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Counting the Number of Isomeres of an Alkane with a Given
‘Number of Carbon-Atoms

Hans Kummer

[Hans Kummer is Associate Professor in the Department of Mathematics and
Statistics at Queen’s. This article is based on a talk he gave this past
year to the Undergraduate Math Club. Many hours of fine and fruitful
exploration can emerge from the tree-counting problems that arise here,

for students, teachers and parents alike. Read as much of it as you need to
get going, then dip into the rest as you require.]

Alkanes are hydrocarbons with the molecular formula Cﬁgz +2
n

where n 1s some natural number. For n =1 we obtain CH4 which is the
molecular formula of methane, an odourless gas which is the major component

of natural gas. For n = 3 we obtain C3H8 » the molecular formula of

the well-known propane gas used nowadays by economy-minded individuals to
fuel their cars.

The molecular formula of a compound does not give any information about
the way the individual atoms are linked together to form the basic building
block of the compound: The molecule. It is the structural formula

which expresses this information. For instance the structural formula of
methane is given by the diagram:
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and the structural formula of propane is:
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In these formulae the following two basic valency laws of Chemistry are
reflected: The C-atom has valency 4, i.e. there are 4 valency strokes
incident at each C-atom; similarly the hydrogen atom has valency 1 and
hence there is precisely one valency stroke incident at each hydrogen atom.



In the cases n = 1 (methane), n = 2 (ethane) and n = 3 (propane)
the molecular formula together with the valency laws does uniquely determine
the structural formula of the alkane. However in the case n = 4 (butane)
this is no longer the case. 1In fact there are two butanes (compounds with
the molelcular formula C,H__) whose respective structural formulae are:
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The chemists describe the situation by saying that butane has two isomeres,
the normal butane (n-butane) and the isobutane. The two compounds are easily
distinguishable by thgir respective physical properties; e.g. n-bu&ane has a
boiling point of -0.5 C whereas isobutane already boils at -10.2 C.

As the number n of C-atoms increases, the number of isomeres of the

corresponding alkane increases rapidly. The following table does illustrate
this point quite vividly.

Name of alkane u = # of C-atoms Number of isomeres
methane 1 1
ethane 2 1
propane 3 1
butane 4 2
pentane 5 3
hexane 6 5
heptane 7 9
octane 8 18
nonane 9 35
decane 10 75

The problem, how to compute the number of isomeres of the alkane with a given
number of C-atoms, is a famous combinatorial problem whose complete solution

was given by George Polya in 1937 in a beautifully written paper.1

By studying his solution we learn a great deal about the methods which
mathematicians employ in order to elucidate a complicated situation. Among
these methods the method of abstraction ranks very high. It is
characterized by disregarding details which are irrelevant for the problem
under consideration. '
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Looking at the structural formulae of butane and isobutane we may first
disregard the H-atoms and focus our attention only on the C-atoms.

C—C—0C=CcC C—C:
C

It is clear that we easily can recover the structural formulae by
adding to each C as many H’s as to restore the valency four of each
C-atom and then draw valency strokes from the H-atoms to the
corresponding C-atoms. We can go further in our process of
abstraction by representing the C-atoms simply by points

" @ o o __<

butane Fig 1° isobutane

In this way we arrive at diagrams which are well known to the mathematician
and which he calls graphs.

A graph is a set of points in the plane called vertices whereby
certain pairs of points are connected by lines called edges. The order
of the graph is defined as the number of vertices. A graph is said to be
connected if it consists of one piece only, otherwise disconnected.

|
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(a)

Fig 2 three graphs of order 8

(a) disconnected graph
(b) tree
(¢) graph with a loop.

The graphs of figure 1’ are the carbon-skeletons of butane and isobutane.

The question arises: What properties do characterize a graph which is a
possible carbon-skeleton for an alkane?

