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ATTRACTORS OF DYNAMICAL SYSTEMS
- AND A FRACTAL ATTRACTOR
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article was originally presented as a Coleman-Ellis Undergraduate Colloquium in
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The attractors of a dynamical system provide important information
about the behaviour of the dynamical system. Indeed, in some cases,
the system may be nearly completely analysed in terms of its
attractors. However, examples show that some appararently simple
systems have very complex attractors. These ideas will be outlined,
and an example due to Kaplan, Mallet-Paret and Yorke will be
described. The example gives a family of systems such that some
members of the family have a smooth torus as the attractor, while
others have an attractor which is nowhere differentiable. In fact,
it can be seen that the attractor does not have integer dimension -
it is a fractal set.

A falling body, a mass bouncing at the end of a spring, and the solar system are
familiar examples of dynamical systems. Roughly speaking, a dynamical system is
something which can be described as having a "state” at time 7 and a rule under which
the state changes or evolves with time. It will be useful to look at some examples.

The undamped spring.

Consider a mass M attached to a spring with spring constant k; the mass is free
to slide horizontally in the direction of the the spring axis on a smooth
(frictionless) surface. The other end of the spring is attached to a wall. Displace
the mass from its rest position and release it. The state of the system at time ¢ is
described by the displacement x() of the mass from its rest position. By Newton’s
law and Hooke’s law for springs, the state x satisfies the differential equation (the
dynamic for the system):

M d2x/dt =-kx

The general solution to this equation may be written:

x = A cos (0t + ¢), where o= k/M, and the amplitude A and the phase ¢ depend
on the initial conditions x(0) and x(0).

The undamped spring as a first-order system in the plane.

For some purposes it is more convenient to rewrite the spring equation as a pair
of first order differential equations. Let y(f) = dx/dr; then

dy/dt = dzx/dt2 = -(k/M)x, so that we may write the dynamical rule as

d[x] _ y _7To0o 1K

dtly| — |-(k/Mx]| ~ [-k/M. 0 ’
Then the general solution can be written in the form:

(x(0),y(®) = (A cos (0t+0), -®WA sin (Wt+d)).
We sometimes speak of these solution curves as "orbits" of the dynamical system; for
this system the orbits are ellipses in the xy-plane:
2+ ¢ o) = A2

This is sometimes called the "phase-plane” picture of the system.



The damped spring.

Suppose that there is a damping force, perhaps due to friction between the mass
and the surface on which it rests. Assume that the damping is proportional to the
velocity. Then the differential equation is ‘

M d*x/df +o dx/de +k x = 0,

or, as a first order system, gi[;f] = [ k(/)M ) é/M] B]

- *
The orbits can be written (x,y) = Ae P cos(qt+0), -q sin (qt+¢ )|, where p and g are

constants depending on M,a, and k, where A and ¢ depend on initial conditions, and ¢
depends on ¢ and p and g. Details may be found in many textbooks. Two numerically
computed orbits for this system are shown in Figure 1, for the case k&/M=9, o/M=0.6.
Notice that the orbits all spiral asymptotically toward the point (0,0). This point

is the attractor for this dynamical system. The next example has a more interesting
attracting set.

by e | (18

Figure 1. Phase-plane orbits of Figure 2.  Orbits of the
the damped spring van der Pol equation

The van der Pol oscillator.

Van der Pol introduced this system in 1927 in studying an electrical circuit
with a triode valve. We consider the equations in a transformed form, with special
choices of the parameters, but other forms, with other choices of constants, would
give qualitatively the same picture.

dufdt = -y + x(1x%);  dy/dt = x.

The orbits cannot be given in closed form, but orbits for various choices of intial
condition can be calculated numerically and plotted, as shown in Figure 2. Notice
that all orbits "home in" on an "attracting limit cycle", which is a simple smooth
closed curve, looking like a distorted ellipse. Orbits starting outside spiral in to
this closed orbit, while points inside spiral out. Notice also that in the picture

all orbits very quickly become indistinguishable from the attractor. Theory tells us
that the solution curves must remain forever distinct, but they get so close to the



cycle that they cannot be distinguished numerically. For practical purposes, the
dynamics of this system can be thought of as being only the dynamics on the limit
cycle. This is the prototypical "non-linear oscillator", and models like this are
fﬁought to explain how biological systems can have stable "clocks" regulating their
behaviour: even if perturbed, the system will quickly revert to its stable limit
cycle, with a well-defined period.

Notice that in this example the state space is two-dimensional, but the
attracting set is a smooth one-dimensional curve. In the next example, the attractor
is again a point attractor, but the state space is infinite-dimensional.

The heat equation.

Suppose a rod is situated between x = 0 and x = L. Let u(x,) be the
temperature at x at time #; it will sometimes be convenient to write ut(x) to denote

u(x,r). The function u satisfies the heat equation:

au/at = K azu/ax2
with boundary conditions ut(O) = ut(L) = 0. To determine an orbit of this system, we
must specify an initial state uo(x) = f(x). Notice that the "state space" of this

system is the space of continuous functions on [0,L] which vanish at x=0 and x=L: the
state space is infinite-dimensional. This problem may be solved by the method of
Fourier series to determine the evolution of the state in this infinite-dimensional
space of functions:

u (x) - u, (x).

o h
It is a standard result for this system that as — oo, whatever the initial state, the
solution always approaches the "steady state" solution
uss(x) = 0 for all x in [O,L].

This single "point" Uy in the infinite dimensional state space is the attractor for

all orbits of this system. The evolution for one particular initial state is shown
in Figure 3. (The rate at which u— 0 depends on the constant K.)

