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Set Theory: Some of its Early
History, Paradoxes, and
Philosophy

Ole A. Nielsen

This essay is based on a Coleman-FEllis lec-
ture given by the author in March, 1996.

Set theory is a part of mathematics but is
different from the other parts of mathemat-
ics. It is a relatively recent theory, with its
origins being only a little over one hundred
years old. The foundations of mathematics
are rooted in set theory and logic and yet the
knowledge undergraduates have of set theory
is typically acquired unsystematically in other
courses as it is needed there or picked up in
extra-curricular reading. All of this makes set
theory a good topic for an essay on mathemat-
ics suitable for non-specialists.

Early History

Georg Cantor (1845-1918) was a student
in Berlin in the late 1860’s, where he studied
number theory under such well-known profes-
sors as Ernst Kummer (1810-1893), Leopold
Kronecker (1823-1891), and Karl Weierstrass
(1815-1897). After he completed his stud-
ies he obtained a position at the university
in Halle (in central Germany, near Leipzig).
There he was somewhat isolated although Ed-
uard Heine (1821-1881, of the Heine-Borel
theorem) was there. Heine was an analyst
and he persuaded Cantor to turn his atten-
tion from number theory to analysis. At that
time the major problems in analysis revolved
around integration and Fourier series. Fourier
series were important because of their connec-
tions with heat conduction problems and inte-
gration was important partly for its own sake
and partly because the formulae for the coeffi-
cients of a Fourier series involved integration.
Remember that at this time (the early 1870’s)
the Riemann integral was not completely un-
derstood and the Lebesgue integral would not
be introduced for another 30 years.

Cantor did not turn to Fourier series them-
selves but, instead, to trigonometric series. A

trigonometric series is ‘an expression of the
form
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Such an expression need not converge for all
values of @ but is periodic with period 27. So
in considering such a series it is only necessary
to consider #'s in the interval [0, 27). The first
problem Cantor tackled was the following: if
the series converges to zero for all values of 6
must all of its coefficients be zero, i.e., must
a, = 0 and b, = 0 for all values of n? He
determined that the answer is yes. The next
question he considered was whether the same
conclusion holds if the series converges to zero
for all 8 # 6y for some 6. The answer is
again yes. He then generalized the question
as follows: what can can be said if the series
converges to zero for all # € S for some subset
S of [0,27)? Not surprisingly, this turns out
to involve the structure of the set S.

Cantor soon turned away from the study of
trigonometric series and devoted his energies
to the investigation of the structure of subsets
of the real line R. This marked the first time
that the subsets of R were studied system-
atically and was the beginning of set theory.
Cantor introduced many of the ideas of ele-
mentary topology which are familiar to most
of today’s undergraduates.

Paradoxes

Paradoxes entered the realm of set theory
as early as last century. Certainly by the mid-
1890’s at least three paradoxes were known:
two due to Cantor dealing with the set of all
sets and with the set of all cardinal numbers
and one due to Cesaro Bureli-Forti (1861-
1931) dealing with the set of all ordinal num-
bers. These paradoxes were not particularly
worrisome in that they involved technical is-
sues well inside set theory and it was felt that,
by working towards a better understanding of
the foundations of set theory, these paradoxes
would be understood and thus resolved.

Russell’s paradox was discovered by

Bertrand Russell (1872-1970) in about 1904.



This was more of a paradox in logic than in
set theory and so was more fundamental and
was thus viewed more seriously by logicians
and by many mathematicians. This paradox
goes as follows: for each set z it must be the
case that either € z or z ¢ z, so consider
the set

r={z:z ¢z}

consisting of all those sets & for which z ¢ z.
In particular, the set r itself must satisfy ei-
ther r € r or else r ¢ r, and this leads to a
contradiction. For if » € r then, by the def-
inition of r, it follows that r ¢ r; and, on
the other hand, if » ¢ r then, again by the
definition of r, it follows that » € r. But
this is clearly a contradiction and is known
as Russell’s paradox. There are at least
three ways of accommodating Russell’s para-
dox: by “layers”, by not allowing impredica-
tive definitions, or by distinguishing between
classes and sets. (The last of these is the one
currently used by most working mathemati-
cians.)

We can think of sets as being arranged in
layers, with the sets in one layer being defined
in terms of those in lower layers. Alterna-
tively, we can think of sets as being built up in
time, with the sets built at any one time nec-
essarily being defined in terms of those built
at earlier times. This approach is due to Rus-
sell himself and is formalized in his theory
of types and ramified types. This approach
makes the question = € = meaningless for any
set z since any element of a set must lie in a
lower level than the set itself. This approach
turns out to be unwieldy and not well-suited
to the needs of mathematicians and is today
regarded more as a historical curiosity than a
viable mathematical theory.

The definition of Russell’s set r given above
is said to be impredicative since, in building
r, it is necessary to check whether x € z for
each set z, including the set r itself which is
only just being built. This is a vicious circle of
sorts and Henri Poincaré (1854-1913) argued
that one should not allow such definitions in
mathematics. But such definitions are useful

in mathematics and to not allow them would
be too high a price to pay for ridding mathe-
matics of Russell’s paradox. Mathematicians
today do use impredicative definitions and
they are not regarded as being troublesome.

The third way to rid mathematics of Rus-
sell’s paradox is, in effect, to say that some
collections of objects are too large to be called
sets and are, instead, called classes. Ac-
cording to this approach, only sets are small
enough to be elements of sets or classes. So
in an expression of the form z € y the object
z must be a set but y may be a set or a class.
Russell’s set turns out not to be a set but
to be a class and so the question of whether
r € r is meaningless. The precise way in
which one distinguishes between classes and
sets is rather technical although in practise it
is quite easy for the working mathematician
to maintain the distinction.

