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The Axiom of Choice: What
is it, where did it come from,
and why is it important?!

Ole A. Nielsen

The axiom of choice

The axiom of choice (AC) is an assumption or a
theorem or a piece of theology (your. choice) that
is occasionally invoked (or, more frequently, swept
under the carpet) but rarely discussed in under-
graduate mathematics courses. The rationale for
giving the Coleman-Ellis lecture on which this ar-
ticle is based was (in one hour) to describe AC
and how it enters into undergraduate mathemat-
ics, discuss some of its history, explain its current
logical status, and suggest why it has gained gen-
eral acceptance amongst mathematicians.

Let me begin with an analogy due to Bertrand
Russell. If I have an infinite number of pairs of
shoes there is an algorithm for selecting one shoe
from each pair: just select the left shoe. But if
I have an infinite number of pairs of socks there
is no algorithm for selecting one sock from each
pair. The difference is, of course, that the two
shoes in any pair can be distinguished from one
another whereas the two socks in any pair are in-
distinguishable. If each pair of shoes and each
pair of socks is regarded as a set containing two
elements then this problem of selecting one shoe
or one sock from each pair becomes that of finding
an algorithm that will select, out of each member
of a certain family of non-empty sets, one element.
The point of this analogy of Russell is that there
is no reason to expect to be able find an algorithm
which will select, out of each member of a given
family of non-empty sets, one element. Of course,
if there are only a finite number of sets (or pairs
of socks) then there is no difficulty in making the
selections; no matter how long it takes us to select
one element from each set (or one sock from each
pair) we will eventually have made the required
finite number of selections.

To put the problem just considered into a more
mathematical form it is only necessary to replace
‘algorithm’ by ‘function’. So AC takes the follow-
ing form:

1Based on a Coleman-Ellis lecture given on March 14,
2001

Given a set .4 whose elements are

non-empty sets, is there a function
f whose domain is A and with the
property that, for each set A € A,

f(A) € A?

Such a function f, if it exists, selects one el-
ement, viz., f(A), from each set A € A and is
called a choice function for A. The point of Rus-
sell’s story is that there is no reason to expect a
choice function will exist for an arbitrary set of
non-empty sets.

(AC)

History of the axiom of choice

In the early 1880’s Georg Cantor began study-
ing the convergence of Fourier and trigonomet-
ric series and this led him to think about sub-
sets of R. Soon after he began this study he
formulated the notion of a well-ordering and of
a well-ordered set. He believed that any set could
be well-ordered but was unable to prove it and
was even unable to prove that the real line itself
could be well-ordered. Ernst Zermelo introduced
AC in a paper published in 1904 in order to bet-
ter understand Cantor’s notion of well-ordering:
Zermelo proved that AC was valid if and only if
every set could be well-ordered. AC generated
a considerable amount of controversy almost as
soon as Zermelo’s paper was published. A num-
ber of the prominent mathematicians of the day
(such as Henri Lebesgue, Emile Borel, René Baire,
and Giuseppe Peano) objected strenuously, saying
that such arbitrary choices could not be made and
hence that they saw no need for choice functions to
exist. These mathematicians would only allow an
infinite number of choices if the choices could be
made according to some algorithm or rule. That is
to say, these mathematicians would admit a func-
tion if its values are defined by some rule or algo-
rithm but not if its values are arbitrary or capri-
cious. To them selecting the left shoe from each
pair was legitimate but selecting one sock from
each pair required arbitrary choices and so there
need not exist such a function (or algorithm).

In 1908 Zermelo wrote another paper in which
he vigorously defended his earlier paper. One way
in which he did this was to point out that numer-
ous mathematicians, including most of his critics,
have used AC implicitly in their own work. For
example, both Borel and Lebesgue, in their germi-
nal work on real variables and integration theory,
had used AC implicitly. In 1872 Eduard Heine had
implicitly used AC to prove that the e-§ formula-
tion of continuity was the same as the sequential



formulation. And at about the same time Cantor
implicitly used AC to prove that the union of a
countable number of countable set is countable.
Of course, the fact that AC had been widely used,
albeit implicitly, in the nineteenth century and the
first few years of the twentieth was only realized
later, following Zermelo’s paper of 1904.

In the two decades following the publication
of Zermelo’s second paper AC gradually received
grudging acceptance amongst more and more
mathematicians as it became clear that mathe-
matics would be very different without AC. Not
only did it seem as though AC was necessary to
prove many results, but some of these results were
even shown to imply AC. This meant there were a
number of mathematical theorems that were log-
ically equivalent to AC and therefore equally re-
liable or equally suspect. Much of this work was
done in the 1920’s and 1930’s by a group of Pol-
ish mathematicians (amongst whom were Waclaw
Sierpinski, Alfred Tarski, and Kazimierz Kura-
towski) .

Statements equivalent, weaker, or
stronger than AC

There is a wonderful book by Gregory Moore of
McMaster University that has a list of 73 state-
ments each of which is equivalent to AC. Some of
these are

(a) Axiom of Choice If A is a non-empty set
whose elements are non-empty sets there is
a function f with domain 4 and with the
property that f(A) € A for all A € A.

(b) Russell’s multiplicative axiom If 4 is a
non-empty set whose elements are pairwise
disjoint non-empty sets then there is a set T
such that TN A consists of one element for
each A € A.

(c) Cantor’s well-ordering principle Every
non-empty set can be well-ordered.

d) Zorn’s lemma
(

(e) Burali-Forti property If A and B are any
two sets there is a function from A into B
which is either one-to-one or onto.

(f) Every vector space has a basis.

(8) Any two basis for a vector space have the
same number of vectors.

(h) If S is a subspace of a real vector space V
then there is a subspace S’ of V such that
SNS' ={0}andV=5+5"

(i) If A is a subset of a vector space V and if A
spans V then A contains a basis for V.

It is easy to see that (a) and (b) are equivalent.
Nowadays in algebra and analysis the most com-
mon way of invoking AC is by means of Zorn’s
lemma. The last four conditions are well-known
from linear algebra and, from the point of view of
AC, are only interesting for infinite-dimensional
vector spaces.

Moore’s book also contains two other much
shorter lists, one of statements that are stronger
than AC and the other of statements that are
weaker than AC. The two statements

(j) Godel’s axiom of constructibility
(k) Generalized continuum hypothesis

are strictly stronger than AC and the six state-
ments

(1) In a ring with identity every ideal is included
in a maximal ideal.

(m) Every abelian subgroup of a group is con-
tained in a maximal abelian subgroup.

(n) Every field is a subfield of an algebraically
closed field.

(0) The equivalence of continuity and sequential
continuity.

(p) Countable union theorem The union of a
countable number of countable sets is count-
able.

(a) Every infinite set contains a countable set.

are strictly weaker than AC. Statements (o)-
(9) (and especially (q)) appear to be innocuous
enough and it is not at all evident that they de-
pend on AC. To show how easy it was for nine-
teenth century mathematicians to implicitly use
AC it will be worthwhile to consider (o) and (q)
in some detail.

Let us first try to prove (q). Suppose that A is
an infinite set and let us try to construct a count-
able subset of A. Since A is infinite it must contain
an element, say, a;. Now A \ {a;} is non-empty
since A is infinite; let a; be an element of this set.
Then a; # a;. Next, A\ {ai1, a2} is non-empty
since A is infinite and so must contain an element,
say, az. Continuing in this manner, it appears that
we will construct a sequence a1, az, as, ... of pair-
wise distinct elements of A and hence a countable
subset {a1, ag, ag, ...} of A.



Now let us try to prove (o). Consider a function
f:R = R and a point o € R. The function f
is said to be continuous at zg if

for each £ > 0 there is a § > 0 such that
ifz € R and |z — zo| < § then (C)
[f(z) - f(zo)| < €

and to be sequentially continuous at zg if

if (zx) is a sequence in R such that

= z¢ then kli)l‘{.lof(.’l)k) = f(zo).} (SC)

The proof that (C) implies (SC) is easy and un-
controversial. To prove that, conversely, (SC) im-
plies (C) let us argue by contradiction and begin
by assuming that (C) is false. That means that
there is an € > 0 with the property that, for each
0 > 0, there is an = € R satisfying |z — zo| < 6
and |f(z) — f(xo)| > €. So taking § = 1/k, where
k is a natural number, there must be an z; € R
satisfying |z — o] < 1/k and |f(wx) — f(zo)| > e.
But these numbers z; constitute a sequence (zi)
for which khm T, = To and hm f(mk) # f(zo),

contradicting (SC). This shows that if (SC) holds
then (C) too must hold.

These two proofs, one of (0) and the other (q),
are pretty simple. But notice that each of them
required an infinite number of arbitrary choices.
In the case of (o) the choices were in selecting the
T1, T3, ... and, in the case of (q), in selecting the
a1, az, .... This means, of course, that both of the
proofs depend on AC. However, it seems as though
these proofs just barely used AC and (o) and (q)
themselves appear so compelling that one is left
wondering if there might not be clever proofs of
(o) and (q) that avoid AC.

