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ABSTRACT

The material conservation laws are derived for the axisymmetric flows of the inviscid barotropic gas inside the mushroom clouds. The
invariant functions ¥(y) and ¥(¢) of an independent variable y are constructed for any pure poloidal compressible gas flow.

Published under license by AIP Publishing.

I. INTRODUCTION

The known data ~ about the atomic and thermonuclear explo-
sions in atmosphere show that the dynamics of gas in the mushroom
clouds is approximately axially symmetric with initially vanishing
swirl. In the cylindrical coordinates 7, z, ¢, the gas velocity V(r, z, £)
has the following form:

V(r.z,t) = u(r,z,t)é + v(r.z,t)& + w(r,z,1)é,, 4))

where &, &, &, are the vectors of unit length in directions of the coor-
dinates 1, z, ¢. In Sec. 11, we show that if at the initial moment ¢, the
swirl w(r, z, tp) = 0, then for all times ¢, the swirl w(r, z, £) = 0. This
follows from the existence of the material conservation law,

M(r,z,t) = [x x V(x,1)]- & = rw(r.z,t). 2

The conservation law M(7, z, £} for the z-axisymmetric compress-
ible gas dynamics with an arbitrary equation of state was derived
in our paper. Note that function M(r, z, ¢) is different from
the z-projection of the density of gas angular momentum P(x, t)
= p(x, t)[x x V(x,t)] - & that is not conserved along the gas streak-
lines.

For the z-axisymmetric flows of ideal incompressible fluid with
constant density p, the material conservation law rw(r, z, t) was first
established by Hicks in Ref. 4, p. 97, and later by Batchelor in Ref.

» p-544. Kelbin, Cheviakov, and Oberlack presented in Ref. © the
equation d(ru®)/dt = 0, which is equivalent to the conservation of
ru® along the incompressible fluid streaklines and derived from it
the material conservation laws F[rw(r, z, t)] for fluid flows with
constant density p (where F[x] is an arbitrary differentiable func-
tion of x). In Ref. 3, we proved that for the z-axisymmetric flows of

incompressible fluid with variable density p(r, z, £), the functions
Glp(r, z, 1), rw(r, z, t)] are material conservation laws (here, G[x,
y] are the arbitrary differentiable functions of x, y).

In this paper, we study the Euler equations for the inviscid
barotropic compressible gas dynamics,

ov 1

B +(V.v)V= —EVP+V®, (3
9 -
a + V(PV) - 0: (4)

where V(x,1) is the gas velocity of class C?, p(x, t) is the pressure,
and ®(x, t) is the Newtonian gravitational potential, The gas pres-
sure p(x,t) is connected with the gas density of mass p(x, t) by a
barotropic equation of state p = f(p), where f(p) is a differentiable
function with df (p)/dp > 0.

On the zero level of the material conservation law M(r, z, £) (2),
the gas dynamics is pure poloidal as is observed in the mushroom
clouds.  In Sec. 11, we prove that the gas dynamics inside the mush-
room clouds possesses a material conservation law H(r, z, t) that is
constant along the gas streaklines.

The problem of invariants of the compressible gas dynamics
inside the mushroom clouds after the atomic and thermonuclear
explosions in atmosphere is studied in this paper for the first time
in the literature. The derived material conservation law #(r,z,t) is
new and was not known before.

In Sec. 1], we construct another invariant of the axisymmetric
gas dynamics without swirl. The invariants are functions ¥(u) and
Wg(u) of one variable y. The functions do not depend on time ¢ and
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are closely related with the geometry of surfaces H(r,z,t) = const. Using this formula, we find after differentiation and cancellation of
In Sec. [, we demonstrate that functions W(y) and ¥Y¢(y) are linked  similar terms the following:
by certain differential equations.

ZA.( )6e¢ [A1X1—A2xzi+A1xZ + Apx; i]

Il. A NEW MATERIAL CONSERVATION LAW FOR THE r Ox1 r %2
GAS DYNAMICS INSIDE THE MUSHROOM CLOUDS ( 20 By )
X|——e  +—e2

A material derivative of a function F(x,t) with respect to the
as flow with velocity V(x, t) is defined by the following formula: A Az, A(x, 1) -&,),
& Vi lty (xg) y g :__Zz(xlé1+x2é2)=__2er=“‘( ( ) ‘P)en
r r r
DF dF
oot V- VFE. (5)  whichis equivalent to the identity (2). O
As known, Euler’s equations and (4) for the barotropic

A function F(x, t) is called a material conservation law for the system  compressible gas flows imply that the vector field

[(3) and (4)] if its material derivative (5) vanishes: DF/Dt = 0. In this v x V(x 1)
case, function F(x(¢), t) is constant along any gas streaklines defined Qx,t) = ——2~7 (10)
by the system of time-dependent equations, p(x.t)
satisfies the following equation:
D Va0, © o0
—-— +(V v)Q=(Q-V)V. (11)

Assume that in a z-axisymmetric mushroom cloud at an initial .
moment of time to, the gas flow has zero swirl w(r, z, to) = 0. Then, at et us introduce the functlon
any time t, the swirl is identically zero: w(r, z, £) = 0. Hix,t) = ' 0(x, 1) & [V xV(x,8)]-&  u-v L w

rp(x, t) rp(x, t)

