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1. INTRODUCTION

Quantum Theory associates with each sys-
tem a possibly infinite dimensional Hilbert
space. In these notes I confine myself to sys-
tems with finite dimensional Hilbert space.
The mathematics of quantum systems with
finite dimensional Hilbert space is quite sim-
ple: It is essentially linear algebra. In or-
der to refresh your memory, I have collected
the most important ideas and results of lin-
ear algebra which you’ll need to understand
this paper, in Appendix A. Thus if the ideas
presented in Appendix A ring a bell, and
you are willing to accept the postulates of fi-
nite dimensional Quantum Theory that are
listed in Appendix B, you should have no
difficulty to understand the following notes
in which I attempt to explain such mind-
boggling phenomena as the famous (or infa-

mous) Einstein-Podolsky-Rosen (EPR-) Para-

doz and quantum mechanical teleportation.

2. THE MATHEMATICS (AND PHYSICS)
OF ONE QUANTUM BIT

The most simple quantum system is the
quantum bit or qubit. It is the quantum
analogue of the “classical bit”, a device that
can assume only two distinct states, usu-
ally termed 0 and 1. A quantum bit or
qubit is a quantum system whose associated
Hilbert space is two-dimensional. Moreover
the Hilbert space is endowed with a distin-
guished orthonormal basis (| 0), | 1)) (called
the computational basis). The situation can
be mimicked by choosing for the Hilbert
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space simply @2 and for the members of the
distinguished basis the standard basis (| 0) :=
(1,0),(1 |:== (0,1)). Typically a qubit is a
spin-1/2 particle, a two-level atom or a po-
larized photon. In these notes we emphasize
the interpretation of a qubit as a spin-1/2
particle.

From Postulate 1 (cf. Appendix B!) it
follows that each observable A can be rep-
resented by an hermitian operator A in €2.
We identify each hermitian operator with its
matriz relative to the computational basis.
A basis for the real vector space Hy of all
hermitian operators is constituted by the
identity matrix

S

together with the three Pauli-matrices:

[0 1 o —i 1
=110 27| o] B0

Since, moreover, the Pauli-matrices have
zero trace, each hermitian operator A in @2
admits the representation

(2.1) A= %('rl +x-0)

where 7 is the trace of A, xelR® and
X -0 = a101 + a202 + a303

It is easily verified that the Pauli-matrices
enjoy the following properties:

(2.2) oi=1, k=1,2,3

(2.3) 0109 = i0'3 = —0901

and cyclic permutations

As a consequence of these relations we
obtain the important formula:

24  (x-0)y-0)+(y-o)(x-0)

=2(x-y)1, x,yeR?
Taking the trace on both sides of equa-
tion (2.4) gives:

(2.5) trace ((x-o)(y-0)) =2x-y

0
-1

|



Putting y = x in equation (2.4) gives:
(2.6) (x-0)” = |Ix|*1

This formula together with the fact that
the Pauli matrices are traceless implies that
the operator x-o has the eigenvalues + ||x||.

By Postulate 2 a state of a quantum sys-
tem is described by a density operator p, i.e.
by a hermitian, positive semidefinite opera-
tor of trace 1. Due to (2.1) every hermitian
operator of trace 1 can be written in the
form:

1
p= 5(1 +x-0)

The eigenvalues of p are (1+||x||) which
implies that p is positive semi-definite if and
only if [|x]| < 1, i.e. the states of a qubit are
in bijection with the points of the unit ball
B3 C R3. For ||x|| = 1 p is a projection
operator (=projector), since

1
pr=11+2x0)+1)=p

If a is a unit vector we write for the corre-
sponding projector

@27) P %(1 +a-0)

The density operator P, corresponds to a
state of mazimal information of the qubit.
Such a state is called a pure state.

Observe that

1
PaPa=4(1-(a-0)")=0
and
(2.8) a-c=P,—P_,

The latter equation is the spectral repre-
sentation for the operator a- o (cf. formula

(A.4)).

Suppose the qubit is realized as a charged
spin-1/2 particle, then the observable corre-
sponding to the operator a-o is the compo-
nent a- S of the spin vector S in the direc-
tion a. To measure a - S means to perform
a Stern-Gerlach experiment: Particles em-
anating from a source are sent through a
magnetic field of direction a whose gradi-
ent has also direction a. The magnet serves
as a sorter: Due to the internal magnetic

moment associated with the spin, the path
of the particles as they enter the magnetic
field begins to deviate from their original
path: For some particles the deviation is
in the direction of a and for the remaining
particles the deviation is in the opposite di-
rection —a. This can be verified by letting
the particles impact a photographic plate
behind the magnet where the particles form
two distinct spots. This result is in agree-
ment with the predictions of Quantum The-
ory which asserts that the possible outcomes
of a measurement of the observable a- S are
the two eigenvalues +1 of the operator a-o
(cf. Postulate 3a) which means physically
that given any direction a the spin-vector S
aligns itself either with a (spin up!) or with
the opposite direction —a (spin down).

Question 1: What is the probability that
the spin-vector of a particle aligns itself with
a (—a), causing the particle ending up on
the upper (lower) spot on the plate?

Answer: Assuming that the particles that
emanate from the source are in the “state of
maximal disorder”, i.e. the state that corre-
sponds to the density operator p = %1, the
probability for each alternative is % Indeed,
using formula (B.1) we find:

Dia = trace(pPya)

1 1
= Etrace(Pia) =3

Thus, if we replace the photographic plate
behind the magnet by two particle detec-
tors situated where the two spots were, in
average half of the time the “upper” detec-
tor fires and the other half of the time the
“lower” detector responds.

Question 2: Suppose we block the lower
channel, (i.e the path of those particles which
deviate in the direction —a from the origi-
nal path) and let only those particles pass
which enter the upper channel, thereby cre-
ating a new source of particles; what state
should we ascribe to a particle emanating
from this new source?



Answer: By the von Neumann projection
postulate (cf. Postulate 3b) (formula (B.2)
of appendix B) the state of a particle em-
anating from the new source is the (pure)
state corresponding to the density operator
P,.

Question 3: Suppose, using a second mag-
net, we measure on a particle emanating
from the new source the component b - S
of the spin vector in the direction b, what
is the probability p that the outcome is +17

Answer: Since a particle emanating from
the new source is in the state corresponding
to the density operator P,, formula (B.1) of
Appendix B in conjunction with equation
(2.5) yields:

p = trace(PaRy)

- itrace[(l +a-o)(1+b-o))

- %trace[l +(a-0)(b-0)]

- 3(2 + 2a - b) = cos*(p/2)

where ¢ denotes the angle between the
two directions a, b.

Question 4: What is the expectation value
< b-S > of the component of the spin vec-
tor S in the direction b for particles that
emanate from the new source?