Clearly a necessary condition is that the degree of each vertex does not
exceed 4, whereby the degree of a vertex is defined to be the number of edges
incident at this vertex. Another necessary condition is that the number n
of vertices (the order of the graph!) does exceed the number e of edges
precisely by one:

(1) n=e+1
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In order to prove (1) let n, be the number of vertices of degree i .
(i =1,2,3,4). Then obviously:

+n_+mn,+n, =
(2) n1 n2 n3 n4 n

Moreover

+2n_+ 3n_+ 4n, = 2e .
(3) n1 n2 n3 n4 e
In order to see the validity of (3) notice that if we count for each vertex the
number of edges which are incident at this vertex and sum over all vertices
then we count each edge twice.

Finally since the graph is derived from the structural formula of an
alkane the equation

+ + = 2n+
(4) 3n1 2n2 n3 2n+2

must hold. Indeed each vertex of degree 1 corresponds to a C-atom which
(in the structural formula) is linked to 4-i hydrogen atoms.
Adding (3) and (4) we obtain

4(n1 + n2 + n3 + n4) = 2(et+n+l)

Since the left hand side equals 4n by (2) we obtain
2n = e+ n + 1
which becomes (1) after cancelling n on both sides.

A connected graph with the property (1) is called a tree. A tree
cannot contain any loop, since as soon as a loop is present in a connected
graph the number of edges is at least as large as the number of vertices.
Figure 2(c) illustrates this point; indeed for this graph e =n =8 .

Thus we arrive at the insight that a graph representing the carbon
skeleton of an alkane must satisfy the conditions:

(i) It is a tree.
(ii) Every vertex has at most degree 4.

In fact these conditions are not only necessary but also sufficient. For
suppose we are given a tree of order n satisfying condition (ii). We can
construct the structural formula of an alkane from it by the following
procedure: First affix to each of the n vertices the letter C; then plot
for each vertex of valency i 4-i additional points with the letter H
affixed to them and connect them to the vertex under consideration. The
total number of new points you’ll be adding in step 2 with the letter H
affixed to them is:

3n1 + 2n2 + n3 = A(n1 + n, + n3 + n4) - (n1 + 2n2 + 3n3 + 4n4)

= 4n - 2e = 4n - 2(n-1) = 2n+2

where ni again denotes the number of vertices of degree i 1in the given

tree. This result makes it evident that the procedure just described produces
from the given tree the structural formula of some alkane. Let us carry out
the above procedure with the following tree of order 6
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The resulting diagr;L obviously is the structural formula of an isomere of
CGH14 s, 1.e. hexane. Let us call a graph which enjoys properties (i)

and (ii) above a C-tree. Using this concept we can condense the insight
attained so far into the sentence:

There is a one-to-one correspondence between the set of all isomeres of an

alkane with a given number n of C-atoms and the set of all C-trees of order
n L]

Let us list all C-trees of order 6 and of order 7

(a) n = 6:
e [y
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Fig. 3a. C-trees of order 6.
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The circled vertices are central vertices

(b) n=17:
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Fig. 3b: C-trees of order 7
The unique central vertex is circled.

We see that there are 5 C-trees of order 6 and 9 C-trees of order 7. Hence
there are 5 isomeres of hexane and 9 isomeres of heptane. Notice that in the
plots of Fig 3 we circled those vertices which are central. What is the
precise definition of a central vertex?

In order to arrive at such a definiton call the eccentricity e of
a vertex the maximal order of a branch incident at the vertex. The
following examples of C-trees illustrate this concept:

£ =Y £=5
=S &=9 gml ! ) ‘
- e=4 T=% =5 ¢&=\% = =% ¢€=
B82S “gin ¢a3 =S &=2
=\

Fig 4. The eccentricity of a vertex.

Now a central vertex is simply defined as a vertex of minimal eccentricty.

Already in 1869 Camille Jordanz), proved that any tree of order n
possesses either

n
(a) one central vertex of eccentricity < ¢

2
or

(b) two adjacent central vertices of eccentricity = %‘

Let us call a tree with property (a) unicentered and a tree with

property (b) bicentered. Since the eccentricity of a vertex is
necessarily an integer all trees of odd order must be unicentered.