U, (x)

“10(%)

Figure 3. "Points” on an orbit of the heat equation

These examples illustrate that a dynamical system has the property that given
the state of the system "now": (x(0),y(0)), we can predict the state at a later time
T: (x(T),»(T)). For the examples so far, it is possible to make general statements
about what happens to all orbits as T — o; in some cases these general statements
are possible because we have a general solution, but for cases such as the van der



Pol oscillator the numerical calculations must be supplemented by some general
theory. There are more complicated dynamical systems for which scientists believe
they fully understand the dynamical laws, but where detailed prediction must be done
numerically. In some problems, such as the problem of planetary orbits in the solar
system, such numerical prediction may be fantastically accurate for thousands of
years - but it does not allow us to answer questions about the long-term behaviour of
the system with absolute confidence. The earth’s weather is another dynamical
system: meteorologists believe that they understand the dynamical laws, but
inevitable limitations in obtaining initial data (essentially, the weather conditions

at every point in the atmosphere), and the fact that solutions "depend sensitively on
initial data" seems to make prediction for more than a few days impossible.

One of the objectives of dynamical systems theory is to try to make general
statements about all orbits of each dynamical system. This somewhat grandiose goal
has to be tempered: one is often content to be able to say interesting things about
"most" or even "many" orbits of some dynamical systems having particular properties.

There are some systems which are governed by partial differential equations
which seem to have something like stable limit cycles (some chemical reactions, for
example, exhibit periodic behaviour). Encouraged by examples such as the van der Pol
oscillator and the heat equation, some researchers speculated, "Maybe for dynamical
systems with the "right" properties, even of high (infinite?) dimension, it will turn
out that all the important dynamics show up on a smooth low-dimensional attractor."
(The "right" properties certainly require that the system be "dissipative", which
means that a typical region in state space shrinks in volume as the system evolves in
time.) If true, this speculation would be particularly valuable for dealing with
infinite- dimensional problems like the heat equation, and more complicated
non-linear diffusion problems. The final example of this article shows that
unfortunately, attractors can fail to be smooth even for apparently simple systems,
so that the speculation cannot capture all the cases we might hope to include.

Discrete dynamical systems.

In the examples we have considered so far time has been a continuous variable.
Some problems can be described by assigning a state space U (which could be the real

numbers R, or [R2, or some space of functions, for example) and a "rule" (function)
f:U—U. The orbit of a point X, in U under this "dynamic" is defined to be {xo,

f(xo), f(f(xo)), f(f(f(xo))),...}. We think of this as representing the state at time
0, then after time interval 1, then after time interval 2, and so on.

Such discrete time systems are helpful in understanding continuous time models.
Suppose y(¢) is the orbit of a continuous time problem such as the damped spring.
Consider the points on that orbit only for integer values of #: {y(0), y(1),
¥(2),...}. The continuous time dynamic gives rise to a discrete rule y(n)—y(n+1),
which we may call f, so that f(y(n)) = y(n+1). This is called the "time 1 map"
corresponding to the continuous system, and it often reveals much of the interesting
information about the general system. The remaining examples will all be discrete
dynamical systems.

The only mappings of this kind are of the form f(x) = kx, where x € R, and k is

an arbitrary real multiplier. Then a typical orbit is {x,kx,kzx,...},,and it is easy

to see that the orbit approaches 0 as n—eo if and only if 0 < |k| < 1. -In this case
we say that the origin is an attractor for the system. If |k| > 1, the origin is a
repellor for the system. In this and subsequent cases, the possibility that k is =
negative means that the mapping involves a reflection; it does not affect whether a
set is attracting or repelling, so from now on, we take £ > 0.



Linear mappings of the plane 52 with distinct real eigenvalues.

2—>|R2 can be represented by a

By elementary linear algebra, such a mapping f:R
diagonalized matrix mapping:

[Yx]_)[g 2] Bc] so that f"(x,y) = (a"x,b™y).

Case 1. Suppose that O<a<b<l. Then it is easy to see that the orbit of any point
(x,y) tends to (0,0) as n—wo, so the origin is the attractor for this dynamical

system. Since a<b, any orbit will approach the y-axis (where x=0) more rapidly than
it approaches the x-axis. Draw a few orbits for the case a=0.1, b=0.9.

Case 2. Suppose that 1<a<b. Then every orbit is repelled from the origin, with
y-coordinates growing faster than x-coordinates as we follow a single orbit. In
fact, this is just the inverse of Case 1.

Case 3. Suppose that a<l<b. Then as n—swoo, the x-coordinate of f"(x,y) = (anx,bny)
tends to 0, while the y-coordinate tends to teo. The points of a single orbit will

all fall on one branch of a curve resembling a hyperbola, with the coordinate axes as
its asymptotes. In this case, the origin is a saddle point for the dynamical system.

An important special case.
Consider the mapping F:|R2—>|R2 defined by [;] — [% i] [yx] From linear

algebra, we know that we can understand the mapping in terms of eigenvalues and
eigenvectors. For this mapping, the eigenvalues are
?»1 = (3-v5)/2 = 0.382, and 7&2 = (3+v5)/2 = 2.618

with corresponding eigenvectors
vy = 2,-(1+v5)) = (2,-3.24), and Vy = (2,-1+v5) = (2,1.24).

For later reference, note that v, determines a line in R> with irrational slope

-(1+v5)/2.

If we introduce a new coordinate system, with the axes determined by the two
eigenvectors 2] and vy, We see that this linear mapping F is a special case of Case 3

above, because 0<)»1<1<7»2. Thus (0,0) is a saddle point for the mapping F.

The mapping F has two important special properties. First, because the entries
in the matrix are all integers, it follows that if the coordinates of (x,y) are
integers, then the coordinates of F(x,y) are also integers. We say that "F maps the
integer lattice to the integer lattice". Second, the determinant of the matrix of F
is easily calculated to be 1. It follows by standard linear algebra that F is an
"area-preserving” map: it maps a square of area 1 to a parallelogram of area 1.
Also, 7»17\.2 = 1.

2

The torus IZ obtained by identification from the plane R”.