Answer: Making use of formula (B.3) of
Appendix B and again formula (2.5) we ob-
tain:

(29) <b-S>p =trace(Pab-0o) =

%trace ((a-o)(b-o))=a-b=cosgp

3. THE BEHAVIOR OF A PAIR OF QUBITS

Next let us study the behavior of a pair
of qubits. The Hilbert space of a pair of
qubits is Hy = C?> @ @2. A distinguished
orthonormal basis in Hy is the Bell-basis
(¢0, #1, ¢2, $3) whose members are given by

1
$o = _\/E(l 01)— | 10))

3.1) ¢ = —\/—i(l 00)— | 11))
1
$2 = E(I 00)+ | 11))

—1
= —(]01)+| 10
¢3 ﬁ(l )+110))
where we use the customary abbreviation
| jk) =)@ | k), 5,k =0,1

for the members of the computational basis
of a qubit pair.

(For an interesting relationship between
the Bell-basis of Hy and the basis (1, 01, 02, 03)
of H3 see H.J. Kummer [4]). If a qubit pair
is in a pure state whose associated state
vector x (cf. Postulate 2) belongs to the
real subspace generated by the Bell-basis,
then the constituents of the pair are maz-
imally entangled. More precisely, let oy =
(x,9x), k = 0,1,2,3 be the four compo-
nents of x with respect to the Bell-basis.
Then a measure for the entanglement of the
two constituents, if the pair has been pre-
pared into the pure state corresponding to
X is the so-called concurrence &(x) of x. It
is defined by:

£(x) =

3
Dok
k=0

Using the triangular inequality we find (keep-
ing in mind that x is a unit vector):

3 3
S at] <3 -1
k=0 k=0

If the ay’s are real then of = |ax|? and
the concurrence takes its maximal value:
£x) =1

If concurrence is a valid measure of en-
tanglement then it should be 0 when the
pair is in a pure state whose state vector is
of the product form

Ex) =

(3:2) X =X1® X2
Indeed, supposing that

Xxji=a;|0)+b;|1), j=1,2

where |a;|* + |b;|* = 1, we have:

X = aiaz | 00) + a1by | 01) + agby | 10) + byby | 11)



Therefore

ap = (X, o) = ‘/Li(albz —agb)

a1 =(x,¢1) = ‘/ii(alaz — bibo)

az = (x,¢2) = %(0162 + bib2)

az = (x, $3) = 7—%(0162 + azby)

and finally:
3
€00 =D of| =l (e§ +0d) + (oF + o)) |
k=0

=| —2aja2b1bz + 2a1a2b1b2 [= 0

If the qubit pair is in a maximally entan-
gled state (a state of concurrence 1) then the
two constituent particles are strongly corre-
lated. Before we can see what this means,
we need some further mathematical consid-
erations. Since we want to consider a pair of
qubits that has been prepared into the so-
called “singlet state”, i.e. the pure state that
corresponds to the first ¢y of the four Bell-
basis vectors, we would like to determine the
(idempotent) density operator Py =| ¢o){¢o |
that corresponds to this state. We claim
that Py can be expressed in terms of the
Pauli matrices as follows:

(3.3)

1
P0=Z(1®1—01®01—02®02—03®03)

Using (2.2) and (2.3) it is not hard to
show that PZ = P, and since obviously

tracePy = 1,

P, is a one-dimensional projection operator.
To see that ¢y belongs to its range it suffices
to observe that ¢ is an eigenvector belong-
ing to the eigenvalue —1 of all three oper-
ators or @ o, kK = 1,2,3 (E.g. o1 simply
interchanges the two vectors | 0) and | 1) of
the computational basis and therefore

(01 ® a1 )do = —}—i(l 10)— | 01)) = —go

Exercise: Carry out the analogous com-
putations for (o2 ® 02) and (03 ® 03)!

Now let us assume that we have prepared
a pair of spin-1/2 particles into the "singlet
state”, which is mathematically represented
either by the density operator Py or by the
state vector ¢y.

Question 1: In what state are the indi-
vidual constituents of the pair?

Answer: By Postulate 5 the states of the
individual particles correspond to the two
reduced density operators:

1
p1 = traceqs(Py) = 51

1
p2 = trace 1 (FPp) = 51

Thus although the pair is in a state of
maximal information (a pure state!) the in-
dividual constituents are in a state of mini-
mal information or maximal disorder! Thus
Quantum Theory supports the age-old wis-
dom: The whole is larger than the sum of
its parts!

Question 2: Suppose we measure the spin-
component a-S on the first particle and find
outcome +1; what density operator should
we now assign to the pair of particles 7

Answer: Measuring a- S on the first par-
ticle means measuring the observable of the
particle pair that corresponds to the hermit-
ian operator

a-01=P,1—-P ,®1

Since we assumed that we found outcome
+1, according to the von Neumann projec-
tion postulate (cf. Postulate 3b), the den-
sity operator associated with the state after
the measurement must be:

6:2(Pa®1)PO(Pa®1)

3
1
— i(Pa ®R1-— ZPaO'kPa ® O‘k)
k=1

But
Paor P, = arP,



(Since the range of the operator on the
left hand side of the equation must be con-
tained in the range of P, we have at first
Pyo1, Py = 7 Pa for some real number 7.
Taking the trace on both sides and using
the defining equation (2.7) of P, and for-
mula (2.5) we find that v; = a;). Inserting
this expression into the formula for P} we
finally obtain:

3
1
k=1

1
= §(Pa®1—Pa®(a-a)) =Pa®P_,

Physically this means that the two parti-
cles are now disentangled (cf. Postulate 5).
Moreover the state of the first particle, as to
be expected, is now described by the den-
sity operator P. The second particle is in
the state corresponding to P_,, i.e. the spin
vector of the second particle is aligned with
the opposite direction —a independently of
the choice of the direction a. This is quite
surprising for the two particles may have
moved far apart from each other. Imagine
that the two particles emanate from a cen-
tral source in opposite directions, the first
particle moving towards Alice and the sec-
ond towards Bob. Imagine that both Bob
and Alice are equipped with a Stern-Gerlach
magnet whose magnetic field has direction a
and a pair of detectors. If at Alice’s position
the upper detector fires then at Bob’s posi-
tion the lower detector responds and vice
versa. Moreover this behavior is indepen-
dent of the choice of the direction a and also
independent of how far apart Alice and Bob
may be located! Thus if a pair of qubits is
in a maximally entangled state, such as the
singlet state, the behavior of the individual
qubits is highly correlated. Einstein could
not accept the explanation which Quantum
Theory offers for this non-local behavior of
entangled particles. He saw in it a para-
dox, which in the physical literature is re-
ferred to as the EPR-Paradoz (cf. reference
[2]). In his correspondence with Max Born,
Einstein expressed his misgivings about the
above implications of Quantum Theory (cf.

reference [3]). In a letter dated the 3rd of
March 1947 he writes:

“T cannot seriously believe in it [Quan-
tum Theory| because the theory cannot be
reconciled with the idea that physics should
represent a reality in time and space, that
is free from spooky actions at a distance...”

and in March 1948 he returns a manu-
script entitled “Metaphysical Conclusions”
which Max Born had sent to him previously.
Einstein writes several comments on the mar-
gin, the last of which contains the following
remarks:

“But whatever we regard as existing (real)
should somehow be localized in time and
space. That is, the real in part of space
A should be (in theory) somehow ’exist’ in-
dependently of what is thought of as real
in space B. When a system in physics ex-
tends over the parts of space A and B, then
that which exists in B should somehow ex-
ist independently of what exists in A. That
which really exists in B should therefore not
depend on what kind of measurement is car-
ried out in part of space A; it should also be
independent of whether or not any measure-
ment is carried out at all in space A...”