A similar careful analysis of the standard proof
of (p) will show that it too uses AC.

lim z;,
k—o00

Banach-Tarski paradox

The so-called Banach-Tarski paradox first ap-
peared in a paper by Stefan Banach and Alfred
Tarski (two Polish mathematicians) in 1924. They
were independently examining some work done by
Felix Hausdorff a few years earlier and, having ob-
tained similar results, published their work jointly.
One popular version of their paradox goes as fol-
lows:

A solid ball may be decomposed into a
finite number of pieces in such a way that
the pieces, by means of suitable rotations
and translations, can be reassembled so
as to form two solid balls each with the
same diameter as the original ball.

The usual reaction to this is (i) it is manifestly
wrong and totally nonsensical and (ii) let’s try it
with a ball made of gold. In fact, Banach and
Tarski showed much more: given any two objects
in R3 with interior points (such as small ball and
a large tetrahedron or a mouse and the CN tower),
it is possible to decompose one of them into a fi-
nite number of pieces and, by means of rotations
and translations, reassemble the pieces so as to
form the other one. In doing so it is necessary to
use AC; the pieces have such bizarre shapes that
they must be defined by means of AC and the de-
composition cannot actually be carried out with
real objects. It should be pointed out that the ar-
guments employed by Banach and Tarski work in
R* for k > 3 but not in R or R2.

The paper by Banach and Tarski contained the
kind of results that the opponents of AC were
looking for and they, not unexpectedly, latched
on to it as soon as it was published. They ar-
gued that the consequences of AC given in that
paper were so bizarre that surely AC had to be
abandoned as being illegitimate.

One reason for calling the Banach-Tarski para-
dox paradoxical is that it appears as though vol-
ume (or mass) is not preserved. But do we have
any right to expect that decomposing an object
into a finite number of pieces and reassembling
them should preserve volume? Only if we are able
to measure the volume of an arbitrary subset of
R3. But are we?

Let us think about the volume of subsets of R3
for a minute or, more to the point, let us think
about the properties that a volume function on
R3 should have. First of all, a volume function on
R? should be a function, say v, whose domain is
all subsets of R? and whose value v(A) at a subset
A of R? can be interpreted as the volume of A.
Such a function » must surely satisfy the following
conditions: (i) its values should be non-negative
numbers or infinity, (ii) its values should be ro-
tation and translation invariant, meaning that if
A, B C R3 and if B is obtained by either rotating
or translating A then v(A) = v(B), (iii) if A and B
are disjoint sets then ¥(AUB) = v(4)+v(B), and
(iv) ¥(C) = 1 for any cube C with side-length 1.
These properties imply that if a subset A of R3
is decomposed into pieces A, Aa, ..., Ay and,
by rotations and translations, these pieces are re-
assembled into a set B then
m
> v(A) = v(B).

i=1

v(A) =

In view of this equation the Banach-Tarski para-



dox quite clearly implies that there is no volume
function on R3.

The conclusion just drawn can be paraphrased
in a more positive way: The Banach-Tarski para-
dox suggests that we may have AC or we may
have a volume function on R?® but we may not
have both. It was conclusions of this sort that
Banach and Tarski touted in their original paper
rather than the paradoxical nature of their dis-
coveries. In fact, they regarded their results as
theorems and not as paradoxes and stressed this
point of view in their paper.

Set theory and AC

The first axiomatization of set theory is known
as Z and was contained in Zermelo’s 1908 paper
as part of his defense of his 1904 paper. By the
early 1920’s it was realized that the axioms of Z
were inadequate for the development of set theory
and needed to be supplemented by one additional
axiom. This axiom was proposed independently
by Thoralf Skolem and Abraham Fraenkel and the
enlarged set of axioms was known as ZF'; these ax-
ioms and this theory are used today by virtually
all mathematicians and logicians. AC is not one of
these axioms and both the logical status of these
axioms (are they consistent?) and their relation
to AC (do they imply AC or its negation?) was an
open question for many years. In 1931 Kurt Gédel
proved his so-called second incompleteness theo-
rem and one of the consequences of this theorem
is that if ZF is consistent then there is no proof
of the consistency of ZF. (On the other hand,
any inconsistent theory can prove any statement
and so if ZF were inconsistent it would be able
to prove its own consistency.) In 1937 Gédel was
able to prove that if ZF is consistent then so is
ZF + AC, thereby showing that AC cannot be
refuted by ZF. Godel did this by using the as-
sumption that ZF is consistent to build a model
of ZF + AC, the so-called constructible model.
(It is in this way that (j) is strictly stronger than
AC.) And in 1963 Paul Cohen proved that if ZF
is consistent then there are models of ZF with
any of the following properties: (i) R does not
have a well-ordering and so AC does not hold for
the set of non-empty subsets of R and (ii) there
is a countable family of two-element sets with no
choice function (cf. Russell’s socks). This means
that AC cannot be proven from ZF.

In summary, then, the work of Gédel and Co-
hen shows that ZF can neither prove nor refute
AC and hence that either AC or —~AC may be
adjoined to ZF without fear of introducing an in-

consistency. Or, putting it a little more succinctly,
ZF and AC are logically independent of one an-
other.

The technique Cohen discovered and which he
used .to prove his theorem about ZF and AC is
known as forcing and is still being used today
to prove theorems about set theory. In partic-
ular, this technique was used in the mid-1960’s
by Robert Solovay to construct a model of ZF in
which (i) there is a function on R which is se-
quentially continuous but not continuous and (i)
R is the union of a countable number of countable
sets. At about the same time forcing was used to
construct a model of set theory in which there is
an infinite set with no countable subset. (In con-
nection with (ii) recall that, by Cantor’s theorem,
R is uncountable.) So each of (0)-(q) really do
depend on AC and there is no way to prove any of
them without invoking AC. (And it had appeared
as though AC was being used in the proofs of (o)
and (q) in such an innocuous way!)

Current status of AC

Today virtually all working mathematicians ac-
cept AC and, as has been suggested, there is one
overriding reason for this: there are numerous the-
orems that ‘ought’ to be true and virtually charac-
terize mathematics as we know it today and which
cannot be proven without AC. Examples of such
theorems are conditions (d)-(i) and (n)-(q). Con-
ditions (f)-(i) and (n) are regarded as ‘facts of life’
by algebraists, (o) and (p) are regarded similarly
by analysts, and (q) is just plain ‘obviously true’.
Without these and similar theorems mathematics
would be a very different subject; its usefulness
to engineers and scientists and its intrinsic aes-
thetic appeal to mathematicians would be greatly
diminished.

Finally, it should be said that the full force of
AC is not needed to obtain the theorems alluded
to and that some mathematical logicians are trou-
bled by the seemingly immense deductive strength
of AC. Some of these logicians are wondering if it
might not be possible to replace AC by a weaker
statement, one that is more palatable but still suf-
ficiently strong to imply the theorems that are at
the heart of mathematics (remember that (1)-(q)
are strictly weaker than AC). Research in this di-
rection has been ongoing for several decades now,
with most attention being focused on assumptions
related to winning strategies for various infinitary
games.



Head's Report

Bob Erdahl

In her 2003 Killam Lecture, delivered at the University
of British Columbia, Shirley Tilghman spoke on The
Challenges of Education for the Next Generation of the
Professoriate. Central to her message was the
importance of attracting the brightest and ablest of our
undergraduates into careers in scientific research and
into our university faculties. “The reasons are
straightforward enough. First, research universities
have assumed the role of research engines for our
countries; they are the sources of innovation and
Juture prosperity. If the universities falter, so do the
future health and wellbeing of our countries. Second,
as 1 reminded members of Princeton’s board of
trustees recently when they were questioning why we
spend so much time and resources vying with other
universities for the very best faculty, a university in
which the students are smarter than the faculty is not
an attractive model for excellence in education.”

Because there is a longstanding faith in the value of an
education, research universities such as Queen’s hold a
privileged position in our society. This faith is based
on the conviction that a good portion of Canada’s
vitality, including its robust economy, owes much to
our universities. This conviction is expressed in many
ways, including the investment of our Federal and
Provincial Governments through a variety of programs
promoting excellence such as the Canada Research
Chairs Program. This conviction is also expressed at
Queen’s by the generous giving of our alumni, which
has established the Queen’s endowment as one of the
top two per student in Canada.

In return for this broad support, society rightfully
expects from universities, and in particular from
Queen’s, the generation of new ideas and knowledge
that will fuel economic growth and prosperity, and
create jobs, but most importantly prepare the next
generation of citizens and leaders.

Shirley Tilghman was elected President of Princeton
in 2001. She is a Queen’s graduate, receiving her
Honours B.Sc. in chemistry in 1968. She is an
exceptional teacher and world-renowned scholar, and
leader in the field of molecular biology.