A Little Philosophy of Mathematics

This discussion of ways of eliminating Rus-
sell’s paradox from mathematics seems to
suggest that one has a choice and that the
method is not dictated by mathematics it-
self. This seems a little strange at first and is
very different from what is done in any of the
experimental sciences (where nature itself is
the ultimate arbitrator). But this is not the
least bit strange in mathematics once one re-
alizes that the rules of mathematics are not
dictated by nature but are made by math-
ematicians. At the risk of overly simplify-
ing the situation, there are two philosophi-
cal approaches — formalism and Platon-
ism — to mathematics and to the question
of what it is that mathematicians do. For-
malism asserts that mathematics is nothing
more or less than a game in which mathe-
maticians put marks on pieces of paper in ac-
cordance with certain rules which are made by
mathematicians themselves and which may be
changed by mathematicians. This is an aus-
tere view which some mathematicians such as
Paul Cohen (b. 1934) subscribe to. Platon-
ism (in so far as set theory goes) asserts that
there really are such things as sets indepen-



dent of our mental constructs and that the
task of the set-theorist is to map out this set-
theoretic landscape much as the early explor-
ers mapped out the seas and the continents.
Kurt Godel (1906-1978), for example, was a
Platonist. So the answer to the question of
whether a mathematician invents or discov-
ers a new theorem when she proves it for the
first time depends on one’s philosophical per-
suasions: the answer is invents to a formalist
and discovers for a Platonist.

Logical versus Combinatiorial Sets

Not all mathematicians were dismayed by
Russell’s paradox. There is, for instance, ev-
idence that both Cantor and Ernst Zermelo
(1871-1956) independently of one another and
of Russell discovered Russell’s paradox a year
before Russell but were not at all upset by
it. At this time (circa 1904) there were two
quite different ways of viewing sets or, more
properly, of answering the question “what is a
set”? Mathematicians and logicians who give
one of the two possible answers would be dis-
concerted by Russell’s paradox whereas those
who give the other answer would not be.

Most logicians (including Russell himself)
and some mathematicians had a logical con-
ception of a set which allowed them to regard
any collection of objects as being a set. Those
who held this view would regard Russell’s set
r as a legitimate set and would be discon-
certed by it. On the other hand, some math-
ematicians (and this included Cantor and Zer-
melo) had a combinatorial conception of a
set according to which only those collections
which satisfied a certain criterion were to be
regarded as being sets. The criterion in play
here is that a collection of objects constitutes
a set if it can be well-ordered, meaning that
its elements can be listed in the following sort
of order:

0,1,...,00,00+1,...,200,

2
2004 1,...,00%...,00%,

00® +1,....

There seems to be no way to well-order Rus-
sell’s set r and so those who regarded sets as
combinatorial objects would not regard r as
a set. At the same time, there seems to be
no way to well-order the real line IR or even
the unit interval [0, 1] and so they also had
difficulty regarding R and [0, 1] as sets. Nev-
ertheless, Cantor was so firmly committed to
the combinatorial view of sets that he sought
well-orderings of the real line and of the unit
interval off and on for much of his working
life.

Well-orderings and the Axiom of
Choice

In 1904 Zermelo published a research paper
in which he proved that every set could be
well-ordered. His proof made use of a prin-
ciple which had never before been explicitly
articulated but which had been used implic-
itly on many occasions by many other math-
ematicians. This principle is now known as
the Axiom of Choice. One way of stating
this principle is to say that if we are given a
collection of non-empty sets then it is possible
to select one element out of each of the sets.
Putting it more precisely, if A is a non-empty
set all of whose elements are themselves non-
empty sets then there is a function f whose
domain is A and which has the property that
f(A) € A for each A € A. (Such an f is
known as a choice function for A.)

Whether one believes the first of these for-
mulations of the axiom of choice depends ul-
timately on one’s view of infinity. It is obvi-
ously true for finite collections but, psycholog-
ically, there is a big difference between mak-
ing a finite number of choices and making an
infinite number. The second formulation re-
ally says that set theory contains a large num-
ber of functions and one could argue with this
on the grounds that it might force set theory
to contain unnecessarily many functions. But
one should resist the temptation to identify
the psychological and the technical formula-.
tion of the axiom of choice; the technical one
is the important one and it is precisely this
identification which has led to and continues



to lead to misunderstandings and misstate-
ments of the axiom of choice.

There is an example due to Russell which
will help illustrate the axiom of choice very
nicely. If someone has an infinite number of
pairs of shoes there is no difficulty in selecting
one shoe from each pair: just select the left
one. But if someone has an infinite number
of pairs of socks there is no obvious choice
function or rule for selecting one sock from
each pair.

Zermelo’s proof that every set could be
well-ordered was attacked by most but not
all of the leading mathematicians of the day.
They objected strenuously to his use of the
axiom of choice as a method of proof. They
said that the axiom of choice was not a
legitimate technique in proving mathemati-
cal statements. Their objections were based
largely on the identification of the psycholog-
ical and technical formulations of the axiom
of choice and on the fact that the axiom sim-
ply asserts that a choice function exits and
gives no constructive way of finding one. In
his defense Zermelo pointed out (quite cor-
rectly) that these same mathematicians had
already themselves implicitly used the axiom
of choice in their own research. For example,
the equivalence of continuity and sequential
continuity (which is proved in Math 220) de-
pends on the axiom of choice.

It was soon realized that the axiom of
choice was equivalent to the assertion that ev-
ery set can be well-ordered.

In 1908 Zermelo published a second paper
on the axiom of choice and well-orderings. In
this paper he set out to rewrite his earlier pa-
per very carefully, making all of his assump-
tions and all of his arguments crystal clear.
His object in doing so was to make his deriva-
tion of well-orderings from the axiom of choice
absolutely clear and unassailable. In this pa-
per he presented a list of axioms which he said
were the axioms of set theory (one of these ax-
ioms was, of course, the axiom of choice) and
he deduced the existence of a well-ordering on
any given set from these axioms. This marked
the first attempt to axiomatize set theory and

turned out to play a significant role in the sub-
sequent development of set theory.

The axiom of choice is, as its name im-
plies, an axiom. But is it true? Could it,
for instance, be deduced from the other ax-
ioms of set theory or could it be that the
other axioms will allow there to exist a set
which cannot be well-ordered? This soon be-
came a very important problem in mathemat-
ics since it was realized that there are a large
number of important statements which math-
ematicians would like to be true but which can
only be proven with the aid of axiom of choice.
There are, in fact, so many such statements
that without the axiom of choice mathematics
would be very different from what it is today.
These differences would not affect just pure
mathematics but would extend into applied
mathematics as well. In fact, in the absence
of the axiom of choice even continuity of func-
tions and high-school calculus would be very
different from what they are today. The ax-
iom of choice plays such an important role in
all of mathematics that virtually all mathe-
maticians today assume that it is true.

