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A FLURRY OF ACTIVITY IN A QUIET CORNER
Adrienne W. Kemp
University of St Andrews, Scotland

In Slater (1966) we read, “...there are many quiet corners of the subject ...which have given much
pleasure and intellectual delight to many mathematicians during the past two centuries.” Three years ago,
in the preface to their excellent new book on the same subject, Gasper and Rahman (1990) spoke of the “flurry
of activity” that “has been so infectious that many researchers found themselves hopelessly trapped by this
alluring ‘g-disease’, as it is affectionately called”. What is this area of mathematics that has recently “popped
up in physics, Lie algebras, transcendental number theory, and statistics, in addition to new developments in
.. .classical analysis, combinatorics, and additive number theory”? [Andrews (1986)]. Gasper and Rahman
used the title “Basic Hypergeometric Series” for their book; this term has often been used, for example
by Bailey (1935) and Slater (1966), but Andrews (1991) considers it misleading as “basic” implies neither
simple nor fundamental. Andrews (1986) himself used the snappier title “g-series” (the parameter ¢ appears
in all the formulas). Here are two of the earliest g-series formulas that were discovered [Euler (1748)]:
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In both cases we have the striking feature of a relationship between an infinite product and an infinite series.

Before I try to define a g-series, let alone explain my own particular interest in g-series, we need to look
at the “wooden plough” of Sawyer (1955, p. 64) and its successor, the generalized hypergeometric series
S o2 o Ur, where ur41/u, is a rational function of r, usually written as

g1 (ar+7).. . (aa+r)z
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and ug = 1. Sawyer’s wooden plough, the Gaussian hypergeometric series, is the special case A =2, C = 1.
Whereas Gauss used the notation F(a,b, ¢, z), nowadays we write
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(to emphasize that A = 2, C' = 1). The majority of the series that one meets as an undergraduate have this
form. In particular

l+z4+224-- = FA[Lbbz], |z|<1,
(L-=2)% = SFi[kbba], |e| <1,
ef = klingo 2F1[k, b5 ;2 /k],
In(l-z) = -=z.F[1,1;2;z], |z|<1,
arcsin(z) = x2F1[1/2,1/2;3/2;2%, |z|<1,
arctan(z) = z2Fi[1/2,1;3/2;—2%, |z|< 1. (4)

The Chebyshev, Legendre, Gegenbauer, and Jacobi polynomials can also be stated as Fi[-] functions.
Furthermore, the trigonometric functions, sinz and cos z, and the Bessel functions can be stated as o F[]
functions and the Hermite and Laguerre polynomials as 1 F}[-] functions, i.e. as limiting forms. No wonder
Sawyer described Fi[] as the wooden plough when discussing the fertile areas of mathematics that were
cultivated up to the middle of the twentieth century. He considered that the boundaries of this area were
“but for one or two small clefts explored by pioneers, virgin rock.”

Basic hypergeometric series (¢-series) are related to generalized hypergeometric functions by analogy
rather than by extension or simplification. For a basic hypergeometric series we again have ug = 1, but now
ur41/ur is a rational function of ¢” for fixed ¢, giving
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Thirty years after Gauss presented his famous Géttingen paper on the o F 1[-] function, Heine (1846, 1847)
collated and extended the then known facts about g-series, and in so doing showed that there is a large
body of material for them that is analogous to that for 2F1[] series. Others, such as Cauchy (1843), also
obtained g-series results, but it is Heine who is generally considered to be the major researcher in the area
at that time. Much is known about Euler who can be regarded as the father of g-series. Heine, however, is
today little known. He was born in March 1821, the eighth of the nine children of a Berlin banker; his sister
Albertine married the banker Paul MendelssohnBartoldy (the brother of the famous composer), his son Carl
was a theatre producer, and one of his four daughters, Anselma, was an authoress who was interested in
women’s rights. Heine obtained his doctorate in 1842 after studying under Gauss at Gottingen and under
Dirichlet at Berlin University. From his subsequent career we can infer that he was one of Gauss’s more able
students — earlier, in 1810, Gauss had told Bessel, “This winter I am giving two courses of lectures to three
students, one of whom is only moderately prepared, another less than moderately, and the third lacks both
preparation and ability.” In 1848 Heine was appointed professor of mathematics at Halle University where
he remained until his death in October 1881.

Bonsall (1982) has commented, “Live mathematics is that body of mathematical theorems that is cur-
rently understood by living mathematicians. A substantial trace of this work is left behind in a fossilized
form in publications, just as the coral reef is left by the polyps.” The coral reef left behind from Heine’s
work is his (1861, 1878) book “Handbuch der Kugelfunktionen: Theorie und Anwendungen.” In the second
(1878) edition he chose to include some of his earlier work on g-series. This was set in a smaller typeface
than the rest of the book, indicating perhaps that Heine did not consider it to be directly related to his
work on spherical harmonics (a close connection was later discovered!). Important results of Heine’s are the
¢-binomial theorem,
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the g-analogue of a Gauss summation formula for a , Fj[] series,
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and the g-analogue of Euler’s transformation formula for a 5 Fy[-] series,
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Heine made much use of the result a = limy—.1{(1 — ¢%)/(1 — ¢)} in his derivation of results analogous
to many in Gauss (1813). Try setting z = —y, a = ¢~™, m a positive integer, in (5), for instance, and then
letting ¢ — 1. This gives
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(the usual binomial theorem with positive integer power). The ¢-binomial theorem seems to have been
discovered independently by various people. Often it is called Heine’s theorem; sometimes it. is called
Cauchy’s theorem as it can be found in Cauchy’s (1843) paper. When a = 0, (5) becomes (1); replacing z
by z/a in (5) and letting a — oo gives (2).



Two people who were aware of Heine’s contribution to the theory of ¢-series, and similarly quietly obtained
“much pleasure and intellectual delight,” were Rogers, over the years 1893-1919, and Jackson, who spent
from 1904 to 1954 writing a long series

In 1910 the famous Cambridge mathematician G. H. Hardy received a letter from a 23-year old Indian
clerk, “I have not trodden through the conventional regular course which is followed in a University course,
but I am striking out a new path for myself ...... ” Among the formulas in his letter was
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Hardy’s reaction was “A single look at them is enough to show that they could only be written down by a
mathematician of the highest class. They must be true because if they were not true, no one would have had
the imagination to invent them. ...... the writer must be completely honest, because great mathematicians
are commoner than thieves or humbugs of such incredible skill.” The writer was Ramanujan. The story of
how Hardy persuaded him to spend most of the rest of his short life in Cambridge, England, has been told
a number of times; see, for instance, Andrews (1986).

