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The Chromatic Number of a Surface
[The text of the first Coleman-Ellis Lecture,
by Peter Taylor, Oct. 23, 1984]

The famous four colour theorem says that for any map drawn on a
sphere S (or a plane), the regions can be coloured with only 4 colours
so that regions which share a common boundary line have different colours.
The theorem was, in fact, only a conjecture for some 100 years. It was
shown in 1890 that 5 colours were enough, and any example that was
produced could be coloured with only 4, but the proof that 4 was enough
could not be found. 1In 1976, Appel and Haken from Illinois, with the aid
of a computer, showed that 4 colours sufficed. The computer was used to
reduce the problem to a large but finite number of special cases, and to
check these. It is still an open question whether a proof of this theorem
exists whose details could be checked by one person in a reasonable length
of time.

In this article I look at three other surfaces, the torus T , the
projective plane P , and the Klein bottle K , all more complicated
than the sphere, but for which the colouring problem is much simpler and
has been solved for many years. These surfaces all belong to a class of
objects known as compact 2-dimensional manifolds, all of which can be
obtained by "pasting together" copies of S, T, P , and K . The
colouring problem for all such surfaces was completely solved by 1967,
except for the simplest one, the sphere S .

The Basic Surfaces. The surfaces we will be drawing maps on are displayed
belowe S and T can be realized in 3-space, but P and K cannot. In
the "picture" of K I have drawn, the two open ends must meet without
passing through the surface of the bottle. This is impossible in 3-space
but can be done in 4-space. I haven’t drawn a "picture" of P ‘cause I
don’t really know how. In any case, to draw maps on these surfaces we
want to "spread them out flat" and to do that we make one or two cuts.

The diagrams on the right are the planar representations we get. Two
edges with the same name are the same edge and the arrows indicate how the
edges are put together to reconstruct the surface. Thus these
representations define the surface (in particular they tell you what P
is). To get the surface you take your needle and thread and sew up the
cuts in the indicated orientation. You can actually do that for S and
T , but for P and K you get stuck near the end of your job by the
impossibility of pulling the surface through itself.

A word about K . If I join the "a" edges I get what’s called a
Mobius band. The Klein bottle is then obtained from the Mobius band by
joining its two edges, actually by joining the two halves of what has now
become a single edge.
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General Surfaces. Two surfaces M and N can be pasted together to form
a new surface MN by cutting small discs out of each and pasting the edges
together. The process is illustrated below for two tori, to get the

surface TT which is also written T2 » and is called the double torus or
"pretzel". It can also be regarded as a "sphere with 2 handles"; we
regard two surfaces as equivalent (homeomorphic) if one can be
continuously deformed into the other. Thus TS = T (a tire with a weak
spot is still a tire) and indeed S acts as an identity element for the
operation. It is also true that the operation is associative and
commutative, so the surfaces that can be built out of the basic ones are

all of the form T"P"K* for n, m, r >0 ; by convention M0 =85 . It

is a famous and difficult theorem that every compact 2-manifold is of this
form.

=== @

Actually not all of the surfaces T P"K' are (homeomorphically)
2 3

different. It turns out that P" =K and P” = TP . Using this we see
that every surface can be written in the form T® or T"P or T'K for
some n > 0 . We take these representations as canonical forms. The
surface T" can be visualized as a sphere with n handles. The surfaces
T'P and T"K cannot be realized in 3-space.

Graphs. Actually we’re not going to colour maps. We’re going to colour
the vertices of graphs. A graph, roughly speaking is a connected complex
of vertices (dots) and edges (lines). I allow multiple edges and loops,

but T will call a graph simple if it has neither of these. 1In the
examples below the two graphs on the right are simple.
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An important family of graphs are the complete graphs Kh . Kh has

n vertices and one edge joining each vertex pair. Thus K3 is a

triangle. A graph is said to be drawn on a surface M if the vertices and

edges can be arranged so no two edges cross. Thus K4 can be drawn on S

(above right) but K5 cannot (try it!). Note the edges don’t have to be

straight lines. Henceforth whenever I talk of a graph on surface M, I
will assume it is drawn on M .

A graph, drawn on a surface M , is said to decompose M if when we
cut along the edges the pieces we get can all be flattenmed. Thus only the
graph on the right below decomposes T. Indeed the graph on the right
produces a single piece, called a face, which is, in fact, the flat
representation of the torus we drew earlier. Similarly, the flat
representations for S, P , and K came from graphs which decomposed the
surface.

