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Abstract— Conventional methods for assessing levels of
sensory-motor impairment in stroke patients are inherently
subjective and dependent upon the clinician’s own observa-
tions and opinions. In this study, 93 control and 63 stroke
subjects underwent robotic assessment to gauge sensory-
motor impairment. Multiple statistical data normalization and
dimensionality-reduction measures were evaluated, using four
different classifier types, in order to derive an optimal feature
vector for the purpose of distinguishing stroke from control
subjects. The optimal feature vector was then utilized to train
a committee of classifiers for the purpose of recombining data
from several traditional sensory-motor assessment scores into
a KINARM specific assessment metric. We were able to create
a training vector capable of distinguishing between stroke and
control subjects with high accuracy, and demonstrated that the
committee of classifiers assigned consistent scores to patients of
similar levels of impairment.

I. INTRODUCTION

Stroke is a loss of function caused by an interruption in
blood flow to the brain. This shortage can result in paresis,
loss of sensation, loss of vision, loss of memory and the
inability to speak or understand speech [2]. In order to
achieve a successful recovery after stroke, it is necessary to
understand the motor impairments underlying the patient’s
condition [10]. Although the effects of a stroke are both
severe and sudden, most stroke survivors recover to some
degree [1]. When patients are carefully assessed, and an
optimal rehabilitation strategy is selected, outcome can be
optimized for recovery speed and physical independence.

Methods used for assessing and determining an appropri-
ate type of therapy for each stroke patient are inherently
subjective as they depend largely on the clinician’s own
observations, evaluations, and opinions [4]. Rating systems
are mostly based on coarse numerical grading, and do not
provide therapists or physicians with information about the
detailed kinematics underlying the motor deficits [1].

The KINARM (Kinensiological Instrument for Normal
and Altered Reaching Movements, BKIN Technologies,
Kingston, ON) [12] is a robotic exoskeleton developed for
the purpose of sensing and perturbing limb motion. Patients
attached to the device are capable of flexing and extending
both shoulder and elbow joints allowing them to move
their hand within the horizontal plane. Hand speed and
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position within the plane are monitored using a series of
torque motors and accelerometers [11]. Through continuous
monitoring of a patient during a variety of reaching tasks,
the device is capable of quantifying even subtle degradations
in sensory and motor faculties at a level of precision not
perceivable to human eye [1]. The development of compu-
tational tools derived from this precise motor-sensory data
has the potential to improve upon patient quality of life by
increasing assessment accuracy and thereby aiding in the
planning of rehabilitation therapies.

In our study, we used statistical approaches and
information-theoretic measures to isolate promising features
from KINARM experimental data for the purpose of clas-
sification. We then used the output from a committee of
classifiers to create a KINARM-specific stroke impairment
assessment score. Our study was comprised of two parts:

The first part involved isolating descriptive features from
experimental session data, for the purpose of distinguishing
stroke and control subjects, using various dimensionality-
reduction and data-normalization techniques. A performance
comparison between K nearest neighbor (KNN) [3], support
vector machine (SVM) [9], artificial neural network (ANN)
[8], and linear discriminate analysis (LDA) classifiers [13]
was conducted to determine both the optimal training vector
and classifier modality.

The second part of our study involved the creation of
a committee of classifiers for the purpose of recombining
information gained from traditional assessment scores into a
unique sensory-motor impairment assessment metric.

It is our belief that through the utilization of several
classification and feature extraction approaches it is possible
produce an accurate, consistent, and reliable metric for
evaluating sensory-motor impairment in stroke patients.

II. METHODS
A. Subjects and Task

55 ischemic stroke and 8 hemorrhagic stroke patients
with a median age of 66 years and 93 control patients
with no known prior history of sensory-motor impairment
and a median age of 61 years were selected for robotic
assessment using the KINARM. One of eight virtual tar-
gets were projected onto a two-dimensional virtual reality
display. Upon signaling from an indicator light, subjects
were instructed to move their hand from the center point
to the projected peripheral target 10 cm away. The reaching
task was defined as being complete when the subjects hand
entered and remained within the bounded target area. A total
of 8 attempts were made for each of the 8 peripheral targets
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yielding 64 potential trial sets in the event the subject was
able to complete all trials.