One of the undergraduates at Cambridge at the time was W. N. Bailey. Bailey was greatly impressed by
Ramanujan’s work on g-series, for example by the famous Rogers—-Ramanujan identities
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obtained independently by the two authors and published in Rogers and Ramanujan (1919). Bailey included
material on g-series in his 1935 book. This in turn led Lucy Slater (1966) to do the same. It was these
two books and a slim monograph by R. P. Agarwal (1963) that first introduced me to g-series as a graduate
student in the sixties.

The recent explosion of interest in the subject is the outcome of the work of three people: George
Andrews, Richard Askey, and Rodney Baxter. George Andrews, of Penn State University, is well-known for
his researches in number theory where he has obtained many results on partitions involving g-series. Also it
is he who recognized the importance of Ramanujan’s “Lost Notebook” when he found it in 1976 in the Wren
Library in Cambridge where Whittaker had deposited it; see e.g. Andrews (1979). Askey, of the University of
Wisconsin, leads a team of people whose researches are predominately about ¢g-gamma and ¢-beta functions
and about orthogonal g-polynomials. The contribution of Baxter of the Australian National University has
been to demonstrate the importance of g-series in the solution of one of the most difficult problems that has
arisen in theoretical physics in recent years, the hard hexagon model; see e.g. Andrews’ (1986) account of
the problem and of Baxter’s solution.

My own modest interest relates to the use of g-series in discrete distribution theory. Over many years I
have been concerned with the important réle of generalized hypergeometric functions in discrete distribution
theory; see Sections 4.1, 4.2, and Chapter 6 in Johnson, Kotz, and Kemp (1992). One of the simplest
generalized hypergeometric-type distributions is the binomial. The binomial probability mass function is

PrX =r]= (:)w’"(l—w)"", r=0,1,...,n

where the random variable X is the number of successes in n trials (e.g. in n throws of a die), 7 is the
probability that a trial is successful (i.e. that a die lands showing a “six”), and n and 7 are constant.
The outcomes of the trials are assumed to be independent. An important tool for dealing with discrete



distributions is the probability generating function (pgf), . prs". The binomial distribution has the pgf
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where A = 7/(1 — 7). (The binomial pgf is more often stated in the form (1 — 7+ ws)*, but we shall find
(11) an easier form to generalize.)

Consider now a row of n automatic bank tellers located inside a student union building and suppose that
exactly n — 1 of them are outlets for the same bank. The student authorities are interested in the number
of tellers that are in use at the busiest time of day, 12:00 P.M. Let the probability that any particular one
of the n — 1 tellers is in use at 12:00 P.M. on a particular day be m, and let the corresponding probability
for the n’th teller be m,. This corresponds to throwing simultaneously n — 1 dice each with probability of
success 7 together with an n’th die with probability of success m,,; in Kemp and Kemp (1991) we called this
a “one-dud-die model.” The probability that there are r successes in the n trials is equal to the probability
that there are r successes in the first n — 1 trials and the n’th trial is a failure, plus the probability that
there are » — 1 successes in the first n — 1 trials and the n’th trial is a success, i.e.

(n - 1) (=) (1= ) + (: _11) L= )T, =01, 0,

The pgf is now
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where A, = m,/(1 — 7). By the same form of argument, if all n automatic bank tellers belong to different
banks and have different probabilities 7, 79, ..., 7, of being in use at 12:30 P.M. on any particular day,

then the pgf for the number of tellers in use at the appointed time is

ﬁ ( 1+ /\js)
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where A\; = 7;/(1 — =), j = 1,2,...,n. Suppose now that there there is a log-linear odds relationship
between the 7;, i.e. In[m;/(1— m;)] = Indj =lne+(j—1)Ing, j=1,2,...,n,0 < ¢ < 1 (in Kemp and
Kemp (1991) we gave reasons for this being a reasonable assumption to make). Then the pgf for the number
of tellers in use becomes
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by Heine’s theorem, and
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Numerical computation of these probabilities is very straightforward, as
PriX =r+1]=Pr[X =7)(¢" = ¢")c/(1—¢*)), r=0,1,...,n—1. (15)

An assumed value can be taken for Pr[X = 0], the remaining probabilities can be obtained relative to
Pr[X = (] via this two-term recurrence relation, and finally their true values can be found by forcing them



to add to unity. Because we have a convolution of n Bernoulli distributions (with parameters 7, 3, ...,
7n), the mean of the distribution is the sum of the individual Bernoulli means

n—1
p=> {cg'/(1+cq')}
=0
and the variance is similarly
n—1
o? = {eg'/(1+ed')’}.
i=0

In Kemp (1987) a weapon defense system model led to an alternative log-linear assumption for the ;,
namely In7; =InC+(j—1)InQ, j =1,2,...,n,0 < @ < 1. This gave a different g-analogue of the binomial
distribution with much more comphcated expressions for the probabilities.

It is well-known that a binomial distribution tends to a Poisson distribution with parameter y as n — oo,
7 — 0, with np = j1, p constant. What happens to our g-analogue (13) of the binomial distribution when
n — co? (We need make no assumptions about ¢ or ¢ as ¢¢g” — 0 when n — 00.) Suppose that a very
large number of fish in succession approach the vicinity of a fishtrap, but that the lure of the bait diminishes
over time such that the j’th fish to approach the trap enters it with log-linear odds (Inc+ jlng), i.e. with
probability m; = c¢? /(1 + ¢/), 0 < ¢ < 1, where j = 1,2,... [Kemp (1992b)]. The pgf for the number of fish
caught in the trap is the limiting form of (13)

©0 l+cqjs r(r 1)/2,r
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This distribution was first derived in an investigation into sequential decisions for oil exploration by
Benkherouf and Bather (1988); they named it the Heine distribution. Further models, corresponding to
queueing and other stochastic processes, are put forward in Kemp (1992a).

Letting ¢ — 1 and ¢ — 0 such that ¢/(1 — ¢) = g in (16), we find that

Pr[X =r]/Pr[X = 0] — p" /7!,

and so the Heine distribution can be regarded as a g-analogue of the Poisson distribution with pgf e** /e*.
But just as there is more than one g-analogue of the binomial distribution, so there are other g-analogues
of the Poisson distribution; some of these are explored in Kemp (1992b). The multiplicity of g-analogues
of generalized hypergeometric functions is now widely recognized; Exton (1983, p. 129) commented that “A
whole family of basic exponential functions could be conceived and defined in some such manner as

E(g,\z) = Z £

= [r;q]!

r Ar(r—=1) »

(18)

where [r;q]'=(1—¢)---(1—¢")/(1—¢q)". Taking A = 1/2 and z = ¢s/(1 — q) shows the connection between
(18) and (16).

" Sawyer (1955, p. 28) has remarked that “To explore, to discover patterns, to explain the significance of
each pattern, to invent new patterns resembling those already known — each of these activities increases the
bulk of mathematics. From the practical viewpoint, it becomes extremely difficult to keep track of all the



results that have been discovered; and a vast litter of unconnected theorems hardly constitutes a beautiful
subject. Both as a business man and as an artist, the mathematician feels the urge to draw all these
separate results together into one. The history of mathematics therefore consists of alternate expansions and
contractions.”

