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Fermat’s Last Theorem

Ernst Kani
Coleman-Ellis Lecture, November 1996

Introduction

On the 23 of June 1993, Andrew Wiles
concluded a three-day lecture series in Cam-
bridge, England, with the assertion:

Theorem. Every semi-stable elliptic curve is
modular.

This not only electrified number theorists
and mathematicians around the world, but
even made the headlines of many major news-
papers such as the New York Times, Le
Monde, Frankfurter Allgemeine,..., a rare
event for a mathematical theorem.

The main reason for this excitement and
publicity is due to the fact that it had just
been shown a few years earlier that the above
theorem implies the truth of Fermat’s Last
Theorem,

(FLT,) 4y £ 2", zyz #0,

for any non-zero integers z,y,z € Z and n >
3; this had been asserted by Fermat 350 years
ago!

The purpose of this lecture is to relate some
of the history behind FLT (= Fermat’s Last
Theorem!), to explain in simple terms how
Wiles’s theorem is related to FLT and, above
all, to give you a glimpse of the significance of
Wiles’s result which, in fact, goes far beyond

FLT.

1. Early History

Although FLT is an assertion about sums
of n-th powers for n > 3, it was inspired
by looking at the case n = 2, the so-called
Pythagorean equation:

a:2+y2 =22.

'So called because it was the last of Fermat’s many
assertions which still had to be resolved.

In high school, every student learns that
(3,4,5) and (5,12,13) are solutions (called
Pythagorean triplets) of this equation, but few
learn that

12,709% + 13,5007 = 18, 5412,

Indeed, this solution, and many others like
it, had been known for almost 4000 years,
and were recorded on clay tablets around the
era of Hammurabi (ca. 1700 B.C.), more than
1000 years before Pythagoras (ca. 550 B.C.).
In fact, from the way the following tablet
(Plimpton 322, discovered by O. Neugebauer
and Sachs; cf. Figure 1) is arranged, historians
are convinced that the Babylonians already
knew the following formula (or something
close to it) for generating all Pythagorean
triplets:

2

T =u?—v? y=2uv, z=ul+0v? (1)

where u,v € Z; this formula is usually at-
tributed to Pythagoras or Plato (ca. 400
B.C.).

Certainly Diophantus of Alezandria (ca.
250 A.D.) was not only aware of this formula,
but even based a large number of problems on
it in his Arithmetica, a very remarkable collec-
tion of 13 books of which 9 have survived. (Of
these, only 6 were known in the Renaissance;
the other 3 were discovered only 20 years ago
in a library in Iran.) Thus we find in Book II:

Problem 8: Decompose a given square into
a sum of two squares.

Diophantus presents the numerical example

2
4% = (15—6)2 + (15—2) , but his method is per-
fectly general and actually leads to the for-

mula

az—( 2ma )2+ a(m? - 1) :
T \m?2+1 m?2 41 ’




Plimpton 322
ca. 1800 - 1650 B.C.

:72' w d n h
v 19| 169 1 120
23280625 | 3367 | 4825 | 2 3456
44209201 | 4601 | 6649 | 3 4800
345768081 | 12709 | 18541 | 4 13500
e 65 97 | 5 79
. %‘% 319 481 6 360
12538681 | 9991 | 3541 | 7 | 2700
gost 799 | 1249 | 8 960
st 481 769 | 9 600
86601921 | 4961 | 8161 | 10 || 6480
5 45 75 | 11 60
8579041 | 1679 | 2929 | 12 2400
il 161 289 | 13 240
lodzeidl | 1771 | 3229 | 14 2700
2809 56 106 | 15 90

Figure 1: A clay tablet and its translation:? Pythagorean triplets A% + w? = d?

where a? is the square to be decomposed and
m is any integer. This, of course, is just a
variant of the formula (1).

While studying this problem, Pierre De
Fermat (1601 -1665) wrote the following text
in the margin of his copy of the Arithmetica
(which had recently been translated from
Greek to Latin by Bachet):

Cubum autem in duos cubos, aut quadrato-
quadratum in duos quadrato-quadratos, et ge-
neraliter nullam in infinitum ultea quadra-
tum postestatem in duos ejusdem nominis
fas est dividere; cujus rei demonstrationem
mirabilem sane decteri. Hanc marginis exi-
guitas non caperet.

Translation[He]: On the other hand it is im-
possible to separate a cube into two cubes, or
a biquadrate into two biquadrates, or gener-
ally any power except a square into two pow-
ers with the same exponent. I have discovered
a truly marvellous proof of this, which how-
ever the margin is not large enough to contain.

2This translation includes some corrections. In ad-
dition, the column h, which does not appear in the
original, was added for convenience.

We do not know the exact date of this entry,
but in 1638 he challenged Jumeau de Saint-
Croix to find two cubes whose sum is a cube
(and similarly for biquadrates), so it seems
likely that he became convinced of the truth
of FLT around that time.