(= = &

One more definition: the degree of a vertex is the number of edges
which are incident to it.

The Characteristic. If I have a graph which decomposes a surface M , I
let V, E , and F denote the number of vertices, edges and faces (the
pieces I get if I cut along the edges). If I add more vertices or edges I
will change these numbers, but it’s easy to see I will never change the
quantity V - E + F (try it!), which in fact depends only on the surface
and is called its characteristic X . Precisely, the characteristic X(M)
of the surface M is the value V- E + F for all graphs drawn on M
which decompose it.

We can compute X for our basic surfaces from the planar
representations. The results are
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The characteristics of the surfaces T'P"K" can be computed with the
rule: start with 2 (for S), and subtract 1 for every copy of P and 2

for every copy of T or K . Thus x(TanKr) =2 - 2n - m -2r and for
the canonical forms, X(T™ = 2 - 2n, X(T"P) =1 - 2n , and
x(TnK) = -2n . Thus, except for the basic surfaces above, every surface

has X < 0 ; there is one surface (T"P) of every odd negative



characteristic and two surfaces (Tn+1

characteristic.

and TnK) of every even negative

Chromatic Number. Colouring is often discussed in terms of regions of a
map, but it’s simpler, and equivalent, to colour the vertices of a graph.
Indeed I associate a graph to any map on a surface by putting a vertex in
each region and an edge between any two vertices whose regions share a
boundary. The edges can always be drawn so that the graph is drawn on the
surface.

A colouring of a graph is an assignment of colours, one to each
vertex, so that adjacent vertices (joined by at least one edge) have
different colours. The chromatic number Chr(M) of a surface M is the
least number of colours required to colour all graphs that can be drawn on
M .

It is worth observing that if K can be drawn on M then
Chr(M) >n . Thus we can see that the chromatic number of S (and

indeed of all surfaces) is at least 4. The 4~-colour theorem states that
Chr(s) = 4 .

Heawood’s Theorem. The main technique for finding an upper bound for the
chromatic number of a surface is to show that a simple graph on the
surface must have a vertex of reasonably small degree. The fact that the
graph is simple and must be drawn on the surface means you can’t have a
great many edges at every vertex. For example, it is impossible to draw a
graph on S which has every vertex of degree > 6 (proved below). It is
possible to have a graph on S with every vertex of degree > 5, but it
takes a while to find one (Hint at end).

Heawood (1890) proved a general theorem of this type for all surfaces
in terms of the characteristic of the surface. We let the Heawood number
H of 4 surface with characteristic X be

1+/49-24x .
2

What a strange number! We will see in the proof of the next theorem how
Heawood found it.

Theorem 1. (Heawood 1890). A simple graph G which decomposes a surface
of characteristic X must have a vertex of degree < 5 if x >0 , and

Proof. Suppose we have such a graph. We can assume, by adding edges if
necessary, that all faces are triangles (bounded by 3 edges). We use the
fact that G 1is simple here. [These additional edges if anything only
increase the degree of each vertex.] Now since all regions are triangles,
2E = 3F (count edges by counting faces; every edge will be counted
twice). Let D be the average degree of all vertices. Then 2E = DV
(count edges by counting vertices; every edge again counted twice). Plug
the above two equations into V - E + F = X to eliminate Eand F . We
get

D=6 - 6x/V .
Our objective is to show that D is small (certainly there is always a



vertex with degree < D , the average degree). Well if x >0, D <6 ,
so there must be a vertex of degree < 5 . That does the first case
above. If x < 0 , then =X/V is positive and the way to get D small
is to have V big. Well if V < H then there are at most H vertices and
all have degree < H-1 , and we are done. Otherwise V > H which means
-6x/V < -6x/H and so D < 6 - 6x/H . If this were equal to H-1 we
would be done. Indeed Heawood simply chose H to make this true! The
equation 6 - 6x/H = H-1 is quadratic in H with root given by the above
formula. QED

Two Basic Colouring Theorems. Both due to Heawood 1890.

Theorem 2. If every simple graph on M has a vertex of degree < n then
Chr(M) < nt+l1 .

Theorem 3. If every simple graph on M has a vertex of degree < n and
in addition K 1 can’t be drawn on M , then Chr(M) <n .