But this does not answer the question of
whether the axiom of choice really is true. In
spite of the best efforts of numerous math-
ematicians virtually no progress was made
in answering this question until the late
1930’s. At that time Godel constructed a cer-
tain model of set theory now known as the
constructible universe and denoted by L.
Godel was able to prove that the axiom of
choice held in this model. Now any provable
statement about set theory will hold in any
model of set theory and so Gédel’s theorem
has, as a corollary, that it is impossible to
prove that the axiom of choice is false. But
that is a far cry from proving that it is true.
In the early 1960’s Cohen devised a method
(now known as forcing) for producing mod-
els of set theory. This method turned out to
be extremely powerful and gave a model of
set theory in which the axiom of choice did
not hold or, equivalently, a model of set the-
ory which contained a set which cannot be
well-ordered. (This set could be well-ordered



if it were regarded as an element of a larger
model of set theory, but that is not the point.)
A corollary of this is that it is impossible to
prove that the axiom of choice is true.

At first sight this seems to be a very pecu-
liar: we can prove that we cannot prove that
the axiom of choice is either true or false. This
situation too will be viewed very differently
by formalists and Platonists. To the formal-
ist it is perfectly satisfactory and not the least
disconcerting since, after all, mathematics is
nothing but a formal game involving symbols
on pieces of paper. But a Platonist, who be-
lieves that sets really and truly do exist, will
also believe that the axiom of choice is ei-
ther true or false and that one of the tasks
. of the set theorist is to decide whether it is
true or false. Most Platonists would say that
if we only had a better notion of “proof” this
conundrum would disappear. In fact, they
would say that if we only understood set the-
ory better we would be able to write down
one or more self-evident statements which ev-
eryone would agree should be axioms of set
theory and that with these additional axioms
we would be able to prove that the axiom
of choice is either true or false. In the last
thirty years considerable effort has gone into
the search for such additional axioms. Much
of this effort has been in the direction of so-
called large cardinals but has not turned up a
single widely-accepted candidate for such an
additional axiom.

Continuum Hypothesis

For any two sets A and B we will write
(i) A % B to mean that there is a one-to-
one function from A onto B and (ii) A < B
to mean that there is a one-to-one function
from A into B but that there is no one-to-
one function from A onto B. The relation
A~ B is interpreted as saying that A and B
have the same number of elements and A < B
as saying that A has fewer elements than B.
Cantor proved that IN < IR and today this is
well-known to mathematics students (and is
usually proven in Math 220).

Is there a subset X of R with the prop-

erty that N < X and X < R? Such a set
would have more elements than the integers
but fewer than the real line. Cantor formu-
lated this question soon after he proved that
IN < R and it became known as the Contin-
uum Hypothesis. Cantor worked on this
problem on and off for much of his active life.
On a number of occasions he would write a
letter to a colleague announcing a solution
only to write another one a few days later re-
tracting his claim. It is not difficult to show
that if X is an infinite closed subset of R then
either X ~ N or X ~ IR, and so the contin-
uum hypothesis is correct for such sets.

Whether the continuum hypothesis is true
or false is a vexing problem but, ultimately,
not one which affects working mathemati-
cians. Most mathematicians consequently
have an open mind on this issue and rarely
if ever worry about it. (This is very different
from the axiom of choice.)

The resolution of the continuum hypothe-
sis is identical to that of the axiom of choice.
The continuum hypothesis holds in Gédel’s
constructible universe L and so it is impossi-
ble to prove that the hypothesis is false. And
Cohen’s method of forcing yields a model of
set theory in which the continuum hypothesis
is false and so it is also impossible to prove
that it is true.

Godel’s Incompleteness Theorem

It has already been said that the axiom of
choice and the continuum hypothesis are two
statements about set theory which we can
prove cannot be proven to be true or false.
But putting it this way is being somewhat
misleading if not outright inaccurate.

One difficulty with this statement is that it
fails to specify the context in which mathe-
matics is being done or to specify the mean-
ing of “proof”. Surely this statement would
change if mathematicians were to change
what they regard as an acceptable proof. In
making this statement it is assumed that
mathematics is formulated as a so-called first-
order logical theory. In particular, if math-
ematics were to be regarded as a second-



order theory then the notion of a proof would
change and it may well be possible to prove
that, say, the axiom of choice is true. But
that would be changing the rules of the
game of mathematics too drastically to suit
most mathematicians. The distinction be-
tween first- and second-order theories was not
made until about 1917 and the idea that
mathematics should be first-order did not be-
come widely accepted until the late 1920’s.
Some of the set theory developed prior to
1920 is second-order and there are today, in
fact, some logicians who advocate a return
to second-order mathematics on the grounds
that it is much more natural and intuitive.

A second difficulty with the statement in
the first paragraph of this section is related
to Gédel’s incompleteness theorem. First re-
call from elementary logic that we only want
to work with consistent logical systems since
every statement is provable in an inconsis-
tent system. Godel’s incompleteness theorem
asserts basically that any first-order formu-
lation of mathematics cannot be proven to
be consistent by the methods of that the-
ory. (Presumably any such formulation can
be proven to be consistent by using a more
powerful theory or by using a second-order
theory, but that would defeat the purpose of
a consistency proof: in proving that a the-
ory is consistent it is necessary to use a the-
ory which is no more likely to be inconsis-
tent and hence no stronger.) In particular,
if we define set theory as the theory whose
axioms are those formulated by Zermelo in
1908 minus the axiom of choice together with
one more axiom proposed independently by
Abraham Fraenkel (1891-1956) and Thoralf
Skolem (1887-1963) in about 1920 then we
cannot prove that set theory is consistent. If
we denote this set theory by ZF and, for any
theory T, denote the statement that T is con-
sistent by Con(T), then Godel’s incomplete-
ness theorem asserts that within ZF it is not
possible to prove Con(ZF).

Recall that we said that since the axiom of
choice and the continuum hypothesis hold in
Godel’s model L, then we cannot prove that

either of these assertions is false. But this
isn’t quite the correct conclusion owing to the
fact that we do not have a proof of the con-
sistency of set theory: the correct conclusion
should be that if set theory is consistent then
it will remain consistent if the axiom of choice
and the continuum hypothesis are added as
additional axioms. In symbols, then, the cor-
rect conclusion to be drawn from the fact that
the axiom of choice and the continuum hy-
pothesis hold in Goédel’s model L is that

Con(ZF) = Con(ZF + AC + CH).