(Can you prove this directly?) This fact is illustrated by Figure 3b
which shows that indeed all nine C-trees of order 7 are unicentered.

In contrast the C-trees of order 6 (cf Fig 3a) consist of three bicentered
trees and two unicentered trees.

n
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Staring at the three bicentered C-trees of order 6 you may recognize
that they are obtained by combining the two rooted trees of order 3

ﬁ—-———w—————{i} k————€E}————4

Fig 5: The two rooted C-trees of order 3

whereby a rooted C-tree is simply defined as a C-tree with one of its
vertices of degree < 4 distinguished.
The following figure illustrates this observation
- - (o) V)
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Fig 6: Every bicentered tree of order 6 is obtained by
juxtaposition of two rooted bicentered trees of order 3.
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This observation can be readily generalized: The bicentered C-trees
of order n = 28 are obtained by combining two rooted C-trees of order s.

Given any natural numbers n let us introduce the following numbers:

r = # of rooted C-trees of order n

t:t'l = # of unicentered C-trees of order n

t2 = # of bicentered C-trees of order n

t: = # of C-trees of order n = # of isomeres of the alkane

containing n C-atoms

Then clearly:

(5) t =t +t"
n n n

Moreover

0 if n 1is odd
" = . .
(6) tn 1/2 rn/2 (rn/2 + 1) if n 1is even
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In order to understand the second half of formula (6) recall that the
number of 2-combinations (with repetitions!) of r elements is precisely

1
5T (r+l1) . In case n = 6 the formula obviously gives the correct

answer:

2.3 =3

NJ =

(r +1)

N =

"o _
te

Formulae (5) and (6) show that we have solved our original problem
completely if we have a solution to each of the following two problems:

(1) For every natural number n find the number r of
rooted C-trees of order n . L

(2) For every natural number n find the number t of
unicentered C-trees of order n .

The solutions of the two problems as given by Polya take a similar form..
They both can be expressed with the help of the polynomials

(7) pk(x) =1+ x4+ x2 + 2x3 4+ ..o + rkxk

whose coefficients are the numbers (1, r]?rz,...r ) .

In fact a group theoretical analysis leads Polya to conclude -

1
that L is given as the coefficient of xn— in the polynomial

1 3 2 3
£ (x)=¢ (p () +3p _,(x) p_(x)+2 ,& )

This theorem has the character of a recursion formula, i.e. it allows

us to compute r  from the numbers r ,r_ ,ec..,T . As an
n 1”2 n-1

example let us compute the number r4 of rooted C-trees of order 4.

T, is the coefficient of x3 in the polynomial

1 3 2 3
(8) £,(x) = g (y(x) + 3p (xIpy(x) + 2p,(x))

Now since p3(x) = 1+x+x2+2x3 you can easily verify the correctness

of the following table:

polynomial ¢ coefficient of x3 in q
A 3 ,
P3(x) 13
2
P, (x)p,(x") 3

p3(x3) 1



Hence the coefficient of x3 in f4(x) is:

r =

4 (13+3.3+2.1) = 4

(o

Indeed there are 4 rooted C-trees of order 4

&

. . e {E) . ® (E}

o—<

Fig. 7: The rooted C-trees of order 4

obtained by distinguishing different C-atoms in the carbon skeleton
of butane.

Similarly Polya proves that t; is given by the coefficient

of xn-1 in the polynomial

1 2 2 2.2
g () = 3, (o (00" + 6p ()P (x) + 3p (=)

+ 8pm(x) pm(x3 ) + 6pm(x4))

where m 1is the largest integer smaller than 2 , 1eee

3
n
5 = 1 if n 1is even
mi=9 a1 1f n 1s odd

2
(Notice that by the theorem of Jordan mentioned above m 1is the largest
possible eccentricity of the central vertex in a unicentered tree)

As an example let us compute the number té of unicentered C~-trees

-

of order 8. t8 is given as the coefficient of x7 in the polynomial

1 4 2 2 2.2 3 4
gS(X) =57 (p3(X) + 6133(X) p3(x ) + 3p3(x ) + 8p3(X)p3(x ) + 6p3(x ) .