Recall that Xy is congruent to x,, modulo 1 if the difference X1y is an
integer multiple of 1; we write X(= Xy (mod 1). For example, 4.35 = 0.35 (mod 1).
It is easy to see that this is an equivalence relation on the real numbers (xlE.xl; if
X{= Xy then X5=X15 if X(= Xy and Xy= X3, then X{= X3 (mod 1)). We can put the set of

real numbers into congruence classes, modulo 1: for example, the congruence class of
0.35, denoted [0.35] consists of {...,-1.65,-0.65,0.35,1.35,...}. We speak of any

one of these numbers as a "representative" of the class [0.35] We often think of
"identifying" all the points in any one equivalence class, and then the real line is
"rolled up" into a circle, with 0 coinciding with 1, with 2, and so on. It is




important to note that we can do the usual arithmetic with congruence classes: for
example, [x]+[y]=[x+y].

In terms of this congruence, we define an equivalence relation on the points of

the plane [R2 Let (x,y)"(z,w) if x = z (mod 1) and y = w (mod 1). Then identify
points which are equivalent under this relation, so, for example, identify
(0.35,0. 67) with (3.35,5.67). This "rolls up" the plane in the x-direction, and the

y-direction, and the result is called the (2-)torus 1T2 To visualize it, first roll

up the plane in the x-direction: this gives rise to a cylinder, with an equivalence
class of vertical lines in the plane corresponding to one vertical line on the
cylinder. Now make imaginary cuts at y=0 and y=1, giving circular cross-sections.
These two circles are to be identified, giving rise to the torus, which looks like

the surface of an old-fashioned donut. There are of course many points in R

corresponding to each point in 12. It is convenient to think of the points in the

half-closed, half-open square 0<x<1, 0<y<1l in the plane as being the "fundamental
representatives” of the points on the torus. With this understanding, we may treat
the coordinates (0.3,0.56), for example, as the coordinates of a point on the torus.

Anosov diffeomorphisms (hyperbolic toral automorphisms).

Now recall the linear map F from [R2 to [R2 with matrix % i . Since the matrix

has integer entries, we can define a mapping of f:1r2—>1r2 by letting

f([x],ly]) = [% i] [yx] (coordinates modulo 1). For example,

s - [ {]5] - (8] (%] oo »
so f maps the point (2/3,2/3) on the torus to the point (0,1/3) on the torus. We

should check that the mapping is properly defined on the torus: the image of a point
on the torus should not depend on the representative chosen to represent the point on
the torus. In our example, it is easy to see that if (2/3,2/3) is represented by

(5/3 8/3) for example, it would be mapped to (18/3,13/3)7(0,1/3), so that the image
point is the same. In fact, the image point depends only on the point on the torus,
and not on which representative we use, because the matrix has integer entries.

Because the matrix % % has determinant 1, the mapping F:IR2—>|R2 is an area

preserving linear map. It follows that the mapping f induced on the torus is an

invertible mapping: f'1 must exist: it can be obtained from the inverse matrix for F,
but we do not need an explicit description.

We thus have an invertible mapping f defined on the torus 1Tz, which is called a
hyperbolic toral automorphism (or Anosov diffeomorphism). It is easy to see that any
2 by 2 matrix with integer entries, determinant 1, and distinct real eigenvalues
would give a mapping with the same properties. We now consider f as a discrete

dynamical system with 12 as state space. We denote a point on the torus by the
coordinates of its fundamental representative. Some properties follow easily.

(1) (0,0) is a fixed point of f (obvious), in fact it is the only fixed point of f.
It is a saddle point for the system.

(2) Any point with rational coordinates is a periodic point of f. For example, the
orbit of (2/3,2/3) is
(2/3,2/3)—1£(2/3,2/3)=(0,1/3)—£(0,1/3)=(1/3,1/3)—£(1/3,1/3)=(0,2/3)
—f£(0,2/3)=(2/3,2/3).
Since this required four iterations of f, (2/3,2/3) is a point of period 4.



Generally, if a point on the torus has rational coordinates, by bringing the
coordinates to a common denominator and recalling that we may always represent a
point by its fundamental representative, we may assume that it is of the form
(w/q.rlq) where 0sp<q and 0Osr<q. If we calculate the orbit of this point, images of
every order will all have denominator ¢ and numerators between O and q. Since there
are only finitely many such possible image points, the orbit must eventually start
repeating, and therefore every rational point belongs to a periodic orbit. Since
there are infinitely many possible denominators for rational points, there are
infinitely many periodic orbits.

(3) Every point on the torus is the limit of a sequence of points with rational
coordinates, so the periodic points of f are dense in the torus.

(4) Consider the eigenvector Yy of the mapping F of the plane. F(!2)= ALY
F(F(!z))=7\,22!2, and so on. These images of Yy under iterations of F all lic on a
line in the plane through (0,0) which has irrational slope (because of the components
of 12). The set on the torus corresponding to this line in the plane is a "line" on
the torus; in the fundamental region of the plane, this "line" is represented by an
infinite number of line segments all with the same slope. The "line" never closes in

(Contrast a line such as 2y=3x in the plane which gives a curve on the torus
which does "close" on itself, since (2,3) is on the line, and (2,3)°(0,0).) One can

show that the sequence of points {f"(y_z)} gets arbitrarily close to any point in the
torus infinitely often; this is a dense orbit.

(5) It follows from above that the smallest set in 1r2 which can be thought of as an
attractor for the dynamical system f is the entire torus. This is already a very
complex dynamical system.

The example of Kaglan, Mallet-Paret and Yorke
~ - a nowhere differentiable torus as an attractor.

Let M denote the set {(x,y,2): (x,y)e?, ZeR} = FZXIR. You may find it helpful

to think of this as the part of IR3 sitting above and below the fundamental region in
the xy-plane corresponding to the torus. Introduce a dynamical system g on this

state space: let g(x,y,z) = (f(x,y),uz +p(x,y)), where f is the hyperbolic toral
automorphism above, where O<u<1, and where p(x,y) is differentiable and periodic in x

and in y with period 1, so that p is properly defined as a function on 1r2 (For
example, you might take p(x,y) = sin 4nx cos 6my.)