Fermat himself gave a proof of FLT for n =
4 which he wrote in the margin at the end of
the last book of Diophantus. However, since
he does not seem to refer to this conjecture in
his correspondence (except in the case n = 4),
it might well have been lost to posterity had
not his son Samuel published in 1670 another
edition of Diophantus, interspersed with his
father’s comments (cf. Figure 2).

Now that I have dwelt in such detail on
the birth of the conjecture, I will be much
briefer with subsequent early developments.
The case n = 3 was done by L. Euler in
1753 (with some additional details furnished
later by C.F. Gauss). In 1825/28 Dirich-
let and Legrendre (independently) settled the
case n = 5 and in 1832 Dirichlet also did the
case n = 14. The latter result became super-
fluous when G. Lamé proved FLT for n = 7
in 1839. Later, in 1847, Lamé also presented
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Fermat’s comment in the

margin of the Arithmetica by Diophantus

a proof for general primes p > 3 based on the
arithmetic of the number ring (called the ring
of cyclotomic integers)

Z[Gp) = {no+n1Gp+ ...+ np—zC,',’_2 1n; € Z},

where ¢, = e = cos(%”) + isin(%"), but
this proof was wrong since he assumed that
the property of unique factorization holds in
Z[Gp) for all p. (In fact, it is now known that
this holds if and only if p < 19.)

The most notable advance was made by
Ernst Edward Kummer. Already a year be-
fore Lamé’s hasty announcement, he had in-
vented his “ideal numbers” (precursors of
Dedekind’s theory of ideals, which we use to-
day) in order to rescue the unique factoriza-
tion property for Z[(,]. In 1847 (published

1850) he applied his methods to prove that
(FLT)) is true for all regular primes p. Fur-
thermore, he devised a method (based on
Bernoulli numbers) in order to test whether
a given prime number is regular or not. Us-
ing this, he found in 1874 that of the 37
primes p < 163, only 8 are irregular: p =
37,59,67,101,103,131, 149, and 157.3

After Kummer, there were many partial
results on FLT for which I refer you to P.
Ribenboim’s excellent book [Ril]. By com-
bining these with Kummer’s general result, S.
Wagstaff was able to verify in 1976 with the
help of a computer that Fermat’s Last Theo-
rem is true for all integers n < 125, 000.

2. Recent Results

In the 1970’s and ’80’s, the deep and pow-
erful methods of Algebraic Geometry (as de-
veloped by A. Grothendieck and his school)
lead to many significant advances in the the-
ory of Diophantine Equations (named after
Diophantus). Most of these were not (or did
not seem to be) directly connected with FLT.
A notable exception was the Mordell Con-
Jecture, which had been formulated by L.J.
Mordell in 1922, and which was then estab-
lished through the work of G. Faltings in 1983,
for which he received the Fields Medal4 in
1986. Specialized to Fermat equations, Falt-
ings’ theorem yields the following finiteness
result.

3This evidence suggests that there are more regu-
lar primes than irregular ones, and this is borne out
by further calculations (e.g. 8399 of 13848 primes
p < 150,000 are regular; cf. [Ri2]). In addition, C.L.
Siegel proved in 1964 that if certain (unproven) ran-
dom distribution property of Bernoulli numbers holds,
then 7‘; ~ 0.61 of all primes are regular. However, un-
conditionally it is still unknown whether there exist
infinitely many regular primes (whereas it was shown
in 1915 by Jensen that there are infinitely many irreg-
ular primes).

“The Fields Medal, named after the Canadian
mathematician John Charles Fields (1863 - 1932),
is the most prestigious prize for mathematical re-
search. It is awarded every 4 years at the International
Congress of Mathematicians to the top 2-4 researchers
under the age of 40.



Theorem (Faltings, 1983) For each n > 4,
the set

{(z,y,2) € 2% : a"+y" = z"and (z,y,2) = 1}
is finite.

While this was clearly a very significant re-
sult (particularly in its more general form), it
did not convince skeptics about FLT. Indeed,
there did not seem to be any (conceptual) rea-
son whatsoever that the equation a?4yP = 2P
should not have the same five solutions (say)
for all primes p > 2!

This changed drastically in the mid 1980’s
when not only one but two separate rea-
sons were advanced. On the one hand D.
Masser(1985) and J. Oesterlé(1988) proposed
a very remarkable general conjecture (called
the ABC-Conjecture) from which it would fol-
low that not only the Fermat equation but
also the twisted Fermat equation az™ 4 yb" =
zc" (where a,b,c € Z are fixed relatively
prime integers) has only “trivial” solutions (in
particular, only finitely many solutions) for all
sufficiently large exponents n. This conjec-
ture, as well as the statement about twisted
Fermat equations (called the asymptotic Fer-
mat Conjecture) is still open at present.’