Fourteen metrics describing path length and hand speed
during various portions of the reaching task were calculated
based on this experimental data. FMTDist, FMTmaxSP,
FMTDirErr, and FMTDistErr refer to the distance traveled,
maximum speed, the angle between the optimal trajectory
and the patient’s trajectory, and the distance of the hand
from the target during the initial portion of the reaching task.
TotalMT, PathLen, MTMaxSP, and NumMTmaxSP refer to
the total movement time, path length, maximum speed, and
the number of speed maxima throughout the course of the
entire reaching task. PathLenRatio and FMTMaxSPRatio
refer to the ratio between subject path length and optimal
path length, and the ratio between the maximum speed
achieved during the initial hand movement and total hand
movement.

A unique session vector was created for each subject
by calculating the median of each metric across all trials.
Session vectors were only calculated from trials involving
the affected hand in stroke subjects and the dominant hand
in control subjects.

Within a week of robotic assessment, clinicians assessed
sensory-motor impairment of each subject, and the measures
include the Purdue Pegboard score (Purdue), dynamometer
score for hand squeeze (DynaHand), dynamometer score for
hand pinch (DynaPinch), Functional Independence Measure
(FIM), Chedoke-McMaster score of the arm (CMArm),
Chedoke-McMaster score of the hand (CMHand), and thumb
proprioception score (Thumb).

B. Data Normalization and Dimensionality-Reduction

Four stroke and control training sets were created
from the combination of two distinct normalization and
dimensionality-reduction methods. Normalization method 1,
herein referred to as N1, consisted of calculating the base 2
log of the data set, followed by centering and scaling each
KINARM metric to produce a mean of 0 and a standard
deviation of 1:

zN1 =
log2(x) − µmetric

σmetric
(1)

The second normalization method, herein referred to as
N2, utilized the maximum and minimum value of each
KINARM metric to scale the data between 0 and 1.

zN2 =
x− xmin

xmax − xmin
(2)

Dimensionality-reduction and feature selection methods
pose several practical advantages through alleviating the
curse of dimensionality, streamlining the learning process,
and by improving generalization through the selection of
only relevant features [5]. It is in this regard that a statistical
filter to remove consistent variables between control and
stroke subjects, and two distinct dimensionality-reduction
techniques, were employed to reduce the fourteen KINARM
metrics to eight.

TABLE I
KOLMOGOROV-SMIRNOV TEST P-VALUES

Metric P-Value Metric P-Value
FMTDirErr 4.778e-36 FMTDist 3.435e-36
FMTDistErr 3.161e-35 FMTDistRatio 7.034e-58
FMTmaxSP 1.122e-40 FMTMaxSPRatio 4.275e-95

MinMaxSPDiff mean 6.584e-35 MTMaxSP 7.567e-41
NumMTmaxSP 1.1297e-118 postureSPp50 5.802e-35

PathLen 1.637e-40 PathLenRatio 1.429e-99
RT 1.747e-47 TotalMT 4.761e-79

TABLE II
SPEARMAN RHO CORRELATION COEFFICIENTS

Metric Correlated Metric Corr. Coeff.
PathLen PathLenRatio 0.8916
FMTDist FMTmaxSP 0.7751
FMTDist FMTDistRatio 0.749

FMTmaxSP MinMaxSPDiff 0.6769
MinMaxSPDiff PathLenRatio 0.6653
FMTDistErr NumMTmaxSP 0.6061

A Kolmogorov-Smirnov test was performed at the 5%
level of significance to judge metric conformance to the
normal distribution. No KINARM metrics were found to be
normally distributed as shown in Table I and non-parametric
tests were used for all statistical analysis as a result.

A non-parametric Man-Whitney U-Test [6] was performed
at the 5% level of significance to isolate KINARM metrics
that did not significantly differ between the control and
stroke subject groups. FMTMaxSPRatio (p = 0.7953) and
MTMaxSP (p = 0.0952) were found not to significantly
differ between control and stroke subject groups, and were
subsequently removed from the training set.

Dimensionality-reduction method 1, herein referred to as
D1, involved the calculation of Spearman’s rank-correlation
coefficient for all KINARM metrics in a pair-wise manner
on a combined stroke and control subject data set [15]. In
Table II the six pairs of KINARM metrics exhibiting the
highest Spearman Rho Correlation Coefficient are shown.
The first eight distinct KINARM metrics associated with
highest correlation coefficients, highlighted in bold, were
chosen to form the training set.

