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In October 1987, Queen’s hosted a celebration of the tercentary of the
publication of the Principia. Symposium participants included: Stephen
Smale (Field Medalist), Werner Israel (F.R.S., London), Sir Denys Wilkinson
(F.R.S., London), and Stephen Weinberg (Nobel Laureate).

The seminars and lectures presented will appear in the Spring 1988
edition of the Queen’s Quarterly, which may be obtained by writing the

Campus Bookstore.



SOME PROBLEMS THAT CAN BE SOLVED USING THE PIGEONHOLE PRINCIPLE
BY D. DE CAEN

Prof. de Caen is one of the fortunate few Canadian mathematicians
holding an N.S.E.R.C. University Research Fellowship. This award restricts
his teaching to about half the usual load and frees him to pursue his
research in discrete mathematics.

At a recent problem session for high school students, I presented the
Pigeonhole Principle to them. As you may know, this principle asserts that
no matter how we place N + 1 objects into N boxes, some box will receive
at least two objects. It is rather surprising that this obvious statement
has non-trivial consequences. In this note we shall present a number of
examples. Most of these problems are well known, and I have not tried to
trace the original sources.

To begin with, I would like to mention that the Pigeonhole Principle
follows from a more general principle, the Averaging Argument. This asserts
that given any numbers xl,xz,...,xN , then at least one of these numbers is
at least as large as the average (x1+...+xN)/N . Again, this is an obvious
statement, but it has useful applications, even startling ones. Note that
the Averaging Argument implies a more general form of the Pigeonhole
Principle: 1if one arbitrarily places A°*N + 1 objects into N boxes, then
some box receives at least A + 1 objects. Indeed, if we let X; denote
the number of objects in the ith box, then the average (x1+...+xN)/N
equals A + 1/N ; thus some X; is at least A + 1/N , and since Xs is an
integer in this case, we see that xi_visiat least A + 1 .

I will now present a list of problems, each solvable by means of the
Pigeonhole Principle or Averaging Argument. The classification I give into
easy and hard is quite subjective, of course. I will then present some
hints, solutions and comments. No peeking!

A. Relatively Easy Problems

1. Some two people in Ontario have the same number of hairs on their head.
(This is true even excluding all the bald people!)

2. At any party, some pair of guests have the same number of acquaintances
among those present.

3. Given a set of N integers, none of them divisible by N, then two of
them have difference divisible by N .

4, Place the integers 1 to 10 at random around a circle. Show that there
are three consecutive numbers whose sum is at least 17. Generalize!

B. Intermediate Problems
5. Two circular disks each have ten O’s and ten 1’s in some arbitrary

orders. Show that the disks can be superimposed so that at least ten
positions have the same digit.



6. Among any six people, there is a set of three mutual acquaintances or a
set of three mutual strangers. (Geometrical reformulation: Given six
points in space in general position, if we arbitrarily color the fifteen
segments Jjoining pairs of points by two colors, say black and white, then
there is necessarily a black triangle or a white triangle.)

7. Nine lattice points (i.e. points (x,y,z) with x, y and z integers)
are taken arbitrarily in space. Then at least one of the segments Joining
pairs of points contains another lattice point.

8. Given a set S of n + 1 distinct integers chosen from 1,2,...,2n ,
show that S contains two distinct integers A and B such that A
divides B .

C. Difficult Problems

9. Given any N integers, then some non-empty subset sums to an integer
divisible by N .

10. Generalization of problem 6: there is, for every integer k , an
integer R(k) with the following property. Given at least R(k) points in
space in general position, if we randomly two-color the segments Joining

pairs of points, there will necessarily be k points with all %k(k—l)
segments between pairs of these k points having the same color.

11. Given any sequence of N2 + 1 distinct integers, then there is an
increasing subsequence of N + 1 terms or a decreasing subsequence of

N + 1 terms. (Example: with N = 3 we are given the 10-sequence

7, 8, 9, 4, 5, 6, 1, 2, 3, 0 . This contains the decreasing subsequence
7, 5, 2, 0 , among others.)
12. Given m r-element sets Al’A ,...,Am and m s-element sets
B1’Bz""'Bm . We assume that Ai and Bj are disjoint if and only if
i=J; that is Ai n Bi =0 for all i and Ai n Bj # 0 whenever
1# J. Show that m 1is less than or equal to the binomial coefficient
r+s] _ (r+s)!
r rist °

We now proceed to outline some solutions. I hope that the references
given will encourage a few readers to look further into this area of
mathematics.