Exton’s book was the first to be published which dealt exclusively with basic hypergeometric functions;
it was written only ten years ago at a time when the subject of g-series was expanding very rapidly indeed.
There is the possibility now though, see Andrews’ (1991) discussion of an apparently very complicated g¢-
series formula, that the subject is moving from an era of expansion into an era of contraction when “some
exceptional genius will say, ‘All that we know can be seen as almost obvious if you look at it from this
viewpoint, and bear this principle in mind’ ” [Sawyer (1955, p. 29)].

References

Agarwal, R. P. (1963). Generalized Hypergeometric Series, London: Asia Publishing House.

Andrews, G. E. (1979). An Introduction to Ramanujan’s "lost” notebook, Amer. Math. Monthly, 86,
89-108. :

Andrews, G. E. (1986). g-Series: Their Development and Application in Analysis, Number Theory, Combi-
natorics, Physics, and Computer Algebra, Providence, Rhode Island: American Mathematical Society.

Andrews, G. E. (1991). Review of Gasper and Rahman’s (1990) Basic Hypergeometric Series, Amer. Math.
Monthly, 98, 282-285.

Bailey, W. N. (1935).‘ Generalized Hypergeometric Series, Cambridge: C. U. P.

Benkherouf, L., and Bather, J. A. (1988). Oil exploration: sequential decisions in the face of uncertainty,
J. Appl. Prob., 25, 529-543.

Bonsall, F. F. (1982). A down-to-earth view of mathematics, Amer. Math. Monthly, 89, 8-15.

Cauchy, A.-L. (1843). Mémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation
linéaire .... C. R. Acad. Sci. Paris, XVII, 523.

Euler, L. (1748). Introductio in Analysis Infinitorum, Lausanne: M—M Bousquet.
Exton, H. (1983). ¢-Hypergeometric Functions and Applications, Chichester: Ellis Horwood.
Gasper, G. and Rahman, M. (1990). Basic Hypergeometric Series, Cambridge: C. U. P.

Gauss, C. F. (1813). Disquisitiones generales circa seriem infinitam . ... Reprinted in Werke 3 (1876),
123-162.

Heine, E. (1846). Uber die Reihe .... J. Reine Angew. Math., 32, 210-212.
Heine, E. (1847). Untersuchungen iiber die Reihe .... J. Reine Angew. Math., 34, 285-328.
Heine, E. (1861, 1878). Handbuch der Kugelfunktionen: Theorie und Anwendungen, Berlin: Reimer.

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992). Univariate Discrete Distributions (2nd edition), New
York: Wiley.

Kemp, A. W. (1987). A Poissonian binomial model with constrained parameters, Naval Research Logistics,
34, 853-858.

Kemp, A. W. (1992a). Steady-state Markov chain models for the Heine and Euler distributions, J. Appl.
Prob., 29, 869-876.

Kemp, A. W. (1992b). Heine-Euler extensions of the Poisson. distribution, Commaun. Statist. — Theory
Meth., 21, 571-588.

Kemp, A. W, and Kemp, C. D. (1991). Weldon’s dice data revisited, Amer. Statistician, 45, 216-222.

Rogers, L. J., and Ramanujan, S. (1919). Proof of certain identities in combinatory analysis (with a
prefatory note by G. H. Hardy), Proc. Camb. Phil. Soc., 19, 211-216.

Sawyer, W. W. (1955). Prelude to Mathematics, Middlesex: Penguin Books.
Slater, L. J. (1966). Generalized Hypergeometric Functions, Cambridge: C. U. P.



TOPICS IN PROBABILITY AND STATISTICS
Andrew McKellips

This past year, participants in a new course, Topics in Probability and Statistics, played hosts to several
distinguished guests. Professor Agnes Herzberg scheduled a number of department visitors to meet with
students in an informal setting to discuss various aspects of probability, statistics, graduate studies and
general scientific research.

Speakers included Sir David Cox of Nuffield College, Oxford, who discussed survival analysis and graduate
studies at Oxford; Dr. Alexander Tsukanov, who was a visitor at Queen’s for a period of three months,
spoke about his experiences at the Instrument Making Institute in Sevastopol, Ukraine, various facets of
expert data systems, and the shape of academics and research past and present in the former U.S.S.R.; Dr.
Christopher Field of Dalhousie University recounted his duties as an expert witness; Dr. David Thomson
of Bell Laboratories compared the working environment in a research institute with that in academia; Dr.
Jamie Myles of Queen’s University discussed clinical trials along with various aspects of graduate studies;
Ms. Christine Anderson of the University of Waterloo also talked with the class about graduate studies;
Dr. Douglas Dale of Carleton University discussed sampling theory and the earlier days of surveying at the
Dominion Bureau of Statistics; Dr. Peter Donnelly of Royal Holoway and Westfield College, University of
London, spent time with the class over breakfast introducing coupling theory and several powerful results
(including profitable wagers with a deck of playing cards); Dr. Adrienne Kemp and Professor David Kemp of
the University of St. Andrews presented several probability distributions, modelling problems and g-series,
and spoke about graduate studies in Scotland; most recently, Professors Erich Lehmann and Juliet Shaffer,
of the University of California at Berkeley, spent. breakfast with the class discussing their experiences in
graduate school and academia.

Needless to say, class participants found the experience to be very informative and even inspiring, as new
ideas for research topics presented themselves frequently. Each student in turn worked on and presented an
independent research project, with topics ranging from censored data analysis to wavelets. Dr. Kemp was
kind enough to present some of her work with g-series in this issue.

Editor’s Note: Andrew graduated from Queen’s in Mathematics and Engineering in 1992. He is currently
a member of our first class in the new M.Sc. (Engineering) program in Mathematics, working under the
supervision of Dr. Lorne Campbell. This fall he will begin a doctoral program at Princeton University. The
editor gratefully acknowledges Prof. Herzberg’s powers of persuasion in connection with Dr. Kemp’s article.

MATHEMATICS AND ENGINEERING AT QUEEN’S
A BRIEF HISTORY OF THE EARLY YEARS OF THE DEPARTMENT
William Woodside

"This year marks the Centennial of the Faculty of Applied Science; last year the university celebrated
its Sesquicentennial, so it seems appropriate that we look back at the early days of the department and in
particular the close ties it has had with engineering.

The Royal Charter establishing Queen’s University was s1gned by the young Queen Victoria on October
16 in 1841, the year in which Kingston became the capital city. The founding of Queen’s by the Presbyterian
Church in Canada, assisted by the Church of Scotland, was a move designed to counterbalance the founding
of King’s College in Toronto in 1827 under the aegis of Bishop Strachan and the Church of England. King’s
College eventually became the University of Toronto; the rivalry between the two institutions continues to
this day.