The proof of both theorems is by induction on the number of vertices.
First Theorem 2. We must show every graph on 1 can be coloured with n+l
colours. Suppose true for all graphs with < V vertices. Take a graph on
M with V41 vertices. Remove extra edges and loops if necessary to
make it simple. Now it has a vertex of degree < n . Remove it and all
incident edges. The remaining graph has V <vertices, so can be n+l
coloured. Now put the last vertex back. Can we colour it? Yes, since it
has at most n neighbours and we have n+l colours to choose from. QED

Theorem 3 is similar but a bit more subtle. To show that n colours
are enough we suppose true for all graphs with < V vertices, take a graph
with V+1 , simplify it, and produce a vertex XO of degree < n , as

before. Now this vertex might have degree < n-1 , in which case the
removal trick used for Theorem 2 will allow us to colour the graph with n
colours. Otherwise it has degree n . In this case its n mneighbours
cannot all be joined to one another by edges or we would have a copy of

Kn+1 on M . So some pair X and x, are not joined. Take these
three vertices xo, xl and xz and two edges xox1 and x0x2 , and

collapse them into one supernode. The new graph has V-1 wvertices so can
be coloured with n colours. Suppose the supernode has been coloured red.

Now can we colour xo, x1 and x2 ? Well colour x1 and x2 both red

(they are not joined, and certainly won’t be joined to a red vertex or the
supernode would have been so joined). So the n neighbours of X, use at

most n-1 colours (two of them are red) and there must be a colour left
for x . QED
0
Historically, Theorem 3 first appeared as a special argument for
M=S (with n =15) . It provided the first proof that 5 colours
suffice for the sphere.

These three theorems of Heawood serve to give us upper bounds on
Chr(M) . Lower bounds can be obtained, as I have mentioned, by
discovering which complete graphs can be drawn on M: if Kn can be drawn

on M then Chr(M) >n . Can we get these upper and lower bounds to



match, thus determining the chromatic number? Let us look at the basic
surfaces.

The Sphere S. The largest complete graph on S is K4 . So

Chr(S) > 4 . Since K6 can’t be drawn on S , Theorems 1 and 3 (with

n = 5) give us Chr(S) <5 . The upper and lower bounds are not the same
and, as I have said, new and computationally long techniques were needed
to settle the matter.

The Projective Plane P. Here, X =1 , so Theorems 1 and 2 together

give us Chr(P) < 6 . It follows from this that K7 could never be drawn

on P (it would need 7 colours!). Can K6 be drawn? Try it as a good

exercise. The answer is yes and here is the picture. Thus Xx(P) =6 .

The Torus T. Here we have X =0, H=7 , so Theorems 1 and 2 give

Chr(T) <7 . Can K7 be drawn on T ? Let’s try Observe that for

K7, V=17, E= (;) = 21 and since V

E+ F =0 (assume it decomposes

T), F =14 . Since 3F = 2E , we conclude all faces are triangles. So
the graph must look in all directions like an infinite triangular grid.
Let”s take a vertex, and call it 7, and designate its neighbours, which
form a hexagon, as 1-6. As we move over the grid outside this hexagon we
will encounter these same vertices again (we are walking round the torus)
but where will the various vertices be? Using the fact that every vertex
must be joined to every other, we get the two possibilities shown below
(left) for each of the points of the star. If we make one choice, say 4,
for the 1, 2 edge then the rest are determined, as 5, 6, 1, 2, 3 in
clockwise order. Let’s do that. [It will turn out, and I‘1ll leave this
to you, that the other choice, 5, would give a completely equivalent
analysis from this point on.] Then it’s not hard to argue that all the
remaining vertices are uniquely determined. I have filled in a number of
these in the grid below (right).
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Now, this infinite grid, should it represent a graph on the torus,
must have 14 different triangles, and any line we draw enclosing one copy
of each will represent the surface. It°s not hard to see that the grid
contains a repeating pattern with, in fact, 14 triangles, and there are
many ways to draw such a line. I have drawn one below which shows that
the surface is indeed a torus. [Look at the planar representation at the

beginning.] We have a copy of K7 on T . So Chr(T) =7 .
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The Klein Bottle K. Again we have X =0 , so as for the torus,
Chr(K) < 7 , and any drawing of K7 on K must have triangular faces.