On the other hand, in a Paris seminar in
1985, G. Frey suggested a method (based
on some (vague) conjectures of Serre) that
a certain well-known conjecture, called the
Taniyama Conjecture (or (TWS)- Conjec-
ture), should imply FLT. I cannot resist the
temptation of relating a personal anecdote
about this discovery. Indeed, I can still re-
member the day (but not the date - proba-
bly in the spring of 1982) when Gerd Frey,
who is a good friend of mine, phoned me up
and said: “I’ve just proved FLT, can you find
the mistake?” Of course I couldn’t, but af-
ter giving me an hour lecture he himself saw
that there were a number of gaps to be filled.
These gaps were formulated in terms of a pre-
cise conjecture by J.P. Serre in a letter to
Frey in 1985 and became known as the “c-
Conjecture”; this was published as part of

SFor comprehensive discussion of how these and
other conjectures fit together, cf. Frey[Fr3].

a far more general conjecture by Serre[Se] in
1987. In the meanwhile, Ken Ribet succeeded
in 1986/87 to prove the e-conjecture in an in-
genious way; cf. Ribet[R].

By this time number theorists were (for the
most part) convinced of the truth of FLT,
for the contrary meant to deny the Taniyama
Conjecture which, in turn, would involve a
major rethinking of what we know (or conjec-
ture to be true) today. Nevertheless, it was
not expected to be proved soon, and so Wiles’
announcement in 1993 came as a big surprise!

3. A Basic Principle

Before explaining the method of Frey/Ribet
/Wiles, let me first formulate some basic prin-
ciples that have evolved over the years con-
cerning the nature of solutions of Diophantine
equations and which are a partial motivation
for the method. First, let me formulate the
basic problem of Diophantine equations:

Problem: Find all the integer solutions
(z,y,2) € Z3 of a given Diophantine equation

F(:L',y,z):(), (2)

where F € Z[z,y, z] is an integral polynomial.

Examples: 1) Fermat polynomials:

F(z,y,2) = Fp(z,y,2) = 2" + y" — 2".
2) Elliptic curves:
Fop(z,y,2) = ylz — 23 + az2? + b23,

where a, b € Z and the discriminant A(Fap) =
16(4a3 + 2703) # 0.

To give you an impression of the difficulty
of this problem, let me remark that at present
no general algorithm is known which de-
cides in a finite amount of time whether a
given polynomial F(z,y,z2) has at least one
non-trivial integer solution (z,y, z) # (0,0,0)
or not,% let alone an algorithm that finds all

%In fact, it is known that for integer polynomi-



the solutions! Let us, therefore, consider the
following

Easier Problem: For each prime number
p, solve the congruence

F(z,y,z) =0 (mod p). (3)

Clearly, this is a finite problem (for each p),
for we need to check only p® values. In par-
ticular, the number of solutions modulo p,

#{(z,y,2) € (z/pz)*

F(z,y,2) =0 (mod p)}

= #{(z,y,2) €2®: 0< z,y,2<p
and p|F(z,y,2)},

Ny (F) =

is finite: N, (F) < p3. Put:

Np(F) = (N5 (F) = 1)/(p - 1)
= #of essentially distinct solutions
of (3) (excluding (0,0,0)).

Question: Do these numbers shed any light
on the solutions of equation (2)?

The naive interpretation of this question
is blatantly false: there exist polynomials
F(z,y,z) with only trivial integral solutions,
yet Ng(p) # 0 for all primes p. In addition, it
follows from a theorem due to H. Hasse and
A. Weil that Np(p) = p, for p large, so the
mere existence of solutions modulo p cannot
yield any information about the existence of
integral solutions. Nevertheless, we have the
following

Basic (Conjectural) Principle: the se-

quence of numbers
ap(F) & (p+1) = Ny(F), as p - oo, (4)
should determine the nature of the solutions

of (2).

For elliptic curves, this principle assumes
the form of two very precise conjectures which
have been partly verified:

als F(z1,...,z,) in r > 13 variables, no such algo-
rithm can exist, as was shown by Matijasevi¢ in 1970,
thereby supplying a negative answer to Hilbert’s 10th
problem; cf. [DMR].

(TWS)—Conjecture: - due to Y. Taniyama
(1955), A. Weil (1967), G. Shimura (1971)

(B/SwD)—Conjecture: - B. Birch, H.P.F.
Swinnerton-Dyer (1960’s)

The (TWS)-Conjecture will be explained
in the next section. I will not discuss the
(B/SwD)- conjecture in detail here, but only
mention the following recent result (which at

the same time shows the importance of the
(TWS)-conjecture):

Theorem 1 (V. A. Kolyvagin (1988),
K. Murty, R. Murty (1991)).” Let E :
Fop(z,y,2) =0 be an elliptic curve satisfying
(TWS). Then the sequence of numbers

a’P(E) =p+ 1- NP(Fa,b)7 D — 00,

determines a (“computable”) real constant
Lg(l)eRr. If

then the equation Fgp(z,y,z) = 0 has only
finitely many integral solutions (z,y,z) € 73
with ged(z,y,z) = 1, and these can be ezplic-
itly calculated.