1. Here we need some outside information, namely that nobody has more than
100,000 hairs on their head, and Ontario has over six million inhabitants.
Given this, it follows that there is a set of over 60 Ontarians with
precisely the same number (67,311 perhaps) of hairs on their heads. This
exercise serves to point out that the Averaging Argument is an existential
argument, giving no method of finding an explicit set of equal-haired
people. It would be rather pointless to try and do so; people shed hair all
the time, and so the "solution sets" vary continually.



2. If N people are present at the party, then each guest has an
"acquaintance number" of between O and N - 1 inclusive. Since the
acquaintance numbers O , N - 1 cannot both occur, then by the Pigeonhole
Principle some two guests have the same number of acquaintances.

3. Hint: consider residues modulo N .

4. If 1,2,...,N are placed around a circle, then the average sum of r
consecutive integers is % e r ¢ (1+42+...+4N) = Eigill Thus, when r =3

and N = 10 , some three consecutive numbers sum to at least 16.5.

5. Hint: Consider one disk to be fixed. For each of the twenty ways of
placing the second disk on top of the first, let X; be the number of

matches for the ith placement. Show that X, + X, + ...+ X5 = 200 .

6. See the comments on problem 10.

7. There are eight possible odd-even patterns for a lattice point, for
example (even, odd, even). Thus two of our nine points, say P and Q ,

have the same odd-even pattern. The midpoint %(P+Q) is a lattice point.

8. The following elegant proof is due, I believe, to Esther Klein, many
years ago. Every integer can be written as a power of two times an odd
number, called the odd part of that integer. Among the numbers

1,2,...,2n , only n odd parts are available. Thus S contains integers
A and B having the same odd part. But then either A or B divides the
other.

9. Hint: If x1’X2""’XN are given, then consider
xl,x1+x2,x1+x2+x3,...,x1+x2+...+xN . If say x1+x2 and x1+x2+x3+x4 have
the same residue modulo N , then the difference x3+x4 is divisible by

N .

There is an interesting open problem generalizing this exercise. We
consider k-tuples a = (al,az,...,ak) of arbitrary integers. 1Is it true

that given any list of k(N-1) + 1 k-tuples of integers, there must be a
nonempty subset that sums to a k-tuple with all of its k coordinates
divisible by N ? A partial answer to this question is given in the paper
of Alon, Friedland and Kalai, Journal of Combinatorial Thebry B (1984),
pp. 79-91.

10. The assertion of this problem is known as Ramsey’s theorem and was first
proved by Frank Ramsey in 1930. In the past half-century an enormous body
of work has evolved from this basic result. See the book "Ramsey Theory" by
Graham, Rothschild and Spencer (Wiley 1980) for a detailed exposition of
some of these developments. I might add that all proofs known of Ramsey’s
theorem use the Pigeonhole Principle in an essential way; and Ramsey’s
theorem itself may be viewed as a "higher dimensional" analogue of the
Pigeonhole Principle. The Ramsey numbers R(k) are in general unknown.



11. This result was first stated and proved by Erddés and Szekeres in 1935.

I do not know who first came up with the following beautiful proof. For any
integer x of the given sequence, let £(x) be the length of a longest
increasing subsequence starting at x . (In the example given earlier,

2(4) =3 and £(2) =2 .) Now if there is an x with &(x) = N + 1 , we
are done. In the opposite case, the function £ takes on at most N
different values. Thus, by the Pigeonhole Principle, some N + 1 numbers
have equal {¢-value. It is not hard to see that these N + 1 numbers form a
decreasing subsequence.

12. This problem is one of my favorite examples of how the Averaging
Argument can be used to solve a difficult combinatorial problem. It may
indeed require considerable imagination to see what the "objects" and
"boxes" should be in a particular problem. It would take us too far afield
to discuss the solution of this problem. I encourage the reader instead to
look up the proof given as problem 13.32 in the book of L. Lovasz
"Combinatorial Problems and Exercises" (North-Holland 1979). This excellent
text has many problems that are solvable using the Averaging Argument and
other basic combinatorial principles.

In closing, a historical note. The number theorist Dirichlet was
perhaps the first to use the Pigeonhole Principle in a non-trivial manner.
There are many examples of the application of combinatorial principles to
problems in Number Theory. See section 4.6 of Niven and Zuckerman "An
Introduction to the Theory of Numbers" (Fourth edition, Wiley, 1980) for a
good selection of such problems.

SOFTWARE FOR SOLVING DIFFERENTIAL EQUATIONS
BY N. RICE AND J. VERNER

The June 1986 issue described Microcomputers for Queen’s Engineering.
That article outlined the program which encourages each Engineering student
entering first year to acquire an IBM-compatible micro-computer. A major
aspect of this program is the development of software both for complementing
traditional teaching techniques and for providing tools which may be used in
professional activity.