The following table gives the coefficients of x7 in the various
summands of gaz
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polynomial ¢ coefficient of x7 in q
p3(x)4 100

2 2
P3(X) p3(x ) 14

2.2
p3(x ) 0

3

P3(x)p3(x ) 1

4
p3(x ) 0

7
Thus the coefficient of x in g s
8

7 (100+6.1448) = 8

oo~
I
NJ =

It follows that there are 8 unicentered C-trees of order 8 and

t" = l r, (r,+1) = l 4.5 = 10 bicentered trees of order 8.
8 2 44 2

Hence there are 10 + 8 = 18 isomeres of octane.

I highly recommend that you plot the 10 bicentered C-trees of order
8 by combining the four rooted C-trees of Fig. 7 in different ways and
that you also sketch the 8 unicentered C-trees of order 8. Youll
find that there are 5 unicentered C-trees whose center has degree 3 and
3 unicentered C-trees whose center has degree 4. 1In plotting these
eighteen trees you’ll get a vivid impression of the carbon skeletons of
the different isomeres of octane.

One final remark: The number rn of rooted C-trees of order n

has a direct chemical significance. It gives you the number of isomeres
of the alcohol (or any other monosubstitute for that matter) derived
from an alkane. For instance the two rooted C-trees of order 3 (cf.
Fig. 5) correspond to the alcohols

B
- - - CH,-CH-CWH
(:\{Es (:%\2. C:**z()** 3 2

Propyl alcohol isopropyl alcohol

A diluted form of the latter you can buy in the drug store under
the name "Rubbing alcohol".

1. George Polya: Kombinatorische Anzahlbestimmungen flir Gruppen,
Graphen & Chemische Verbindungen, Acta Mathematica 68 ,
145-254 (1937).

2. Camille Jordan: Sur les Assemblages de lignes, Journal flir reine
und angewandte Mathematik 70, 185-190 (1869).
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EDITORIAL

[Views expressed in this section are those of the Editor and not necessarily
(or even usually) those of the Department]

The crucial ingredient, required of the teacher, is patience. I found
this in rather short supply when teaching my two young children to eat their
porridge. Only the intervention of their mother prevents me from seizing the
spoon myself. When it’s all over (and all over everything), and they hold
their bowls out with porridge-wreathed smiles and say - look clean bowl - I
suppose it is worth it. But the mess is something fierce. At least it used
to be.

We have less patience with adults than we have with children. There’s no
doubt who wields the spoon in my first-yearAEngineering class. In fact I use
a shovel; you get more per scoop. You see, I'm on a tight schedule; the
porridge has to be eaten by April. They still get it all over their faces,
“cause a shovel’s pretty crude, and I often throw it before they get their

mouths properly open, but a hellofalot gets down. At least I think it does.

One reason microcomputers can be such marvelous teaching tools is that
they have infinite patience. The really creative mode is that in which the
child is instructing the computer (rather than the reverse). The child can
sit happily for hours without fear that the computer will pick up the spoon.

Of course the child can waste a lot of time sitting there too. At many
points intervention is needed; real live teachers are still required. Thank
goodness, this will always be so. Someone with a hand and a mind just like
the child’s must show her how to hold the spoon. We must intervene and we

must stand aside. As usual, it‘’s striking the balance that’s so difficult.

PDT
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Remainders in Base k

We were pleased to get a letter from Harry Occomore, Art’s 41,
in Bellevlle (15 Chelford Cres, K8N 4J8) with an intriguing divisibility
result he calls the method of kp factors. Let me quote part of his

letter.

"over 50 years ago I fell in love with Mathematics thanks to the
late John Ross and James Davidson on the staff of Guelph
Collegiate and Vocational Imstitute and I have never changed

my mind on the subject. Now that I am retired (30 years as

an Engineer with Bell Canada) I am enjoying myself delving into
what my son (Electrical Engineering *70) calls useless side
issues."