Note. The above theorem constitutes an ex-
plicit algorithm which has been implemented
on a MAPLE package called APECS.

Example (Frey). The above leads to a com-
puter proof (a true proof!) of FLT3; and
FLT4, using only four short computer com-
mands.

4. The TWS—Conjecture

Roughly speaking, the TWS-Conjecture may
be viewed as stating that the numbers a,(E)
possess many “hidden symmetries”; in par-
ticular, the knowledge of the a,’s for the first
few p’s determines all the others.

Before explaining this more precisely, let us
look at the elliptic curve E defined by the
equation

y2 +y= z3 — 2.

"This theorem was first proven by Kolyvagin un-
der an additional hypothesis, which was then later
removed by Murty-Murty and, independently, by D.
Bump, S. Friedberg and J. Hoffstein.




are given by:

The Elliptic Curve E : y? + y = 2% — 22

The number N, (E) of solutions of E over F, = Z/pZ and the number ap(E) = p+1—N,(E)

p |2 3 5 7 11|13

17 19 23 29 |31 37 41

N,(E) |5 5 5 10 11|10

20 20 25 30(25 35 50

aE) [2 -1 1 2 124

-2 0 -1 0|7 3 -8

f(2)=¢ H(] — ") (1 —q'")? =
n=1

On the other hand, the unique newform f(z) € S,(To(11)) of level 11 is:

00
Zan(f
n=1
=q_2q2_q3+2q4+q5+2q6_2q7_2q9_2q10+q11_2q12+4q13+4q14

___q15_4q16_2q17+4q18+2q20+2q21_-2q22_q23_4q25_8q26+5q27
_4q28+2q30+7q31+8q32_q33+4q34_2q35_4q36+3q37_4q39_8q41+“

)g"

Its first few Fourier coefficients at prime indices are:

p (2 3 5 7 11|13

17 19 23 29|31 37 4l

owf)|[2 -1 1 2 1[4

-2 0 -1 0|7 3 -8

In this case, the numbers a,(F) have a very
remarkable interpretation: each turns out to
be equal to the p-th Fourier coefficient of the
function f defined by product expansion

)= g [T (1 - 21 - g2,
n=1

where ¢ = €2™* (see the insert on the top of
this page). Now it can be shown that this
function has many “hidden symmetries”, i.e.
it satisfies the transformation law (5) below
(with N = 11), and that this characterizes
the function f uniquely.

This phenomenon can be generalized to ar-
bitrary elliptic curves, but for this we need
the following two concepts:

1) The conductor N = N of an elliptic curve
E = E, : this is a positive integer

N|Aup

which is closely related to the discriminant
Agp (and which is explicitly computable).

2) The space S(N) = So(To(N)) of modular
forms of level N: this consists of (complex-
valued) functions of the form

(e o]

flz) = Z an(f)q", with ¢ = 2™,
n=1
where the a,(f) € C and the sum converges

for I'm(z) > 0; these are to satisfy certain
additional properties such as the rule

F(EE) = @rare),

cz+d

where a, b, ¢, d € Z are any integers with ad —
bc=1 and Nle.



Properties: 1) S(N) is a finite-dimensional
C-vector space. There is an explicit formula
for its dimension gy := dim¢ S(NV), which is
approximately gy =~ %

2) Each f € S(N) is uniquely described
by its first 29y =~ % Fourier coefficients
al(f)y"'a“?QN(f)‘

3) The space S(N) has a distinguished C-
basis B(N) = B+(N) U B~ (N). The func-
tions in Bt (V) are called newforms, those in
B~ (N) oldforms. For each N, these forms are
explicitly computable (and have been com-
puted for N < 10°).

The above properties show that for each
N, the set of functions B(N) is determined
by a finite amount of data, and hence may
be viewed as being explicitly known. The
(TWS)-Conjecture relates the Diophantine
numbers a,(F) to these functions as follows.

Conjecture (TWS): For every elliptic curve
E of conductor N, there is a (unigue) new-
form f(2) = ¥ an(f)g™ € BT (N) of level N
such that

ap(E) = ap(f),

At first sight, this seems to be a rather dar-
ing and mysterious conjecture: why should
the numbers a,(F) have anything to do with
modular forms?

The first major piece of evidence for this
conjecture was provided by A. Weil who
showed in 1967 that its falsity would contra-
dict a main principle of Number Theory (the
principle that certain arithmetically defined
functions (called L-functions) should have a
functional equations). Shortly thereafter, G.
Shimura[Sh] showed that the converse to the
conjecture is in fact true:

Theorem 2 (Shimura, 1971). For each
f € BH(N) with integral Fourier coefficients
there is an elliptic curve E (of conductor N )
such that (6) holds.

Although this result provides us with many
explicit (numerical) examples for which the
(TWS)-Conjecture is true, it is too weak to
prove that there are infinitely many elliptic

for all primes p / N. (6)

curves which satisfy (TWS), for there is no
way to guarantee that there are any modular
forms with integral coefficients for large N.
This, however, and much more, follows from
the important theorem proven by Wiles[W]

(with the help of R. Taylor®):

Theorem 3 (Wiles, 1995). The conjecture
(TWS) is true if Ng is squarefree.?