4. THREE QUBITS; TELEPORTATION

Imagine there are three qubits 1, 2, 3 whereby

the pair (1, 2) is at Alice’s position and qubit
#3 is at Bob’s position. Assume that the
particle pair (2, 3) is in the singlet state de-
scribed by the state vector ¢oe Hy =C2 Q>
and therefore maximally entangled. Fur-
thermore assume that particle #1 at Alice’s
position is in a unkown pure state corre-
sponding to the state vector

p=a|0)+b]|1)eC?

so that the original state of the qubit triple
is a pure state that corresponds to a unit
vector in Hg = @2 ® €2 ® @2 of the form
¢®¢o. Imagine that Alice has a pair-observable
A at her disposal whose corresponding her-
mitian operator A has the spectral repre-
sentation

3
A= Z akPk
k=0



where (o, 1, a2, a3) is a quadruple of four
distinct real numbers and Py =| ¢p){dy |
denotes the projector onto the ray generated
by the k-th Bell-basis vector. We pose the
following

Problem: Suppose Alice measures on
her pair (1,2) of particles the observable A.

Question 1: With what probability will
she find the outcome ay?

Question 2: Suppose she actually finds
the outcome a;; in what state will Bob’s
particle be after the measurement?

Solution: In order to answer both ques-
tions we first observe that to measure the
observable A on the pair (1,2) of qubits
means to measure the observable of the qubit
triple whose corresponding hermitian oper-
ator is A® 1 = Ei:oak(Pk ® 1). Thus
the answer to the first question according
to Postulate 3a is:

(4.1) i = (P ® 1)(p ® o)1

The answer to the second question will
be obvious once we have found the state
vector of the qubit triple after the measure-
ment. But by the von Neumann Postulate
(cf. Postulate 3b) the state vector of the
qubit triple after the measurement is a unit
vector belonging to the ray generated by:

(4.2) (P ® 1)(¢ ® o)

In order to carry out the explicit com-
putations we first express the original state
vector ¢ ® ¢g in terms of the computational
basis of the qubit triple:

(4.3)
0@ =—(a(|00)@ | 1)~ | 01)® | 0)
+6([10)® [ 1)— | 11)® | 0))
Inverting the equations (3.1) we obtain:
|00) = —=(d2 — i)

|w=%ww%)

1

| 10) = \/-2—(i¢3 — ¢o)

|m=%m+M)

Substituting these expressions for the first
factors of (4.3) and ordering with respect to
the members of the Bell-basis we find:

P ® g
= %[(¢2—i¢1)®a|1)—(i¢3+¢0)®a|0))
+(id3 — Po) ®b | 1) — (d2 +1id1) ®b | 0))] =

%[—¢0®(a |0)+b 1) —¢1®i(b | 0) +a |1)

~$2® (b |0)—a |1)) —¢3®i(a [0) b | 1))]

1
= 5("¢0®<P-¢1 @ uip — ¢2 ® uzp — ¢3  uzep)

where the ux's, k = 1,2,3 denote the fol-
lowing unitary matrices

0 i 0 1 i 0
= [30] 0] [ 5]

of determinant 1. Observe that u; = ioy!
(If we consider the u;'s as elements of the
group G = SU(2)/{-1,1} they generate
a subgroup of G that is isomorphic to the
so-called four-group.) -

Now we are in the situation to solve our
problem. Indeed, letting ug := 1 we can say
that all four outcomes of Alice’s experiment
have the same probability, since by formula,
(4.1)

Pe = (P ® 1) (¢ ® ¢o)||”
2

4

is independent of k. However, the state vec-
tor of the triple of qubits after the measure-
ment will depend on the outcome; in fact it
is simply ¢ ® ugp. This means that now
the pair (1,2) is in a maximally entangled
state, whereas Bob’s particle (#3) is in a
pure state that is related to the original state
of particle 1 in a simple way: Its state vec-
tor is obtained from the original state vec-
tor ¢ simply by application of an element

_%(‘/’k ® ukp)




uy, of the four-group. To each w; there cor-
responds a certain physical operation per-
formed on the particle (cf. reference [5]).
Thus if Alice communicates to Bob which
of the four outcomes actually occurred (and
for this she needs only to communicate one
of the numbers 0, 1,2, 3, which can be done
using two ordinary bits!) Bob can revert
this operation and in this way create a qubit
at his position that is in the same state
as Alice’s particle #1 was originally: The
quantum state with state vector ¢ has been
“teleported” over the distance between Alice
and Bob with the help of an entangled pair
of qubits (cf. references ([1]and [6])).

Bob Alice

Situation before the measurement of the observable A.

Bob Alice
® e
° T

ukp 2 é; 1

Situation after the measurement of the observable A

with outcome

APPENDIX A. FINITE DIMENSIONAL
HILBERT SPACES AND ALL
THAT

A (finite dimensional) Hilbert space is a
complex linear space endowed with an in-
ner product (1, ¢) that is linear in one fac-
tor and antilinear in the other. We adopt
the physicist’s convention and assume that
(v, @) is linear in the second factor.

1. Given any pair of vectors ¢,yeH we
define the transition operator | $)(¢ |
from 9 to ¢ as the following linear op-
erator on H:

| &)W | x = (¥, x) $, xeH

The following useful facts concerning
transition operators are immediate:
(a) If A is any linear operator in H

then

(A.1) A| oo |=| ANy |
and

(A.2) | o)X | A =] ¢){A* |

where A* denotes the adjoint op-
erator which is defined by the con-
dition

Vo, peH : (A, ¢) = (v, Ag)

(b) If ¢ is a unit vector then | ¢){¢ |
is the projector onto the ray (one-
dimensional subspace) generated by
é.