That issue and a sequel described Calculus Pad® and Matrixpad®. These
are computing software tools for processing functions and matrices
respectively. Members of the Department have continuedtthe development of
these and other tools. This fall a new package, DE Pad has been
distributed to students for the first time.

DE Pad is designed for processing initial value problems in ordinary
differential equations. Each second year engineering student takes a course
in this subject. DE Pad builds on the basic design of Calculus Pad with
similar but more flexible data entry, processing and graphical display.



After initiating the program by typing DEPAD, the user types in a
(system of) differential equation(s). A typical equation is
Y" + 81 Y = 27 C0S(10 T) , Y(0) = Y’ (0) =0 .

DE Pad then calculates an approximate a solution of this equation, and plots
the result:
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The program allows the user to choose which variables are to be plotted and
over what range. The program also provides a variety of supplementary
facilities: for instance, functions, constants and comments may be entered;
constants and initial conditions can be directly changed to study
corresponding changes in a solution; and values of the solution may be
displayed in a table.

To compare solutions derived by conventional techniques, the user may

enter exact solutions, plot them, and hence compare them with DE Pad’s
solution.

Two other modules complement the basic structure of DE Pad. For any
function entered, an approximate Fourier series of up to 9 terms can be
calculated. Such a Fourier series may be graphed or subsequently used in
the definition of a differential system. The solution of a DE with a

forcing function can be compared to that with the corresponding Fourier
series.

For differential systems based on time dynamics (for example, motion of
a satellite under forces from the earth and moon) the solutions can be
simulated in either two or three dimensions. The position of each body is
determined by current values of X and Y (and Z) components of the

system, and plotted on the screen. The user may thus "watch" the motion of
the system in "real time".



Work on improving and extending this program is continuing. Because
the hardware environment is always changing, a continuing effort to maintain
and improve all the software already developed is necessary. Other software
is planned or already under development; for instance, two separate projects
for computing tools for Statistics were initiated last summer. Look to
future issues for reports on further development.

NEW PROBLEMS

Brian Manning (B.Sc. ’75), who assumed the position of Head of
Mathematics at Adam Scott Collegiate Vocational Institute in Peterborough in
1983, observes that "there are numerous examples where the graphs of
y = sin x (and y = cos X) occur in connection with natural phenomena"; he
wonders whether there are any natural occurrences of the graph of y = tan x
(or other trigonometric functions). He notes that such occurrences might at
first be thought unlikely because the tangent function is discontinuous; but
there are discontinuities in nature. Note that what is wanted is examples
where the graph of the tangent function appears; there is, of course, no
shortage of illustrations of natural applications of the function itself.
Can anyone help?

Louis Levine, who teaches Mathematics at Humberside C. I. in Toronto,
is interested in the sequence 1, 2, 3, 5, 8, 12, 18, 27, 41,... whose.nth

3

> Xn—l] where rx] means the smallest integer greater than

term is x_ = [
n

or equal to x ; in other words, x = 3 X if x is even,
n 2 "n-1 n-1

X = 3 X + E if x is odd. He would like a formula for x
2 "n-1 2 n-1 n

Herb Shank, currently visiting at Queen’s, passes along the following
problem. Let f(x) be a polynomial with integer coefficients and of degree
d . Suppose that there are at least 4d integers n such that f(n) is
either #1 or a (positive or negative) prime. Show that f(x) is
irreducible, that is, show that there is no factorization f(x) = g(x)h(x)
where g(x) , h(x) are polynomials with integer coefficients and of
positive degree.

OLD PROBLEMS

Charlie Small, currently on leave at McMaster University, sends the
following comments on "Amending the Constitution" (problem in Summer 1987
issue). "The answers are 1093; 112, 380, 434, 167. Number-theory
afficionados will recognize 1093. For any odd prime p , it’s easy to prove

that 2p—1_1 is divisible by p (in fact Fermat’s "little theorem" says p

divides ap_l-l for any a not divisible by p ). It’s known that if

2p—1_1 is not divisible by p2 then the "first case" of Fermat’s Last

p P

Theorem is true for p , that is, x" + x° = zp has no solutions in



integers x , y , z not divisible by p . Now 1093 is famous as the

smallest prime p for which 2p—1_1 is divisible by p2 ; 3511 is the only
other, up to 3 x 109 . It’s known for other reasons that the first case of
F.L.T. does hold for p = 1093 and 3511; the "p2 doesn’t divide 2p—1_1"
criterion is sufficient, but not necessary, for the truth of F.L.T.Casel."