Challenges for the Department

There have been many changes in the Department
over the last ten years — in particular, the way we
teach has changed. Class sizes are much larger than
they were, and we have had to scramble to maintain
the quality of the programs we offer — we have had to
scramble to ensure that the courses we teach are as
attractive today as they were twenty years ago. We

think we have managed to achieve this. In fact, our
students are thriving — doing better than ever.

As emphasized by Shirley Tilghman, our challenge is
to prepare the next generation of leaders in the
sciences — our focus being on mathematics and
statistics, the teachers and researchers. I want to
describe in this article why we think our students are
well-prepared as the next generation of leaders. I will
discuss in the context of the three groups that make
up the Department’s community, our students, our
faculty, and our alumni.

Our students are well prepared

The number of academic prizes won by our students
in recent years has been remarkable. The example I
like is the Prince of Wales Prizes — over the past 12
years there were 24 Prince of Wales Science Prizes
awarded, and the Department won 14 of these. The
two highest academic awards for science students are
the Prince of Wales, and the Runner-Up, given to the
two top graduating students at spring convocation.
There was only one year in the last twelve when we
did not win either the Prince of Wales or Runner-Up
Prize, and there were three years when our students
earned both. A stunning accomplishment since each
year there are over 600 science graduates, but only 30
Honours Math graduates.

Our graduate students have also shown success — over
the last five years our doctoral students have twice
won the doctoral prize from the Canadian
Mathematics Society, won the doctoral prize from the
Canadian Applied and Industrial Mathematics
Society, and won the Statistical Society of Canada’s
Pierre Robbillard Prize.

More details on the high achievement of our students
is given in Academic Prizes Won by Mathematics and
Statistics Students, which follows. We have been able
to give a rather compete picture back to 1985, but it
was difficult to go further back. With help from our
alumni I’'m sure we can go much further back.

To finish reporting on students I must say a few
words about the Department’s enthusiasm for the
current first year class, the class of 2007. Shortly after
the start of term last September the reports started
rolling in, best incoming class ever. Students linger
after each of Leo Jonker’s Calculus for Engineers
class to talk math; they come in greater numbers to
his evening sessions devoted to challenge problems —
hard engineering problems that require three or four
hours just to get started; the grades on the Christmas
exams were four percentage points higher than the
year before. This is the year that the percentage of
incoming students with first class standing shot up to
99.5 percent, four percentage points greater than last
year, and twenty percentage points greater than at any
other Ontario University.



Many of these students will sign on as Honours
Mathematics or Statistics students, or as Mathematics
and Engineering students, and we’ll see a lot of them
throughout the next three years. We will enjoy
teaching these kids.

The faculty measures up

Since the last issue of the Communicator there have
been many awards for teaching and scholarship that
have gone to the faculty. To keep you up to date these
are listed in Significant Events, which follows.

The long list of awards shows that we have an
outstanding teaching department, and leading
research department. It’s hard to keep both balls in
the air, teaching and research, but we consider it our
responsibility to do so. Our students demand that we
push hard in these fundamental directions, teaching
and research; Queen’s has the top undergraduate body
in the country, by a mile, and they demand the same
excellence of our faculty.

We have spent time and energy, and resources,
competing with universities across North America to
assemble the faculty we now have. Shirley Tilghman
gave the reason — “a university in which the students
are smarter than the faculty is not an attractive model
for excellence in education.” We have met the
demands of our students for good courses taught by
leading scientists.

Our alumni

In a 1998 survey of our undergraduate alumni we
discovered that the third most frequent career track
was company president. Well, ... we always thought
our students would do well out there, but this seemed
an exaggeration. Some quipped that coming face-to-
face with the murky problems tossed up in business
requires the same smarts, and courage, as does the
beautifully formulated, but opaque, problems towards
the back of a second year calculus exam. Biased
statistics yes, but we were still reminded of a striking
phrase of Alfred North Whitehead’s that John
Coleman is fond of quoting: "The paradox is now
fully established that the utmost abstractions are the
true weapons with which to control our thought of
concrete fact". Most everyone who has taken a course
from John Coleman has certainly heard him quote
from Whitehead.

The 1998 survey showed us more than simply that
our graduates ascend to the top ranks of industry, with
ease. The survey showed there were a sufficient
number of teachers of mathematics out there,
researchers and academics, to satisfy our sense of
mission.

We want to know more about how you, our alumni
are doing, so keep in touch. We know you’ve been

successful — because you showed so much success as
undergrads. Let us know about the role your Queen’s
mathematics degree has played in your lives — let us
know about your interesting careers.

Launch of the Coleman Fellows Program

We have been able to launch the campaign for the
Coleman Fellows Program through a generous gift
from Denys Calvin, a 1980 Honours Math graduate.
This is an innovative program to establish a new class
of position in the Department. Denys established the
endowment for the very first Coleman Fellow.

The Coleman Fellows will form a new layer of
teachers and researchers between the faculty and
undergrads. This new class of appointment will be for
three years, immediately following doctoral studies;
these appointments will be attractive to
mathematicians emerging from doctoral programs
since they need time to consolidate their research
programs and learn how to teach. At Queen’s the
Fellows will hone their speaking and problem solving
skills by teaching and doing research — they will bring
new vibrancy to our undergraduate programs and
fresh ideas to our research seminars. The Fellows
Program will function as a launching pad for the next
generation of leaders in mathematics. Our goal, in the
long run, is to build sufficient endowment for eight
Coleman Fellows.

To understand why the Coleman Fellows Program is
so crucial you need to know about the rapid changes
at Queen’s, and in the Department. First, with
reduced funding from the Province our faculty
complement has shrunk, class sizes have increased,
and we are hard-pressed to maintain the essential
dialogue between faculty and students that has always
been a part of a Queen’s education. One of the
important roles of the Fellows will be as teacher,
helping to maintain the intimate contact with our
students. Teaching is a job that requires enthusiasm,
continual tinkering with everyday details, and the
confidence of an expert — just right for a Coleman
Fellow. Second, the Department’s research program
has become much more ambitious, and has expanded.
Our seminar system forms the backbone of our
research program, where our graduate students are
trained, and where new research directions are
formulated. The Coleman Fellows will bring fresh
new perspectives, enthusiasm, and confidence to our
seminar system.

The Coleman Fellows Program has enormous
potential to improve teaching and research in the
Department, and responds to the message that Shirley
Tilghman brought, that we attract the brightest and
ablest of our undergraduates into careers in scientific
research and into our university faculties.



Fellowships for students

There are two other directions where we are trying to
build endowment. We want to develop additional
opportunities for both our graduate and undergraduate
students, and I would like to report here on what has
been accomplished in these directions.

Gail Drummond and Robert Dorrance established
the Dorrance Fellowship in Mathematics and
Statistics through a generous donation, making use of
the Provincial OGSST program, which provides 2 for
1 matching funds. Robert Dorrance is a 1974 Honours
Mathematics - graduate. Using a similar strategy,
Scotiabank established the Scotiabank Fellowship in
Mathematics and Statistics.

Doctoral studies lie at the very centre of the research
program of our Department, and play a dominating
role in developing scientific infrastructure in Canada.
The Department would like to expand the size of the
graduate program from the current 50 to 65, and this
requires additional funding. This will require sources
of funding such as that provided by Gail Drummond
and Robert Dorrance, or the Scotiabank.

A very generous donation by Graham and Stevie
Keyser has provided us the opportunity to develop
undergraduate research. The Keyser Fund provides
stipends for undergrads to join a summer research
program in the Department, and also provides stipends
for graduate students to help supervise fourth year
undergrad theses. Last spring, at the Mathematics and
Engineering Conference the first Keyser Prizes were
announced for “best talks”; Graham Keyser was on
hand the present the awards himself. The Mathematics
and Engineering Conference is where our students
report on their thesis research, conducted throughout
their fourth year. Graham Keyser graduated in
Honours Mathematics and Physics in 1946, and
obtained a M.Sc. in physics two years later in 1948.
His wife Stevie graduated from Queen’s in 1946, in the
very first nursing class.

Oswald Hall established the Norman Miller
Assistantships in Mathematics Education. Oswald Hall
graduated with a Bachelor of Arts in 1935, and spent
most of his career at McGill as a Professor of
Sociology. As a Queen’s undergraduate he was very
much influenced by Norman Miller, a Queen’s
Professor of Mathematics. Norman Miller was
concerned about mathematics education in the high
schools, and worked closely with local high school
teachers.

Transitions
Over the past three years we have hired seven new
colleagues:

David Thomson was appointed as a Canada
Research Chair in Statistics and Signal Processing.