But when we numbered such a grid as we have just done, we found our hand
forced at every move (except once) and the surface we got was a torus and
not a Klein bottle. [Had we chosen the 5, we would also have gotten a

torus.] We conclude K7 cannot be drawn on the Klein bottle! This

observation was made by Franklin only in 1934; Heawood in 1890 knew that
K7 could be drawn on T , but did not know it could not be drawn on K .

Now K6 is easy to draw on K (try it; wuse the above drawing on

P), so by Theorem 3, Chr(K) =6 . This is the second application of
Theorem 3, once for S and once for K .

Surfaces of negative characteristic. Theorems 1 and 2 give us
Chr(M) < [H] for all surfaces with x < 0 . Can K[H] be drawn on any

surface M with x <0 ? The answer is yes and was given bit by bit,
in a series of special cases between 1952 and 1967 by Ringel and Youngs
except for three instances which were settled in 1967 by Meyer, a
professor of French Literature. The techniques rely on symmetry
properties (as you might guess from the triangular grid) and make use of
group theory.

The conclusion is that Chr(M) = [H] for all surfaces with x <0 .
In fact this is true for all surfaces, regardless of X , except the Klein
bottle for which Chr(K) = 6 = [H]-1 . Strange to have the Klein bottle
as the one exception. Though I must say that the result, Chr(M) = [H]
for S and P , must be regarded as fortuitous because H , as can be
seen from the proof of Theorem 1, really has no significance when X > 0 .
Or does it? That relates to my question of whether a reasonable proof
that Chr(S) = 4 will ever be found.

References. Mathematical Recreations and Essays, Ball and Coxeter, 12th
Ed. (1974), U. of Toronto Press, contains a discussion of many of these
results. A more advanced treatment is found in Map Colour Theorem, G.
Ringel (1974), Springer-Verlag. '

[Hint. The icosohedron is a graph on S with every vertex of degree
5 ]



Norman Miller
1889-1984

Grace Miller
18941984

Professor Norman Miller, who taught at Queen’s for over forty years,
was born in Aylmer, Ontario on November 1, 1889 and died on May 31, 1984
in his ninety-fifth year. He entered Queen’s University in 1906, attended
Teacher’s College, taught school for two years and then, benefitting from
a scholarship, pursued graduate study in mathematics at Harvard. It may
well be that he was the first Canadian Mathematician to obtain a Harvard
Ph.D., with a thesis entitled "Some Problems connected with the Linear
Connectivity of Manifolds", 1916.

Immediately upon returning to Canada he enlisted in the army and was
on active service in France at the conclusion of World War I. In 1918-19
he taught in the "Kahki" University in the U.K.

In 1919, on the invitation of Professor John Matheson, (Head of
Mathematics and Dean of Arts and Science) he joined the Queen’s Department
of Mathematics which he served with extraordinary verve and enthusiasm
until his retirement in 1959. Through his clear lectures, his
encouragement of able students to take up the teaching of High School
mathematics, his active participation in a succession of organizations of
mathematics teachers and his- co-authorship of high school text-books,
Norman Miller made an enormous contribution to the teaching of mathematics
in the Province of Ontario. He was undoubtedly one of the most beloved
and respected teachers of mathematics in Canadian Universities.

Norman Miller’s interest went beyond mathematics. He was an active
United church man and, for twenty years, the Secretary of the Saturday
Club. This is a group of professors from all disciplines at Queen’s and
the Royal Military College which meets about twelve times a year to
discuss philosophical, social, or political issues. Miller’s minutes of
these meetings were always vivid and elegant. To the end of his life,
even when suffering from Alzheimer’s disease, Professor Miller projected
an aura of gentleness, graciousness and civility.

Professor Miller’s wife, Grace, who was an M.A. in mathematics at
Queen’s and a member of the faculty for a few years, predeceased him by
three weeks. She played a leading role in the Girl Guides of Canada was a
member of the School Board and made a very positive contribution to the
quality of life in Kingston. The Millers are survived by four daughters.

A.J. Coleman
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Norman Miller

I have received a letter about Norman and Grace Miller from Dr.
Jeanne (leCaine) Agnew, Mathematics Professor at Oklahoma State University
and Queen’s Alumna (Arts “38). Her letter captures much of the spirit of
the time, and I am grateful to her for permission to quote from it. PDT.

"I want to say a few words about my dear friend and counsellor,
Dr. Norman Miller. He and his charming wife passed away within weeks of
each other earlier this year.