(c) The trace of the transition opera-
tor | ¢)(¥ | computes as:

(A.3) trace(| g} ) = (¥, ¢)

To prove the last formula let (¢1, ¢2, ...¢y5)

be an orthonormal basis of H. Then

trace(| ¢)(¢ |)

n
= (¥, 6k) (Br: B) = (%, 9)
k=1
2. A linear operator A in H such that
A* = A is called self-adjoint or her-
mitian. Spectral Theorem: Every
hermitian operator A admits a spec-
tral representation:

- m
(A.4) A=) "oyPy,
k=1

where (a1, ag, ...ap,) are the (real!) eigen-
values of A and P,, denotes the pro-
Jector onto the eigenspace belonging to
ag. The P,,'s form an orthogonal res-
olution of the identity, i.e

P(!jPak = 6jkPak

and

m
Y P, =1
k=1



(A5)

(A7)

(A.8)

3. Given two Hilbert spaces H;, Hy of di-
mensions ni, ny we can form their ten-
sor product H := H; ® Hy whose di-
mension is niny. H is spanned by the
set of all vectors of product form

¢ = 1 ® ¢2, p1eHy, PpoeH,

The inner product on H is defined in
such a way that it satisfies the rule:

(A.6)

(¢1 ® d2,x1 ® x2) = (¢1, x1) (P2, x2)

Given two linear operators A; in H;
and Ap in Hj there is a unique lin-
ear operator A; ® A; on H called the
tensor product of A; and As, charac-
terized by the property:

(A1 ® A2)(41 ® ¢2) = A1¢1 ® Ao,

dreHy, poeHy

For example, using formula (A.6) we
can easily compute the tensor product
of the transition operators | ¢;){(¢ |
and

| $2) (22 |
| ¢1){¢1 | ® | pa) (92 |

=| $1 ® ¢d2) (1)1 ® Y2 |

The complex vector space L(H) of all
of all linear operators in H is spanned
by the set of all operators of the ten-
sor product form A = A; ® A;. The
partial traces

trace; : L(H) = L(H;), j=1,2

are defined on operators of the tensor
product form by the rules:

trace; (A) = trace(Al)Ag

tracez(A) = trace(Az)A;

and linear extension to all of L(H).

APPENDIX B. POSTULATES OF
QUANTUM MECHANICS OF
A SYSTEM WITH
FINITE-DIMENSIONAL
HILBERT SPACE.

For quantum systems with a finite di-
mensional Hilbert space H the postulates of
Quantum Theory take the following simple
form:

1.

(B.1)

To an observable A there corresponds
an hermitian (self-adjoint) operator A
in H.

. To each state p of the system there cor-

responds a positive semidefinite her-
mitian operator p of trace 1 a so-called

density operator. The pure states (=states

of maximal information) of the sys-
tem correspond to the idempotent den-
sity operators (=one-dimensional pro-
jectors). A pure state may also be la-
beled by a unit vector ¢ that belongs
to the range of p, in which case ¢ is
called the state vector. (It is impor-
tant to note that the state vector is
only determined up to a phase factor!).
If the state vector ¢ is given then the
corresponding idempotent density op-
erator p =| ¢)(¢ | is the projector onto
the ray generated by ¢.

. In a measurement experiment one pre-

pares the system into a state p and
subsequently measures an observable
A:

(a) the possible outcomes of the ex-

periment are the eigenvalues (aj, ...ay,)

of the hermitian operator A corre-

sponding to the observable A, whereby

the eigenvalue a; occurs with prob-
ability

P = trace(pFa,)

(cf. formula (A.4)). In case p is a
pure state with state vector ¢, we
obtain by substituting the density
operator p =| ¢)(¢ | into the for-
mula (B.1) and using (A.2), (A.3)
and (2.5):

i = trace(| )¢ | Puy)



= trace(Pak | ¢)(¢ I Pak) = ”PaquIIz

(B.2)

4.

(B.3)

(b) von Neumann’s Projection Postu-
late: At the conclusion of an ex-
periment that resulted in the out-
come ai, the the system is in a
new (well-defined) state, whose cor-
responding density operator is p’
is given by:

p= Poy pPy, [trace( Py, p)

In case p is a pure state with state
vector ¢, we obtain by substitut-
ing the density operator p =| ¢)(¢ |
into the formula (B.2):

p’ =| Pak¢)(Pak¢ I /||Pak¢||2,

ie. p' is the projector onto the
ray generated by P, ¢. Hence the
new state vector is given by:

¢, = Pak¢/ "Pak¢"

This can be summarized as: If the
measurement of the observable A
of a system that has been prepared
into the pure state corresponding
to the vector ¢ yields the outcome
o, the new state vector ¢' is a
unit vector belonging to the ray gen-
erated by the vector Py, ¢.

Using (B.1) and (A.4) we find for the

ezxpected value (A), :

m
(A), = proyg = trace(pA)
k=1
which in case that p =| ¢)(¢ | simpli-
fies to:

(A)p = (¢, Ag)

. If §; and S are two quantum systems

whose respective Hilbert spaces are H;
and H, then the Hilbert space of the
combined systerm is given by the tensor
product:

H = H, ® H,

If the combined system has been pre-
pared into the state corresponding to
the density operator p in the Hilbert
space H then the states of the individ-
ual constituents are described by the

reduced density operators p; = tracegp
and py = trace; p respectively (cf. for-
mulas (A.7) and (A.8)). A (pure) state
of the combined system whose state
vector has the form (A.5) is said to be
separable. In this case the correspond-
ing density operator has the form

P =| ¢1® ¢2)(d1 ® P2 |
= ¢1){¢1| ® | $2){¢2 |= PO P,

i.e. p is the tensor product of the two

one-dimensional projectors correspond-
ing to the rays generated by ¢, o re-

spectively. The most general separable

state is characterized by a density op-

erator that is a weighted mean of such

tensor products of one-dimensional pro-
Jectors. If the combined system is in a

separable state, the two subsystems S

and S; are disentangled, i.e. the mea-

surement of an observable of S; will

not influence the state of Sy and vice

versa.
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Head's Report

Bob Erdahl

This was the year for teaching awards — more than ever
before. For example, Leo Jonker and Jim Whitley were
the two winners of the Applied Science First Year
Teaching Awards for the winter term — this Award has
been in place for only four years, and members of this
Department have accounted for eight of the first
thirteen winners. We take pride in our teaching, and
are always tinkering with new ideas and strategies to
test in our classrooms — it’s part of our culture. We are
enthusiastic about students and about teaching, so are
delighted when faculty members win teaching awards.
Our faculty has won so many awards in recent years
that we think we are one of the best teaching
departments at Queen’s — possibly the very best! At
least that’s what we say when we greet each other in
the Department lounge. Judge for yourselves! Here are
some of the highlights of what the Department has
been achieving in teaching and learning.

Many alumni will remember Leo Jonker, and the
courses they took from him. He makes complicated
things simple, and does this at all levels — for seventh
and eighth graders at a local elementary school, all the
way to research seminars for grads in our doctoral
program. This spring he received the Alumni Teaching
Award for his spectacular performances in the
classroom. He made the following comment during the
presentation ceremony: “Teaching is about making
connections — connections between teacher and
student, connections between student and subject,
connections between theory and applications,
connections provided in explanatory metaphors, and of
course, ultimately, synaptic connections between
students’ brain cells.” About connections, one of his
students had this to say about Leo’s lectures: “It is like
painting an entire picture for us rather than just
drawing one object in the middle of the canvas. It
helps us understand the concepts behind the method
we are using and the very nature of the problem itself.
I walk out of his lectures thinking to myself — Wow! I
understand this!”