Dimensionality-reduction method 2, herein referred to as
D2, consisted of performing principle component analysis
on the normalized data set, followed by selecting the first
eight principle components of both the stroke and control
subject groups [7].

C. Classification Task

ANN, SVM, KNN, and LDA classifiers were trained
on the four normalized and reduced data sets (D1, N1),
(D1, N2), (D2, N1), and (D2, N2). ANN structure con-
sisted of a three layer feed forward network composed of 8
input nodes, a varying number of h hidden nodes, and two
output nodes representing class control and stroke respec-
tively. ANNs were trained using a standard back-propagation
training algorithm utilizing gradient-descent with a mean
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squared error cost function [3]. The KNN classifiers were
built and trained utilizing a cosine coefficient similarity
metric. The optimal number of nodes h in the hidden
layer and number K for KNN classifiers was determined
by empirical testing between the values 1 and 25. The
values which yielded the highest mean-percent classification
accuracy were selected. This was determined to be h = 14
for the ANN and K = 9 for the KNN classifier. SVMs
were trained using a linear kernel and 1-norm soft margin
optimization algorithm. LDA classifiers were trained through
fitting a multivariate normal distribution to the data with a
pooled estimate of covariance.

D. Committee of Classifiers

A committee of classifiers was constructed to combine
knowledge regarding clinical sensory-motor impairment as-
sessment scores into a KINARM-specific sensory-motor im-
pairment score. For each of the seven clinical assessment
scores, a committee member was trained to distinguish
between moderately-impaired and severely-impaired stroke
subjects. The median value of each clinical assessment score
amongst its members was determined and used as a partition
value, as shown in Table III. Stroke subjects with assessment
values less than the threshold value were designated severely-
impaired, those above the threshold value were designated
moderately-impaired.

Support vector machines were chosen to form the individ-
ual committee members as a result of the ANN’s tendency to
produce binary results. The (D1, N2) normalization reduc-
tion method was found to yield the greatest mean-percent
classification accuracy during the classification task, and
was subsequently chosen to reduce and normalize committee
member training sets. Committee member training data was
limited to stroke subjects for which the committee member’s
clinical assessment score was known. In a manner identical
to the classification task, each SVM was evaluated using 10-
fold stratified cross-validation in order to gauge effective-
ness. Mean-percent classification accuracy and the Shannon
entropy, calculated using maximum likelihood estimates de-
rived from a confusion matrix, were recorded and shown in
Table III.

A linear combination of committee member outputs was
used to determine the KINARM-specific assessment score.
For each sample vector s, and committee member SVMi,
with normal vector wi and bias γi, (3) was calculated to
produce xi. The results of (3) for each committee member
were summed, as illustrated in (4), to produce a KINARM
assessment score r. Both the mean-percent accuracy and the
Shannon entropy of each committee member were used as
ci in separate trials.

xi = s · wi − γi (3)

r =
n∑

i=1

cixi (4)

TABLE III
COMMITTEE MEMBER THRESHOLD VALUES AND COMBINATION

COEFFICIENTS

Assessment Score Threshold Value Accuracy Entropy
Purdue Pegboard 4.816 50.00 1.288
DynaHand 15.89 52.50 1.254
DynaPinch 5.631 53.34 1.366
FIM Score 80.84 50.91 1.378
CMArm 5.483 53.33 1.352
CMHand 5.29 63.33 1.156
Thumb 0.639 60.00 1.119

TABLE IV
CLASSIFICATION ACCURACY FEED FORWARD ANN WITH h = 14

Data Set Mean Maximum Minimum
(D2, N1) 64.77 77.42 54.84
(D2, N2) 68.25 87.10 48.38
(D1, N1) 82.32 100.0 58.06
(D1, N2) 94.45 100.0 87.10

III. EXPERIMENTAL RESULTS

A. Classification Results

10-fold stratified cross-validation was employed to eval-
uate each of the classifiers on the four normalized and
reduced data sets [14]. Elements within the data sets were
randomly-ordered, and the cross-validation process was re-
peated five times. Mean-percent classification accuracy, max-
imum classification accuracy, and minimum classification
accuracy were recorded. Dimensionality-reduction, normal-
ization strategy (D1, N2) was found to achieve the greatest
mean-percent classification accuracy amongst all four classi-
fiers. When trained on data set (D1, N2) the ANN was found
to achieve the greatest mean-percent classification accuracy
of the four classifiers.

