## Department Colloquium

### Friday, September 25th, 2020

**Time:** 2:30 p.m. **Place:** Online (via Zoom)

**Speaker:** Abdalrazzaq Zalloum (Queen's University)

**Title:** Negative curvature in geometric group theory.

**Abstract: ** Geometric group theory studies the interplay between the algebraic/combinatorial properties of infinite groups and the geometries of the spaces on which they act. A naive example of this phenomena is the following theorem: "An infinite group is free if and only if it admits a free action on some tree". In the previous theorem, the geometric property of the tree containing no loops informed the algebraic/combinatorial property of the group being free and vice versa; this is a theme in geometric group theory. A metric space $X$ is said to be hyperbolic if there exists a number $\delta$ such that for any geodesic triangle in $X$, the union of the {$\delta$-nbhd} of any two of its three sides contains the third, see the attached image. Group actions on hyperbolic spaces tend to be particularly informative. A fundamental (and almost defining) property of hyperbolic spaces is that infinite geodesics satisfy a \textit{local to global} property: to check whether an infinite path is a geodesic in $X$, you need only to check that in uniformly small windows. Given a nice action of an infinite group $G$ on a hyperbolic space $X$, Cannon showed that the local-to-global property of geodesics in $X$ is reflected in the combinatorial structure of $G$. In particular, he observed that the local-to-global property of $X$ is inherited by $G$ in the sense that all the combinatorial and growth information of the \textbf{infinite} group $G$ can be encoded using only a $\textbf{finite}$ amount of data: a finite graph. I will discuss recent work where we study groups acting on spaces satisfying a similar local-to-global property, and we will see the interplay between the geometric local-to-global properties of the space, and the combinatorial structure of the acting group. Some of the results I will discuss are joint with Cordes, Russell and Spriano.

**Abdalrazzaq Zalloum** is a Coleman post-doctoral fellow within the Department of Mathematics and Statistics at Queen's University, working with Thomas Barthelmé and Francesco Cellarosi. He obtained his Ph.D. in Mathematics from the SUNY Buffalo in 2019. He is mainly interested in geometric group theory, which studies the interplay between the algebraic structures of groups and the geometries of the spaces on which they act.