The first Principal was the Reverend Dr. Thomas Liddell, a minister from Scotland. He chose as the
first professor of mathematics and natural philosophy the Reverend James Williamson of the University
of Edinburgh, the university on which Queen’s was to be modeled. It must have been difficult to attract
scholars from the relative comfort of an established Scottish university to an insecure and uncertain future in
an institution which had opened with only a dozen students, no building of its own and little or no financial
support. Many of the first professors who came out from Scotland returned after a few years. Liddell himself
endured for only four years. Williamson however, who had been 36 on his appointment in 1842, served as
Head of mathematics until 1880 and from 1876 to his death in 1895 as Vice-Principal. A bronze bust, made
in 1892 to celebrate his fifty years of service to the university, stands in the Mathematics Library. A plaque
with the engraving ”In loving memory of Professor James Williamson D. D., long known as the students’



friend” hangs in Grant hall. In 1852 he married Margaret Macdonald, sister of Sir John A. Macdonald, our
first Prime Minister and another hardy Scot. Much credit goes to Wllllarnson for helping to keep the young
university alive during difficult times.

Williamson was succeeded in the Chair of Mathematics by Nathan F. Dupuis, son of a Frontenac County
farmer. Dupuis had served for four years as a clockmaker’s apprentice in Kingston and had taught public
school for six years, before graduating from Queen’s with a B.A. in 1866 and an MA in 1868. He had already
served as Head of Chemistry and had taught physics, geology and biology when he assumed the Chair of
Mathematics in 1880. A further three years were to elapse before he was able to relinquish his responsibilities
in chemistry to W. L. Goodwin. Dupuis strengthened the program in mathematics which, not surprisingly,
had been quite elementary in Williamson’s time. He wrote textbooks in Geometrical Optics (1868), Plane
Geometry (1889), Solid Geometry (1893), Algebra (1893), Astronomy (1902), Spherical Trigonometry (1910)
and the Measurement of Time (1911). The clock in Grant Hall was designed by Dupuis and built by his
students in the Mechanics Laboratory. He was active in nurturing the newly established Faculty of Medicine.
Among the first at Queen’s to recognize the importance to Canada of applied science, he was the major mover
in the founding of the School of Mining which developed into the Faculty of Applied Science. He was the
first Dean of Applied Science, serving in that capacity from 1894 to his retirement in 1911, all the while
continuing as Head of Mathematics. He served as President of the Royal Society of Canada in 1897. On
his retirement his students endowed three scholarships in his name, one for each of the Faculties of Applied
Science, Arts and Science and Medicine. A remarkable man. His portrait hangs in Dupuis Hall, the home of
chemical engineering. Some of his textbooks and a collection of mathematical models which he made over a
hundred years ago are on permanent display on the second floor of Jeffery Hall.

The third head of mathematics was John Matheson (M.A. (Queen’s)), considered by Dupuis to have
been his outstanding pupil. Associated with Queen’s for forty five years as student, instructor, professor
and finally Dean of Arts, he served as head from 1911 to 1943. He had several years’ experience as a high
school teacher, maintained a close connection with the Ontario Educational Association and his advice was
often sought by the Ontario Department of Education. An inspiring teacher and sympathetic adviser, he
was the second recipient of the medal given by Montreal alumni to honour the Builders of Queen’s. There
were three other members of the department during the Matheson era. C. F. Gummer was appointed in
1911, the year of Dupuis’ retirement, after taking a rare triple first at Oxford. He brought with him an
appreciation of the spirit of modern mathematics and an insistence on mathematical rigour. Earning a
doctorate at Chicago, the first Queen’s mathematician with a Ph.D., he served as an associate editor of the
American Mathematical Monthly and a member of Council of the Mathematlcal Association of America.
He was also a talented and versatile musician. He taught at Queen’s, mainly in the honours program in the
Arts Faculty, until his death in 1946. K. P. Johnston graduated from Queen’s with a B.A. in mathematics
and then studied for three years in the Faculty of Applied Science for a B.Sc. degree in civil engineering.
After a brief period of professional work he joined the mathematics department in 1916 teaching engineering
students and acting as liaison between the department and the Applied Science Faculty until 1946. Norman
Miller joined the department in 1919 after graduating from Queen’s with an M.A., two years of high school
teaching, a Ph.D. at Harvard and active service in France during World War I. Through his clear lectures,
his encouragement of able students to take up mathematics teaching in the high schools, his participation in
teachers’ organizations and on Boards of Examiners and his authorship of school textbooks he made a great
contribution to mathematics teaching in Ontario during the forty year span from 1919 to 1959.

D. S. Ellis graduated from Queen’s first in mathematics (M.A. 1908) and then in civil engineering (B.Sc.
1910), lectured in mathematics and physics from 1911 to 1919 as well as serving with distinction in the
army during World War I, before joining the civil engineering department eventually becoming head and
Dean of Applied Science (1943-1955). Likewise, D. M. Jemmett took degrees in mathematics and electrical
engineering at Queen’s, taught in the mathematics department for a brief period before joining the electrical
engineering department and serving as head for many years.

George L. Edgett graduated from Mount Allison before teaching high school for four years and studying
at the University of Illinois for his Ph.D. He joined the department in 1930 remammg until his retirement in
1969. He appears to have been the first in Canada to offer a university course in statistics. Many prominent
statisticians were introduced to the subject by Professor Edgett, including Colin Blyth, Agnes Herzberg
and Harold Still, all of who became professors of statistics at Queen’s. The Statistical Society of Canada
honoured his contribution "to the emergence of statistics as both a science and an applied discipline” by
electing him as its first honorary member. STATLAB, the statistical consulting service at Queen’s, was



renamed the George Edgett Statistical Laboratory in 1979, and the department’s name was changed to the
Department of Mathematics and Statistics in 1978. .

From 1842 to 1943 the department had had only three heads, surely a record for longevity, and one not
likely to be broken in the future. The fourth head was Ralph Jeffery, a one-time Nova Scotia fisherman who
graduated from Acadia University and then went on to take a master’s degree and a doctorate at Cornell. He
came to Queen’s as head in 1943 serving until his retirement in 1960. During his tenure there was a marked
increase in activity at the research and graduate level both in mathematics and statistics with Professors I.
Halperin (1939-1966), H. W. Ellis (1947-1983), G. Edgett and Jeffery himself all involved.