Cohen’s method of forcing yielded a model of
set theory in which neither the axiom of choice
nor the continuum hypothesis held and this
was earlier said to imply that we could not
prove that either of these assertions is false.
A more correct formulation of the conclusion
of this is the assertion that

Con(ZF) = Con(ZF + -AC + =CH),

where — is the usual logical symbol for nega-
tion.

So if the set theory ZF is consistent then
adjoining to it either the axiom of choice or a
suitable negation of it will yield another con-
sistent set theory. This is usually stated by
saying that the axiom of choice is indepen-
dent of ZF. In a similar sense the continuum
hypothesis is independent of ZF.

Disclaimer and References

I am not a set theorist, a historian, or
a philosopher but I nevertheless agreed to
give the Coleman-Ellis Colloquium Lecture on
which this essay is based and write the essay
itself because I find the subject matter fasci-
nating and because I know that many under-
graduate mathematics students would agree
with me.

Here are a few references on set theory and
logic I have found to be useful and readable
and which I would urge the interested reader
to consult:

e Joseph Warren DAUBEN, Georg Cantor:
his mathematics and philosophy of the in-
finite, Harvard University Press, 1979.



e Shaughan LEVINE, Understanding the
Infinite, Harvard University Press, 1994.

e Gregory H. MOORE, Zermelo’s Aziom of
Choice: its origins, development, and in-
fluence, Springer—Verlag, 1982.

e Stewart SHAPIRO, Foundations without
Foundationalism: a case for second-order
logic, Clarendon Press, 1991.

Teaching and Learning and
Mathematics as a Social
Science

Morris Orzech

This article is about teaching...and about
learning, and about some of the departmental
hubbub surrounding them. It is unlikely that
you graduated from Queen’s (particularly as a
Math and Stats student) without a sense that
providing a good education, and attending to
the welfare of our students, were important
concerns in this department. This hasen’t
changed, but in the past few years there have
been institutional changes at Queen’s and in
this department which have altered the way in
which the concern about teaching and about
students manifests itself. And a good thing
too, because they have helped us cope with
our budgetary sandstorms and to approach
our teaching with the kind of energy, curios-
ity, innovation and sense of mission that we
bring to our research.

What institutional changes? For one, the
establishment of the Queen’s Instructional
Development Centre (IDC) in 1992 following
a recommendation by a committee chaired by
Biology professor Dr. David Turpin. An-
other change came after Dr. Turpin became
Dean of Arts and Science, when the Faculty
of Arts and Science initiated funding for ma-
jor instructional development initiatives, with
the IDC playing a key role in evaluating the
projects. Our department has been fortunate
(and appreciative) that the Faculty has seen

fit to fund our proposals in each of the three
years of the competition (and our apprecia-
tion is heightened by having the new Dean
decide to budget for instructional change (al-
beit at a reduced level) despite the current
financial climate). Throughout our work on
these projects we have benefitted from the ex-
pertise and support of the IDC.

A basic understanding behind these
projects was that the funding was seed money,
and that the changes brought about would
have to be self-sustaining. It was also a given
that the changes should be aimed at bene-
fits for the students, rather than efficiency
without regard for its impact. A large part
of our effort went into a major revamping of
our first year calculus service courses, both in
terms of content and delivery. The changes
are described in the article by Grace Orzech
and Joan Geramita following this one, but
I would summarise them thus: We have re-
formed the content with the intended audi-
ence in mind, and we have redeployed the sig-
nificant resources devoted to the course. We
try to provide excellent support materials and
instructors for the large lectures; we offer a
large and varied amount of the help students
seem to need; and we administer the course
with a great deal of care, attention to detail,
regard for individual student special circum-
stances and a serious effort at getting feed-
back and addressing problems. (Sounds good
eh?)

Much of our work has been aimed at de-
veloping and assessing materials and meth-
ods to do some things we have not done be-
fore, and to do some traditional things bet-
ter. One project focused on developing stu-
dent skills at reading, evaluating and writing
mathematical reports. There has a been a
continuing effort to identify and integrate ap-
propriate technology in our courses, with the
educational aspects as the primary concern.
(Software packages such as Maple, Matlab,
Mathematica and Minitab are used in one or
another of most of our first and second year
courses.) If you were to drop in on student
and faculty conversations in Jeffery Hall re-



lating to their courses you would likely hear
references to group projects, to course chats,
to interactive notes, and labs for Math 110
and Math 120. You might get some sense
of the changes brought about through the
institutional support for instructional devel-
opment and you would certainly get a sense
that our instructional activities were not on
automatic pilot. (One of the outgrowths of
our work was a start last year of a Teaching
and Learning Seminar, a forum for presenting
and discussing ideas, experiences and materi-
als about mathematics and statistics postsec-
ondary education.)

Our projects have involved cooperation
among about a dozen regular and adjunct fac-
ulty members, but the participation by fac-
ulty relates to only one part of what the
“hubbub” to which I referred in my open-
ing sentence is about. The other part in-
volves our students. One of the most re-
warding aspects of the instructional develop-
ment work has been the opportunity to hire
about a dozen of our students over the past
three years to work with us on the develop-
ment, implementation and assessment of our
projects. I have always been cognizant of how
lucky we are to have so many students who
sport a variety of talents, enthusiasm, good
sense and a positive attitude towards their
work and their peers. Being able to bring
some of these students on board as helpers
and consultants provided us all with a con-
crete example of education as an experience
shared by teacher and learner. (Naturally,
this shared experience included a few signifi-
cant disagreements.) University faculty expe-
rience this kind of interaction with graduate
students, but we have too little opportunity
to share with our undergraduate students the
sense of community that for many teachers is
a necessary underpinning for a good educa-
tion.