I suppose the current student body and younger faculty, if they were
aware of him at all, saw him as an old man, hard of hearing, wearing thick
lensed glasses, yet walking to church every Sunday because it pleased him
to spend that hour in the sanctuary even though he could not hear the
sermon. Yet he is a man to whom the Mathematics Department at Queen’s
owes a great debt of gratitude for years of dedicated and creative
service.

Scholar, Teacher, and Friend, he excelled at all three. Did you know
he graduated from Harvard and was so well thought of there that he was
able to open some doors for me? Did you know that he published several
books among them a differential equations book that is beautifully concise
and complete? Did you know that after his retirement he created a number
of mathematical models from string? [They are still on display in Jeffery
Hall and even used in the classroom. PDT]

As a teacher he was demanding but never sarcastic. You did not mind
working when you knew your efforts would be appreciated. Among other
things he taught me Complex Variables. When I went to Harvard they
insisted that I retake the course - no course from Queen’s would be the
equivalent of a Harvard course! I made an A+ that semester (from G.D.
Birkhoff), not through any merit of Birkhoff or myself but because I had
such a solid foundation in the subject.

Like a great many other students in 1934, I came to Queen’s a gauche
midwesterner, feeling strange, scared, and out of place in the
conservatism of Kingston. Yet I was awarded the same care and concern
given to the better adjusted and more sophisticated students. The Millers
had a custom of having students to tea on Sunday afternoon. Their four
lovely daughters were then just old enough to help serve our cookies and
tea while we listed to Gilbert and Sullivan records. What a treat to be
accepted into a home!

Fortunately I have been able to keep a little contact with them over
the years. I have enjoyed their continued interest in the University and
their pride in their children, grandchildren, and great grandchildren. I
have been pleased to find that that pride extends almost as much to their
family of ex-students. I have never returned to Kingston without stopping
by to see them, and even when hands shook so it was hard to hold the pot
they insisted on sharing a cup of tea.

I had courses from many fine teachers at Queen’s - Dean Matheson,
Dr. Edgett, Dr. Gummer, Dr. Knox, Dr. MacIntosh. But at the top I place
the Millers who to me represented Queen’s at its best."
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Problem Solving Sessions for High School Students.

A series of biweekly problem solving sessions for high school
students is running this year in Jeffery Hall. The problems are
exploratory in nature and, during the two-hour session, students work in
small groups and make periodic progress reports to the class. Problems
are elementary, but challenging, are drawn from areas of combinatorics,
probability, geometry, number theory, graph theory and logic. There are
about 40 student participants (some 4 students from each of 10 schools)
and a few faithful teachers. Students come not only from Kingston, but
from as far away as Prescott, Smith’s Falls and Belleville. Problems are
selected, and the session is run, by Peter Taylor.

At the first session in September the following problem was put
forward. Two people, each with a well-shuffled deck of cards play the
version of SNAP in which you only call "snap" if the two cards which turn
up are identical, i.e. same denomination and same suit. What is the
probability there will be no call of "snap" during one play of all 52
cards? Try to guess whether you expect this probability to be greater
than or less than 1/2. Most people guess greater than. But the answer is
less than! The odds are that there will be a "snap". 1In fact the
probability of there being no snap is 1l/e = 1/2.718 . This was the
result the students had to find.

[Some of you will be wrinkling your brow. So you should. How could
it be exactly 1l/e ? Shouldn’t the answer depend on the number of cards
in the deck? 1Indeed it should. The exact answer for a deck of n cards
turns out to be Pn =1-1+1/2! - 1/3! + 1/4} = 1/5! + «o. 1/n! . As

n gets large this converges to 1l/e [Recall e =14+x+ x2/2! + oo,
in fact since the series is alternating with decreasing terms, the
difference between Pn' and 1/e 1is less than 1/(n+l)! . 1In particular

P52 is equal to 1l/e to 69 places of decimal.]

* * *

Quotations

From a talk given by Norman Miller to a group of Queen’s graduates in
March 1951. (From John Coleman)

"... to judge the value of a teacher’s work, my yardstick would be,
not what proportion of his pupils does he get through the final
examination, but does he make his pupils like the subject he teaches."