Besides winning the Alumni Teaching Award, Leo
was awarded an Ontario Council of University Faculty
Associations Teaching Prize, or OCUFA Prize, in
May. Each year there are only ten such awards, across
all disciplines, in Ontario. This and the Alumni
Teaching Award were given, in part, for Leo’s
innovative approach in introducing high school
students to the world of university mathematics. Many
high school students come to us believing that success
in a mathematics course involves memorizing a large
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number of “recipes” which are applied by rote on
exams and tests. Some of these students are initially
hostile to the idea that the skills needed and learned in
this way are but a small part, perhaps a quarter, of
what we mathematicians view as a university-level
mathematics course. Leo quickly turns things around,
and has these students looking behind the recipes and
techniques they learn, building confidence and
sophistication. We are continually astonished by Leo’s
ability to connect effectively with students in classes as
large as 450 students.

Leo is equally successful in small classes with upper
year students, grad students, or even elementary school
students. One of our recent grads spoke of an upper
year analysis course where “details are important, yet
can easily become overwhelming.” She commented —
“Fortunately, Dr. Jonker is an expert at breaking up a
complicated mathematical proof into smaller,
manageable steps, and is able to do so without over-
simplifying the matter, so the full power of the theory
still shines through.” Leo has also brought his passion
for mathematics to grade seven and eight students by
running weekly enrichment sessions at a nearby
elementary school. The problems he poses do not
introduce high school mathematics, but rather open the
eyes of all students to the beauty of mathematics at a
level they can appreciate and understand.

Morris Orzech, another of our super-star teachers,
sees teaching as somewhat “akin to medical practice —
both deal with situations made complex by a multitude
of factors: prior conditions, often unknown ones;
individual variation in response to the same input;
unintended side-effects. Good practice in both areas
requires a desire to be helpful, a willingness to pay
attention to people, an openness to ideas, care not to do
harm through thoughtless experimentation, and a sense
of one’s limitations.” Morris is known around the
department for his flexible approach to teaching, and
his imaginative use of computer technology. One of
his students remarked that — “One of the reasons why
Dr. Orzech holds my attention is his varied use of
teaching techniques.” He went on to say that —
“Course work devised by Dr. Orzech comes in a
variety of forms, which helps to ensure that people
with different learning styles are not disadvantaged.”
Morris was named a 3M-Teaching Fellow this spring,
a prestigious award given to 10 outstanding university
teachers each year, across Canada. The Society for
Teaching and Learning in Higher Education and 3M
Canada established this Award in 1986. It is for
exceptional contributions to teaching and learning at
Canadian Universities.

Morris won an OCUFA award in the spring of 1998,
so the addition of the 3M-Fellowship places him in an



elite group at Queen’s — there is only one other faculty
member that has won both the top provincial and
national teaching prizes. Morris has been a leader at
Queen’s for his work in improving the quality of
education for students, and for promoting effective
teaching among his colleagues. He introduced
“Interactive Notes” for first year linear algebra, which
helps students keep involved during class while freeing
them from mindless note taking. The notes allow
students to focus completely on the whole picture
rather than on insignificant detail, and push students to
become independent learners. He also introduced
“MathChat”, a computer-based bulletin board that
promotes discussions between students, teaching
assistants and faculty on issues that arise in the
classroom, or in problem sets. This pioneering use of
the Internet is now used in more than 80 courses on
Campus.

In 1995 Morris created the Mathematics and Statistics
Learning Seminar, which brings together highly
motivated teachers from our Department, the Faculty
of Education, the Instructional Development Center on
Campus, and occasional visitors from other
universities and high schools. The topics range from
“The Mathematics Classroom of the 21st Century”
through to the range of grades awarded to our students.
There are few departments at Queen’s that have a
regular seminar series on teaching issues, and it is a
tribute to Morris’s dedication and enthusiasm that his
seminar is a regular fixture — its influence has spread
far beyond Jeffery Hall.

Peter Taylor is another outstanding teacher. He
believes that “now is the time to innovate with the high
school mathematics curriculum”, and is in a good
position to influence the direction in which our high
schools are moving. Peter is a big part of MSTE, the
Mathematics, Science and Technology Education
Group, based in the Faculty of Education, which just
received a one million-dollar grant from Imperial Oil
to study current trends in high school mathematics.
This Group is particularly interested in reintroducing
geometry, the oldest of topics, into the curriculum
because it allows kids to think like mathematicians. In
addition to his role as teacher and researcher at
Queens, Peter has played an active role in developing
high school mathematics curriculum, and has
frequently taught a calculus course in one of the local
high schools.

Peter organized a two-day workshop in August, at the
Fields Institute, on Re-inventing the Math Teacher.
The mix of participants included the future leaders in
high school mathematics in Ontario — there were
students, young teachers, experienced teachers,
coordinators and textbook authors. The agenda was to
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discuss and reflect upon three aspects of the profession
of mathematics teacher: teacher as scholar, teacher as
student, and teacher as teacher. This was the kick-off
event for the activities of the MSTE group as they start
their deliberations on the high school curriculum,
discharging their responsibilities to Imperial Oil.

Many alumni have fond memories of Peter’s
interdisciplinary course Mathematics and Poetry,
which he initiated in 1982 with the late Bill Barnes
from the English Department. They were fascinated by
both poetry and mathematics, so decided to combine
these passions in a single course. They argued that a
poem should be read, listened to, played with, studied,
and talked about in order to appreciate how the poet
achieves his remarkable effect — and mathematical
argument, or proof of a theorem, should be approached
in the same way. Peter was awarded a 3M-Fellowship
in 1994 for his many innovations in the classroom, and
of course the Mathematics and Poetry course. Only
four faculty members at Queen’s have been honored in
this way. Peter has also won a Distinguished Teaching
Award from the Mathematical Association of America
(1992), and the W. J. Barnes Award for Teaching in
the Arts and Science Faculty at Queen’s (1986).

There are many other teachers who have played an
important role, and I am sure you will remember them:
Jon Davis, Ron Hirschorn, Dan Norman and Bruce
Kirby on Math and Engineering side, and David
Gregory, Hans Kummer, Ole Neilsen, Dave Pollack
and Norman Rice on the Arts side. There are many
others. There are also many teaching awards,
distinguished awards given by various groups at
Queens to outstanding teachers. The length of the
following list of winners from the Department gives a
measure of our enthusiasm and dedication to teaching,
and our success as a teaching department.

e Jim Whitley is as famous a teacher on Campus
now, five years after his retirement, as he was 30
years ago. He was awarded a First Year Teaching
Prize this past year for the outstanding effort he
has put into teaching calculus and linear algebra to
first year engineers. Anyone who has gone
through Queen’s in engineering will know of
Jim’s popularity among students, his marathon
tutorials on Saturdays and Sundays before exams,
and his policy of always having his door open. I
have rarely gone past his office without seeing it
crowded with students seeking tips on homework
problems or old exam questions. The first year
teaching prize for engineers was instituted four
years ago and Jim’s name has now appeared twice
in the list of awardees — he was a runner-up in
winter term of 1999.