Harry’s "useless side issue" is best illustrated with an example.
Suppose you are given the number 6342510 written in base 7 and you need
to find the remainder when it is divided by 5. Well, the answer turns

out to be 2, and here’s one way to find it.

0x1= 0
1 x2= 2
5 x 4 =20
2 x3= 6
4 x 1= 4
3x2= 6
6 x 4 = 24
Sum = 62

Since 62 divided by 5 gives a remainder of 2, the answer’s 2.
The above calculation has 3 columns. The first contains the successive
digits of the number, and the second contains the remainders when the

successive powers of 7-5 are divided by 5. Thus, in the second column,

the first entry is 20 , the second is 21 , the third 22 , the
fourth 23 =8 = 3 (mod 5), and so forth. It turns out that the method

works in general: 1if we are in base k and our divisor is d , the

second column should always contain successive powers of k-d (mod d).

The question is, why does it work?
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The Bureaucracy of Omnitopia - 2

[Tim Merrett (Queen’s - Arts 64) is Associate Professor of Computer Science at
McGill. He has contributed a number of times to the Communicator. This is a
sequel to his March ‘81 article. He writes us that the theory of "mediate
graphs" which derives from these little spoofs (?) is getting quite a bit of
attention from the combinatorialists at McGill.]

Centuries after the founding of the Bureaucracy of Omnitopia, King Ruler
was shrouded in myth and his rules were forgotten by all but scholars of dead
languages:

Rule of Mediation. Access to any bureaucrat is mediated by another

bureaucrat.

Rule of Buck-passing. Every bureaucrat mediates for some other

bureaucrat.
The bureaucrats of Omnitopia came to call their mediators their "subordinates"
and the bureaucrats they mediated for their "managers'". They spent their days
summarizing the reports from their subordinates and reporting on the summaries
to their managers.

A young bureaucrat of an empirical turn of mind, Galley by name, made two
discoveries that were to upset the Bureaucracy of Omnitopia forever. Galley
was responsible for the machinery which printed the reports. Ond day he
substituted for a report the sentence "There is an exception to every rule."
(This sentence has been shown to be irreducible by Yodel, a famous
mathematician who lived in a mountainous part of Omnitopia. It can therefore
not be summarized.) He was able to observe that the same sentence was reported
by each of 17 bureaucrats, of whom the last was the same as the first. The
substitution and repetition were not noticed by the bureaucrats involved, but
Galley had shown that cycles of managers (or subordinates) existed in
Omnitopia.

Galley’s second discovery was personally more calamitous, for those who
rememberd and could expound King Ruler’s rules in the original tongue were the
guardians of culture and the arbiters of fortune for the bureaucrats of
Omnitopia. He proved a violation of the Rules with himself as counterexample:
Galley had no subordinates. He was forced to recant under pain of being
replaced by a word processor. Galley had great integrity and was not afraid
for himself, although he knew that removal from the Bureaucracy would doom him
to a life of writing reports to himself in his own disjoint bureaucracy. But
he also realized that if he were replaced by a word processor his proof would
fail for want of a counterexample. So he recanted but, as he was reinstated
in the print room, he murmered "it is true, nonetheless".

Exercise. Supply the details of Galley’s proof.
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DEPARTMENTAL NEWS

Bruce Kirby - was the winner last year of a Golden Apple, the excellence
in teaching award of the Faculty of Applied Science.

Robin Giles - attended the first NAFIP (North American Fuzzy Information
Processing Group) workshop in Utah in May, and presented a paper on

Foundations of a Theory of Possibility.

Grace Orzech, Morris Orzech, Tony Geramita and Leslie Roberts

have all been invited to give hour talks on their research at the summer
meeting of the Canadian Math Society in Ottawa at the end of May. Also
Bi1l Higginson (Faculty of Education and Arts °65) is speaking in the

Educétional Session on the Science and Education Study of the Science Council.

A quick scan of the program also revealed the name of Walter Whiteley

(Arts ‘66 - now at Champlain College) speaking in the Geometry Session.