Israel Halperin, having earned bachelor’s and master’s degree from the University of Toronto and a Ph.D.
from Princeton, taught at Yale and Harvard before coming to Queen’s in 1939. During the war he served in
the Canadian Army conducting research in explosives and artillery; he was promoted to the rank of major
before returning to Queen’s. On 15 February 1946 he was arrested by the RCMP and taken to Ottawa where
he was held incommunicado for several weeks. On April 25 he was charged under the Official Secrets Act with
having communicated secret information to Soviet agents. He was acquitted for lack of evidence in March
1947 but it was not until May 1948 that he was fully reinstated at Queen’s by the Board of Trustees. He
worked at Queen’s until 1966 when he returned to his alma mater in Toronto. In 1989 Queen’s awarded him
an honorary doctorate. In parallel with his distinguished academic career, Prof. Halperin has worked long
and hard to enlist international support for the release of Soviet dissidents such as Orlov and Scharansky,
for the improvement of prison conditions and for the advancement of human rights.

Hu Ellis graduated from Acadia in 1940 but remained for two years to study under Jeffery. From 1942
to 1945 he served in the Naval Research Establishment working on the protection of ships from magnetic
mines both in Halifax and Vancouver. After the war he continued his graduate work at the University of
Toronto earning his MA in 1946 and Ph.D. in 1947. He worked at Queen’s from 1947 until his retirement
in 1983. He was Chair for Undergraduate Studies from 1962 to 1978. Working with Halperin and Jeffery he
made Queen’s an important centre for the study of analysis during the 1950’s and 60’s.

Jeffery was the first Dean of the Graduate School at Queen’s. One development which contributed much
to the progress of mathematics in Canada and at Queen’s was the Summer Research Institute of the Canadian
Mathematical Congress. Jeffery, as Chairman of the Research committee of the Congress, with the support.
of the National Research Council, established these Research Institutes whereby mathematicians from across
the country gathered for three months during the summer for research and study and mutual interaction.
For many years they were held at Queen’s

Another highlight of Jeffery’s years was the performance of the Queen’s Putnam team in 1952. The
Putnam competition is an annual mathematics contest with teams consisting of three undergraduates entered
from the leading American and Canadian universities. Usually dominated by Harvard, M.I.T., CalTech,
Stanford and other prestigious institutions, the first contest in 1939 was won by the team from the University
of Toronto.. One of the members of that team was John Coleman, later to succeed Jeffery as head at Queen’s.
In fact Toronto repeated as winners in 1940, 1942 and 1946. The winning Queen’s team of 1952, consisted of
Richard Cowper, Allan Reddoch and Hale Trotter and was selected and encouraged by Norman Miller. The
first two were both Applied Science students, in engineering physics and engineering chemistry respectively!
Trotter was a mathematics student who taught at Queen’s from 1958 to 1970, and later became head of the
mathematics department at Princeton. .

During this time the liaison between Applied Science and the department, begun by K. P. Johnston, was
carried on by Professor F. Morris Wood. Continuing in the tradition of Johnston, D. S. Ellis and Jemmett,
Wood earned the M.A. degree from Queen’s with honours in mathematics before entering Applied Science
and graduating with an honours B.Sc. in civil engineering. After experience as an engineer in Alberta and
the Dominion Engineering Works involving design of hydraulic machinery he taught mathematics at Queen’s
from 1920 to 1922 and then joined the faculty at McGill University. In 1946 Jeffery persuaded him to return
to Queen’s where he stayed until his retirement in 1960. His training as an engineer and his experience
in practical work won the confidence of his engineering students. In 1992 as Queen’s oldest living Applied
Science graduate Morris Wood celebrated his 100th birthdy with family and friends and colleagues from
both this department and Civil Engineering. ' .

The Mathematics Department has always enjoyed the support of the Engineering Departments and the
Departments of Physics and Chemistry. This was due in no small measure to men like Johnston and Wood.
D. S. Ellis and Jemmett all of whom were mathematics students at Queen’s in the days of Dupuis and
Matheson and later took degrees in engineering. The possibility of an honours program in mathematics with



a strong minor in engineering subjects was raised by Jeffery in 1952. Such a program would not produce
engineers on first graduation, but many graduates would probably complete the work for an engineering
degree and even thdse who would not would have an excellent background for fundamental engineering
research and for the teaching of engineering mathematics. Nothmg was to come of this idea until ten years
later.

Jeffery’s successor as head of the department was John Coleman who graduated from the University of
Toronto in 1939, and, as mentioned earlier was a member of the team which won the first Putnam contest.
He took an M.A. degree from Princeton followed by a Ph.D. in relativistic quantum mechanics at Toronto
in 1943. He taught at Queen’s from 1943 to 1945 and then served as secretary of the World’s Student
Christian Federation in Geneva for four years, returning to the University of Toronto where he remained
until his appointment as head at Queen’s in 1960. The twenty years of Coleman’s headship was a period
of spectacular growth for the department. When he arrived in 1960 the nine professors of mathematics
had just settled into a newly renovated Carruthers Hall, formerly the Science Hall. John Deutsch, then
Vice-Principal, predicted this would be the home of the department for all time. Though seldom wrong he
had not reckoned with the great upsurge in mathematics and science which was to occur throughout North
America following the Soviet launching of Sputnik in 1957 and the revolution in computing technology. The
university system as a whole was to experience rapid growth during the 1960’s but enrolments in mathematics
courses grew even more rapidly. By 1967 the department had grown to a staff of 32 housed in Carruthers
Hall, Summerhill, Watson Hall and Nickle House (now the Grey House). The department was reunited in a
splendid new building, Jeffery Hall, in the spring of 1969 with a faculty complement of 41.

Year 1842 1860 1880 1900 1920 1940 1950 1960 1970 1980 1990
No. of Professors 1 1 1 2 4 6 6 9 41 48 47

1860 1 Williamson

1880 1 Dupuis

1900 2 Dupuis, Matheson

1920 4 Matheson, Gummer, Johnston, Miller

1940 6 Matheson, Gummer, Johnston, Miller, Edgett, Halperin

1950 6 Jeffery, Miller, Edgett, Halperin, Wood, Ellis

1960 9 Coleman, Edgett, Halperin, Ellis, Kirby, Kemp, Hogarth, Wasan, Obreanu

Table I. The Growth of the Department

Jeffery Hall was built on the last remaining central site on University Avenue facing Grant Hall and
adjacent to Ellis Hall. The latter building, named for D. S. Ellis, is the home of Civil Engineering and the
Applied Science Office and stands on the former site of Jeffery’s house. Almost two thirds of Jeffery Hall is
below ground, not because of the depth of mathematical thought nor any desire on the part of the university
administration to keep mathematicians submerged, but in order not to dominate the University Avenue
skyline. The centrepiece of the building is a fine library with sunken courtyards on the east and west. Most
of the classrooms and all three lecture theatres are below ground; most of the staff offices are above.