He had an illustrious career at Bell Labs before
joining the Department, where he was the first to give
a statistical proof of global warming in the early
nineties. Immediately upon arriving in January 2002
David launched an ambitious program to study the
sun’s radiation to determine how it is linked to the
dropped call problem for cell phones; this will
involve gathering data using a radio telescope
mounted on Jeffery Hall.

Shawn Kraut did his PhD in statistical signal
processing at the University of Colorado, and was
then a postdoctoral fellow at Duke University. Shortly
after he was appointed to the Mathematics and
Engineering Faculty, in September 2002, he won an
IEEE Young Author Best Paper Award.

Troy Day was appointed as a Canada Research Chair
in Mathematical Biology, in July of 2002. Shortly
after the defence of his doctoral thesis at Queen’s, in
1999, he won an NSERC doctoral Prize, the Canadian
Industrial and Applied Mathematics Societies’
Doctoral Prize, and a Premier’s Research Excellence
Award. He came to Queen’s from the University of
Toronto.

Michael Roth graduated from Queen’s in 1993, and
then pursued doctoral studies at Harvard under the
direction of Joe Harris. In the period 1998 — 2002
Michael was an assistant professor at Michigan. He
was appointed to the Algebra Group in the
Department in September 2002.

Ivan Dimitrov defended his doctoral dissertation on
infinite-dimensional Lie algebras at the University of
California, Riverside, in 1998. Following doctoral
studies, Ivan was a Hedrick Assistant Professor at the
University of California, Los Angeles, and an AMS
Centennial Fellow at the Max-Planck Institute,
Germany, Yale University, and the Mathematical
Sciences Research Institute, Berkeley. Ivan joined the
Algebra Group at Queen’s in September 2003.

Navin Kashyap was appointed to our Mathematics
and Engineering Faculty in January of this year.
Navin did his doctoral studies at the University of
Michigan, during which time he earned a master’s in
mathematics; both degrees were awarded in 2001.
Navin then was a post-doctoral fellow at the
University of California, San Diego. He works in the
area of information theory and source and channel
coding.

Greg Smith graduated from Queen’s in 1994, and
then did a doctoral degree under the direction of
David Eisenbud, first at Brandeis, then at Berkeley.
Greg defended his thesis in 2001, and then was an
Assistant Professor at Columbia for three years. Greg
will be joining the Department in July of this year.



In 2003, Ron Hirschorn stepped down as Chair of
Mathematics and Engineering, a position he held for
12 years. Replacing him are Fady Alajaji, Chair, and
Tamads Linder, Curriculum Chair. Also in 2003, Leo
Jonker handed on his position as Co-ordinator of
Graduate Studies (1999-2003) to Roland Speicher.

Starting on July 1, 2004, Peter Taylor will step in as
the new Head of Mathematics and Statistics. My
predecessor, Eddy Campbell, who is currently an
Associate Dean of Arts and Science, has accepted a
job at Memorial University. Perhaps quoting from
Eddy’s letter to the Department announcing his
decision to accept the position at Memorial is
appropriate; his note expresses the confidence we all
have in the future of the department:

“My work as an administrator has convinced me that
Queen's is an outstanding institution, complete with
wonderful students, smart faculty, dedicated and
thoughtful staff: a little slice of academic paradise.
The place is fully deserving of its reputation and
national rankings. The Department of Mathematics
and Statistics is poised to move to the top when
measured by our research and we have been at the
top in terms of our dedication to and
accomplishments in teaching for decades. ... Queen's
is a wonderful place at which to work and do
mathematics.”’

Over the past three years, ten faculty members have
retired:

Jon Davis was Mr. Math and Engineering, and one of
the first in the Department to win a Golden Apple, in
1972, the second year the award was offered; David
Gregory brought the art of delivering lectures in
MATH 111 to heights that will possibly never be seen
again; he could write down the eigenvalues of a
matrix after a brief inspection; Malcolm Griffin
started Mod-Sat, the famous introductory statistics
course that many have taken; he led the stats group
for many years; Ian Hughes was devoted to his
students, giving freely of his time to them; Hans
Kummer was as devoted to his students as they were
to him; he got a Golden Apple teaching Award in
1975, helping to establish our reputation as a good
teaching Department early on; Dan Norman, an
outstanding teacher, remembered most of the
Mathematics and Engineering students we have had,
from the beginning; Kirti Oberai was one of our best
teachers, and much appreciated by our students;
Norm Rice, another well-know teacher, won the
distinguished Teaching Award of the Seaway Section
of the Mathematical Association of America, a couple
years ago; Terry Smith, the other founder of Mod-
Stat,, introduced consulting as a required course for
graduate students in statistics; Joan Geramita was
co-inventor of Math 121 the team of Grace Orzech,
Leo Jonker and Joan Geramita won the Frank Knox
Award for this superb effort.

Significant Events in the
Department of Mathematics
and Statistics

The section “Significant Events” in our strategic plan
is updated yearly — in it we record the important events
in the Department. Since the Communicator has not
appeared for a couple of years we are including the
updates for the past few years. The student awards,
described in a separate article, have been removed.

One of Leo Jonker’s first year Calculus students said
this about his lectures: “It is like painting an entire
Dpicture for us rather than just drawing one object in
the middle of the canvas. It helps us understand the
concepts behind the method we are using and the very
nature of the problem itself. I walk out of his lectures
thinking to myself — Wow! I understand this!” Leo
received the Alumni Teaching Award at spring
convocation in May 2000; the Alumni Award is the
highest honour for teaching given by Queen’s. Many
alumni will remember Leo and the courses they took
from him — he makes complicated things simple, and

does this at all levels — in enrichment classes for
seventh and eighth graders at a local elementary
school, all the way to research seminars for grads in
our doctoral program. Also, in May of 2000, Leo was
awarded an Ontario Council of University Faculty
Associations Teaching Prize, or OCUFA Prize. Each
year there are only ten such awards, across all
disciplines, in Ontario.

Jim Whitley is as famous a teacher on Campus now,
ten years into retirement, as he was 30 years ago. He
was the 2001 winner of the Alumni Teaching Award.
The J-Force Commander, as he’s affectionately know
to his admirers, goes that extra mile for his students. If
any first year engineer fails first term Calculus they are
reassigned to J-Section where they come under Jim’s
tutelage. He helps them upgrade their marks and get
back on track. Most of these students sport the popular
J-Force patch on the sleeves of their engineering
jackets, a meaningful tribute; underneath the J-force
insignia is another patch reading In Jim We Trust.

In October 2001 Fady Alajaji received a Premier’s
Research Excellence Award. This prestigious award
is given by the Governor of Ontario, and reserved for



young faculty members in the first eight years of their
academic careers. Fady is an information theorist and
received his PREA for his work on source and channel
coding.

In November of 2001 Oleg Bogoyavlenskij won a’

Humbolt Research Award given by the Alexander von
Humbolt Society of Germany; the Award was
accompanied by a stipend of DM 100,000. In March of
2002 Oleg won a Killam Fellowship. Killam
Fellowships are one of the top distinctions a Canadian
academic can win; each year about 15 are awarded, in
all areas. Oleg had a good year — two prestigious
awards in a single academic year. Oleg got these
awards for his new theory of invariants for partial and
ordinary differential equation, which supersedes
previous work in this area. Using his theory of
invariants he was able to find analytical solutions to
the equations of magneto-hydrodynamics that govern
fundamental processes in stars and galaxies; he was
also able to find analytical solutions to the Navier
Stokes Equation that govern fundamental processes in
fluid flow. The only solutions of these equations
known earlier had trivial physical content and were
uninteresting to experimentalists; Oleg’s work
represents a significant break-through.

In March 2002 Tamds Linder won a Premier’s
Research Excellence Award his application of
artificial intelligence methods to data compression
algorithms. Tamds was also tenured this spring.

Dan Norman was awarded a Distinguished Service
Award by the Queen’s University Council at its
meeting on May 10, for the large number of
contributions he made throughout his career at
Queen’s. (About 4 or 5 of these are awarded each year
to people in the Queen’s community; recent recipients
include all retiring Queen’s Principals and
Chancellors, as well as some Deans, Faculty Members
and Support Staff.) The citation mentioned Dan’s 14
years as Chair of the Queen’s Pension Board (later
Committee), his work in marshalling Convocations
over many years, as well as leadership on other
committees.

At the Arts and Science Convocation this spring Ole
Nielsen was awarded a Frank Knox Teaching Award
for his outstanding work in MATH 237.

In January 2003 Tamds Linder won a Chancellor’s
Award for his application of artificial intelligence
methods to data compression algorithms. This
prestigious award is for outstanding contributions to
research by new faculty members at Queen’s in the
first eight years of their academic careers.

Shawn Kraut has been awarded the Young Author
Best Paper Award by the Institute of Electrical and
Electronics Engineers, for his paper Adaptive Subspace

Detectors, co-authored with Louis L. Scharf and L.
Todd McWhorter. “This award honours the author or
authors of an especially meritorious paper dealing with
a subject related to the IEEE's technical scope and
appearing in one of the IEEE's publications. The
primary author must be 30-years-old or younger upon
the date of the paper's submission.”