Rick Mollin - accepted an invitation of Irving Reiner to speak in the

algebra colloquium at University of Tllinois (Urbana). Rick writes of this

visit
"While I was there I was impressed not only by the size of the faculty
(+150) but the quality of the work coming out of the Mathematics Dept
there. Moreover the surrounding area 1is beautiful and full of activity.
A cultural highpoint was a visit to the Kranert Art Museum where I
picked up a copy of a painting by a Dutch artist Adrian Brouwer, who
died at the age of 33. Other than that T have been able to find out

nothing about this artist. I would be most interested in obtaining
more information."

Rick has also been invited to speak at the Denisen conference in Columbus
Ohio in June in honour of Hans Zassenhaus’ 80th birthday. Right after this
he heads for the finite simple groups conference in Montreal. Rick’s
energetic research work has paid off with an Associate Professorship at
Uniﬁersity of Calgary, effective September 1. Congratulations to Rick!

Getting such a positidn these days is no mean feat.

Harold Still - has taken over from Tom Stroud as Chairman of Statistics

and

Dick Willmott - succeeds Norm Rice as Chairman of Undergraduate Studies.
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PROBLEMS

Please send solutions to old problems and suggestions for new ones (with
or without solutions) to the Communicator, Dept. of Mathematics and
Statistics, Queen’s University, Kingston, Ont. K7L 3N6.

Problem 7. NUMBER MATRICES WHICH ARE PRIME

By a number we mean a nonnegative integer: 0,1,2,3,... etc. By a

number matrix we mean a 2 x 2 matrix A = I: EI where entries a,b,c,d
are numbers. We multiply number matrices as usual:

42|=|11 11

3 1 01 31

We first extend the notion of "prime" from the numbers to the number
matrices.

Recall that a number n 1is prime if it is not equal to a product of two
numbers. Of course, we have to exclude two very simple products which always
equal n . They are n =n.l and n = l.n . Without this restriction, there
wouldn’t be any primes.

Observe that a number matrix A always equals each of
|1o ab ‘1olo1 ba|01
01 01i’|1 0

c d
cd abl ’ldcliloO
This leads us to make the following definition.

’

ab
cd

DEFINITION: A number matrix A 1is called prime if it cannot be written as
the product of two number matrices except in the four simple ways given above.

The first question that arises is: '"Have we excluded enough products".
In other words, are any of the number matrices prime? [The answer is yes,
of course].

PROBLEM: TFor each of the following number matrices, determine the values of
the number n for which the matrix is prime:

n O n O 1n| n 1 nzl
0 1 0o 2|° 0o 1f° 1 nf’ 2 n

H]

David Gregory
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SOLUTIONS TO PAST PROBLEMS

Problem 5.

OV —
AP
]
e ]

How many quotients of two digit numbers are there for which a common
digit can be cancelled?

Solution: Certain solutions of the problem are so easy to find as to be
uninteresting and we will start by identifying them. TFor example,

g.(.). = g and -3—--,- = 2
30 3 37 3

are two such solutions. We can rule out these and similar solutions by

insisting that at least one of the ones digits be non-zero and, as well,
that the numerator and denominator be unequal. Let us agree to call all
other solutions non-trivial.

The quotient of two two-digit numbers can be written in the form

10a+b
10cH °’

1<a,c<9 and 0<b,d X9 (remember, 63 = 6x10+3). The

cancellation of common digits can take one of three forms: the two tens
digits are equal; the two ones digits are equal; or, the tems digit in the
numerator and the ones digit in the denominator are equal. (There is a
fourth form, in which the ones digit in the numerator and the tens digit in
the denominator are equal, but this can be reduced to the third form by
inverting the fraction). In the first case we require that

10a+b _ 6
T0c+ a

in the second case that

where a,b,c,d are integers with

a=c,and b ¥4, (1)

10a+b
10c+d

and in the third case that

- 2 , b=d,b=0and a=c, (2)

10a+b
10c+d

nio

and a=4d . (3)

(The inequalities in (1) and (2) come from ruling out the uninteresting
solutions).