"I sometimes think that of all professional persons, the teacher,
when he comes to retirement, has the most enduring satisfactions as he
passes in review the years of his work and the generations of students
whom he has known and taught... Who, more than the teacher, has the right
to say with Ulysses ‘I am a part of all that I have met’ ... surely the
measure of a teacher is his ability to suffuse even routine work with the
romance of discovery, of pushing into the unknown sea ‘whose margin fades
forever and forever when I move’."
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Professor Johmn Ursell spoke at the Conference on Ordinary and Partial
Differential Equations on his new method for solving first order, ordinary
DE’s of degree l. He reports that the method is quite easy and expects
its early appearance in undergraduate texts.

Tor Gulliksen, University of Oslo, a former Ph.D. student of Paulo
Ribenboim, has been awarded an honorary doctorate by the University of
Stockholm.

Professor Jim Whitley has received a letter from Sally (Cockburn)
Oerlemans (M.Sc. “84). TIts enthusiasm prompts us to quote at length.

"After a month in Botswana we feel that we know enough of the country
to form our FIRST impressions. We LOVE it here - there is hardly a single
thing to complain about. The weather has been wonderful; although it’s
getting pretty hot around midday, the evenings are still very pleasant.
We’ve been given a brand-new, spacious semi-detached house on the school
compound, which is much nicer than anything we could afford in Canada.
David Matthews and the rest of the staff are EXTREMELY congenial - it took
us no time at all to feel totally assimilated into the Maru a Pula
community. The Botswana are, as you said, a beautiful people. It does
not take long to notice their gentleness, warmth and courtesy. People
SMILE here so much more often than in North America, it seems; just a
simple greeting of "Dumela, mma" or "Dumela, rra" elicits a friendly
response from a complete stranger. In Canada, it would elicit only
embarrassment, if anything. Our teaching jobs are exciting and
challenging, although I feel that it would be of greater benefit to both
the school AND me if I were given a full-time position, instead of my
present part-time status. There are enough math courses currently
distributed among science teachers, English teachers and David Matthews
himself to justify hiring another full-time mathematics teacher. However,
I’'m lucky to be working at all this term.

I’m EXTREMELY impressed with the level of mathematics at Maru a Pula.
There’s a second form class that does trigonometry, advanced geometry,
even matrix multiplication!! 1It’s absolutely incredible! 1I help
supervise that class, and answer individual questions, and I°m quite
astounded by how bright they are, and how quickly they pick up just about
any concept you feed them. More generally, the level of secondary school
math seems higher here than in Canada. The "A-level" students study
statistics that I didn’t learn until my 3rd year at Queen’s! 1I°ve no
doubt that teaching the sixth form students here is comparable to teaching
at a first-year university level.

We haven’t learnt much Setswana beyond the usual greeting dialogue,
yet, but we’ve enrolled in a language course at the Botswana Orientation
Centre that starts next week. It seems to me imperative to learn Setswana
in order to learn much about Botswana’s culture and people. -

We’ve seen so many slides and photos, and heard so many stories of
other teachers’ vacations in this area that we’re positively itching for
the Christmas holidays. We’ve bought a Chevrolet Nomad, a creature I1I°d
never seen or heard of before arriving in Botswana. It wasn’t too
expensive, and it seems very practical for the country’s numerous dirt
roads. We saw one of your Honda 50°s in David’s yard; it looked like a
fun machine, but not suitable for the elaborate safaris we’ve been
planning!"
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Coleman—-Ellis Lectureship Launched

In honour of Emeritus Professors A.J. Coleman and H.W. Ellis, the
Department of Mathematics and Statistics at Queen’s University has
established a special undergraduate lecture series which will expose some
interesting ideas in mathematics and statistics in an elementary fashion.
The lectures are held once a month on a Tuesday evening, and are followed
by refreshments and informal discussion. The first two lectures were
given this fall to enthusiastic audiences consisting of high school
students and teachers, university undergraduates and graduates, and even a
sprinkling of professors. The full program for 1984-85 is given below.

October 23 = The Chromatic Number of a Surface
Peter Taylor ,
A New Chapter in the Guiness Book of Records
Paulo Ribenboim
Infinitesimals and Non-Standard Analysis
Norman Rice
Morse Code, False Coins, Entropy, and Like Matters
Lorne Campbell

November 20

January 15

February 12

March 12 - Finite Geometry and a Golf Tournament Scheduling Problem

Norman Pullman
PROBLEMS
Problem 1. (An Educational Testing Service "Scholastic Aptitude Test"
question.) A ' €

D
B__.....
F H
c <)

In the regular tetrahedron ABCD and pyramid EFGHI shown above, all
faces except FGHI are equilateral triangles of equal size. If face ABC
were glued congruently to face EHI , how many faces would the resulting
solid have?