In this paper adaptive statistics for radar detection are
developed that both simplify earlier work and are
optimal within a class. In May 2003 Shawn was
awarded a grant from the US Office of Naval Research
of US$121,000 for his research program in sonar
signal processing. This grant is to support his research
on detection of a moving object in shallow water when
there are surface ships causing interference. This
problem is difficult because there are multiple modes
of propagation caused by reflections off the surface
and bottom, and because the moving object sends a
weak signal. This part of Shawn’s research is joint
with Jeffrey Krolik at Duke University.

More generally, Shawn’s research focus is statistical
signal processing and sensor array processing. He has
made contributions in the areas of adaptive radar,
sonar, and optics.

Norman Rice’s book Experimental Methods in Kinetic
Studies was published by Elsevier; this book was co-
authored with B. Wojciechowski.

Ram Murty received the 2003 Jeffery-Williams
Prize at the Summer Meeting of the Canadian
Mathematical Society held at the University of Alberta
in June 2003. The Jeffery-Williams Prize recognizes
leadership and outstanding research contributions in
the field of mathematics and is awarded annually by
the Canadian Mathematical Society. Ram has made
systematic, significant and extensive contributions to
number theory. His contributions have been described
as having great depth and beauty, and have been of
interest to a broad range of mathematicians.

Earlier, Ram won the Canadian Mathematics Society’s
Coxeter-James Prize, which is awarded annually to an
outstanding young researcher for achieving a break-
through in mathematics. In addition, Ram won a
prestigious Steacie Fellowship in 1993, and a Killam
Fellowship in 1998. The Jeffery-Williams, the
Coxeter-James, the Steacie and a Killam are the four
most  prestigious awards that a Canadian
mathematician can aspire to; Ram is the only Canadian
mathematician who has won all four.

Ram Murty was one of two winners of the 2003
Queen’s Research Prize for his outstanding research
contributions. In 1984, he made the first major
breakthrough in the solution of Artin's conjecture, a
problem that had been open for nearly a century. In
1991, Ram and his brother Kumar Murty at Toronto



resolved Kolyvagin's conjecture and opened fresh
ground in the theory of elliptic curves. For this work
they were awarded the Balaguer prize in 1996. Ram
just recently has launched a campaign to explore the
interface between analytic number theory and
combinatorial graph theory, which he has titled
Ramanujan graphs, zeta functions and applications.
Ram received his prize at the fall convocation.

Troy Day was awarded a Poste Rouge Fellowship
from the Centre National de la Recherche Scientifique
of France to work this past summer with researchers in
Montpellier developing a theory on the effects of
vaccination on pathogen evolution. This is a very
competitive international award directed at bringing
leading foreign researchers into France to foster
collaboration. In August Troy was invited as a visiting
scientist to the Centre for Population Biology at
Imperial College, U. K.

Along with several other Canadian and US researchers,
Troy obtained pilot funding through MITACS to
study the epidemiological dynamics of SARS and the
effectiveness of various control measures. Troy is also
a CO-PI on a grant through the Marsden Fund of the
Royal Society of New Zealand. Troy’s role is to help
develop mathematical models for the evolution of
recombination. The value of the Marsden Fund Grant
is $600K over research conducted over the next three
years.

Eddie Campbell was elected President of the
Canadian Mathematical Society. He will serve as
President-Elect beginning July 1, 2003, then serve for
two years as President, followed by a year as Past
President, ending his term in office June 30, 2007. The
Society was founded in 1945 and its goal to promote
and advance the discovery, learning and application of
mathematics.

Jamie Mingo stepped down as Ontario Vice
President of the Canadian Mathematics Society.
Earlier he served as chairman of the publications
committee for four years.

Noriko Yui and her co-author James Lewis published
Calabi-Yau varieties and mirror symmetry; their book
appeared as Volume 38 in the Fields Communications
Series. Noriko was appointed as the 2004
Kloosterman Chair at the Mathematical Institute at
Leiden University. This visiting professorship in
mathematics was established in 1986 in honour of
Hendrik Douwe Kloosterman, a distinguished number
theorist who was a professor of mathematics at the
University of Leiden, Copenhagen, from 1930 to 1968.
Some of the earlier Kloosterman Chairs were M. Artin,
H. W. Lenstra, A. A. Borovkov, A. Granville and Y.
Eliashberg.
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On September 8, 2003, President Ferenc Madl of
Hungary presented Andrids Gydrgy with a Golden
Ring that is inscribed Promotio sub auspiciis
praesidentis Rei Publicae — Awarded by the President
of the Republic. This ceremony took place at the
Budapest University of Technology and Economics.
The President’s Academic Prize that Andras received
is over 100 years old, and is awarded to a small
number of distinguished students each year. The terms
of this award are severe, requiring that all grades must
be fives, the highest possible, over the four years of
high school, the five years of university, and the three
years of doctoral studies. The President’s Academic
Prize has been awarded only 13 times to doctoral
students from this famous engineering school.

Andrias is currently a NATO Post-Doctoral Fellow in
the Department, working with Tamds Linder. As a
master’s student at Queen’s, he won the 2001 Thesis
Prize of the Science Division of Graduate School for
his master’s thesis Optimal entropy constrained scalar
quantization, supervised by Tamds Linder; this event
was distinguished because the competition is open to
both doctoral and master’s students. Following his
master’s studies Andrds returned to Hungary for
doctoral studies, defending his dissertation Entropy
constrained quantization and related problems, co-
supervised by Tamds Linder and Laszlo Gyorfi of
Budapest, this past January.

In October 2003 Roland Speicher won an NSERC
Leadership Award for his proposal Free Probability
and the Universality Conjecture for Random Matrices;
he will receive $40,000 per year for the next four years
to support visiting scientists and post-doctoral
students. In the recent reallocation exercise at NSERC
the Mathematics Steering Committee proposed the
Leadership Support Initiative to support group-based
research and its leaders. Roland is one of seven
winners of this new prestigious award.

Roland proposed a new approach to the Universality
Conjecture based on his fundamental contributions to
free probability theory, namely the theory of free
stochastic analysis and the theory of free cumulants.
The tools he has developed by-pass many of the
difficulties encountered by other researchers, and are
tailor-made for treating the Universality Conjecture in
its most general formulation.

The Universality Conjecture of Random Matrix
Theory has a status comparable to that of the Ergodic
Hypothesis in Statistical Mechanics. According to
Freeman Dyson random matrix theory is “a new kind
of statistical mechanics in which we renounce exact
knowledge not of the state, but of the system itself”.
The Universality Conjecture states that eigenvalue
correlations on the scale of the average level spacing



do not depend on the actual chosen ensemble of
random matrices, but are universal.

In February 2004 it was announced that Troy Day
won a Chancellor's Research Prize for his work on
how to model the evolutionary and epidemiological
dynamics of infectious diseases such as influenza and
SARS. This is a prize for Queen's researchers in the
first eight years of their academic careers.

In February 2004 it was announced that Leo Jonker
won the first Canadian Mathematical Society's

Excellence in Teaching Award for his remarkable
success in teaching engineers and elementary school
teachers. One of the students in his new Fundamental
Concepts in Elementary Mathematics for Teachers had
this to say about his teaching: “He essentially changed
us from a bunch of non-math minded students who
lacked confidence in our abilities to teach it effectively,
1o a group of people who were excited and eager to go
into our schools every week and teach math to our
Students.”

Academic Prizes
Won by Mathematics and
Statistics Students

The number of academic medals won by our students
in recent years has been astounding — our
undergraduates and graduates have frequently walked
off with the top prizes in the Faculties of Arts and
Science, Applied Science, and the School of Graduate
Studies. These top students have helped push the
quality of our programs steadily upwards, and then
gone on to wonderful careers. Here is a look at the
recent prize winners.

PRINCE OF WALES PRIZES

Established by the Prince of Wales in the 1860’s, these
prizes have remained the most prestigious for
undergraduate science and humanities students. Each
year at spring convocation four prizes are awarded for
academic excellence — the Prince of Wales Science
Prize and Runner-Up, and the Prince of Wales
Humanities Prize and Runner-Up.

This past spring Mark Colarusso was awarded the
Science Runner-Up Prize, and 15 years earlier in
1989 Robert McCann won the same prize. In the 15-
year period spanning these two Prizes the Department
there were 30 Prince of Wales Science Prizes
awarded, and the Department won 15. There were
only two years when we did not win either the Prince
of Wales or Runner-Up Prize, and there were three
years when walked off with both.