We find the attracting set for this dynamical system on M by the method of the

graph transform. Consider the graph of any smooth function over 12, say ¢(x,y). Let
Ny= {(y,2): z = ¢(x,y)}, so that Ny is the set of points making up the graph of

¢:1r2—>lR. We can visualize this as a graph in 3-space sitting over the fundamental
region in the xy-plane. We now consider the image of this set of points under the
dynamic g; let [Nl.be the image of Ny

Ny = 8y = {xy.2):(xy.eNy} = {(Fry), ud(xy) +p(x.y))}.
Since f is an invertible (one-to-one) mapping of the torus, we see that Ny is again a
graph over the torus (visualized again as the fundamental region).

Repeat:
Ny = 8Ny = {g (f(x,y), no(xy) +p(xy) )}



= { (fEGy), Wud(xy) +p(xy) +pExy))}
= { Py, 1200y +1pey) +pEE).
By repeating k times, we get »
w, = g0y ) = (Ko, wFoey) i Tpey) w1 Zpecy) +.
@ 200) @ o) ) )

ki, .
= e, wRocy) 1 o ey ) ).
J_

Now we want to know what happens as k—»o.

(1) Since O<u<1, uk—>0, so that N_= lim N, is independent of the function ¢: every

k
function ¢ leads to the same limiting set. It follows that N_ is the attractor for

our dynamical system. I
(2) Let (u,v) =,tk (x,y); note that fk'l'J xy) = f'l_'] (w,v). Then

| S |
N, = { @y, () +'Zo wWp Jwv) ) }, where (¥) —0 as k—swo.
j._

k-1 . , oo 7 .
Let wu) =lim § wpd v = ¥ wWo 1 wuy)). Since p is
koo 2O =0 | |

differentiable on ]rz, it is certainly continuous and bounded on the closed unit
square 0<x,y<l. Since O<p<l, it follows by a standard theorem (the "Weierstrass
M-test") that the series for y(u,v) converges uniformly and the sum y(u,v) is
continuous on 1r2 . Thus the attractor N__ is the graph of the continuous function
y(u,v) defined on 1r2. This means that the attractor is itself at least approximately
like the torus - it is homeomorphic to the torus.

(3). Is the attractor a smooth (differentiable) set, like our usuali vcrsiori of vz?
To answer this we need to be able to decide whether y(u,) is a differentiable

function. Note that the terms in the sum for y involve the function £19. Since
the exponents here are negative, we will have most difficulty trying to differentiate
in the direction of Vi the eigenvector corresponding to 7~1<1. (To see why this

shou}d be so, note }hat sin kt is "bumpier" than sin (#/k) for k>1, and recall that
Fl9,) = 4y, by standard linear algebra.)
Let (V) = V) ,ng consider
. R g 171 oY R b -l
wivp = 1 “’P([l 1] ! ’!1] =1 Wp(hy " Vrvy).
J= . J=

Since 2] is fixed, let'q(s)=p(sy_1), and then,,:\v(tgl) = z uiq(ll"l'jt). “Now try to
‘ Lo

differentiate term-by-term, noting the ich‘ain\rule':
d AR N W - T fLo LS RS
di \V(tzl) = Z MJKI 4 qul Jt) =_z [ x-] }\'l ! q(7»1 ]t)°
J=0 J=0 * 1 |
Such term-by-term differentiation is justified provided the series after



differentiation is uniformly convergent - and the resulting series in this case is
uniformly convergent if p < ?»1. Thus y can be shown to be differentiable if the

factor u which represents contraction onto the attracting torus is smaller (more
strongly contracting) than the eigenvalue 7L1 which describes contraction within the

torus.
On the other hand, if p > ll, the series does not converge, and in general the

torus is nowhere differentiable. However, the theorem we have just used is a
"one-way" theorem: if the series does not converge, the theorem says nothing about
differentiability. To be sure, one would have to examine the function g, which is
"almost periodic”". A considerable part of the paper of Kaplan, Mallet-Paret and
Yorke is concerned with the extraordinarily restrictive conditions on p(x,y) under
which the torus is differentiable even when p > 2»1.

If y is differentiable, then N_ is a smooth surface, and it must have dimension

2. We shall see that the dimension is greater than 2 in the nowhere differentiable
case where u > ?»1.

Fractal Dimension.
Our usual notions about dimension are based on experience with simple familiar

sets in |R3. " For example, a smooth curve is one-dimensional, a smooth surface is

two-dimensional while a solid cube is 3-dimensional. One way to try to capture these
ideas is to ask: how many open balls (solid spheres) of radius € are required to ,
cover the set?. Call the minimum number of balls N(€). Simple pictures suggest that

for a smooth curve, N(g) is roughly proportional to (1/g): write N(e)"(l/e)l. For a
smooth surface, N(e)"(l/e)z, while for a simple cube, N(s)"(l/e)_3. It appears that

the exponent in these expressions gives the dimension, so for any set S in IR3, let
N(e) be the minimum number of open balls of radius € required to cover S, and define

- . log (N(€))

= lim .
AN

This is the "Kolmogorov capacity" of S, sometimes called the "fractal dimension" of
S. For curves, surfaces, and solids, it does give the expected dimensions, but there
are sets which have non-integer dimension, and they are sometimes called "fractal
sets". I digress to describe the simplest and most famous such set.