In the spring of 1991 Jim received the Alma
Maters Society’s Frank Knox Award, one of two
awards given each year for outstanding
commitment to students and excellence in
teaching. This is the most prestigious award given
by students to teachers at Queen’s. Jim is also
distinguished as being a multiple winner of the
Golden Apple Award given each year to one or
two teachers of engineering classes for excellence
in teaching. Also given by students, this is the top
award from the Engineering Society.

Eight of thirteen — that’s our share of the First
Year Teaching and Leaming Awards that have
gone to faculty over the last four years. This puts
us way out in front as a teaching department in the
Applied Science Faculty! This award is for
outstanding contributions to the teaching and
learning environment in the first year engineering
program. Several of our faculty have been
multiple winners: Leo Jonker won the prize four
times, and was also a runner-up; Jim Whitley both
won the prize and was a runner-up; Alan Ableson,
a doctoral student, was a runner- up; David
Cardon, a post-doc, won the prize three times.

The Arts and Science Undergraduate Society’s
W.J. Barnes Teaching Prize went to Joan
Geramita, Grace Orzech and Leo Jonker in
1997 for their innovative approach to teaching
calculus to Arts and Science Students. They
completely retooled first year calculus, devoting
additional time to modeling natural phenomena so
that the power of the theory is vividly brought to
the students. Earlier winners of the prize were Ed
Chow in 1996 and Peter Taylor in 1985.

Leo Jonker is our latest winner of the Golden
Apple Award, given each year to a few Queen’s
faculty for outstanding teaching in the Applied
Science Faculty. Over the years we have had
many winners of this Award, stretching back to
the early 70s when the award was instituted. Ron
Hirschorn, Jon Davis, Hans Kummer, Bill
Woodside, Jim Verner, Peter Taylor, have all
played a prominent role in our Mathematics and
Engineering Program, and their names appear on
the distinguished list of winners of this award.

Lucian Haddad won the Teaching Excellence
Award at the Royal Military College this past
year. This award is the highest honor for teaching
at RMC, and an analogue of the Alumni Teaching
Award at Queen’s. Lucian is a discrete
mathematician, is an important part of our
Discrete Mathematics Group, and is cross-
appointed to our graduate faculty from RMC.
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e Jim McLellan is a graduate of Mathematics and
Engineering, was cross-appointed Chemical
Engineering to our graduate faculty five years ago,
and has played an active role in our graduate
program in Mathematics and Engineecring ever
since. He is another winner of the prestigious
OCUFA Award. His 1999 Award makes it three in
a row for the Department — Morris 1998, Jim
1999, Leo 2000. Jim also won the Frank Knox
Award in 1997.

¢ Bruce Kirby, known to many of you as fabulous
teacher in the Mathematics and Engineering
Program, was one of the first winners of the
OCUFA award. He won the award in 1973, the
very first year this prize was given. To further
emphasize the mark this Department is making, 10
OCUFA awards have gone to Queen’s in total,
and five of these have gone to either regular
faculty of this Department, or cross-appointed
faculty. Although retired, Bruce is still a regular
fixture in the classrooms of Jeffery Hall — he’s
teaching differential equations to second year
engineers this fall.

The undergraduate programs: With the continual
tinkering that goes on behind the scenes by the faculty
listed above, our undergraduate programs are
continually being improved. The most striking piece of
evidence that shows we are moving in the right
direction is that numbers in Mathematics and
Engineering Program have increased dramatically.
There are 65 incoming students in the second year
class, the biggest class we have ever had, so big that it
is third largest in the Faculty of Applied Science.

The Provincial Government’s Access to Opportunities
Program (ATOP) is beginning to play an important
role in supporting our Mathematics and Engineering
Program. The ATOP funds will be used for new
faculty positions, and for improving facilities in critical
areas. The ATOP program is intended to double the
number of graduates in high technology programs, and
in response to this initiative we have developed a new
sub-program called “Computers and
Communications.”  Another initiative is the
Communications Lab, which is taking its place along
side the Control Lab as being another important
facility for our Math-Eng students.

Two other important initiatives are WAMS
(Workplace Applications of the Mathematical
Sciences) and the Jobs Network. See Joan Geramita’s
article in this issue for more information.

Research and graduate studies is another important
focus area for the Department. The most important
change here is the steady increase in size of doctoral



and the post-doctoral programs. Our graduate program
has run at about 45 for about five years, but the
proportion of doctoral students has increased steadily
over this period to about 70% of the whole. When I
introduced the post-doctoral students to the
Department at the beginning of term I was surprised to
learn that the number had grown to 10, one of the
biggest figures for any department on campus. About a
third of our graduate students have either National or
Provincial Fellowships, a proportion that places us
near the top at Queen’s.

Another important measure of research and graduate
studies is the success of our students. Kostya Rybnikov
was nominated by the Science Division Graduate
School this past year for the Governor General’s Gold
Medal, the award for the best doctoral thesis at
Queen’s. Kostya is a geometer, and worked with Bob
Erdahl - he is now an NSERC Post-Doctoral Fellow at
Comell. Leo Butler, another star grad, has just left for
North Western University where he will be an NSERC
Post-Doctoral Fellow. ‘He did his thesis with Oleg
Bogoyavlenskij in the area of dynamical systems. In
fact, our graduate students are all good. This past year
we graduated a total of nine MSc students, and 6
doctoral students.

Transitions: Boris Levit has just joined faculty as a
senior statistician. He did his undergraduate and
graduate work at the University of Moscow, and
following that has pursued a research career at a
variety of leading research universities in Europe and
North America. He has been a visiting scholar at the
Universities of Bielefeld, Maryland, Paris VII, at the
Weierstrass Institute, and Humbolt University. He
came to us from the University of Utrecht where he
had been on faculty since 1991. He works on non-
parametric statistics, and on asymptotic efficiency of
estimations.

Roland Speicher is an operator algebraist, and has just
joined the Analysis Group. He did his undergraduate
and graduate work at the University of Heidleberg,
starting out as a physicist as an undergrad, then
switching to mathematics as a grad. For the last five
years he has been a Heisenberg Fellow, a prestigious
position that allows leading young researchers to
pursue their passion (mathematics), with no other
formal duties. Roland works on free probability theory,
a theory which combines operators algebras and
random matrices — and gives information on the
mysteries of space and time.

Eddy Campbell was appointed as associate Dean of
the Faculty of Arts and Science, and has been working
in that capacity since April 1. He is overloaded with
work, but nevertheless maintains a strong research
presence in the Department.

13

Hans Kummer, Dan Norman and Jim Verner will
be retiring at the end of this year. Jim and Dan have
been mainstays of the Math and Engineering Program,
and Hans has played a double role with both Arts and
Engineering student. All three have had very creative
careers with us, and we will miss them.