1989 Robert McCann Runner-Up
1991 Alex Sands -Prince of Wales
1992 Imin Chen (Math-CISC)  Prince of Wales
1993 Michael Roth Runner-Up
(Hons. Math)
1994 Laura Scull (Hons. Math) Prince of Wales
1995 Jonathan Burns Prince of Wales
(Math-Chem)
Christine Tong Runner-Up
(Math-BioChem)
1996 Sean May (Hons. Math)  Prince of Wales
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1997 Andrew Toms Prince of Wales
(Hons. Math)
Paula Dow Runner-Up
(Hons. Math)

1998 Joanna Karczmarek Prince of Wales
(Math-Phys)

1999 Michael Levi Prince of Wales
(Math-Phys)

2001 John Neary Prince of Wales
(Hons. Math)
Leigh Jansen Runner-Up
(Hons. Math)

2002 Fok-Shuen Leung Runner-Up
(Hons. Math)

2003 Mark Colarusso Runner-Up
(Hons. Math)

THE STIRLING GOLD AND

PROFESSIONAL ENGINEER’S GOLD

In the Faculty of Applied Science the two most
distinguished awards are the J. B. Stirling Gold Medal
and the Professional Engineers’ Gold Medal. The
Stirling Gold goes to the student with the highest
cumulative academic standing for their four Queen’s
years, and was first awarded in 1989; the Professional
Engineers’ Gold goes to the student with the highest
academic standing in fourth year, and has a longer
history.

1987  Mark Green Prof. Eng Gold Medal
(Math & Eng)

1988  Virginia de Sa Prof. Eng Gold Medal
(Math & Eng)

1999  Daniel Veiner Stirling Gold Medal
(Math. & Eng.)

2003  Dawn Van Weelden Prof. Eng Gold Medal
(Math. & Eng.)

GOVERNOR GENERAL’S MEDALS
Lord Dufferin, Canada’s third Governor General after
Confederation, created the Academic Medals in 1873
to encourage academic excellence across the nation.
Pierre Trudeau, Tommy Douglas, and Robert
Bourassa all received Governor General’s Medals;
they are awarded to students graduating with the



highest average from high school, colleges and
universities. They have become the most prestigious
awards students can receive.

Current practice is that the Medals are awarded at
four distinct levels: Bronze at the secondary school
level; Collegiate Bronze at the post-secondary
diploma level; Silver at the undergraduate level, and
Gold at the graduate level. The practice at Queen’s
has varied over the years. Before 1988 there was a
Gold Medal awarded to the top graduating
undergraduate student, but starting in 1988 it was the
Silver Medal for undergraduates, and the Gold for the
top graduating student from the School of Graduate
Studies. In 2003 practice again changed when two
Gold Medals were awarded at the graduate level.

In recent times our students have walked off with
about a third of all the Academic Medals awarded at
Queen’s, twelve of thirty-seven since 1985. On two
separate occasions, in 1991 and 1999, our students
won both the Silver and the Gold.

UNDERGRADUATE ACADEMIC MEDALS

1985  Stephan Norman Gold Medal
(Math & Eng)

1987  Mark Green Gold Medal
(Math & Eng)

1988  Virginia de Sa Silver Medal
(Math & Eng)

1991  Alex Grossman Silver Medal
(Hons. Math)

1992  Imin Chen (Math-CISC) Silver Medal

1997  Andrew Toms Silver Medal
(Hons. Math)

1998  Joanna Karczmarek Silver Medal
(Math-Phys)

1999  Michael Levi Silver Medal
(Math-Phys)

2001  John Neary (Hons. Math)  Silver Medal

GOVERNOR GENERAL’S
GOLD MEDAL FOR GRADS

1991  Wojciech Jaworski Gold Medal
(PhD, Mathematics)

1999  Jian Shen Gold Medal
(PhD, Mathematics)

2003  Lousindi Sabourin Gold Medal
(PhD, Mathematics)

SCIENCE DOCTORAL PRIZE AT QUEEN’S

Starting in 1999 each division of the Graduate School
started awarding Doctoral Prizes for the best theses in
division. For the Science Division (Division IV) our
students have won the Thesis Prize four of the five
times the Prize has been awarded.

1999 Science Prize

Jian Shen
(PhD, Mathematics)
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2000  Konstantin Rybnikov Science Prize
(PhD, Mathematics)

2001  Andrds Gyorgy Science Prize
(MSc, Math & Eng)

2003  Lousindi Sabourin Science Prize

(PhD, Mathematics)

The case of Andrds is particularly distinguished
because he won as a master’s student, and the
competition is open to both doctoral and master’s
students.

NATIONAL AWARDS FOR
GRADUATE STUDENTS

Starting in 1999 national awards started coming
regularly to our graduate students. In this period our
graduating doctor students won the thesis prizes of
the three major Canadian societies for the
mathematical sciences — the Canadian Mathematics
Society, the Canadian Applied and Industrial
Mathematics Society, and the Statistical Society of
Canada. In addition, the prestigious NSERC Doctoral
Prize went to the Department once; the NSERC
Doctoral Prize is awarded to two science students
each year, and two engineering students.

1999 Troy Day (PhD, NSERC Doctoral Prize,
Mathematics) Canadian Applied and
Industrial Mathematics
Doctoral Prize, American
Naturalist’s Young
Investigators Prize
1999 Jian Shen (PhD, Canadian Mathematics
Mathematics) Society Doctoral Prize
2001 Tim Ramsey Statistical Society of
(PhD, Statistics) Canada Pierre Robbillard
Prize
2002 Alina Cojocaru  Canadian Mathematics
(PhD, Society Doctoral Prize
Mathematics)
2003 Andras Gyorgy  Hungarian President’s
(post-doctoral)  Academic Prize

The American Naturalists Award is open to scientists
in the first eight years of their career; it is somewhat
unusual for an emerging doctoral student to win it.

The Hungarian President’s Academic Prize that
Andrés received is over 100 years old — it is awarded
to a small number of distinguished students each year.
The terms of this award require that all grades must
be fives, the highest possible, over the four years of
high school, the five years of university, and the three
years of doctoral studies. Andrds was the 13th
doctoral student at the Budapest University of
Technology and Economics to receive this award in
the past 100 years.



The Tyranny of Reality
Peter Taylor

This article is based on a talk given at the 2003 summer meeting of the Canadian Mathematics Society.

They started from opposite ends. Pisano is a master of form and is striving towards reality; Julia aches to
throw off the tyranny of reality and reach the essential that lies somewhere underneath,

It is a powerful weapon, yet it’s aesthetically superb.

The Dream of Scipio, lain Pears, p. 279.

Tom Cruise in awe of the art that has gone into the making of his samurai sword.

My premise is that we mathematicians are sitting on a
gold mine. In terms of structural beauty, stunning
insights, unexpected power, all from simple,
accessible, ingredients, very little can compare ‘with
our wonderful subject. But we do a terrible job at
communicating that to most of our students. In the
classroom we blow it, and we thereby alienate just
about the entire population. And we’ve no one to
blame but ourselves.

Well hang on here. Surely a lot of that has been done
over the past 20 years (reform calculus, for example)
and indeed it remains today an active field of
development. Yes, that’s true. So why haven’t we
seen more of an impact?

I believe the problem is that there are two things we
have to do. One of these is to find a new way to teach
and that’s what most of our reform efforts have been
working on. [Indeed for me this is mostly about
curriculum, at least I consider teaching methodology as
being based in or driven by curriculum.] But the other
is to let go of the old way, and I have a feeling that’s a
lot more difficult, or at least it poses a much more
subtle problem.

I see this when I share with colleagues some neat
exploratory problems that might work well in their
courses. They unfailingly like the problems, but in
their wrinkled foreheads I can see a calculation of the
time it will take. “What can I afford to leave out?”
That’s “old way” thinking, and if we don’t let go of
that, we will never successfully embrace the new.

Letting go is hard. To succeed I believe that we need a
different model about what it is that we are doing. I
believe that we need a new metaphor.

Picasso’s Guernica 1937. In the afternoon of April
26, 1937, German bombers, flying for Franco,
annihilated the defenseless Spanish town of Guernica,
the centre of the Basque cultural tradition. For over
three hours, a powerful fleet of bombers and fighters
circled and wheeled over the town, dropping thousands
of bombs, and setting everything on fire. The fighters
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Kingston Whig Standard, Sept. 5, 2003, p.28.

then dropped low to spatter with machine gun fire
those who had fled to the fields.

Over the next few days, the news of the massacre at
Guernica spread to a shocked and outraged world. It
was not the first of Franco's atrocities, but it was the
one which galvanized Picasso into action. He had
already accepted a commission for a mural at the
Spanish pavilion at the Paris World fair, but he had so
far produced nothing. In the six weeks following
Guernica, he worked at a feverish pitch to produce a
memorial to the innocent dead and a manifesto against
the brutality of modern war. (See front cover).