The Cantor middle third set.
Let C1 be the set obtained by deleting from the interval [0,1] its open middle
third (1/3,2/3). Let (22 be the set obtained from C1 by deleting the middle third of
each gf the pieces of Cl; that is, delete (1/9,2/9) and (7/9,8/9). Continue in this
fashion, obtaining C,.C3,...C

- - The Cantor set C is the limit of this sequence

of sets. The Cantor set is the standard example of a "totally disconnected perfect”
set; here "perfect” means that the set has no isolated points. Note also following
properties. . g

(1) C has "measure zero": we started with an interval of length 1 and subtracted an
infinite set of intervals of total length 1, since

1/3 4219 +4/27 +..+281 /3% 4 = 1. Nevertheless, by a fairly simple argument it
can be shown that the points of C are in one-to-one correspondence with the points of
the interval - [0,1]. : -

(2) To determine the -fractal dimension of C, use balls of -radius e=(1/3)k; we need



2+l balls to cover C (since we must cover all end-points of subintervals of Ck)’ It

k+1
follows that d(C) = lim log 2k - log 2 = 0.63. so the Cantor set has non-integral
' ke log 3 log 3

dimension.
The Lyapunov dimension of the attracting torus.

It is not always easy to construct the coverings required to compute the
Kolmogorov capacity, so other definitions of dimension have been introduced. These
give the same dimension in many reasonable(?) cases, but give differing results for
some examples.. The Lyapunov dimension can be calculated for the attractor of some
dynamical systems and Kaplan, Mallet- Paret and Yorke show that it gives the same
result as the Kolmogorov capacity for the nowhere differentiable torus.

Suppose that g is a differentiable mapping from a 3-dimensional state space to
itself. Let us suppose (to over-simplify) that its linear approximation, the
differential dg, is a diagonalized matrix of the form

0O 0
[‘61 L, 0 |, where L;2 L,2 L3> 0, and L;L,L4< 1. The fact that the product is less
0 07 Lg

than 1 means that the mapping shrinks volumes, so that it is reasonable to expect the
system to have an attracting set. The Li are the "Lyapunov numbers" of the system;

in general, these have to be defined rather more elaborately. In our simplified case
the matrix is diagonal, so g stretches lengths in the first coordinate direction by
factor Ll’ in the second coordinate direction by L2, and in the third coordinate

direction by Lj. Thus the greatest rate of growth of lengths under the mapping g is
Ll' By considering two-dimensional subspaces, we see that the greatest rate of
growth of area is L1L2, and of volume, L1L2L3.

Now consider a candidate for the attracting set of g. It must neither grow nor
shrink overall under the action of g: if it grows, it is too small to be the
attractor, if it shrinks it is too big. This is a heuristic introduction to the
(partial) definition of Lyapunov dimension:

if L1=1, L1L2<1, dimL(attractor of g) =1

if L1L2=1, L1L2L3<1, dimL(attractor of g) =2;

. . log (L1L2)
(This last line is not exactly obvious, but because of the inequalities, it is easy
to see that in this case 2 < dimL <3)

To apply this to the example of the attracting torus, we use the fact that the
Lyapunov numbers are the eigenvalues ?»1, ).2 and the factor u which causes the

contraction onto the attractor. Note that all are positive, and that since )»17»2=1
and p<1, they have product less than 1 as required.

Case 1. p<A;<1<h,. Then L1=7»2, Ly=A;» Ly=i, so LiLy=1, L;L,L3<1, and the
dimension of the attractor is 2. This is the case where the attracting torus is
differentiable.

Case 2. ?»1<u<1<7\.2. Then L1=)»2’ L2=u, L3=7»1, SO L1L2>1, L1L2L3<1, and the
dimension of the attractor is between 2 and 3. The attractor cannot be a
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differentiable surface in.this case. - (Note that this calculation of Lyapunov
dimension does not give the correct dimension of the attracting torus ‘in the truly
exceptional cases where ,}‘1,<“*: yet the torus is nevertheless differentiable.)

It is quite striking that this change size of W relative to the eigenvalue A

can change the attractor from "nice" to "nasty". John Mallet-Paret likened it to
ironing a starched shirt: the starch causes some stickiness which causes the shirt to
"contract” (that is, wrinkle) along the surface unless the force flattening the shirt
is stronger (that is, unless W is small enough so that the contraction onto the
surface is faster than the contraction along the surface).

Bibliography

An excellent readable popular book about dynamical systems is Chaos by James
Gleick. A book written for undergraduate mathematicians which describes
one-dimensional dynamical systems quite thoroughly and also introduces the byperbolic
toral automorphisms and other interesting dynamical systems isAn Introduction to
Chaotic Dynamical Systems by Robert L. Devaney, published by Benjamin/Cummings. = The
paper by J.L. Kaplan, J. Mallet-Paret, and J.A.Yorke is entitled The Lyapunov '
dimension. of a nowhere differentiable antracting torus; it appeared in Ergodic Theory
and Dynamical Systems, volume 4 (1984), pp.261-281.

The figures were produced using a PC and a dot matrix printer. Figures 1 and 2
were generated -with PhasePlane by B. Ermentrout, published by Brooks/Cole. Figure 3
was produced with Calculus Pad by Ian Bell,Jon Davis, and Steve Rice (at Queen’s),
also distributed by Brooks/Cole.

NEWS

Prof. A. V. Geramita was recently elected Vice-President of the Canadian
Mathematical Society.

Prof. A. M. Herzberg becomes President of the Statistical Society of Canada July 1st.

Prof. J. A. Whitley recently won the Frank Knox Award for Excellence in
Teaching.

Profs. R. Giles, K. Oberai, N. Pullman and W. Woodside have completed 25 years
of service to the Department.

Profs. L. Broekhoven, H. A. Still, R. C. Willmott and E. J. Woods have retired.
Dr. R. M. Erdahl has been promoted to full professor.
Drs. D. de Caen, E. Kani and M. A. Maes have been promoted to associate professor.

NEWS OF MTHE GRADUATES

Mike Lazier (’76) is a Mathematics and Physics teacher at the new Holy Cross
School in Kingston Township.

Stewart Crozier (’80) has completed his Ph.D. in Electrical Engineering at
Carleton University and is working at the Communications Research Centre in Ottawa.