The Campaign for Queen’s. Our most ambitious
project is the creation of the Research Fellows
Program - six positions for outstanding young
mathematicians and statisticians fresh from their
doctoral studies. The crucial period in the life of any
aspiring mathematician or statistician is the three years
immediately following the completion of a doctorate.
This is a time to focus, where research advances made
during doctoral studies are exploited, where teaching
skills are honed, and where the steady transition from
expert to leader begins. New PhDs are bursting with
ideas and need a period of consolidation to write and to
lecture. The Research Fellows Program will provide
such an opportunity.

We hope to initiate this program next year — this will
require an endowment of $500,000 and we are almost
there. To have the program fully launched, with a full
complement of six fellows, will take four million
dollars of endowment. This is our ultimate goal, which
will take several years to achieve.

In addition to this, there are a number of more modest
objectives. For several years, we have employed Gill
Tutors, senior undergraduates chosen for their ability
and personality to help foster a sense of community
among our junior undergraduates. We would like to
have support in order to hire outstanding students for
work within the department, either in administrative,
research or curriculum development positions. Each
$100,000 in endowment will generate roughly $5,000
in salary support. I note that the initial bequest from
the Gill family was $25,000.

A very generous donation by Graham and Stevie
Keyser has provided us to the opportunity to develop
the Keyser Research Center. This is the hub of our
research activities. There are several strategically
placed discussion rooms with good blackboards. The
Keyser’s support is intended to help provide the kind
of environment in which research flourishes, where
chance conversations can lead to profound discoveries.



“But what is it good for?”

Joan Geramita

Believing as we do that mathematics and statistics are
inestimably good in themselves, it is sometimes a

challenge to find the exact application, which will -

capture a student's interest or address a parent's
concern, Actuarial science and quality control are two
old favourites; public key cryptography and creating
internet search engines are two new ones. It is better,
of course, if we can point to real live people who use
the mathematical sciences “on the job”, and it is best if
we can offer students the opportunity to use maths and
stats “on the job” themselves.

Two initiatives within the Department approach these
goals from slightly different directions. The Jobs
Network was inaugurated approximately 18 months
ago by then Head Eddy Campbell using a generous
donation from Mark Baker ('91) which has been
supplemented by the Math Trust Fund. He saw a
twofold goal to the program: developing connections
with alumni in industry who could offer the
Department (especially the students) advice and
networking connections, and developing sources of
positions that could be used with the Work Experience
Program at Queen's (a kind of co-op for 16 months
between May of third year and September of fourth).
Some of the goals of the project have been achieved.

On www.mast.queensu.ca/~jobs, the Jobs Network
website, several of the Department's graduates offer
students their answers to “what it is good for?”. The
website also offers practical advice and help for
students looking for employment. There are links to
job postings at Queen's Career Planning and Placement
and to the employment opportunities sections of
websites of companies who have hired our graduates.

The Department itself has employed undergraduate
students in a variety of tasks. In our experience, the
relationships developed and the teaching and learning
done in these settings are different and complementary
to those generated in a classroom. Some of the
employment situations have provided the students with
direct experience of at least one facet of the work of an
academic mathematician or statistician. Students have
been enthusiastic about these positions and faculty
have been pleased with the quality and breadth of the
students' contributions. To offer our students increased
opportunities we hope to enlist our graduates as a
source of internships and summer jobs outside
academia. This Fall, one of our graduate students,
Monica Cojocaru, will be calling graduates to see if
they can help us in this way.

Our second initiative — the Workplace Applications
of the Mathematical Sciences project (WAMS for
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short) — will allow us to offer students an opportunity
to integrate the various parts of their mathematical and
statistical knowledge in the context of applications,
while still in the university environment with the
resources of faculty available to them. Scientists in
industries whose research establishments do not
include depth in the mathematical sciences often have
interesting problems that require more time or
specialization than they have at their disposal.
Experience at Queen's (in the Department of Chemical
Engineering) and elsewhere has shown that well-
motivated student teams can often solve these
problems or at least make extremely helpful
beginnings to solutions.

WAMS will support the mission of the Department by
providing a quality, interdisciplinary learning
experience for interested undergraduate students; by
establishing a framework to facilitate research
collaboration between faculty and students and various
industrial partners; and by exposing the curriculum to
the influences of the ideas and the activities of
mathematical scientists outside academia.

Discussions with scientists at Dupont in Kingston have
generated a project to be undertaken by a team of
students during this academic year. As well, we are
also undertaking a series of colloquia where members
of the department and scientists from Dupont can meet
to talk about the work they are doing. These exchanges
may lead to research collaborations. At the very least,
we will learn a few more things that “it” is good for.

BE PART OF WAMS OR THE JOBS NETWORK!

Initiatives like these obviously require the support of
people outside the university. We are looking to our
graduates (and others) to provide us with suitable jobs,
internships and projects. However, we can also make
good use of contacts — if you don't have a job or
project, talk to your relative or colleague who might.
(And, of course, you can always send us money to help
defray the expenses of contacting graduates.)

Contact us by email at <jobs@mast.queensu.ca>. Ask
Monica to contact you or send us the name of a person
in your company who is willing to be called. If you are
willing to share information on how your
undergraduate education and your subsequent career
and educational choices fit together, let us know that,
too. Sometimes students want to know that doing a
math or stats degree will not hinder their choice of a
non-math related job.

If you prefer, write to the Department of Mathematics
and Statistics, Queen's University, Kingston, ON
K7L 3N6, with your name, address, and daytime
phone. Of course, you are totally welcome to include a
cheque (made out to Queen's University) also.



Report on the Mathematics
and Engineering Program

Ron Hirschorn

The Mathematics and Engineering program is alive
and well. Over the last year we have improved our lab
facilities, hired new faculty members, added a new
option, and experienced an increase in enrollment.

Labs: Our Control-Robotics Lab was upgraded last
summer with funds provided by the Ontario
Government's ATOP initiative. We now have a
networked system of IBM workstations running
LINUX and connected to our custom built robotic
experiments. We also obtained a small computer
controlled milling machine. Many of our 4th year
Engineering projects use the lab to design, construct
and control various robotic devices. The third year
labs were completely revised this summer by Andrew
Lewis, our newest faculty member. Our lab will also
be used to support the design projects which we will be
offering as our contribution to the new first year
Applied Science design course APSC100. Projects we
are offering include the Design of an Infrared
Communications System (Jon Davis); Design and
Optimization of an Amusement Ride (Andrew Lewis,
Ron Hirschorn); The Role of Feedback in Controlling
Mechanical Devices (Ron Hirschorn, Andrew Lewis).

The Communications laboratory is devoted to studies
of communication systems. We have obtained (again
through ATOP funding) several four-way symmetric
multiprocessing machines, on which the comsim
environment can be run. This lab is used by
undergraduates in connection with their fourth year
projects.