The painting is 26 feet wide and 11 feet high. The
figures rage across the canvas in a rush of terror.
Heads everywhere are flung high, mouths forced open
in a frozen outcry. A jagged light casts its sharp
illumination on the scene. A woman from the outside
world leans through the window surveying the carnage
with a feeble lamp, her face a mask of horror. Except
for the harsh whites, everything is dark,
claustrophobic, compressed in gloom. The images are
stark and simple, almost childlike, a woman and a
child, a peasant woman, farm animals, a single stricken
household says it all. [Excerpted in part from Life 65,
December 1968 pp. 86-93.]

The way of the artist. A work of art is a representation
of reality, a representation subject to certain essential
constraints (the canvas, the sonnet, the steps of the
dance). However the objective of the work is not in
fact to represent but to transform, to transform our
perception of the reality, to allow us to see what’s truly
there, to open our eyes, to free and empower us. It
accomplishes this by stripping away the inessential
aspects of the experience, and rendering with
imagination the simple lines that remain. This
imaginative transformation is such that the work, if
successful, conveys the experience more sharply and
truly than can reality itself. In this way, art, which,
because of its self-appointed constraints of form and
structure appears to work at a disadvantage, manages
to turn these constraints into a more focused, more
memorable, more telling experience than the real



thing. That word “telling” is a good one here because
the raw experience itself is often overlaid with
complexities and irrelevancies which interfere with our
attention. Art, as a highly particular retelling, focuses
us and allows us to listen in a new way.

An interesting example we are perhaps all familiar
with is the movie 4 Beautiful Mind that attempts to
provide an artistic portrayal (within a certain medium,
that being the genre of big Hollywood films) of the life
of John Nash. This is all the more interesting because,
though it is widely regarded as having succeeded on a
number of levels as a work of art, it was criticized for
departing significantly from Nash’s life. But the
important point (well made by Keith Devlin and
others) is that the movie is not a “photograph” of the
life lived. If it had attempted to be that it would almost
certainly not have worked in that particular artistic
context. Instead it took on the (formidable) challenge
of capturing the essence of that life (both personally
and mathematically) in a 3-hour Hollywood-style film,
and by most accounts succeeded wonderfully. For
those who want more (and the movie has almost
certainly inspired many to seek out more) there are
always books and webs, for example, Sylvia Nasar's
excellent book of the same name

As teachers of mathematics we are artists. The
landscape we gaze upon, brush in hand, is a coherent
body of mathematical ideas and results. It is however
not our job to thrust this body of results upon our
students. Rather our challenge as artists is first to
“strip away the inessential aspects,” and then to render
imaginatively “the simple lines that remain.” This
stripping away is quite different from asking, “what
can I leave out?” If you ask the artist what she has left
out of her picture, she might regard you with puzzled
amusement, and then reply, “Everything; I pitched the
lot,” but she might just as well reply, “Nothing;
everything is there.” Indeed, just as art is less than
reality, so the problems and explorations we conjure
up will be less than the whole mathematical theory.
And just as art is so much more than reality, sharper,
more focused, more particular, so these problems can
convey the true mathematical experience better than
could the mathematics itself.

Restraint is a key component of artistic integrity and
here it comes down to trusting the problems to do the
work they are designed to do. That’s the “letting go”
part and it’s not easy—caught up in the complexities
of the subject, we are too forcefully aware of so much
that has to be said, explained, clarified, and we are
seized with doubts that the few students who actually
might need something that we have left out will be
able to capture that on their on. But the rewards of
restraint can be enormous. It gives room for the
encounter to continue to work (and play!) in the
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mathematical lives of our students, and it encourages
them to be artistic in their own efforts.

An example might help, and I choose one from my
introductory linear algebra course. A central concept
in the course is the notion of eigenvector, or more
generally of eigensolution that being a special solution
which has the virtue of being easy to describe, but has
the vice of not being a solution to the problem at hand.
But it is the solution to a closely related one and the
idea is that with luck (and linearity) we can put these
special solutions together to get the solution we are
after. This strategy is so central to the subject, that I
build a large canvas around it, large enough to occupy
an entire third of the two-semester course. I begin by
counting trains. This is a simple exploratory problem
with lots of fine side-roads (for example massive
explorations into Fibonacci numbers), which contains
the essence of the idea of eigenfunction expansion.

Problem 1. Counting trains. 1 am constructing trains
using cars that are either 1 unit long or 2 units long,
where there is one type of car of length 1 but two kinds
of cars of length 2, type A and type B. Let 1, be the
number of trains of total length n. For example # =5,
the 5 different 3-trains being 111, 1A, Al, 1B, Bl.
[Note that trains are ordered so that 1A and Al are
indeed different.] Find a formula for #, in terms of n.

Solution. By counting, students can generate a number
of terms of the sequence: 1, 3, 5, 11, 21... I suggest
the possibility of recursive thinking and they
eventually come up with the argument that

by =l + 2tn—2-

[Count the number of n-trains conditional on the first
car.] This leads to the initial value problem:

tn=tn—l+2’n—2 to =1,t1=1.
Armed with this, the students can easily generate more
terms:

1,3,5,11,21,43,85, 171...

Many students see that each term is twice the
preceding term except you alternately add or subtract
1. By comparing terms with powers of 2, they are lead
to the formula:

2 1
==2" 4 —(-1)".
P

It’s a nice formula and it fits the terms so far, but can
we be sure it will work forever? [One way to prove
this is with mathematical induction, but I’'m after
bigger game here. We will look at induction later in
the course.]

Here’s where I put forward our fundamental strategy:
look for alternative initial conditions that have simple
solutions. Then try to use these as building blocks to



construct other solutions. What the students find
(perhaps by trial and error, trying different initial
conditions) are the geometric sequences {2"} and
{(-1)"}. And then we argue that sums and scalar
multiples of solutions are solutions and we manage to
write the solution we are after as a linear combination
of the geometric solutions, and we have found a
rigorous argument for our formula.

This is the problem that introduces the general notion
of eigenvector. From here we go on to study a
number of standard matrix recursions (age-structured
population growth, systems of brine tanks, equilibrium
price vectors, etc.) In each of the past two years I have
restricted myself to real eigenvalues, partly because I
wanted to do justice to the above (real) examples, but
also because the last time I “did” complex eigenvalues,
the students found it difficult and it did seem to take a
long time. But again this year the question arose. Can
I include complex eigenvalues? What would I have to
leave out?

And I suddenly realize I’ve fallen into the same “old
ways” of thinking that I have warned others to avoid. I
have been automatically assuming that to “do”
complex numbers would entail a whole bag of stuff—
complex arithmetic, trigonometry, and enough
examples of different kinds to “cover all the angles.”
But why not just do one example—a well chosen work
of art that convey the magic of the topic, shows off the
power of our brave decision to try to push through with
complex eigenvalues an idea that we previously
realized with real ones. For example:

Problem 2. Solve the recursive equation #,.,, = 2f,—
2t Hh=1,4=3.
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Solution. If we tabulate the first 12 values
1,3,4,2,-4,-12,-16,-8, 16, 48, 64, 32,

we perceive a block pattern with blocks of size 4.
From here we could again use mathematical induction
to show that the pattern continues, but we actually
want to “see” how the pattern unfolds. The students
are used to looking for “multipliers,” and here they
find one in —4 but the trouble is that it seems to take 4
terms to act. How might we encapsulate that? Could
such a “jerky” pattern ever be described by any kind of
natural construction?

Using the train technique, we look for geometric
solutions {r"} to the equation and we find two with r =
1+i. Now these are complex, but we push forward in
spite of that. [A precocious student might be unable to
resist calculating (1+i)* and getting 4. What a
discovery!] We try to write our target sequence as a
linear combination of the two geometric sequences and
since the two terms of the sum are conjugates, we geta
sum of conjugates which can be written as the real part
of a sequence of complex numbers. We get:

t, = Re[(1-2i)(1+)".

The sequence in the square brackets is geometric (with
multiplier 1+i), and it is therefore a spiral in the
complex plane with a 45° rotation each term. The
projection of this on the real axis is our desired
sequence. This is a lovely example of the visual power
of embracing the imaginary dimension—the spiral is
seen as a deux ex machina that generates the sequence
from above, as it were. And in displaying
multiplication as rotation it showcases the fundamental
contribution that complex numbers make to our
understanding of arithmetic.

10

2200 15/ -10

What of the rest of the course? How does it develop?
Which ideas, which theorems, which technical results?
For example, do I go farther with complex
eigenvectors? Do I go on to a 2x2 matrix equation
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where I use the same complex plane representation to
track both x and y together? Should I get into change
of basis stuff (something I've actually so far done
without, even with the real eigenvalues)?



Such questions as these we always struggle with, and
they are very much the struggle between Pisano and
Julia. In this process we are guided in our thinking and
feeling the way an artist is so guided. The course
evolves as does a painting grows or a dramatic work.
We draw on our deep knowledge of the landscape, on
the character of the work and the nature of the artistic
medium. In this we must look clearly and carefully;
we must strive to “see” with fresh eyes. As the work
grows, so do the possibilities. But there’s an essential
closing down as well. Each new piece must fit the
emerging whole. It’s a question of integrity. [What
distressed me about our recent high school curriculum
revisions was a blatant disregard of this principle.
Topics were stuffed in here and there with little
connection to the whole.]