As should be evident from the above dis-
cussion, Wiles’s result goes much further than
merely proving (FLT): it should be viewed as
an important step towards realizing the goal
of finding a general algorithm for solving Dio-
phantine problems involving elliptic curves.

5. TWS,, = FLT

Although the work of Wiles!? clearly advances
our understanding of the arithmetic of ellip-
tic curves, it is less evident how it relates to
FLT, and indeed, the deduction of FLT from
Theorem 3 constitutes another major step in
the proof of FLT. Here is a brief sketch of the
ideas involved:

Proof of TWS,, = FLT: Since FLT3; and
FLT4 are known to be true, it is elementary
to see that we can restrict attention to primes
p25.

Suppose, therefore, that FLT, is false, i.e.
that there exist a, b, c € Z with abe # 0 such
that

a? + b = P,

®The original proof of Wiles and Taylor is 130 pages
long, and fills an entire issue of the Annals. Since
its publication, a number of simplifications have been
suggested by a number of people such as (. Falt-
ings, H. Lenstra and F. Diamond; cf. [Di]. For an
overview of the original proof, together with a lot of
background information, the reader is encouraged to
consult [DDT]J.

?Recently (February, 1997), Conrad, Diamond and
Taylor have announced that they can prove that
(TWS) is true as long as 27 does not divide Ng.

'°Due to the age restriction, Wiles just missed get-
ting the prestigious Fields Medal for his work. How-
ever, he has received many other awards, including an
Honourary Doctorate from Queen’s University in May
1997.



By interchanging a and b we may suppose
without loss of generality that 2|a, and so we
have in particular that 16|a?. Consider the
elliptic curve

E: ylz = z(z — aP2)(z + bP2),

called a Frey curve.!! Then:

1) Ag = (abc)?

2) Ng is squarefree (this uses the fact that
16|a”).

Thus, by Wiles’s theorem, there is an f =
fg € 8% (NEg) such that (6) holds.

Claim: Such an fg does not exist!

The verification of this claim is really the

heart of the proof. For this, Ribet[R] proves
the following “Lowering the Level Principle”
(also known as Serre’s e-Conjecture) which is
a special case of Serre’s general conjecture (cf.
[Se]):
Theorem 4 (“Lowering the Level” - Ri-
bet, 1991). Suppose f = fg € BT (N) is a
newform of level N. For a fized prime number
p > 3 let M, denote the product of the prime
numbers ¢ > 2 such that plexpty(Ag). Then
there erists g € B+ (N/Mp) such that

an(g) = an(f) (IllOd p)a

for all n > 1 with ged(n, N) = 1.1

Conclusion. Apply this to fg as above.
Then by 1) we obtain that M, = %, so by Ri-
bet’s theorem there is a newform g € B¥(2).
But this is impossible since dimS(2) = 0.
Thus, no such modular form fg can exist,
so neither can E and hence no such Fermat
triplet (a, b, c) exists!

111 his fundamental paper, Frey[Fr1](see also [Fr2])
showed how many Diophantine statements can be re-
duced to the study of elliptic curves by means of cer-
tain elliptic curves now called Frey curves.

12This theorem should be read with a grain of salt,
for one cannot assume that g has coefficients in Z.
Thus, while the precise statement of the theorem is
somewhat more technical, the basic flavour is the
same.
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Queen’s Putnam Team Ranks
10th in Competition

The 57th William Lowell Putnam Mathe-
matical Competition was held December 7,
1996. In the 1996 Putnam Competition, a
mathematical problem solving contest open
to universities and colleges in Canada and
the U.S.A., the Queen’s team stood tenth.
The Queen’s members were Joanna L. Kar-
czmarek, Michael A. Levi, Allan J. Roberts.

A total of 2,407 students from 408 col-
leges and universities in Canada and the
United States participated in the Competi-
tion. There were teams from 294 institutions.

CEC 97

Over the weekend of March 6-9, Sunjay
Nath (Mathematics & Engineering, Applied
Mechanics, 97) and Dilip Andrade (Math-
ematics & Engineering, Control and Com-
munications, 98) went to Moncton New
Brunswick to compete in the Canadian En-
gineering Competition (CEC). After having
previously placed second in the Debate cate-
gory of the Ontario Engineering Competition
held at McMaster University, Feb.14-16, the
team qualified to enter CEC ’97, hosted by
the Université de Moncton. Sunjay and Dilip
were pleased to have finished second in the na-
tion in the category of Extemporaneous De-
bate, after competing against the best teams
that each region of the country provided.

Sum of Cubes
Peter Taylor

The problem I posed last issue turned out
to be so interesting that I'm including a
small article about it. This is actually ex-
cerpted from my recent draft high school
text book called IN PROCESS, which I dis-
tributed at the OAME meetings in Toronto
in May. These are interesting times in high
school curriculum reform, and I find myself
spending a lot of time on it, time which I am
hoping will contribute to some real changes.