Jamie McLellan (’81) is an Assistant Professor in the Dept. of Chemical
Engineering at Queen’s.
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Marilyn Lightstone (’85) and John Mackinnon (’84) were married at Queen’s last
August. Both are nearing completion of their Ph.D.’s in Fluid Dynamics at the
University of Waterloo. Among the guests at their wedding were former classmates
llgaglpd Al-Aidroos, Charles Arnoldi, Ian Bell, Peter Giardetti, Bob Pronk and Karen

udie.

Mark Green (°87) recently completed his Ph.D. in Structural Engineering at
Cambridge University and is now a Post-doctoral Fellow in the Dept. of Civil
Engineering at Queen’s.

MATHEMATICS AND ENGINEERING SEMINAR

For the past two years, fourth year Math & Engineering students have been
required to attend a weekly seminar in the Fall Term. The speakers are mostly from
outside the university - from business, industry or government laboratories, and they
speak about various aspects of engineering careers. Topics have included: the
professional responsibilities of an engineer; how to succeed as an entrepreneur; an
application of statistics in process control; control of rolling mills; design of
electrical generators; a consulting problem in civil engineering. Students are
required to write a brief report on each talk, so that the course serves to reinforce
writing skills as well as providing insight into a variety of engineering careers.

We thought you might enjoy reading one of this year’s reports. It is based on a
seminar presented by Gillian Woodruff, who graduated from Mathematics and Engineering
at Queen’s in 1980.

An Invitation to Mathematics and Engineering Graduates

Students naturally find talks from Mathematics and Engineering graduates
particularly interesting. So far, in addition to Gillian, Bob Lyons (Sc.’67), John
Dorland (Sc.’68), Vijay Bhargava (Sc.’70), John Redding (Sc.’73), Mike Dick (Sc.’77),
Don McLaren (Sc.’80), Ross Ethier (Sc.’80), James McLellan (Sc.’81), and Amanda
Hubbard (Sc.’83) have come to present seminars. We invite all Mathematics and
Engineering graduates to consider contributing in this way to the education of your
successors. Write to Dr. Dan Norman, Department of Mathematics and Statistics.

Performance Modelling for the Telecommunications Industry
by Brad McFarlane

A prediction for the next few decades is that everyone will be connected to a
vast network, linking personal computers, phones, cable TV, and just about any other
data service. Usually omitted in the prediction is how the network is going to work.

On Friday, November 16, 1990, Ms. Gillian Woodruff, a manager at Bell-Northern
Research currently on leave to do a Ph.D. in Electrical Engineering, spoke to a class
of Queen’s Mathematics & Engineering students about the way the phone system
currently works, and how it will be made better.

When a normal call is made, a complex series of messages is sent back and forth
along branch lines, through switches and along trunk (main) lines, both to request
channels and to indicate the phone has been picked up, or that the phone should ring.
This message exchange (which happens before you can talk to the other end) causes two
important delays: dial-tone delay, which is the time between picking up the phone and
when the dial tone sounds (which is usually negligible; however, on some older
systems there is a noticeable delay); and post-dialing delay, which is the time
between when the last digit is entered and when the phone on the other end rings
(most noticeable on long-distance calls).
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In order to minimize the delays (while at the same time not overspending on
equipment), the phone company models the system. The simulation involves injecting
messages into the model, and queueing them up if the server which is to handle them
is busy. The time a message spends in the queue and the time it takes to be
processed are measured and analyzed. The difficult part of the model is the
assumptions made about incoming messages: whether arrivals are independent (which
they may not be, as some messages come in bunches), whether messages are processed
first-come first-serve or whether there are priorities, and the statistical model
used for arrival times. Things are further complicated when a network is modelled, as
the output from one server becomes the input to another. Models are also used to
investigate call blocking, which can happen when a line is needed but none is
available.

In order to gauge traffic, Bell used to use an old rule of thumb, which involved
measuring traffic during a predetermined "busy month", averaging over the season and
time of day, and applying some fudging. The new estimation method ("extreme value
engineering") takes the average daily peak traffic and its standard deviation, giving
much more reliable and standard data.

Ms. Woodruff is using these models to figure out things like how big message
buffers must be and how many trunk lines, switching modules, etc. have to be put in
place now to meet the traffic needs in the future.

Future needs are definitely going to increase. Currently, there are dedicated
separate lines and switching systems for voice and digital (computer) data. The
Integrated Services Digital Network (ISDN), projected to be the next revolution in
communications, combines these, allowing you to plug a computer into a standard home
jack to transfer data over normal phone lines without using a modem. Further in the
future, Broadband ISDN will allow sending things such as full motion video over phone
lines. These new developments are more flexible, faster, and more integrated than
the present service. However, they mean more different kinds of data are going over
it, making for a more complex and vulnerable system (more connections carrying more
data means more chances for broken connections, and more complex means of figuring
out how to survive a break).

‘That’s the challenge for the future: ~defining new rules for how robust, complex,
flexible, and survivable the system will be, while providing the service the
customers want.

OLD PROBLEMS
SOLUTIONS TO MARTIN KREUZER’S PROBLEMS - BY THE PROPOSER

PROBLEM 1: If every point in the plane has one of n colours, show that there is a
rectangle with vertices all of the same colour.

SOLUTION: Draw a line ¢ and consider n2 + 1 of its points. At least n + 1 of
them have the same colour c . Starting from those n + 1 points draw perpendicular
lines &g - Also draw parallels P1:Pgsees of ¢. If two or more

intersection points of some p. with ¢,,....2 have the colour c , then the
p p; 1 n+1 y

form together with the corresponding points of £ a rectangle with c-coloured
vertices. Otherwise, if on each parallel p; at most one of the intersection points

with &b i has colour c , a different colour has to occur at least twice.

Those two equicoloured intersection points can be any of n;l = %n(n+1) pairs and

any of n - 1 colours. Hence, if we draw N = %(n—l)n(n+1) +1 parallels PP
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one pair of non-c-coloured intersection points with £,..., has to be repeated,

12
n+l
and those two pairs form the set of vertices of an equicoloured rectangle.