In 1967 Coleman applied to the National Research Council for a Negotiated Development Grant. Such
grants were provided at that time to selected universities and selected disciplines to help raise the level
of research and graduate study, with the university agreeing to continue financing the department at an
incresed level at the expiry of the three year granting period. It may well be that the department’s success
in being almost the first to be awarded a development grant was due, in no small measure, to the fact
that the President of N.R.C. was a Queen’s engineering graduate from whom Coleman learned about the
program before it was publicly announced! The department was awarded $300,000 in 1968. These funds
were wisely and conservatively expended over the next five years. Nowadays an average of $60,000 per year
does not seem much, but then it made a great difference. During 1969/70 ten research associates and four
post-doctoral fellows were supported, with the university providing almost half the cost, much more than
the minimum 25% required by the agreement with N.R.C. As a result research in algebra, analysis, control
theory, statistics and the foundations of quantum mechanics was given a great stimulus. Many of the research
associates later became regular members of the department. It was at this time that the Queen’s Papers in
Pure and Applied Mathematics were inaugurated. In 1972/73 the department had 43 positions, 48 graduate
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students and a total budget of just over a million dollars. The number of subscriptions to research journals
doubled and library acquisitions grew apace.

Coleman was Chairman of the Ontario Mathematics Commission for four years during the period when the
”new math” was introduced to the province’s schools. From 1973 to 1975 he was President of the Canadian
Mathematical Congress and at the same time was appointed Director of the Study of the Mathematical
Sciences in Canada, sponsored by the Science Council of Canada, the Canadian Mathematical Congress,
the Canadian Operational Research Society, the Canadian Institute of Actuaries, the Canadian Information
Processing Society and the Statistical Science Association of Canada. He argued cogently with the granting
bodies that mathematics is a subject especially suitable for development in Canada because it does not
require the massive equipment expenditures necessary in other scientific endeavours such as high-energy
physics and some branches of engineering. He deplored the policy favoured by some that only applied
mathematics was worthy of increased support; he also opposed the splitting of departments into pure and
applied departments insisting that further interaction between pure and applied mathematicians must be
fostered and encouraged. Following Jeffery and Matheson he continued to promote good relations between
the department and the Applied Science Faculty. Evidence of the health of the department was provided by
the report of the ACAP assessors in 1975 who concluded that we were unusually strong in both pure and
applied mathematics and in statistics. The programs in control theory and statistics were held up as models
for other Ontario universities. ‘

As the department grew its administration became more complex. Not all issues could be settled during
a coffee break. The important work of liaison with Applied Science and responsibility for service courses for
the engineering students and the emerging program in Mathematics and Engineering was formalized with
creation of the position of Chairman for Engineering Mathematics. The first occupant was J. E. ‘Hogarth
(1959-86). See Table II.

K. P. Johnston 1916 — 1946
F. M. Wood 1946 — 1960
J. E. Hogarth 1960 — 1970
B. J. Kirby 1970 — 1980
W. Woodside 1980 — 1986
R. D. Norman 1986 — 1989
J. H. Davis 1989 — 1991
R. Hirschorn 1991—

Table II. Professors Responsible for Engineering Mathematics

James Williamson 1842 — 1880
Nathan Dupuis 1880 — 1911
John Matheson 1911 — 1943
Ralph Jeffery 1943 — 1960
John Coleman 1960 — 1980
Lorne Campbell 1980 — 1990
Leo Jonker 1990—

Table III. Department Heads

Coleman stepped down as Head in 1980 and formally retired in 1983. However, he remains very active,
continuing to teach regular courses until 1991 and still working in Lie algebras and Kac-Moody algebras.
A conference on Modern Trends in Lie Algebra Representation Theory was held last month at Queen’s to
honour his 75th birthday. In October he will be one of ten recipients of honorary: doctorates, one from each
of the engineering disciplines at Queen’s, at the Special Centennial Convocation of the Faculty of Applied
Science. ' ’

Acknowledgements: The author is indebted to Norman Miller for several articles which appeared in
the Queen’s Review between 1944 and 1965 and to Ralph Jeffery and John Coleman.

Note: An article on the origins of the program in Mathematics and Engineering appeared in the summer
1987 issue of the Communicator.
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LESS SOPHISTICATION - MORE PLAY
Peter Taylor

Here I focus attention on the math we teach to our “general” undergraduate arts and science students
— not the math and physics graduates, and not the engineers — but the students in economics, biology,
psychology etc, though some of what I say might apply more generally. I hold to the argument that we are
failing to give these students very much that actually makes a positive impact on their future lives, so that
much of what we do is wasted. In these hard financial times, if this is true, it is worth a close look.

My thesis is that we teach them too much material, at too high a level of sophistication. For both those
reasons, they never manage to do any serious playing with the ideas and techniques, and their learning is
sterile and of little importance to their lives. These difficulties are not new, but they are not easy to resolve,
and I find I have to keep struggling to get hold of them. '

One thing that keeps me at this struggle is the conviction that I am better placed than most of my col-
leagues to make progress because in my professional work, as a theoretical biologist, I come into daily contact
with the best of what were once general math students — graduate students in biology and scientists writing
for journals of population biology and evolutionary ecology. Here I find a wealth of simple mathematical
modelling, typically using the basic ideas of calculus and linear algebra which are part of the background
of all the individuals involved. But for the most part, the methods of the calculus are inaccessible to them.
They can make the analogous discrete arguments, but the conceptual and computational power of the con-
tinuous model is unavailable to them. My conclusion if that the root of their alienation is a sophisticated
and powerful notation that serves mathematicians well, but only enslaves those who are not able to make it
their own.

A few do manage to work successfully with continuous models, but usually they have abandoned the
sophisticated notation in favour of a “bare hands” approach (see the solution below) that sustains them
through their analysis. All they need from me is some help with the write-up; their mathematical work has
been a pleasure for them, and has invariably strengthened their analysis of the original problem.

Let me try to illustrate my thesis with an example from the differential calculus. I consider that circle of
related ideas around the chain rule, implicit differentiation, related rates, and linear approximation — all close
to the heart of the subject, but somehow shrouded in such dense undergrowth, that the forest is typically
lost to view.

PROBLEM: Consider the following function F: for any t, F(t) is defined as the largest root z of the
equation:
P —2z—-4=0.

At t = 1, you can verify that z = 2. Indeed, at t = 1, the equation factors as’
(z=2)(z2+2:42)=0

and z = 2 is the only real root.

Now small “input” variations around ¢ = 1 will cause corresponding “output” variations in z = F(t),
which we also expect to be small. How are the z-variations related to the t-variations?

We all know how to solve this problem; indeed the standard notationally slick approach is one of the
wonderful offerings of the calculus and we hold that it is our duty and our pleasure, as responsible teachers,
to share it with our students.

The trouble is that, in a deep sense, most of these students never really “get” it, and they certainly can’t
reconstruct it (and are even afraid to try) years later. In fact, a lot of them can’t even solve this problem at
final exam time. [Go ahead, if you don’t believe me — try it out.]