Research Interests of Faculty: Our Communications
Research group is strong and growing. It now has six
members, five from this department (Fady Alajaji,
Tam4s Linder, Glen Takahara, Jon Davis, Lorne
Campbell) and one from ECE. Our Control Theory
group has three members (Andrew Lewis, Ron
Hirschorn, Jon Davis) and is active in the area of
nonlinear control, mechanics and robotics. In addition
we are advertizing for a new faculty member with
research interests in mechanics.,

New Option: Our new Computing and
Communications option combines the basic
communication systems content of our Control and
Communications option, but replaces some hardware
and control systems material with a package of courses
(from CISC) in the areas of formal analysis, protocols,
algorithm analysis and software engineering methods.
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New Courses: We now offer three 4th year level
courses in’' Communications: Telecommunication and
Data Network Modelling, Information Theory, and
Source Coding and Quantization. We have completely
revised our third year control course and added a new
fourth year course - Lagrangian Mechanics,
Dynamics, and Control.

Enrollment: The trend in student enrollment is
sharply upward from a total of 56 in 1994-95 to 126 in
1998-99 and 138 in 2000-01.

In summary, the program is in a good state of health.
Areas of concern are the lack of ongoing funding for
the operation of our labs and the very small number of
scholarships in place for Mathematics and Engineering
students.

New Problem
Peter Taylor

Problem: Even or Odd?

Eeyore and Owl play the following game: they flip 10
coins, and Eeyore wins if the number of heads is even,
and Owl wins if it’s odd. The question is, is the game
fair, or does it favour one or the other? Well that’s not
so hard to settle if the coins are unbiased. The game is
fair and there are a number of simple arguments for
that, some quite clever. But the situation here is that
the coins are biased and each come up heads with
probability 2/3 and tails with probability 1/3. Is the
game still fair?

Send your solution, or new problem suggestions, to:

Queen’s Mathematical Communicator
Department of Mathematics & Statistics
Queen’s University

Kingston, ON K7L 3N6

Canada

mathstat@mast.queensu.ca



Tossing the water filled

balloon
(from Summer ’99 issue)

Peter Taylor

This amusing problem was provided by Norm Rice. It
seems he was at a church picnic and one of the games
was tossing a water-filled balloon back and forth and
of course because of the delicate nature of the missile
and the fact that you are after all dressed up in church
picnic clothes, you want to minimize the chance that it
will break when you catch it. What that means is that
you want the balloon to arrive with the minimum

speed.

(a) Let's suppose the balloon is released and caught at
the same height. The problem is what angle
should the balloon be projected at? If the angle is
just above zero, you have to give it a lot of speed
as it can't fall too much. If the angle is large, it
will go quite high and then gravity will give it lots
of speed on the way down. It seems there will be
an intermediate angle which minimizes the speed
of arrival. What would that be? Take the
acceleration due to gravity to be g = 10 m/s’.

Okay. It turns out that this is really an old problem
(but a good one) in disguise. In this case the final
speed will be the same as the initial speed (by
symmetry) and the problem of choosing the angle to
minimize this (with a fixed horizontal distance) has the
same answer as the problem of choosing the angle to
maximize the horizontal distance traveled with a fixed
initial speed. And that’s 45 degrees. By all means
work it out if you want. It will provide good technical
preparation for what follows.

So how are we to make this an interesting problem?
Well what if the ground isn’t flat and the thrower and
receiver are at different heights? Well, that makes
things more interesting but it’s still standard high
school physics. But here’s a thought. Suppose the
ground isn’t flat and I can position the receiver
anywhere I want subject to some simple constraints
(like he can’t be too close to me). Where should he
stand so he receives the balloon with the minimum
speed. The idea here is that the more I get him above
me, the more I am able to get the balloon to him at its
maximum height which is when the speed of any
trajectory is a minimum. So maybe the problem
should be:
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(b) Find an interesting problem along these lines.

Well, (b) is the problem I took for myself and here’s
what I came up with. So maybe your real job is to
solve the following:

(c) 1am standing on flat ground, but 2 meters away a
hill starts to rise in a straight line at an angle of 60
degrees to the horizontal. I can put the receiver
(who'd better be a competent climber) anywhere
on the hill. Where should he be so that (if I
project the balloon optimally) he will receive it
with minimum speed?

..
"~

-~
.

Solution

I am standing on flat ground, but at a distance d a hill
starts to rise in a straight line at an angle of 60 degrees
to the horizontal. I want to gently toss a water-filled
balloon so that it can be caught by a receiver R
standing somewhere on the hill. Where should he
stand so that (if I project the balloon optimally) he will
receive it with minimum speed? (Take g=10).

This is an interesting situation because at first you
think that R should be as close as possible which
would put it at the bottom of the hill. But in going
farther away, R also gains height and that can decrease
the arrival velocity. For example, if R was directly
above me, I could arrange for the balloon to arrive
with zero speed.

In fact I got no solutions to this problem. That’s a pity
because it’s a nice and very natural 2-variable
optimization problem, and there aren’t all that many



nice natural such problems around. What are the two
variables? Well there’s two degrees of freedom here,
where he stands and how I toss the balloon. He has to
be on the hill, so there’s really only one variable there.
Now in tossing the balloon there are two things I can
vary, the initial speed and angle, but the balloon has to
land at R (in true mathematical fashion we ignore the
height of the receiver) and that cuts these two variables
down to one. So in all there are two variables. But
how should we assign them? Well there are different
possibilities here, and it takes a bit of playing to see
what choices will keep the algebra simple. Here are
the candidates:

x: the horizontal distance from the bottom of the
hill toR

y: the vertical distance from the bottom of the
hill toR

A the horizontal (initial and final) velocity of
the balloon

u: the initial vertical velocity of the balloon

v: the final vertical velocity of the balloon

t the time of travel of the balloon

d: the distance from me to the bottom of the hill
(given).

m: the slope of the hill (given as V3)

I choose x to keep track of R and ¢ to keep track of the
balloon’s trajectory. Now express everything in terms
of these two.

mx

(x+d)/t

5t +y/t [This comes from y = ur - 5]
u

y
w
u
v — 10t = 5t+y/t = -5t + mxft
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Now we will minimize the square of the final speed
which is

W+ = [(x+d) P 1+ (5t + mxlt)?

We take the two partial derivatives with respect to x
and ¢ and set them to (. After some reorganization, we
get the two equations:

5me = (x+d) + m*x
25¢ = (x+d)* + (mx)’

It turns out that these have a solution with positive x
precisely when m>1. In this case we get the nice
2

formula LA m2 !

d m°+1
d/2. By the way, in case m<1, the optimal turns out to
place R at the bottom of the hill. That makes sense; if
the hill is not very steep, the “payoff” of increasing
height does not compensate enough for increasing
distance.

which for m=+/3 givesus x =




epeue)

ONE 1L NO ‘uos3ury

ANSIOATU() S,UAND

sonsnelS 29 sonewayRA Jo jusunsedsq
:OL NMNLAT ATAVITATTAANN AT