QED
PROBLEM 2: If every point of the plane is coloured either red or blue, show that
there is a square with equicoloured vertices.

SOLUTION: We proceed in two steps. First we show that there is a line which
contains three equidistant points of the same colour.

Draw any line and mark three points. At least two of them have the same colour,
say red. Label them O and 1 and use this to identify the points of the line with the
real numbers. Suppose the claim is false. Then the point 2 has to be blue, because
otherwise {0,1,2) is an equidistant equicoloured set of points. In the same manner
we conclude that -1 is blue, 5 is red, -4 is red, 3 is blue and 4 is red. But then
the set {-4,0,4) contradicts our assumption. Therefore the claim is true.

In the second step we label those three equidistant, equicoloured points (0,1),

(0,0) and (0,-1) and identify the plane with lR2 . W.Lo.g. their colour is red. We
suppose the claim of the problem is false, i.e. there is no square with equicoloured
vertices. For the points (-1,0) and (1,0) there are two cases.

CASE a: Suppose that one of (-1,0) and (1,0) is blue and the other red. By
symmetry, we can assume that (-1,0) is blue and (1,0) is red. We conclude that (1,1)
and (1,-1) are both blue. For the pair {(2,1),(2,-1)} there are two subcases.

SUBCASE al: Either (2,1) or (2,-1) is blue, and the other one is red. W.lo.g. let
(2,-1) be blue and (2,1) be red. Then also (0,-2) has to be red. Now, if (3,-1) is
red, then (1,-2) must be blue, (2,-2) red, (2,-3) blue, (2,0) blue, (-1,-3) red,

(1,-4) blue, (0,-3) red, (-1,-2) blue, (-1,-4) red, and (0,-4) gives us a

contradiction. Similarly if (3,-1) is blue, then (3,1) has to be red, (3,-2) blue,

(2,-2) red, (4,-1) blue, (4,-2) red, (1,-3) blue, (2,2) red, (3,2) blue, and 4,0)

yields a contradiction.

SUBCASE a2: Suppose that (2,1) and (2,-1) are both blue. One of (-1,1) and (-1,-1)
has to be red, so assume w.l.o.g. that (-1,1) is red. Then (0,2) has to be red,

(0,-2) red, (-2,-1) blue, and (-1,2) blue. Now, if (-2,-2) is red, then (-2,0) has

to be blue, (-3,0) blue, (-3,2) red, and (-3,-1) yields a contradiction. But if

(-2,-2) is blue, then (0,-3) has to be red, (1,-2) red, (1,-3) blue, (-1,-2) blue,

(-1,-1) red, (2,0) blue, (2,-2) blue, (3,-1) red, (2,-3) blue, (0,-4) red, and

(-2,-3) gives us a contradiction.

CASE b: Suppose that both (1,0) and (-1,0) are blue. Since we are already done with
case a, we can also assume that there is no constellation of equicoloured points of

type ¢ o . Again we look at (0,2) and have two subcases.

SUBCASE bl: If (0,2) is red, then (1,1) and (-1,1) must both be blue, because
otherwise we are in the situation of case a. Then one of (1,2) and (-1,2) is red and
the other blue. Suppose that (1,2) is red and (-1,2) is blue. Then (-2,1) has to be
red, (-2,-1) blue, (0,-2) red, (1,-1) blue, and (-1,-1) yields a contradiction.

SUBCASE b2: If (0,2) is blue, then at least one of (1,-1) and (-1,-1) is blue.
Assume that (1,-1) is blue. Then (2,1) has to be red, (2,-1) blue, (2,0) red, (1,-2)
red, (-1,-1) blue, and (-2,1) yields a contradiction.

In every case the assumption that there is no equicoloured square leads to a
contradiction.
QED
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NOTE: These two problems are closely related to the game of HIP described in Martin
Gardner’s "New Mathematical Diversions from Scientific American", Simon and Schuster,
New York 1966. The game is played on a 6 x 6 checkerboard by two players. One
player has 18 red counters; his (her) opponent has 18 blue counters. They take turns
placing a counter on any vacant cell. Each tries to avoid placing his counters so

that four of them mark the corners of a square. The square may be any size and
tipped at any angle. A player wins when his opponent becomes a ’square’ by forming
one of the 105 possible squares.

NEW PROBLEMS

THE DARTBOARD PROBLEM I (proposed by M. A. Maes and W. Woodside)

Find the probability that n darts thrown at random at a circular dartboard
leave at least half (any half) of the board dart-free. (Assume all n darts strike
the board.)

DARTBOARD PROBLEM II

Find the probability that n darts thrown at random at the surface of a sphere
leave at least half (any half) of the surface dart-free.

DR. L. B. JONKER - NEW HEAD OF MATHEMATICS AND STATISTICS

Dr. Leo Jonker has been appointed head of the department for a five-year term
beginning July 1, 1990. He received a B.Sc. in mathematics in 1963 and a Ph.D. in
1967 from the University of Toronto. He was a post-doctoral fellow at the University
of California before coming to Queen’s in 1969 as an assistant professor. He was
promoted to associate professor in 1977 and to full professor in 1985.

Dr. Jonker started his research career in differential geometry. In his Ph.D.
thesis he attempted a classification of natural transformations betwen vector spaces
of tensor fields over a differential manifold. Later work dealt with the global
geometry of submanifolds of Euclidean space or Hilbert space implied by local
assumptions on the curvature tensor.

After a sabbatical year in England at the University of Warwick he began work in
dynamical systems. This started, in collaboration with Prof. David Rand of Warwick,
on the dynamical structure of unimodal maps of the unit interval. It turns out that
iterations of functions as simple as f(x) = Ax(1-x) exhibit very interesting
chaotic dynamics which vary enormously with the parameter A . This family of
functions is an excellent source of examples of chaotic behaviour of the kind studied
and applied widely today.

