starch-based materials. The second part of project included the evaluation of possible conservation treatment methods and materials, including cleaning using cosmetic sponges and monitoring using the Hirox digital microscope; also, the change in colour after using consolidants for the wood was measured with a spectrophotometer. Based on the evaluation results, a partial conservation proposal of superficial dirt cleaning with cosmetic sponges was provided. The experiment for the evaluation of consolidants was interrupted because of the university closure due to COVID-19 pandemic.  Another important aspect of this research project was to address the ethical considerations surrounding the treatment of the decontextualized mortuary object. Through the study of partial hieroglyphs preserved on the coffin fragments and archival research, the reconsideration of the object’s values was discussed. The entire research project included steps towards the long-term goal to reconstruct the coffin.