Problem 2. A fisherman is 1/3 of the way across a long, narrow, high
railway trestle when he hears a train coming behind him at 60 m.p.h.
(constant). He starts running instantly at his top (constant) speed, and
can just save his life by running to either end of the bridge. How fast
can he run?

Colin Blyth

Problem 3. Find the next term in this sequence.

(x+y)3 = x>+ y3 + 3xy(x+y)(x2+xy+y2)0
(x+y)5 = x5 + y5 + 5xy(x+y)(X2+xy+y2)1
(x+y)7 = x7 + y7 + 7xy(x+y)(x2+xy+y2)2 .

Peter Taylor and Doug Dillon.
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Perfect Ellipsoids

Let’s call an ellipsoid in 3-dimensional space empty if it contains
no integer points in its interior. Now blow such an ellipsoid up until it
touches some integer points and call it E . 1Is there another empty
ellipsoid, E° , distinct from E , which touches the same integer
points as E ? 1If there is no such ellipsoid call E perfect; other-
wise call E imperfect. To be perfect an ellipsoid has to touch a lot
of integer points. The purpose of this problem is to find out something
about perfect ellipsoids and the number of integer points they much touch.
An ellipsoid E 1is the solution set of an equation of the form

3 3

= z =
f(xl,xz,x3) ao + i=1 aixi + zij=1 aijxixj 0

where a and the matrix {aij} is positive definite; the

1y~ %31
interior of E 1is the set where £ <0 . Thus E 1is empty if

f(zl,zz,z3).z 0 for all integers zl, z2, z3 s E touches an integer

point (nl,nz,n3) if f(nl,nz,n3) =0 . Turning things around, this

equality provides a linear equation which the coefficients,
aO’al’aZ’aB’all’alz"'.’333 must satisfy. Perfection is assured for E

if the integer points which E touches provide a sufficient number of
such equations to determine the coefficients of £ . Since f has 10
coefficients (determined up to a scalar multiple), E must touch at least
9 integer points.

Of course we can look for perfect ellipsoids in any dimension. 1In
one dimension an ellipsoid amounts to a pair of points; an empty
ellipsoid is a pair of points which have no integer point lying in
between. Any adjacent pair of integer points is an empty ellipsoid (A
quadratic on R has 3-coefficients). With a simple argument (involving
the oddness and evenness of integers) it can be shown that there are no
perfect ellipsoids in 2 and 3-dimensions. Can you find such an argument?

It is known that there are no perfect ellipsoids in R4 , but this
fact was established using a complicated argument - it is conceivable,
however, that a simple argument would work. Can you find one? 1In five
dimensions the conjecture is - no perfect ellipsoids.

In 6 dimensions a perfect ellipsoid would have to touch at least 27
integer points (why?) and such an ellipsoid has been found! Consider the
following problem: Find all of the integer solutions of the following
pair of equatioms:

2 2 2 2 2 2 2 _
X + X, + Xg + X, + Xg + Xg ~ X, = 0
X, + X, + X4 + X, + Xg 6 " 3x7 +2=0 .
If you can find all of these integer solutions (and prove that you have
them all) you are well on your way to establishing the existence of
perfect ellipsoids in 6-dimensional space!

+ x

Bob Erdahl
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The Convex Needle Problem

In the last issue we posed a convex version of the Kakeya-Besicovitch
Needle Problem. It seemed like a nice little problem at the time, but it
turned out to be non-trivial and of some historical interest. We chanced
upon a reference to this very problem in Ball and Coxeter, p. 101, (Math.
Recreations and Essays, 12th Ed. 1974; what does this book not contain!)
to a 1921 paper in German. Hans Kummer agreed to read and understand this
paper and distil its results for you. It involved him in other papers,
equally German!, by Blaschke. I am most grateful for his efforts. It’s
really nice stuff, the sort of thing you don’t get much of anymore. Here
is Hans’ report.