Which brings me to the second part of my
title, mathematics as a social science. I re-
cently attended a workshop presentation by
Dr. Christopher Knapper, director of the
IDC, on fostering “deep learning,” the kind of

cognitive development which helps people sort
out the less important details from significant
principles and which leaves useful traces when
a course is done. Dr. Knapper referred to
various studies which tried to identify factors
correlated to this “deep learning.” Among the
factors so identified were interaction, feedback
and rapport between students and faculty and
between students and students, and teaching
methods based on interaction and student ac-
tivities. I was gratified to note that these fac-
tors have been explicit principles in our think-
ing about what and how we teach. I suspect
we “did the right thing” as much because of
the guidance from the IDC as out of our own
good instinct. But it made me think again
about a certain phenomenon some of my col-
leagues and I have noticed in Jeffery Hall:
students in different years (including. gradu-
ate students) working and talking together in
various parts of the building, stopping fac-
ulty members to ask questions or arriving as
a group in our office to clarify something. I
used to think of this easy and natural interac-
tion as a bonus (for the students and for us)
which exists atop of the good mathematics
education we provide. Dr. Knapper’s presen-
tation made me realize that the interaction
isn’t just a bonus. It is an indicator that we
have fostered an environment where the good
material we offer can remain valuable to our
students after their stay with us is done.

And T hope our interaction with our stu-
dents can remain valuable to us as well as to
them. Are you interested in knowing more
about our instructional development work?
Do you think you can offer help or advice?
Do you have any questions relating to a young
person you know who might be interested in
studying with us? Do you just want to say
hello? Don’t hesitate to get in touch with me
or with someone else in the department.

Phone: (613) 545-2436

email: orzechm@mast.queensu.ca



Math 121
Joan Geramita and Grace Orzech

Calculus is one of the great inventions of
the eighteenth century. Characterizing cal-
culus as an “invention” is in keeping with
the spirit of our largest undergraduate course,
MATH 121. Ideally, the successful graduates
of MATH 121 will have acquired intellectual
equipment which they can apply in a variety
of familiar and unfamiliar situations.

MATH 121 is taken by Arts and Science
students who need a calculus course but are
not contemplating more than a minor concen-
tration in mathematics. In fact, most stu-
dents in MATH 121 are not planning to take
any other mathematics course at all. About
ten years ago, Joan Geramita and Leo Jonker
undertook to redesign the course to recognize
the needs of its students by providing a strong
sense of how calculus interfaces with other dis-
ciplines. Since then, MATH 121 has evolved
from a less demanding version of our honours
calculus course (MATH 120) to its current in-
carnation where the emphasis is on calculus as
a useful tool in many disciplines.

A great deal of thought and effort have gone
into the transformation of MATH 121. For
about two decades there was a widespread
consensus on what a first-year calculus course
should look like, at least in North America.
Most of our readers and we ourselves took
such a course. Many of us were quite com-
fortable teaching a course much like the one
we had as students and that some of us had
been teaching for a long time. The value of
the experience that supports such a tradition
should not be underestimated. Nevertheless,
there was also a growing concern at Queen’s
and elsewhere in the North American math-
ematical community that many of the stu-
dents who took calculus as their only math
course were not well served by the standard
approach. For many of them the course they
had boiled down to learning a set of proce-
dures together with a selection of key words
that provided clues about which procedure to
use.

Learning procedures has a place in the re-
designed course. Students take three techni-
cal mastery tests. As the name implies, these
tests are meant to ensure that important tech-
niques and facts have been mastered. This
is a side of calculus that many students have
seen in high school and that the excellent stu-
dents who come to Queen’s can learn on their
own if they have good materials to help them.
We provide a list of sample questions for each
test. Before they take a technical mastery
test, students know how the questions will be
worded, which techniques will be tested, and
how many questions of each type there will be.
The grading on these tests is strict. Students
are required to provide accurate answers. The
three mastery tests account for 25% of the fi-
nal mark. '

The rest of the grade is earned through
tests that require more independence and cre-
ativity. In the past, the midyear and final ex-
ams in MATH 121 tended to be long. Some-
times students found that they could not get
to all the questions. In recent years, these
exams have consisted of a smaller number of
challenging problems. It may take a well-
prepared student some time to decide on a
strategy for doing a given problem. Weekly
assignments help provide practice in the re-
quired level of thinking. Rather than hand-
ing in solutions to the assigned problems, stu-
dents take biweekly quizzes which consist of
problems that are closely related to those that
have been assigned. This system encourages
students to work with their peers and to make
use of all the extra help provided for the
course while ensuring that they have achieved
their own understanding of the material.

The onset of hard times gave a final im-
petus to our decision that MATH 121 would
be taught in large lecture theatres by a small
team of like-minded professors. MATH 121
has gone from ten to three sections (for 700
or so students). Teaching and learning famil-
iar material from a new perspective is excit-
ing but anxiety provoking. Doing it in a large
lecture setting is a real challenge.

The Faculty of Arts and Science has as-



sisted the department by providing generous
curriculum development funds. We have used
these to prepare good written materials that
the students can use to prepare for the tech-
nical mastery tests and the biweekly quizzes.
They can also purchase a set of notes designed
to make it easier to follow lectures in a large
lecture theatre. Finally, there are many ways
for students to get assistance with studying
for MATH 121. Several graduate and under-
graduate teaching assistants are assigned to
the course. There is an electronic forum called
m121chat where students can post questions
and get responses from one another or from
the instructors in the course. The course co-
ordinator is available to help through email.
Finally, the course is organized to encourage
students to study together.

How is all this working? A perusal of ques-
tionnaires handed in by students over a two
year period indicates considerable enthusiasm
for technical mastery tests, guarded approval
of homework quizzes, and quite a bit of anx-
iety about the midyear and final exams. The
large lecture setting also requires a great deal
of adjustment from students who have just
come from high school. We will continue to
work on minimizing the stress level in the
course while requiring students to work to a
high standard.

Faculty teaching the course are pleased
with the students’ success rate in a course
that is not a snap for very many of them.
Answers on final exams reveal that many stu-
dents are able to say something sensible even
about questions that they can not completely
solve. Students express glee over being able
to solve problems that their colleagues in our
other (formerly harder) calculus course find
difficult.

News of Graduates

Vijay K. Bhargava, a 1970 graduate of

our Mathematics and Engineering program
is the winner of the 1995 McNaughton Gold
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Medal. The McNaughton Medal, named af-
ter general Andrew McNaughton, is a presti-
gious award, which the Canadian chapter of
the Institute for Electric and Electronic En-
gineers (IEEE) bestows annually onto those
of its members who made outstanding con-
tributions to the field of electric or electronic
engineering. At present Dr. Bhargava, who
obtained his Ph.D. from the Electrical Engi-
neering department at Queen’s, is running for
the post of the president-elect of the Canadian
chapter of the IEEE.