But it’s a very important type of problem for the scientists I work with: the roots of the polynomial
might be the eigenvalues of a linearized system of equations and it is required to know how they change in
response to small variations in the parameter ¢. I would go so far as to suggest that if there is one thing that
a graduate of introductory calculus should be able to do it is to solve that problem, not necessarily quickly
or elegantly, but to fight their way analytically through to an answer. So I conclude that, in a very real
sense, we are currently failing our students.

My proposal is that we refrain from teaching all of that beautiful notational manipulation, but instead
adopt an elementary approach such as the following.
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SOLUTION: Denote the input variation by §, and the output variation by € so thatt = 1+6 and z = 2+-¢,
for 6 and ¢ both close to 0. We are after the relation between § and ¢, and to discover this, we plug everything
into the defining equation:

(2+¢€)2—21+68)(2+¢e)—4=0.

Ignoring 2nd and higher powers of ¢ and 6, this becomes:
8+12e —2(2+6+¢€)—4~0

which gives
€~ (0.4)6

and we discover that small input variations 6 result in output variations 6 that are approximately proportional
to & and 0.4 times as large. This proportionality idea is important (in fact central) but is also largely lost
on most students.

The main advantage of this elementary approach, is that it offers the students an opportunity to play
with the ideas and constructs of the course, and thereby to discover new results and make old results their
own. That kind of play is of course a crucial part of the learning process, but most students are able to do
very little of it in the traditional approach to the calculus. ,

Exactly what am I suggesting here? Well one of the problems of the much heralded calculus revolution is
that, for all the wonderful new types of problems that have come along, it is still overburdened with material.
In fact, at a calculus reform workshop in San Antonio a while ago, each working group was asked to come up
with a list of topics in their assigned area that could be omitted. The exercise was a revealing failure; there
was almost no agreement on what could be cut. Well, my current idea is, in a sense, to throw everything
out. And then take one or two ideas, like the above § — ¢ idea, and work a few examples which demonstrate
the essential local linearity of most functions, and then solve a bunch of interesting and useful problems, and
then you don’t have to do limits or Newton quotients or chain rule or implicit differentiation or related rates,
because you’ve given the student the idea that’s at the heart of all this, and an idea that can actually be
carried into the world. And as far as the rest of the stuff is concerned, well the good students will discover
what they need to know when they need to know it; they always do.

CHANGES IN THE DEPARTMENT
Leo Jonker

Once again the year has been eventful. Drs. Bruce Kirby and Robin Giles both retired, having reached
normal retirement age. We will miss them. Many of our readers will remember them as fine lecturers who
could make difficult concepts look simple. Bruce Kirby served as chair of the Mathematics and Engineering
program from 1970-1980. Unfortunately, Dr. Paulo Ribenboim was also forced into retirement because of
‘his deteriorating eyesight. We will miss his lively seminars. He continues to work on his books and papers
in number theory. As it turns out, Paulo and his favorite problem are retiring together, for just a few weks
ago, after more than 300 years, a proof was announced for Fermat’s Last Theorem. Dr. Don Watts is also
taking early retirement. From now on he will devote his time to statistical consulting and, no doubt, to
cycling and hiking.

In last year’s issue we wrote of the expected arrival of Dr. Duncan Murdoch, a statistician, and Dr. Oleg
Bogoyavlenskij, an applied mathematician. Both have now settled in at Jeffery Hall and are teaching courses
and supervising students. This fall we will be joined by the young statistican Glen Takahara, a fresh Ph.D.
graduate from Carnegie Mellon University.

" As we become increasingly aware of the important role of mathematics and statistics in other science
departments, we have begun to recognize this by means of cross-appointments. Three statisticians in the
Queen’s University Clinical Trials Group, Yuk-Miu Lam, James Myles and Benny Zee, have joined the
Department in this fashion.

David Bacon, former Dean of the Faculty of Applied Science and a member of the Department of Chemical
Engineering, accepted a cross appointment some years ago. .

Just a few weeks ago we were informed by Marc Maes that he is leaving Queen’s and returning to the
Civil Engineering Department at the University of Calgary. We wish him well.
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THE FIELDS INSTITUTE
Leo Jonker

In last year’s issue of the Mathematical Communicator we wrote of the ongoing effort to find a location
at Queen’s University for the Fields Institute for Research in the Mathematical Sciences. We were gratified
by the enthusiastic support generated for the plan within the Queen’s University administration and within
the Queen’s research community. The proposal that came out of it eventually stands as a testimony to
the energy and the vision of this University and the centrality of mathematics and statistics in all scientific
endeavour. Clearly, the Fields Institute gave very serious consideration to locating at Queen’s. In the end,
however, the Institute opted to locate more centrally, at the University of Toronto. We congratulage the
University of Toronto on its selection, and we wish the Fields Institute well in its striving to promote the
Mathematical Sciences throughout the country.

DR. ERNEST C. GILL
Leo Jonker

In January, 1992, we mourned the death of Ernest Gill, one of our most distinguished graduates. Ernest
graduated with a BA in 1923. He was class president that year and earned the gold medal in mathematics.
In 1957, he was awarded an honorary doctorate in recognition of his many contributions to Queen’s and to
the community generally.

Dr. Gill spent his career with the Canada Life Assurance Company, becoming president and vice-chair
of the board in 1951. He served on many committees and boards, including the Queen’s University Board
of Trustees. He was its chair from 1958 to 1962. -

Dr. Gill never forgot his student days at Queen’s University. In his will he left the Department of
Mathematics and Statistics $25,000 — to found the “Ernest C. Gill Memorial Fund”. We are grateful for his
generosity. As a first project to be funded by this fund, we plan “Ernest C. Gill Mathematics and Statistic
undergraduate Assistantships”. These assistantships will be awarded to deserving upper year students who
will then be given the task of providing tutorial assistance to students in their first and second year.

We hope that these assistantships will bring suitable honour to the name of one of our distinguished
graduates even as they serve to expose others to the beauty and power of mathematics.

RALFE J. CLENCH JR

Ralfe Clench died at his home in Kingston on August 4th in his 58th year. He had taken early retirement in
1983 after serving Queen’s for many years as a mathematics instructor and chief organizer of the examination
system. An unusual character, he will be fondly remembered by a host of Queen’s alumni who conquered
the complexities of introductory calculus with the help of his unorthodox but effective teaching methods.

NEWS OF GRADUATES

Mark Green (Math. & Eng. 1987) has been appointed Assistant Professor of Civil Engineering at Queen’s
having completed his Ph.D. in structural dynamics at Cambridge University (1991) and worked at Queen’s
as a post-doctoral fellow since then.

Doug Milligan (Math. & Eng. 1983) works for SEL (Canada) in Toronto on the development of software for
the control of trains. Doug and his wife Doreen have been in London for the past year in connection with
the Docklands Light Railway link to the Isle of Dogs, the site of the Canary Wharf development.

Stephen Norman (Math. & Eng. 1985), son of Prof. Dan Norman, has completed his Ph.D. at Stanford
University and is now Assistant Professor of Electrical Engineering at the University of Calgary.