Jim Whitley’s problem (minimize the total area A enclosed by N

regular polygons with pre-specified side numbers nl,nz,..,nN and total

perimeter L ) was solved both by himself and by James Hodder, M.Sc 1981,
using Lagrange multipliers. It would be nice to have a direct proof,
without calculus, that the minimizing polygons satisfy Li/Ai = L/A for

each i =1,2,...,N.

MATH CONTEST WINNERS HOSTED BY QUEEN'S AND RMC

Each year the American High School Mathematics Exam (affectionately
known as AHSME) is written by thousands of students throughout North
America. The top thirty Ontario students are invited to a day-long seminar
at some Ontario university, and this year it was the turn of Queen’s and RMC
to do the honours. Most of the winners this year came from the Toronto or
Ottawa area, but there were a couple from right here in Kingston (and one
who drove down from Georgian Bay with his girlfriend).

The sessions began Sunday evening (April 24) with Jim Verner giving the
students some hands-on challenges with Calculus-Pad, the calculus graphics
software that has been developed in the Department (and has been featured in
previous Communicator articles). On Monday morning Leo Jonker and Malcolm
Griffin each gave lecture/problem/workshop sessions designed to engage
thirty mathematically quick, knowledgeable, aggressive, lively boys (no
girls, unfortunately).

After lunch the students were taken in an army bus to RMC (I thought
it would be good for them to walk over to RMC, but wiser heads prevailed).
There they had a lecture by Queen’s-grad-turned-RMC-prof Peter Buckholtz,
and got a tour of some of RMC’s impressive research facilities. After a
banquet in the Senior Officer’s Mess at RMC and a few games of billiards,
etc. in the Games Room, they headed off home.

Norman Rice (who gets the credit for all the
local organizing actually done by Marge Lambert).

AIM PROJECT MODULES FOR CLUB AND CLASS

The Mathematical Association of America (MAA) provides, free of charge,
excellent modules on Applications in Mathematics (AIM) suitable for high
school courses, club projects, career counseling, or independent study.

Each AIM module consists of a video cassette, resource books for the student
and for the teacher, and a computer diskette.



Available are:

Routing telephone service

Capturing a satellite

Volcanic eruption fallout

A backwater curve for the Windsor Locks Canal
Pricing auto insurance

Testing surface antennas.

QOO WN -

The problems are taken right from industry. Each video opens with an
on-site interview with a person from the industry, continues with some hints
and a career discussion, and concludes with a solution and a re-examination
of the problen.

For a brochure write the MAA, 1529 Eighteenth St., N.W., Washington,
D.C. 2003s.

NEWS

Among the honorary doctorates being granted by Queen’s this year is one
to Jeanne Le Caine Agnew, Emeritus Professor of Mathematics at the
University of Oklahoma. Dr. Agnew has received awards as Outstanding
Teacher, Outstanding Woman and Outstanding Educator at Oklahoma.

While at Queen’s she was influenced expecially by her Master’s
supervisor, Prof. Norman Miller (Communicator, January 1985). Assisted by
a Marty Memorial Scholarship, she completed a Ph.D. thesis in difference
equations at Harvard (Radcliffe) under the direction of G. D. Birkhoff.

Later, her teaching led to her main research interest, number theory.
Her graduate supervision and instruction in that field resulted in the book
‘Explorations in Number Theory’ (Brooks, Cole 1972).

Currently, she is an editor of the College Journal of Mathematics and
is working with the Mathematical Association of America on the development
of learning modules in applied mathematics (AIM, this Communicator).

A native of Port Arthur, Ontario, Dr. Agnew still returns annually to
the family cottage on Lake Superior.

Three Queen’s students won NSERC 1967 (travelling) graduate
scholarships this year: Virginia de Sa (Eng. Mathematics, Applied
Science Gold Medalist), Scott Wilson (Mathematics Gold Medalist, Putnam
team) and Krishna Rajagopal (Physics Gold Medalist, Putnam team).

Valued at $18,000 per year for up to four years, only 47 of these
prestigious scholarships are granted nationwide each year.

We have now received more than $5000 in contributions to the G. L.
Edgett Scholarship fund. It is expected that the conditions for the
scholarship will be settled during the summer and that the first scholarship
will be awarded in 1889.



THANK YOU

Our thanks to the many people who have sent donations to help keep the
Coomunicator coming. Our cost is approximately $1800.00 for each issue. If
you also would like to help, please send your cheque to the address below,
payable to the Communicator, Queen’s University.

Address for all correspondence:

Editor
Queen’s Mathematical Communicator
Department of Mathematics and Statistics
Queen’s University
Kingston, Ontario
K7L 3N6
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