Robert McCann who in 1989 completed
his undergraduate studies in mathematics at
Queen’s with a B.Sc. and in 1994 received
his Ph.D. from Princeton University under
the direction of Elliot Lieb, was awarded an
AMS Centennial Fellowship. In his doctoral
thesis McCann developed a convexity theory
which led to the solution of two problems from
mathematical physics: the first modelled an
ineracting gas, while the second involved the
shape of crystals in an externel field. During
his Centennial Fellowship he plans to visit the
Courant Institute of Mathematical Sciences in
New York city and the University of Califor-
nia, Berkeley.

Jmin Chen who graduated in 1991 from
Queen’s University with a degree in pure
mathematics received his D. Phil. from Ox-
ford University in July 1996. Shortly af-
terwards he has been awarded a three year
NSERC postdoctoral fellowship, the first year
of which he will spend at the University of
California in Berkeley, beginning this Septem-
ber. The remaining two years he will subse-
quently spend at McGill University in Mon-
treal.

Ontario Student Opportunity
Trust Fund

The Ontario Government has announced a
plan to match funds donated between May 7,



1996 and March 31, 1997 to Queen’s Univer-
sity directed towards student financial aid.

The Department of Mathematics and
Statistics will establish a bursary for third
and fourth year students in Mathematics and
Statistics.

All donations to the bursary fund will be
used to establish an endowment and the in-
terest from this fund will be used to provide
bursaries to students needing financial assis-
tance.

In order to get started, the fund must reach
$2,500. Please send donations to the Mathe-
matics and Statistics Bursary Fund, Depart-
ment of Mathematics and Statistics, Queen’s
University, Kingston, Ontario, K7L 3N6.

Problems
Peter Taylor

Sum of cubes is square of sum

Ed Barbeau of the University of Toronto
is an undisputed master of good recreational
mathematics problems. I was at a conference
last month and he ran a problem solving ses-
sion with a number of lovely examples—the
neatest of these, in my view, I will share with
you.

You are perhaps all familiar with the for-
mula for the sum of the first » natural num-
bers:

_n(n+1)
= —2—,

And perhaps also the sum of the first n
squares:

1+2+3+---+n

_n(n+1)(2n+1)

6

1422432 4. 4n?

But have you also met the remarkable for-
mula for the sum of the first n cubes?

1 2
1428433 4+...4+03= (_n(n_;_l) .
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Of course, the reason this is so remarkable
has to do with its relationship to the first for-
mula. I have puzzled over why this happens
to be true, trying to find some intuitive justi-
fication, but haven’t come up with anything
as yet.

Anyway, let’s look at it another way—
we have obtained a collection of numbers
for which the sum of the cubes equals the
square of the sum. Well now that’s interesting
enough, and it leads us to ask the question:
can you find any other “natural” collection
of numbers for which the sum of the cubes
equals the square of the sum?

Well here’s such a collection. Take any pos-
itive integer n. Now make two columns. In
column one make a list of all the divisors of
n, and beside each of these, in column two,
put the number of divisors of the column one
number. Then it turns out that column two
is always such a collection of numbers!

I'll illustrate with n = 12.

Divisors of 12 | number of divisors
1 1
2 2
3 2
4 3
6 4
12 6

Take the numbers in the second column.
Square of sum: (1+2+2+3+4+6)2 =324
Sum of cubes: (1+8+8+27+644216) = 324
The problem of course is to show that it al-
ways works.

Perfect shuffles.

At the same conference I encountered an-
other result which blew me right out of the
water. You can try to see why this one works
too.

You know what a perfect shuffle is?7—you
divide the deck exactly in half, and then riff-
shuffle the deck so that the cards fall alter-
nately. Go try it out! Right. It sounds hard



to do and it is, but competent card artists can
do it reliably.

Perhaps you’ve noticed that there will be
two kinds of perfect shuffles depending on
which half of the deck you let fall first, in one
case card #1 will stay on top, and in the other
card #1 will go to position #2 and card #27
will wind up on top. The first kind is called
an OUT-shuffle (card #1 stays “out”) and the
second kind is an IN-shuffle.

Okay, suppose you’ve got the deck with a
certain card, say the spade ace, on the top and
you want to move it to a designated position
in the deck with a sequence of shuffles. Can
you do it, and if so how? This is the sort of
question that might arise in the execution of
a card trick.

The answer is that you can do it with a few
perfect shuffles, using a suitable sequence of
IN’s and OUT’s. Maybe that’s not too sur-
prising, but wait till you hear how to find that
sequence.

To work with an example, suppose you
want to move the spade ace to position #14.
That means you want to move it down 13
places. Write 13 in binary:

13 = 1101.

Okay (fasten your seat belt) replace each 1
by an I and each 0 by an O (well what else?):

IIOL.

The recipe calls for two IN’s followed by
an OUT followed by another IN. The ace
will move down 13 places to position #14—
evidence for sure that god did a joint major
in math and english.

Problems From Last Issue
Peter Taylor

Here are two nice little probability problems.

1. I have an urn which contains 100 balls,
each one either black or white. If you draw

two balls at random from the urn, then the
probability that they are the same colour is
exactly 1/2. How many balls of each colour
were there in the urn?

2. A flips a fair coin 100 times, and B flips a
fair coin 101 times. What is the probability
that B gets more heads than A?

Solutions

Solutions by Alan Donald, M.Sc. ’79 now
Associate Professor of Health Management at

the Atlantic Veterinary College, University of
Prince Edward Island.

1. Suppose we have n balls of which z are
white and n — z are black. Then the prob-

ability that we choose a white followed by a
black (or a black followed by a white) is

T n—z
P= e n-o1

The probability that we get balls of differ-
ent colours is 2p. If we set this equal to 1/2,
we get a quadratic in 2 whose solution is

= EVn

2
If n = 100, for example, z = 45 or 55.

2. This a very nice problem. I sup-
pose there is a complicated solution that uses
messy binomial coefficients. But I gave up
on those after about 15 minutes. (Good deci-
sion/) Here are two dodgy solutions. (They’re
not really dodgy but they are quite clever. So-
lution (i) is nice and is the standard “nice”
solution. Solution (ii) is spectacular.)