B. Committee Results

Eight of the sixty three stroke subjects had multiple pieces
of KINARM session data recorded within a twenty four
hour period. For each stroke subject with multiple pieces
of KINARM data, a committee of classifiers was trained
utilizing the remaining stroke subjects. As summarized in
Table VI, committee results were calculated for each piece
of multiple session data using both the mean-percent classi-
fication accuracy and Shannon entropy as a combination co-
efficient. A Mann-Whitney U-Test was performed at the 5%
level of significance to determine whether committee scores
significantly differed between multiple pieces of session data

TABLE V
CLASSIFICATION ACCURACY OF A KNN WITH k = 9, SVM, AND LDA

CLASSIFIERS

Data Set KNN SVM LDA
(D2, N1 ) 65.80 57.42 34.83
(D2, N2) 73.55 56.77 37.41
(D1, N1) 81.29 54.84 39.35
(D1, N2) 92.25 92.90 91.90
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TABLE VI
COMMITTEE SCORES FOR PATIENTS WITH MULTIPLE PIECES OF

SESSION DATA

Subject ci = PercentAccuracy ci = ShannonEntropy
Session 1 Session 2 Session 1 Session 2

1 1.8600 1.8375 4.4787 4.4718
2 -2.6265 -3.8458 -6.5578 -9.3358
3 -2.5716 -1.71522 -6.0305 4.0081
4 -0.1955 -1.9324 -0.5495 -4.5282
5 0.0539 -3.2723 0.2455 -7.8502
6 0.2866 1.7006 0.5648 3.7574
7 1.4992 0.5179 3.914 1.4178
8 -0.4630 0.5073 -0.9632 1.13196

for each stroke subject. Scores produced by the committee
using mean-percent classification accuracy (p = 0.8785)
and Shannon entropy (p = 0.7984) combination coefficients
were found not to significantly differ between multiple pieces
of session data. Scores produced by the committee using
mean percent classification accuracy and Shannon entropy
combination coefficients were both found to have a Spearman
rho correlation coefficient of 0.7619 (p = 0.0280).

IV. DISCUSSION

As illustrated in Table III and Table IV, the data set that
produced the highest mean-percent classification accuracy
amongst all four classifiers was that in which the dimension-
ality was reduced using Spearman correlation and normalized
by scaling the KINARM metrics between 0 and 1. Principle
component analysis, a naive form of feature extraction, failed
to produce results as accurate as those obtained from the
Spearman correlation reduced set when implemented with
the same normalization technique.

Though this does not demonstrate that the Spearman
correlation dimensionality-reduction method is capable of
producing a globally-optimal training vector, it does demon-
strate that it is optimal in the given context of differenti-
ating stroke and control subjects. The assumption is then
made, that given local optimality in the control-versus-stroke
classification task, the dimensionality-reduction method may
serve as a good candidate for the creation of training vectors
for similar problems. It was from this reasoning that the
Spearman correlation dimensionality-reduction and scaling
normalization methods were chosen to process raw KINARM
data for the committee of classifiers.

As previously stated, the committee results have been
demonstrated to not differ significantly (p = 0.8785, p =
0.7619) and have strong correlation (ρ = 0.7619, p =
0.0280) between multiple pieces of session data for both
mean-percent-classification accuracy and Shannon entropy
classification coefficients. Since statistical consistency and
strong correlation have been shown within individual sub-
jects, where it is assumed that the level of sensory-motor
deficit does not improve between sessions, it may be possible
to infer consistency and strong correlation between different
patients with similar levels of impairment.

V. CONCLUSION

The classifiers trained to differentiate between control and
stroke subjects were found to have a high level of accuracy
when trained using (D1, N2) dimensionally-reduced and
normalized training sets. The committee of classifiers con-
structed using the (D1, N2) dimensionality-reduction and
normalization method was found to be capable of generating
consistent results amongst subjects with multiple pieces of
KINARM session data.

With the successful derivation of a consistent KINARM-
unique assessment score, we feel we have created a sensory-
motor assessment system that could be useful for planning
effective rehabilitation therapy for stroke victims. Future
work will concentrate on the proper scaling and formalization
of the KINARM-unique assessment score for the chance that
it, like the KINARM itself, may be suitable for wide-scale
clinical use.
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