In an article a few years ago, William Kirwan,
mathematician and President of Ohio State University,
called for “a reshaping and restructuring of the
curriculum with greater emphasis on active learning at
all levels.” The ideas put forward here are exactly
that— a reshaping and restructuring. It is however a
big change. It questions the very canon of the subject,
at least at the introductory level. To do it right requires
many creative ideas and courage as well.

William Kirwan, Mathematics departments in the 21"
century: role, relevance and responsibility MAA
Monthly 108, January 2001.

In Memoriam
Dominique de Caen (1956 —2002)

Professor Dominique (Dom) de Caen died suddenly on
June 19, 2002 after a long struggle with severe neck
pain.

Bormn in Montreal in 1956, Dom obtained his M.Sc. at
Queen's University in 1979 under the direction of
Norman Pullman and his Ph.D. in 1982 at the
University of Toronto under Eric Mendelsohn. He held
an NSERC Postdoctoral Fellowship at the University
of Waterloo from 1982 to 1983 and was an Assistant
Professor at Northeastern University from 1983-1985.
In 1985, he was enticed to return to Canada with the
award of a prestigious NSERC University Research
Fellowship (URF). From 1985 on, he was on staff at
Queen's University and was a model for the success of
the URF program. Through his scholarship, insightful
research and generous support he became the linchpin
of the discrete mathematics program at Queen's. He
was promoted to Full Professor in 1997.
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Dom became well known for the estimates in his
doctoral thesis on Turan's extremal problem for
hypergraphs. His interest in extremal graph theory
continued throughout his life: in 1999 he obtained an
asymptotically sharp estimate with Z. Furedi on the
maximum size of a 3-uniform hypergraph not
containing a Fano plane. He was also known for his
expertise in other branches of discrete mathematics. He
had an impressive familiarity with the theory of
designs and with algebraic graph theory. His joint
work with E. van Dam on association schemes later
resulted in his construction of the asymptotically
largest known families of equiangular lines in
Euclidean space. He also made significant
contributions to the theory of tournaments and to the
theory of graph decompositions and is known for his
lower bound on the probability of a union of events in
probability space. He published over 50 papers
covering a wide variety of topics in discrete
mathematics. His Erdos number was one.

Dom will always be fondly remembered by many of
his colleagues for fine conference talks, helpful
suggestions, a love of good food, and for cryptic
crosswords and many games of scrabble and
backgammon. A calm and generous spirit, a respected
researcher, an inspiring lecturer and Putnam coach, he
is greatly missed.

David Gregory



Even or odd?
(from Fall 2000 issue)

Peter Taylor

Eeyore and Owl play the following game: they flip 10
coins, and Eeyore wins if the number of heads is even,
and Owl wins if it’s odd. The question is, is the game
fair, or does it favour one or the other? Well that’s not
so hard to settle if the coins are unbiased. The game is
fair and there are a number of simple arguments for
that, some quite clever. But the situation here is that
the coins are biased and each comes up heads with
probability 2/3 and tails with probability 1/3. Is the
game still fair?

Solution

One of the interesting things about this problem is that
there are so many different ways to tackle it. Maybe
that’s why I received more solutions and comments
than I ever have before. More about that later.

Most of the solutions I received were actually what
might be called the “brute force” approach. Hey that
doesn’t mean they’re bad—for those who like
calculating it’s a very satisfying approach. Essentially
you work out the probability of getting exactly 1 head,
2 heads, 3, heads etc., and then do some adding.
Actually a few of the folks using this approach, Garth
Scott (Arts ’97), John Greenhorn (Arts ’75, South
Grenville DHS), Allan Brett and Warren Wolfe (PhD.
’75), pointed out that we don’t really need to find the
probability of winning; all we are asked to do is find
out whether or not it’s equal to 1/2. And if you just
look at the various numbers you are adding together
you see that the resulting sum has denominator 3'° so
no matter what the numerator is, the result could never
equal 1/2. Very nice observation. In fact, the
probability that Eeyore wins turns out to be 29525/3'
which is close to 0.5000085. Close to fair but (as they
say) no cigar.

There’s another approach: more subtle, more elegant,
more powerful—the recursive approach. '

Whenever we have a family of problems indexed by
the integers (for example, here we can consider the
problem for 9 coins or 10 coins or 11 coins, etc.) it's
natural ask whether we can move easily from one level
to the next. If we happened to know the answer for the
9-coin problem, would that allow us to easily find the
answer to the 10-coin problem? Such inductive or
recursive ways of thinking can be very powerful.
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Let P, be the probability of getting an even number of
heads with n coins. Suppose we knew Py, the answer
to the 9-coin problem. Could we find from there the
answer to the 10-coin problem?

Well let's see. Suppose we flip 10 coins, 9 of them
green and the other one red. We want to know when
the total number of heads will be even. Now look at
the green coins. Either there's an even number of
heads or not, and the probabilities for each case are Py
and 1- Py, In each case can we work out the
probabilities for the set of 10 coins?

Yes we can. If there are an even number of green
heads, then to stay even, the red coin better be tails
(prob. 1/3), and if there are an odd number of green
heads, then to get even, the red coin better be heads
(prob. 2/3). So in a proportion Py of the cases, the
probability of an even number of heads is 173, and in a
proportion 1- Py of the cases, the probability of an
even number of heads is 2/3. This gives us:

“1p.24-
Ro=3R+1(-BR).

Simplifying:

2 1
Po==—-=Ph.
10 3 3 9

The argument is quite general and gives us:
2 1
Pn = ;—;Pn_l .

This is the "recursive" formula we were after. What
we want to do now is “solve” it, that is, use it to find a
formula for P,. There are lots of ways to do that,
standard and non-standard, including guessing and
then using math induction, but again, all we need do is
determine whether the game is fair and, as noted by
Hamish Taylor (Prof. School of Business), Ross Ethier
(Science 80, Prof. U of T) and Philip Nidd (Science
*74) it’s clear from the recursion that either all of the
P, are equal to 1/2 or none of them are. Since P, is
1/3, none of them are. You can also easily show that
they must be alternately less than and greater than 1/2,
so Pyo will be greater than 1/2 and Eeyore has the edge.

Also solved by Tom Kerr (Welland Centennial SS and
the entire (!) OAC algebra class of Jen Scriel (Arts *96,
Earl Haig SS) all of whom sent me their solutions.
Thanks guys!



New Problems

Peter Taylor

More coin flipping problems

Because of the success of the last problem, I include a
couple more coin flipping problems.

1. Player A has 11 coins, while player B has 10 coins.
Both players throw all of their coins simultaneously
and observe the number that come up heads. Assuming
all the coins are unbiased, what is the probability that
A obtains more heads than B?

2. Amar and Belinda play the following game. A fair
coin is flipped repeatedly and Amar wins if the
sequence Heads-Tails occurs before the sequence
Heads-Heads; otherwise Belinda wins. For example,
Amar wins on the toss sequence T, T, H, T and
Belinda wins on the toss sequence T, T, H, H.

(a) (easy) Show that Amar and Belinda both win with
probability 1/2.

(b) Now consider a simple variation on this game.
Instead of betting on the outcome of a single coin,
imagine what would happen if A and B each had a
coin and flipped it until the desired sequence was
obtained, HT for A and HH for B. The game is now
played as follows. The winner is the one who gets the
right sequence in the least number of flips. [If there’s
a tie you play again.]

At first glance it seems like the second game might
also result in each player having a probability of
winning of 1/2. However this is not true—this version
favours A.

I don’t think it’s so easy to calculate the winning
probabilities, but it’s certainly possible. A simpler but
closely related question is to calculate the average
number of flips it takes either player to obtain their
desired pair. On average, how long does it take for A
to get HT and for B to get HH? That’s your problem.

3. [Editor: Please omit this problem from this issue.
It is simply too difficult for this audience.] You start
flipping a fair coin, and can at any time stop and claim
a prize in cents equal to the fraction of flips that has
come up heads. So, if you stop playing after 5 flips
with 4 heads, you win 80 cents. Find an optimal
strategy.

Send your solutions, or new problem suggestions, to:
Queen’s Mathematical Communicator
". Department of Mathematics & Statistics
'Queen’s University
Kingston, ON K7L 3N6
Canada

or: mathstat@mast.queensu.ca

Words of wisdom...

John Coleman, now 85.7 years old, says: “The
best way to keep mathematically active past 80 is
to learn touch-typing and walk daily”.
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Did you know...? (submitted by Norm Rice)

e U™ + 1 = 0 remarkably combines the five most
important numbers in mathematics.