By an oval we mean a compact (bounded and closed) convex set in the
plane. The following famous problem was posed early in this century by
the Japanese mathematician Fujiwara:

Find the oval of smallest area inside which a needle of unit length
can be completely turned around (without its endpoints ever leaving the
ovall)

Fujiwara conjectured (as most of use would do after some thought!)
that the minimum area is attained by the equilateral triangle of height 1,
and therefore of side length 2/¥3 and of area 1/¥Y3 . To prove the
Fujiwara conjecture however is a non-trivial matter. A proof using some
insights of W. Blaschke was designed in 1920 by the Hungarian
mathematician Julius Pal [Math. Ann. 83, 311-319, 1921]. Here I outline
for you Julius Pal’s proof in some detail.

With any oval C we will associate three important numbers. The
first is the area @ of C . The second is the width 6 defined as the
width of the narrowest rectangular strip (with parallel sides) that
completely contains C .

The third is the inner radius p defined as the radius of the largest
circle (called the inscribed circle) that can be drawn inside C . These
three numbers obey the three inequalities

2

a > mp (1)
§ > 2p (2)
§ < 3p 3)

Now (1) and (2) are obvious, but (3) is quite difficult and is due to
W. Blaschke (1915). At the same time Blaschke proved the following.

Theorem A
If & > 2p then the inscribed circle is unique and it shares with
the boundary of C (at least) three points Pl’ P2, P3 which form the

vertices of an acute angled triangle (cf. Fig. 2). We will not discuss
the proof of this.
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Now note that a needle of length L can be turned around inside C
if and only if &8 > L . It follows that a C of minimal area for a
needle of length 1 must have & =1 . The following immediately
establishes the conjecture of Fujiwara.

Theorem B ) _
Suppose C is an oval with 6§ =1 . Then a > 1//3 .

Outline of Proof. Defime r  =/1/%/3 = .43 . If p >r  then &> 1//3 , by (1)

0
and we are done. So henceforth we assume p < ro « Since § =1,
p < I, < 6/2 and Theorem A gives us three points Pi at which the
inscribed circle touches the boundary of C . Let QleQ3 be the

triangle formed from the tangents to the inscribed circle at the Pi .

It can be argued that C must lie inside this triangle (if it poked out
we could move the circle slightly and make it bigger). Let ai be the

areas of the four parts of C shown (below left). So o = Zai , and

a, = mp « We now estimate al o

First note (above centre) that OR1 2.140 (since 8 =1 , the parallel
lines are at least 1 unit apart). Since OP2 =p < 1-p (since p<1/2)

there must be a point X on the boundary of C between R1 and P2 at

which OX = 1-p exactly. Now the hatched region (above right) has area
(can you compute it?)

- 2 P
Bl = p/1-2p - p arccos 75 o

and is contained in the al region, so Bllﬁ al e A similar argument
2

applies to e, and @y . We get o = Zaiiz L)

Call the expression on the right £(p) . Then you can verify £°(p) > 0
on C%;% which implies that for 1/3 < p < r

a > £(p) > £(1/3) = 1//3
and we are done.

+ 3p/1-2p - 302 arccos T%; .

0 9

It is not too hard to argue, using the figures above, that the

equilateral triangle is unique: if &6 =1 and a = 1//3 , then C must
be the equilateral triangle of height 1.






A Financial Appeal

With the Department budget becoming increasingly
hard-pressed we have been wondering over the past year
whether we can really afford to continue to produce
and send out 1700 copies of the Communicator every 6
months. One idea we had was to reduce costs by
cutting circulation down to those who really wanted to
receive it: indeed to those who were prepared to fill
out and return a response which was included in the
last issue (June 1984). We got some 200 responses
back (from some 1100 alumni on our list), a percentage
we consider quite good and we would like to thank all
those who took the trouble (and cost) to respond. A
number of these responses included cheques for $10-$20
as a contribution towards production costs and we were
delighted to receive these. -

Indeed, this gave us the idea to maintain full
circulation for a few years, and try to subsidize the
magazine with voluntary contributions. To cut
circulation back drastically would mean losing touch
with many alumni, some of whom are undoubtedly
interested in the Department’s activities, and are or
may soon become, interested in our mathematical notes
and articles.

We have decided to try this out. For the next
few issues, each issue will contain a request for a
voluntary contribution. It costs approximately one
dollar to print and mail a single copy (labour costs
not included) so periodic contributions of, say, $5
every two years or $10 every 4-5 years would certainly
pay for issues received.

Along with your contribution, send along a piece
of news, an opinion or a problem, and we’ll put you
in the next issue! All contributions gratefully
received. Cheques should be made payable to The
Communicator, Queen’s University.