We start with the familiar formulae for the
sums of consecutive powers. First power: 1+
243+...+n= ﬂ-";'—ll Second power: 12 4
2243%24.. 402 = 1("—'H§2—"ﬂ Third power:

PB+2+35 4. 40 = (2 Magbe
the third is not quite so familiar, but we are
certainly struck by the fact that:
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2 3 n

P+ 434+ .. +n¥=(1+243+...40)?

What we have is a collection of numbers for
which the sum of the cubes equals the square
of the sum. By the way, there’s a very nice ge-
ometric proof that this must hold, contained
in the picture that sits above the formulae. [I
am grateful to Halip Saifi for showing me this
construction.]

Well now that leads us to ask the question:
can you find any other "natural” collection
of numbers for which the sum of the cubes
equals the square of the sum?

Well here’s such a collection. Take any pos-
itive integer N. Now make two columns. In
column one make a list of all the divisors of
N, and beside each of these, in column two,
put the number of divisors of the column one
number. Then it turns out that column two
is always such a collection of numbers! Below
I have presented the table for N=72.

Table for V=72
Divisors  #ofdi- cubes of
of 72 visors col 2
1 1 1
2 2 8
3 2 8
4 3 27
6 4 64
8 4 64
9 3 27
12 6 216
18 6 216
24 8 512
36 9 729
72 12 1728
SUM: 60 3600 |




The question to ask is: what does this new
example have to do with the old one? Is it
really new, or is this just the old consecutive
integer property dressed up to go out on the

town? Let’s examine a bunch of small cases

Table forN=15§
Divisors #of cubes
of 5 divisors of col 2
1 1 1
5 2 8
SUM: 3 9
Table for N =9
Divisors #of cubes
of 9 divisors of col 2
1 1 1
3 2 8
9 3 27
SUM: 6 36
Tablefor N =8
Divisors #of cubes
of 8 divisors of col 2
1 1 1
2 2 8
4 3 27
8 4 64
SUM: 10 100
Table for N = 10
Divisors #of cubes
of 10 divisors of col 2
1 1 1
2 2 8
5 2 8
10 4 64
SUM: 9 81
Table for N = 12
Divisors #of cubes
of 12 divisors  of col 2
1 1 1
2 2 8
3 2 8
4 3 27
6 4 64
12 6 216
SUM: 18 324
Table for N = 16
Divisors #of cubes
of 16 divisors of col 2
1 1 1
2 2 8
4 3 27
8 4 64
16 5 125
SUM: 15 225

Well, there are certainly some patterns to

be accounted for. For example, the N=5 ta-
ble is small, having just a 1 and a 2. When
will that happen?—precisely when N is prime.
There’s one result.

But the striking observation belongs to the
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tables for N = 8, 9 and 16. For these, col-
umn two is a set of the original type (con-
secutive integers) and so the "sum of cubes”
property we have here is just the original one.
Well now that’s very encouraging. But there’s
more-Look! Look at tables 8 and 9. What
are the sums?-10 and 6. And their product is
60, which is the sum for 72. And 8 and 9 of
course have product 72. Holy cow.

Okay, let’s slow down here. There’s some-
thing very nice happening and we don’t want
to blow it. First of all, when will column two
have this simple form?-being exactly a set of
consecutive integers? And the answer is that
this will happen N is a prime power. If N =
pk, for some prime p, then column one will
consist of the powers of p from 0 to k (these
are the divisors of pk), and column two will
therefore consist of the integers from 1 to k+1.

So at any rate, this is an important ”start”
on my question-is this "divisor” phenomenon
new or not? What we’ve learned so far is that
if N is a prime power, then it isn’t new at all
because the sum we get in column two is of
the familiar form

[1+2+3+...+1]

Now for the next observation. How are we
to organize and understand the relationship
between the 72-table and the 8- and 9-tables?

Let’s start by asking how the divisors of
72 are related to the divisors of 8 and 9. Of
course 72 is the product of 8 and 9, but more
than this is true-this decomposition of 72 fol-
lows the prime factorization. That is, there
are two primes in the factorization of 72, 2
and 3, and the 8 collects the 2’s and the 9
collects the 3’s:

|72 = 8.9 = 23.32|

What this means if you think about it is
that the divisors of 72 are exactly the prod-
ucts of the divisors of 8 and the divisors of 9.
It’s important to be careful here. Certainly
if I take a divisor of 8 and a divisor of 9 and
multiply them together, I'll get a divisor of
72, but ’'m saying more than that. I’m say-
ing that if we make a list of the divisors of
8 and of the divisors of 9, and then take all




possible products of one list with the other,
we’ll get exactly the divisors of 72, with no
repeats.