Solution (i)

Suppose A tosses n times and B n+1 times.
Hold off, for the time being, on B’s last toss
and consider only her first n tosses. There
are three exhaustive, mutually exclusive out-
comes.

Event X: A has more heads than B

Event Y: B has more heads than A

Event Z: A and B are tied.



Let px,py and pz be the probabilities of
these events. Then the exhaustiveness and
exclusiveness gives px + py + pz = 1. And,
by symmetry, px = py. Thus

2py +pz=1

Now, B gets more heads than A if Y is true
after the first n tosses or if Z is true and B
gets a head on the last toss (a probability of
1/2). Thus the probability of B getting more
heads is

1
Py+pz-§

From the first equation, this is exactly 1/2.
Solution (ii)

Let R be the event that B gets more heads
than A; let S be the event that B gets more
tails than A. We note that these two events
are mutually exclusive and exhaustive.

They are mutually exclusive since they
could only both hold if B had at least 2 more
tosses than A. They are exhaustive since B
tosses more than A.

Thus if pr and pg are the probabilities of
the two events, pr + ps = 1. By symmetry,
the two probabilities are equal and therefore
both equal 1/2.

Problem 1 was also solved by Greg Baker,
Math ’98.

Head’s Report
Eddy Campbell

1997 will mark the 30th anniversary of the
first Mathematics and Engineering class to
graduate from Queen’s. We are inviting all
graduates of that program and their families,
to visit us for a reunion August 1-3, 1997.
We will have a Friday reception, a public lec-
ture Saturday afternoon, a banquet Saturday
night and a Sunday Brunch. We will arrange
activities for children of all ages, and babysit-
ting as appropriate. All our alumni should
have received a letter from me: if you have
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not, please get in touch with us at the ad-
dresses provided. We’d love to see you.

Ram Murty of McGill University accepted
a position as full professor in our department
as of July 1, 1996. Ram was honoured as
a Queen’s National Scholar. He has been a
Steacie Fellow, one of the Natural Sciences
and Engineering Research Council (NSERC)
of Canada’s highest awards, and a Fellow of
the Royal Society of Canada. Ram is one
of the best number theorists in Canada, and
his addition makes our department one of
the best in the country. We now have three
Queen’s National Scholars among our faculty.

Tony Geramita was appointed to the Chair
of Geometry at the University of Genoa under
the provision of Italian Law known as “chiara
fama” or “clear fame”. This is a highly un-
usual honour, to say the least. Tony is inter-
nationally known for his work in commutative
algebra and algebraic geometry.

Oleg Bogoyavlenskij, appointed to our de-
partment as a Queen’s National Scholar in
1992, received a major increase in his operat-
ing grant from NSERC, in recognition of his
outstanding work on dynamical systems.

Agnes Herzberg became Vice-President of
the International Statistics Institute.

Ed Chow, one of our young statisticians,
has decided to leave us as of August 1, 1996.
Ed has taken a job designing neural net soft-
ware in San Diego. Ed is an excellent teacher,
and we regret very much losing him. We wish
him the best of luck in his new career.

Two years ago the department decided to
devote a position to postdoctoral fellows. We
have been able to attract four brilliant young
scholars to Queen’s to work with us: Eduardo
Aranda-Bricaire, working with Jon Davis
and Ron Hirschorn; Keith Pardue, work-
ing with Tony Geramita and Leslie Roberts;
Jim Shank, working with Ian Hughes, David
Wehlau and myself, and Helena Verril work-
ing with Noriko Yui and Ram Marty. Ram
will bring with him another young post doc-
toral fellow, David Cardon, who just gradu-
ated from Stanford. The presence of all these
young researchers has made and will make a



tremendous difference to the life of the de-
partment.

Due to government cutbacks the depart-
ment faced a budget cut of 10% this year.
Queen’s made selective cuts — our depart-
ment’s share of the pain was slightly below
average relative to other departments in the
faculty of Arts and Science. Four positions
which were vacant for one reason or another
were closed, and the position of one of our
statisticians, Tom Stroud, who took early re-
tirement as of June 30, 1996 (cf. Notes on
this Year’s Retirees) was collapsed. The de-
partment, which had some 48 faculty mem-
bers only fifteen years ago, now has just 36.
Under Leo Jonker’s leadership, we have cut
the number of courses offered from 220 half
courses five years ago to just 127 in the year
past. Math 121, our first year calculus course
for roughly 700 Arts and Science students,
represents an example of the effects of the
reduction in the number of sections in our
service courses. A few years ago the course
was taught in ten sections, each containing
roughly seventy students. This year the same
course was offered in only three sections, one
containing four hundred and the other two
containing two hundred and one hundred stu-
dents, respectively. Such large classes are now
common at many universities. Our instruc-
tors, lead by Grace Orzech, have worked long
and hard to make improvements. As a result,
I believe that this is a better course today,
and you can read more about it elsewhere in
this issue of the communicator.

We are continuing to rethink and redesign
our curriculum across the board. Morris
Orzech has led some really interesting exper-
iments in the application of technology in the
class room. He has worked long and hard on
a shoestring budget to make our semi-public
computing site, Jeffery201, a success. Mor-
ris has received funding through our Dean’s
curriculum development funds — which the
faculty has been able to protect in spite of
the severe cutbacks.

A really tragic consequence of these gov-
ernment cutbacks was a decision by Senate

14

(the vote was 20-18) to force the relocation of
the Mathematics and Statistics library from
Jeffery Hall to a newly renovated Douglas Li-
brary as of April 1997. The Mathematics
and Statistics library is one of nine branch
libraries to be closed in order to reduce ser-
vice costs. There is some hope that we will
be able to salvage a small research collec-
tion from the wreckage. Real damage will be
caused to the sense of community which the
library has served to create among students
and faculty over the past thirty years — a
cost that is very difficult to quantify. Don Ak-
enson of the History Department said it best:
“The real danger is that we will come to value
most that which is most easily counted”. A
number of our alumni wrote -to express their
concern and some even responded with dona-
tions. One of our graduates frcm 1964, now
a retired teacher, offered to work one day a
week in the library, a gift of time of great
value.We are very grateful to every one who
responded.