His interest in one-dimensional dynamical systems continues, currently centering
on the dynamics of circle maps and relating such things as the rotation number, the
degree of degeneracy of critical points, and the Hausdorf dimension of the resulting
fractal sets. ‘

‘My work as head poses a new and formidable challenge, calling on talents I did
not know I had as well as some I know I do not have. My teaching has had to be
reduced to a minimum, and so far the administrative duties have left little or no
time for research’.

While his other hobbies of reading and windsurfing have had to be curtailed, he
maintains his daily routine swim ‘provided it is not preempted by a business
luncheon’.
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STRUCTURAL ASPECTS OF CHESS PROBLEMS
BY ANDREW KALOTAY

Andrew Kalotay (Arts’64, M.Sc.’66, Ph.D. Toronto) represented Canada in the 1966
Chess Olympiad in Cuba. He has worked at Bell Laboratories in New Jersey, and has
been a director of research at Salomon Brothers Inc., New York. In addition to
running his own debt management consulting service, he is currently a faculty member
of the Graduate School of Business Administration at Fordham University, a trustee of
gze Financial Management Association, and a member of the Queen’s Alumni Fund

ommittee.

Although the game of chess has many mathematical elements, these tend to be more
pronounced in composed problems. Unlike their close relatives, endgames ("white to
play and win"), problems ("white to play and mate in two moves") are void of any
practical value (whatever practical value playing chess may have). The goal of
composers is to express artistic ideas and to discover new structures.

Although I have always enjoyed the challenge of solving problems, I became
interested in composing only relatively recently. I have been specializing in
problems employing relatively few pieces. A problem with at most 7 pieces is called
a miniature, a problem with at most 12 pieces is a Meredith; most modern problems
express complicated themes that require more than 12 pieces.

Several computer programs for solving problems are commercially available. The
more sophisticated of these do not rely on brute force methods, but instead exploit
the existence of a limited number of terminal positions, which may further be reduced
by symmetry considerations. These programs are used by composers for validation,
i.e. to check that the intended solution exists and that it is unique.

I have been particulary interested in so-called helpmates, where the two sides
cooperate to create a terminal position in which white checkmates black. The
inventor of helpmates was the 19th century American problemist Sam Loyd. His
original composition (Fig.1) appeared in the Chess Monthly in 1860. In the solution,
white builds a battery by placing the bishop in front of the rook, while the black
king cooperates by marching to the line of the rook. The mate results when white’s
bishop fires the battery, producing a discovered check.

Figure 1. Helpmate in 3 moves (S.Loyd, Chess Monthly, 1860)

8 WHITE BLACK

1 1. — Kf6

6 2. Ra8 Kg7

5 3. BbS Kh8
4 . Be5#



Incidentally, Loyd is also believed to be the inventor of the puzzle with « 4 by
4 square with 15 numbers to be rearranged sequentially. I recall discussing this
puzzle with respect to the notion of parity in our linear algebra course.

Most modern helpmates attempt to express a common theme several times. Often a
problem is in fact a series of problems obtained by twinning, i.e. by changing the
original position slightly.

Since 1978 a jury of international experts has been awarding a prize for the
best problem published during the year that employs at most four pieces, of which two
are normally kings. Because of the limited material, it is difficult to express
profound ideas; a mathematical analogy might be the proof of a theorem based upon two
well-chosen axioms.

The winning composition in 1989 in this -"Four Men Only" tourney was a joint work
by Pal Benko and me. This helpmate in 3 1/2 moves had appeared in the July 1989
issue of the British publication called The Problemist, where it also won fourth
prize in the helpmate category. Benko, by the way, is unique among chessplayers in
being both an international grandmaster and a first-rate composer of both endgames
and problems.

The problem (Fig.2) is an extension of Loyd’s original idea. Each solution
consists of the building and the firing of a battery. In the original position the
rook discovers the bishop, in the second position the bishop discovers the rook, and
in the final position the king discovers the rook. The interested reader may wish to
show that this effect cannot be achieved by the king discovering the bishop.

If you would like to learn more about chess problems, please write to me (25
East 9th Street, New York, NY 10003)

Figure 2. Helpﬁlate in 3 1/2 moves (P.Benko and A.Kalotay, The Problemist, July 1989)

a) Diagram b) Bb8—»a7 c¢) Kb3—>c2

2. Re3+ Kd2 2. Rhl Kd2 2. Kd2 Kg2
3. Bf4 Kcl 3. Bgl Kcl1 3. Kel Khl
4. Rel# 4. Be3# 4, Kf2#

Comment by judge for Problemist: "Three different battery formations with only
four pieces! Good twinning, antiduals.”

Comment by "Four Men Only” Jury: "Three time battery with discovered mate:
rook-bishop, bishop-rook, king-rook!”

17

1. Re2+ Kd3 1. Rh2 Kd3 1. Rdl Kf3



QUEEN’S MATHEMATICAL COMMUNICATOR

SUMMER 1991
ATTRACTORS OF DYNAMICAL SYSTEMS - AND A FRACTAL ATTRACTOR 1
Dan Norman
NEWS

NEWS OF MTHE GRADUATES

MATHEMATICS AND ENGINEERING SEMINAR

- An Invitation to Mathematics and Engineering Graduates
- Performance Modelling for the Telecommunications Industry
Brad McFarlane

OLD PROBLEMS
- Solutions to Martin Kreuzer’s Problems - By the proposer

NEW PROBLEMS

- The Dartboard Problem I
- Dartboard Problem II

DR. L. B. JONKER - NEW HEAD OF MATHEMATICS AND STATISTICS

STRUCTURAL ASPECTS OF CHESS PROBLEMS
Andrew Kalotay

11

11

12

13

15

15

16

THANKS to several of our readers who sent donations to help keep the Communicator

going. If you would like to help please send your cheque to the address below,
payable to the Communicator, Queen’s University.

EDITOR: BILL WOODSIDE
Address all correspondence, news, problems and solutions to:

Queen’s Mathematical Communicator
Department of Mathematics and Statistics
Queen’s University
Kingston, Ontario
K7L 3N6