So now, let’s ask about column two. To
take an example, consider the divisor 12 of
72. T ask how many divisors 12 has, but I am
going to try to find the answer, not by looking
in column two in table 72 (where there’s a 6
sitting right beside it) but by trekking over
to tables 8 and 9. To do that, I write 12 as
the product 4 x 3 so we look at the 4-row
in the 8-table and the 3-row in the 9-table.
Now column two in those two tables tells us
how many divisors there are of each factor-
4 has 3 divisors and 3 has 2 divisors. How
many divisors does that give for 127-well, 3 x
2 = 6 because the divisors of 4 X 3 are all the
products of the divisors of 4 and the divisors
of 3.

What has this told us?-that each column-
two entry in the 72-table is the product of
the corresponding column-two entries in the
8- and 9-tables. YES!

To emphasize this, I rewrite the 72-table re-
placing the entries by the appropriate prod-
ucts. This also prompts me to reorder the
rows to make the structure easier to see.

The way we have written the 72-table shows
in a very precise sense what it means to assert
that this table is the ”product” of the 8-table
and the 9-table.

Tabl N=8 Table forN =9
Divisors #of cubes Divisors #of cubes
of 8 divisors  of col 2 of 9 divisors of col 2
1 1 1 1 1 1
2 2 8 3 2 8
4 3 27 9 3 27
8 4 64
SUM: 10 100 SUM: 6 36
Table forn = 72
Divisors  #ofdi-  cubes of col 2
of 72 visors
1=1-1 1=1-1 1=1-1
2=2-1 2=2-1 8=8-1
4=4.1 3=3.1 27=27-1
8=8.1 4=4.1 64=64-1
3=1.3 2=1-2 8=1.8
6=2-3 4522 64=8-8
12=4.3 =3.2 216=27-8
24=8.3 8=4.2 512=64-8
9=1.9 3=1.3 27=13
18=2.9 6=2-3 216=8-27
36=4.9 9=3.3 729=27-27
72=8-9 12=4.3 1728=64.27
SUM: 60=10-6 3600=100-36
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This article was cobbled together from com-
ments recetved from many readers: Brian Boe
and David Penney, both at the University
of Georgia, Dan Haggarty in Etobicoke, and
most particularly, Halip Saifi, now in Boston,
but who was here last term and offered some
great ideas about possible generalizations. In
this vein, Dan Haggarty produced a remark-
able general result. He observed that the sum
of the kth powers of the integers from 1 to N
18 a polynomial in N of degree k+1 (check it
out from the above formulae) and he even pro-
duced a general and quite lovely formula for
the coefficients of this polynomial. It was a
nice ezercise in using a computer to generate
data and then searching for ”the pattern.”

Problem: Two ants.

A rectangular room has dimensions 12 x 12 x
24. That is, the floor and ceiling and both the
side walls are 12 X 24 and the two end walls
are 12 x 12. In the room there are two ants,
a male and a female. The male ant is on the
floor at one of the corners.

Now the female has positioned herself to
be as far as possible from the male. That is,
she has located herself at a point so that the
male will take the longest possible time to get
to her, given that he has to crawl along the
walls, floor or ceiling of the room and will (of
course) choose his path so that he gets to the
female in the shortest possible time.

The question is: where is the female?

M

Well there’s an obvious answer-the diamet-
rically opposite corner. That’s certainly the
point which is farthest from the ant “as the
crow flies.” But an ant is not a crow.

Peter Taylor



An Invitation to our Alumni

The Communicator is an annual tradition.
We send these few pages with information
about what the department has been doing
over the last year. This year, we would like to
turn the tables, and ask you what you have
been doing since you left Queen’s.

We want to create a collection of the expe-
riences of our alumni. This information will
be made available to our undergraduate stu-
dents, to give them an idea of where they can
go and what they can do with their mathe-
matics and statistics degrees.

We hope that having this material avail-
able will -help our graduating students dis-
cover some of the opportunities available to
them. The information will be posted on the
department’s web pages, so that our students
can get at it easily. This is similar to a project
undertaken a few years ago. This time, we
hope that we will get a wider range of re-
sponses, and, due to the popularity of the
web, the information will be more accessible
to students.

Also, if you would like, we will make your e-
mail address or phone number available to our
students, so they can ask any questions that
they may have about your profession or expe-
riences. This would be a less involved version
of Alumni Affairs’ Mentorship program.

If you would like to take part, the following
information would be useful to us:

e your name and the year you graduated

e your concentration (eg. major in statis-
tics, medial in math and chemistry)

e your phone number. Also, note whether
or not you would like this made available
to students.

e your e-mail address (if you have one),
again with a note indicating whether or
not you would like this made available to
students.

o the address of you web home page (if you
have one)

e a few paragraphs describing you experi-
ences with your mathematics or statistics
degree
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e any other information that you think
would be relevant to our undergraduates.

You can send us the information via e-
mail by sending to baker@mast.queensu.ca.
It can be submitted on the web by
visiting the departmental web page at
http://www.mast.queensu.ca/ and following
the “Alumni” link. Or, finally, it can be
sent to Eddy Campbell, Head, Department
of Mathematics and Statistics, Queen’s Uni-
versity, Kingston, Ontario, K7L 3NG6.