Our strategic plan calls for the creation
of Industrial Research Chairs through a pro-
gram partially funded by the Natural Sciences
and Engineering Research Council of Canada.
We seek two such chairs, one in Statistics
and the other in Mathematics and Engineer-
ing. The program requires the participation
of an industrial partner or consortium and
each such chair requires total funding over a
five to ten year period of some $750K-$2M.
We are still in the early stages of our search
— identifying high-quality candidates with
whom to attract industrial partners. Please
get in touch with me if you think you or your
company can help in this effort.

One of the bright spots in the department
these past few years has been our Gill tutors.
A modest bequest from Sun-Life honouring
the memory of their former president, Mr.
Ernest Clark Gill, Queen’s graduate of 1923,
was used to create these positions. We hire
one or two of our best upper year students
to help tutor our younger students. We se-
lect those who we feel will contribute most to
help create a sense of family among all of our



students: The program has been a great suc-
cess. One of the first Gill tutors was Sumit
Oberai, son of Kirti Oberai, who is one of
the best teachers in our department. Another
was Laura Scull who just has finished her first
year in the PhD-program at the University of
Chicago. She has decided to work in the area
of algebraic topology. I am rather proud of
having initiated her into the subject during
her last year at Queen’s. Two years ago Greg
Smith, who is just finishing his first year in
the PhD-program at Brandeis, was a Gill Tu-
tor. Greg, lan Hughes, Tony Geramita and I
are presently writing a paper, describing the
results that arose from Greg’s work with us
last summer. Serge Mister, BscEng 96 will
stay on to do his Master’s degree in the Com-
puter and Electrical Engineering department
here. Serge will spend the summer studying
network security at Nortel, under the super-
vision of Brad Ross, BScEng 73. This year we
had Peter Zion as a Gill Tutor. Peter is off
to the University of Toronto to do a Master’s
degree, and he plans to go from there to Ox-
ford for a PhD. Another Gill Tutor was Steve
Nielsen, the son of Ole Nielsen, who wrote the
leading article in this communicator. Steve
is going to do graduate work in theoretical
chemistry at the University of Toronto. Fi-
nally, this year we had Paula Dow, one of our
best third year students, as a Gill Tutor. She
will enter her fourth year this Fall.

I wrote to Mrs. Gill this winter to tell her
about the success of the program, and I re-
ceived a truly lovely reply.

The department once again sponsored a
public lecture. In late November, we enjoyed
a wonderfully witty and articulate lecture
by S. Abhyankar on algebraic curves. Pro-
fessor Abhyankar is from Purdue University
where he is appointed to three different de-
partments: mathematics, computer science,
and electrical engineering.

We are genuinely interested in hearing from
you, not only if you are able to make a finan-
cial contribution! (although it goes without
saying that given the present constraints in
government funding such a contribution is al-
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ways deeply appreciated). My E-mail address
is eddy@mast.queensu.ca.

Notes on this Year’s Retirees

Uri Fixman joined the department in
September 1961. Uri is a mathematician with
a broad interest and a knowledge which en-
compasses wide areas of mathematics, includ-
ing branches of algebra and analysis. While
working at Queen’s his research interests fo-
cused on systems of linear operators in infinite
dimensional vector spaces. He supervised two
MSc-theses and four PhD-theses on this and
related topics. Furthermore, he served on sev-
eral departmental committees.

Uri, we wish you a long and happy life in re-
tirement. We hope that as an emeritus profes-
sor you shall still visit our department occa-
sionally and stir our laughter with your sharp
and lively humour!

Tom Stroud It was with both regret and
relief that members of the Mathematics and
Statistics Department learned of the early re-
tirement of Tom Stroud in March 1996. Re-
gret at losing an able statistician and relief
that the Department would meet its quota of
required retirements and would not have to
carry a crippling debt ($70,000 per year accu-
mulating until the next retirement).

After graduating from the University of
Toronto with an MA, Tom taught for four
years at Acadia University. He did his PhD
at Stanford under the supervision of Ingram
Olkin, before coming to Queen’s in 1968. In
his 28 years at Queen’s he supervised three
PhD and seven MSc theses as well as a num-
ber of MSc projects. He spent years visit-
ing at each of the Educational Testing service,
Ecole Polytechnique in Lausanne and at the
University college of Wales in Aberystwyth.
In 1992 he was promoted to Full Professor.

His 21 published papers appear in a wide
variety of journals ranging from Annals of
Mathematical Statistics, to Journal of Applied



Probability and The Journal of Educational
Statistics.

During his career he has worked as a con-
sultant in Educational Testing and on sample
surveys, particularly in the field of Small Area
Sampling, for Statistics Canada.

Many students at Queen’s will remember
his very practical courses in Sample Sur-
veys, and note a few have been grateful to
Tom, because this course enabled them to
ace the Stats Canada tests and ensure them
of employment opportunities with Statistics
Canada.

Inhabitants of Jeffery Hall will miss his in-
vitations to Choral Concerts and Barber Shop
Quartet Singing.

We all wish Tom a relaxing and satisfying
retirement.

Lorne Campbell retires this summer after
33 years in the Department of Mathematics
and Statistics. He served as Head from 1980
to 1990 and has been actively involved with
the Mathematics and Engineering program
(He became a licensed Professional Engineer
in 1990). Lorne’s mathematical research in
information theory has been of great bene-
fit to the engineering community. In 1990 he
became a Fellow of the Institute of Electri-
cal and Electronics Engineers for his contri-
butions to the understanding of signals and
noise in nonlinear devices. The IEEE is the
world’s largest professional engineering orga-
nization and awards fellowships for outstand-
ing contribution to Electrical Engineering. In
1994 he was presented the Canadian Award in
Telecommunications Research for his contri-
butions to information and communications
theory and for a lifetime of leadership in these
fields in Canada.

Lorne is a dedicated teacher who has taught
pure and applied mathematics, statistics, and
engineering at the undergraduate and gradu-
ate levels. He supervised 14 MSc and 5 PhD
students and has published over 54 scientific
papers in refereed journals. Lorne plans to
continue his research and supervision of grad-
uate students and is currently co-supervising
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a PhD student. He also plans to do some trav-
elling and hopes to visit Kenya, Tanzania, and
South Africa this fall.
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