Let us start by considering the first case. The first two of the
conditions listed in (1) yield (after a bit of algebra) the equation
10a(b-d) = 0 , and this equation has no solutions as a > 1 and as
b#d. This means that the first case contains no solutions of the problem.
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A similar argument will show that the second case also contains no
solutions of the problem.

Now consider the third case. The two conditions listed in (3) together
imply that
10ac = (9c+a)b . %)
As a and c¢ are both non-zero this clearly implies that
b#0, (5)

and as 10 divides the left-hand side of (4) one of the following conditions
must hold:

10 divides 9c + a 6)
2 divides 9c +a and 5 divides b (7)
5 divides 9¢c + a and 2 divides b (8)

We will now proceed to analyze these three conditions.

If (6) holds then it is easy to see that the restrictions on a and ¢
imply that a and ¢ must be equal. But this means that we are back in the
first case (i.e., that (1) holds) and so we again obtain no solutions of the
problem.

If (7) holds thenm b =5 by (5) and 9c + a = 2k for some integer
k . Substituting b =5 and a = 2k - 9c 1into (4) and solving for k gives
9C2 .

2c-1

This means that k =9 and a 9 if c¢c=1, k=12 and a=6 if ¢ = 2,
k=25 and a=5 1if ¢ =5, and all other allowed values of ¢ lead to
non-integral k . This case therefore leads to the two non-trivial solutions

5.3 65 _ 5

19 1 26 2

All that remains now is to consider what happens if (8) holds. 1In this

case we can write b =2s and 9c + a = 5t for some s =1,2,3,4 and some

integer t . Substituting b =2s and a = 5t - 9c 1into (4) and solving
for t gives

and

9c2

5c-s
If we now systematically replace ¢ by 1,...,9 and s by 1,2,3,4, select

thoge pairs giving an integral 't , and compute the corresponding values
of a and b we get two more non-trivial solutions:

64 _ 4 98 _ 8
16 1 49 5

The only solution which was submitted to this problem was by Mrs. Langlois,
a mature student of John Waddington in the Grade 10 computer class of Thomas A.
Blakelock High School in Oakville. She wrote a computer program
to search for solutions (or, in her words, freaky fractions), and found them all.
That’s not a bad approach. It may well have taken her less time to do that
than it took us to work out this algebraic solution. Well done Mrs. Langlois!

Ole Nielsen



18.
Problem 6:
Find integers m and n so that 3.14159 < ym - /o < T .

Solution: (Karl Dilcher, Graduate student, Queen’s). We can actually show a
little more: There are integers m and N such that 3.14159 < vm - N <7 .

Proof: Let k be an integer, and put

2
n=1(k-3)", m= k2 + r (r an integer > 0) .

Then va =k-3, vo=k 1-+E2 .
k

We may assume r < k ; otherwise we would have r >k + 1 and

JE - /> /’k2+k+% - (k=3) = k + % - (k=3) = 3.5 .

Now I claim S =1+ 1 + R , where - 1l <r<o.
2 2 oy

?"N‘H

This can be seen by using Taylor’s formula, or simply by squaring:

2
lr 2 r lr T
(1+= ) = 1+ - + = > 1+ (since r>0)
22 2k 1
2
(1+% E? _ _12)2 _ (1+4r-1)2 -1+ 4r;1 + (4r—z)
k 8k 8k 4k 64k

=1+£2+<4_r-17>_2_gs%2
k 64k 64k

and since r <k , the sum of the last two terms is < 0 .
Now we have

/m - /0 = k(1+

N =

r . T .
;2 + R) - (k=3) 7 + kR + 3

That means, we have to find two integers r,k such that

0.14159 < ;E + kR < 0.1415926 (<m) .

T _ 0.141592 = 141592 17699

W h —— T c——
e may choose 7R 5(500000)’ or better 5(62500)

so take r = 17699, k = 62500. Now - %E <kR < 0, i.e. = .000002 < kR <O ,

i.e. with the above values of r and k we are within the required
boundaries. Finally, we have

m=1%2 4+ = 625002 + 17699 = 3906267699

and N =k - 3 = 62497. - -