Head’s Report
Eddy Campbell

First, some remarks about the present sta-
tus of our library. The Mathematics and
Statistics Library has become a Reading
Room, with some 12,000 volumes and jour-
nals, mostly in Pure Mathematics, thanks to
the extraordinary generosity of Graham and
Stevie Keyser, who donated a quarter of a
million dollars, and many others who donated
smaller amounts. The interest from these do-
nations will help pay for the Department’s
share of the service costs associated to the
Reading Room. We are very grateful to the
Keyers and to everybody who gave so gen-
erously. The balance of the former Library,
some 25,000 volumes of monographs and jour-
nals, moved to the newly renovated Douglas
Library.

By the time you read this, the Math and
Engineering Reunion will have taken place,
with many of our thirty years worth of grad-
uates returning to campus for the long week-
end at the beginning of August. We will try
to involve our alumni in mentorship programs
for our continuing students and seek out those
alumni interested in partipating in a jobs net-
work for continuing and graduating students.

This summer we have five students work-
ing on various projects in the Department.
Kitty Lee, MTHE’99, is working on a curricu-
lum development project with Norman Rice.
We’re examining our service teaching in the
faculty of Applied Science seeking ways to



incorporate technology and encourage inde-
pendent learning. Students in Applied Sci-
ence have extraordinary demands made upon
their time, so when we think of independent
learning for this group of students, it is impor-
tant to provide structure and feedback to en-
sure that students don’t fall behind. Robert
Burke, MTHE’99, is helping Kitty and also
helping out with the Math and Engineering
Reunion. Scott Siegler, MTHE*98, is helping
out in the Control and Communications Lab.
Greg Baker, ArtSci’98, is helping prepare up-
dated web pages for students and faculty as
well as helping Morris Orzech on a curriculum
development project. Finally, Erik Jensen,
ArtSci’99 is working as a research assistant
with Ram Murty, and the invariant theory
group consisting of Ian Hughes, Jim Shank,
David Wehlau and myself.

Thanks are due to the new Dean of Applied
Science, Tom Harris, for funding Norm’s cur-
riculum development project. Morris’ team
has received funding from the Dean of Arts
and Science for some years now - our current
Dean is Bob Silverman. Ishould also mention
that we were able to hire Erik as a research
assistant with the help of generous donation
to the Trust Fund.

In December, the Canadian Engineering
Accreditation Board (CEAB) “terminated”
the engineering degree offered in the Faculty
of Applied Science by the Department of Ge-
ological Engineering. Various nasty repercus-
sions are still reverberating throughout cam-
pus. Changes are required in the way the
four Arts and Science Departments admin-
ister their engineering degrees but it is too
soon to predict the effect on this Department.
We do not wish to make changes to our pro-
gram without first seeking input from inter-
ested and concerned alumni, as well as our
students and faculty. Please write us with
your current address, by snailmail or email so
that we may consult with you.

The Dean of Arts and Science collapsed 8 of
12 open positions in the Faculty this year as
a result of further cutbacks in funding. Many
departments suffered non-salary budget cut-
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backs as well. For the first time in many years,
Mathematics and Statistics was spared. We
do have one open position which we use in
support of PostDoctoral Fellows. This posi-
tion was not collapsed. However, partly in
anticipation of further cutbacks, the Depart-
ment has sought permission from the Dean to
advertise this position. We will seek a math-
ematician or statistician eligible for registra-
tion as a Professional Engineer. In addition,
we are still currently advertising for a commu-
nications or information theorist eligible for
registration as a Professional Engineer. This
will bring the faculty complement of Profes-
sional Engineers to five, which we believe will
ensure that our Mathematics and Engineer-
ing program is fully accredited by the CEAB
at our review in the year 2000.

In addition to the CEAB review, we also
face a review by the Ontario Council on Grad-
uate Studies, as well as an internal academic
review, all of these to occur in the year 2000.
We are preparing for those reviews now, in the
hope that we will be able to collect sufficient
information sooner rather than later.

We are very much trying to attract more
students in our honours programs by recog-
nizing that a degree in Mathematics or Statis-
tics is valuable beyond preparation for gradu-
ate training in these disciplines. With this in
mind, we’d love to have our home page link to
alumni home pages. This seems like a good
way to tell potential students of the value of
a degree in Mathematics and Statistics.

I take this opportunity to ask our graduates
to get in touch with us, perhaps by email.
There are many issues we would enjoy dis-
cussing with you, and perhaps you would like
to stay in touch with each other. We can
help you to do that and you can help us. For
example, we recently designed a new stream
for our control and communications option of-
fered with the Department of Electrical and
Computer Engineering as part of the Mathe-
matics and Engineering degree. The stream
is designed to produce graduates interested
in high technology industries. We’d like feed-
back from alumni involved in those industries.
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