‘Karen Rudie (Math. & Eng. 1985) has completed her Ph.D. in Electrical Engineering at the University of
Toronto and will begin an appointment as Assistant Professor in the Electrical Engineering Department at
Queen’s this summer.

Greg Wilson (Math. & Eng. 1984). Contrary to popular rumours Greg did not enter a monastic order after
his departure from Queen’s. For the past five years he has been at the University of Edinburgh in Scotland
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in the Parallel Computing Centre, supervising projects and some Master’s students, and working part-time
on a Ph.D. program. He has also been writing articles on popular science and computing. He looks forward
to returning to Canada soon.

OLD PROBLEMS
Solution To Taylor’s Jogging Problem (by the editor)

Problem: I am in the forest at the point A. There is a road through the forest from B to C and I want
to get to C. My jogging speed through the forest is w and along the road is v, where v > w. My strategy
is to jog in a straight line to some point P on the road and then follow the road to C'. Amazingly it doesn’t
matter at what point P I meet the road; my total time to C is the same. What shape is the road? '

Solution: Choose polar co-ordinates with the origin at A. Let P(r,6) and
P'(r + dr,0 + df) be neighbouring points on the road. The time required to
traverse the path APP'C is the same as that for AP'C. Removing P'C which
is common to both paths, and replacing AP’ by AQ + QP', where AQ = AP,
we have

= , or — =
w v w v

r ds r+drv ds ﬂ
-

But ds? = (rd6)? + dr?. Therefore r2df? + dr? = %‘; dr?, and s0 (%) = L

where k = y/ ;‘:)—25 — 1. Taking the square root and remembering that we want

r to increase as @ increases, we obtain %;— = £. Solving this simple separable

differential equation we find
r=Rexp (0———2>

-k

to be the polar equation of the road, where (R, ©) are the polar coordinates of C.
The curve BC is characterized by the fact that the angle between the tangent at P’ and the radial line

AP’ is constant since % =L

Solution to the Dartboard Problem II, received from John Holbrook, Department of Mathematics and
Statistics, University of Guelph.

Problem: Find the probability P, that n darts thrown at random at the surface of a sphere leave at least
half (any half) of the surface dart-free.

Solution: Let the unit vector uy denote the position of the k-th dart on the surface of the unit sphere S?
in R3. Let s denote a sign-vector of n +1’s and define the random variable X, to be 1 if the set R, is
nonempty, where R, = {u € s : u.spug > 0}. Let X, = 0 otherwise. Now the required probability P, is
just the expectation E (X_f) where 1 is the sign-vector with n +1’s. This is because u € R—f iff all the darts
are in the half-sphere centered at u. But by symmetry E(X;) is the same for all 2" choices of s, so that

_ ! _ B, X)
.P"_FE,:E‘(X’)_ gn

But ¥, X, is the number @, of regions into which S2 is divided by the n great circles {u € S? : u.ux = 0}.
Generically, ie ignoring special coincidences among the great circles, the value @y is the same for any set of
n great circles, namely Qn = n? — n + 2. This is clear by induction, since @; = 2 and Qn+1 = Qn + 2n; to
see the last relation, think of adding one more great circle to a system of n: it will intersect these n circles
at 2n points and will therefore create 2n new regions. .Finally, then,

P _EQC,Xs) _ @ _n?-n+2
O e T

T 2n
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This method may be adapted to solve various related problems. In particular it solves the Dartboard
Problem I as

_n
pn—é:;

where ¢y, is the number of arcs into which the unit circle is divided (generically) by n lines through its centre.
Evidently ¢, = 2n, so we have an alternative proof that p,, = JasT-

I don’t know whether this (relatively painless) approach to such problems is new, but it turns out that
the formulas are known as standard results in geometric probability. See, for example, formula (18.45) in
Santald, “Integral Geometry and Geometric Probability”, Addison-Wesley 1976.

(Editor’s Note: This is an elegant solution. It appears to me to be the same as Wendel’s proof (1962) of
the equivalent problem in R™, cited in Santalo (reference 716), and the earlier proof due to Schlafli (1950).)

NEW PROBLEMS

Taylors’s Divisibility Problem: The number 374,625 has a remarkable property. Not only is it divisible
by 37, but if I permute the first three digits in any way, and permute the last three digits in the same way,
the resulting number is also divisible by 37. For example, 734,265 is divisible by 37. (a) Find all 6-digit
numbers with this property. (b) What is the corresponding problem for 8-digit numbers?

ERRATUM In the last issue Dr. Wojciech Jaworski, the recipient of the Governor General’s Gold Medal
as the best graduating masters or doctoral student in all disciplines, was mistakenly listed as currently being
a post-doctoral fellow at Carleton University. In fact he is at the University of Ottawa.

MATH RIOTS PROVE FUN INCALCULABLE
Eric Zorn
(An excerpt from the Chicago Tribune, June 29, 1993)

News Item (June 23)—— Mathematicians worldwide were excited and pleased today by the announcement
that Princeton University Professor Andrew Wiles had finally proved Fermat’s Last Theorem, a 365-year-old
problem said to be the most famous in the field.

Yes, admittedly, there was rioting and vandalism last week during the celebration. A few bookstores
had windows smashed and shelves stripped, and vacant lots glowed with burning piles of old dissertations.
But overall we can feel relief that it was nothing —— nothing —— compared to the outbreak of exuberant
thuggery that occurred in 1984 after Louis DeBranges finally proved the Bieberbach Conjecture.

“Math hooligans are the worst”, said a Chicago Police Department spokesman. “But the city learned
from the Bieberbach riots. We were ready for them this time”.

When the word hit Wednesday that Fermat’s Last Theorem had fallen, a massive show of force from
law enforcement at universities all around the country headed off a repeat of the festive looting sprees that
have become the traditional accompaniment to triumphant breakthroughs in higher mathematics. Mounted
police throughout Hyde Park kept crowds of delirious wizards at the University of Chicago from tipping
over cars on the midway as they first did in 1976 when Wolfgang Haken and Kenneth Appel cracked the
long-vexing Four-Color Problem. Incidents of textbook-throwing and citizens being pulled from their cars
and humiliated with difficult story problems last week were described by the University’s Math Department
Chairman Bob Zimmer as “isolated”.

-Zimmer said, “Most of the celebrations were orderly and peaceful. But there will always be a few ——
usually graduate students —— who use any excuse to cause trouble and steal. These are not true fans of
Andrew Wiles”. Wiles himself pleaded for calm even as he offered up the proof that there is no solution in
integers to the equation z” 4+ y™ = 2" when n is a whole number greater than two, as Pierre de Fermat first
proposed in the 17th Century. “Party hard but party safe”, he said, echoing the phrase he had repeated
often in interviews with scholarly journals as he came closer and closer to completing his proof.
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