Proof. In Ref. 3, we proved that for the z-axisymmetric com- . o . )
pressible gas dynamics [with an arbitrary equation of state p(r, z, t) Material derivative D/DT of function H(x ,t) has the following
=flp(r, z, t), s(r, z, t)], where s(r, z, t) is the density of gas entropy], Jorm: s
the function M(r, z, £) (2) satisfies equation DM(r, 2, £)/Dt = 0 and, DH(x,1) _ ! O(rw)’] (13)
therefore, is conserved along the gas streaklines. Therefore, if at an Dt rp(x,t) 8z

initial moment of time to the gas swirl w(r, z, to) vanishes, then M(r,
2, t) = 0 for all times ¢. Hence from Eq. (2), we get w(r, z, £) = 0 for
any time £. n] D &

The gas velocity V(x, t) for the z-axisymmetric gas flows has et V-V (14)
the form (1) in the cylindrical coordinates r, z, . The corresponding
vorticity vector field V x Vis

(o) , (o,
r

Proof. The operator of material derivative D/Dt is defined as

From Eqs. (1), (11),and (14), we get

DO Dr—l u
; + (Uz — vr )&y ) o - (@Y. =g (15)

Applying formula (8) to vector field A(x, £) = V(x, t) (1), we find

VxV=-

Let A(x,t) = Ai(%,£)é, + Az(x,1)é, + A3(x,£)&, be any vector X )
field in the cylindrical coordinates r, ¢, z. Then, the identity PDitso _ (aat V. V) __Vx :) -eqo)ér =Y. (16)
r

L & B, (AkD) &), - -
(A(xt)- V)= Ai(x,1) EC:e P (8) Using the Leibnitz formula and Egs. and (16), we derive
DH _D[r'Q-&) _u(ﬂ-éq,)

holds, where x| = rcos ¢, x; = rsing, and x3 = z are the Cartesian Dt Dt 72
coordinates. (17)

Proof. In the Cartesian coordinates, we have The second term here has the equivalent form

1 , 1 a1 5
& =1 (1181 +2280), &g =7 (—:281 + 11&2), )] ?[(Q VIV]-& = 7(0 “VIV-&] - 7V'[(Q V&) (18)

where &, &, &3 are the unit vector fields in the directions of coor- Applying formula (2) to vector field A(x, £) = (x, ) (10), we get

dinates xi, x2, X3. Due to formulas (9), vector field A(x,t) has the (Q-&),
Al 2

following form: (Q-V)gp =~ (19)
A(x,t) = Aré) + Azé; + Asdy Inserting formula into Eq. and using formula (1), we find
Aix1 —A A1xa + Azxy 1 R 1 u .
= M | AL, | Ases. ;[(Q VIV]-8p = ;(Q V)w+ r_l(ﬂ'eq’)' (20)
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Substituting expression into Eq. and canceling similar
terms, we get
DH(x,t) u . 1 u . w .
o = (@ &)+ (2 VIw+ (&) -5 (0-&)

1 w N
= (- Vw-5(0-4).

Using Eqgs. and (7) here, we derive

DH(x,t) 1 w
Dr ey e (el o)
2rw(rw), 1 [(rw)’]

T rp(xt)  rp(xt) 0z

Thus, we obtain Eq. for the axisymmetric barotropic gas

flows. u]
For arbitrary axisymmetric flows of barotropic gas with initially

vanishing swirl [w(x, 0) = 0], the function

Uy — vy

rp(x.t)

is a material conservation law. For arbitrary differentiable functions
G(x), the functions G(H(x,t) ) also are material conservation laws.

H(xt) =r'Q(x, 1) 8y = (21)

Proof. We proved in Ref. 3 that for any z-axisymmetric gas
flows, the function M(x,t) = (x x V(xt)) - & = rw(r,zt)

is a material conservation law that means it satisfies equation
DM(x,t)/Dt = 0 and, hence, is constant along any gas streaklines.
Formula takes the following form:

DH(xt) 1 [M(x1)]
Dt rp(xt) Oz

For the gas flows with initially vanishing swirl w(x, 0) = 0 [that
means for the flows with M(x, 0) = rw(x, 0) = 0], the material conser-

. (22)

vation law (2) implies that for all moments of time ¢, one has M(x, )
= rw(x,t) = 0. Hence, Eq. yields
DH(x,t)
== . 3
Dt 0 (23)

Therefore, function ‘H(x, ) [ and ] is a material conserva-
tion law for the z-axisymmetric barotropic gas flows with initially
vanishing swirl w(x, 0) = 0. For any composed function G(H(x,1)),
Eq. implies that

DG(H(x,1)) _ dG(H) DH(x.t) _

0. 24
Dt dH Dt (24)
Hence, all functions G(7#(x,t)) are material conservation
laws. o

Remark 1. Equations and are true also for the

barotropic gas flows for which the material conservation law M(x, t)
is independent of z: M (x,t)/0z = 0. For example, this is true for
the rotationally and z-translationally symmetric gas dynamics.

Remark 2. Equation demonstrates that for arbitrary z-
axisymmetric gas flows with OM(x, t)/dz + 0 function, H(x t)
is not a material conservation law.

scitation.orgljournal/phf

Remark 3. Equation implies that the diffeomorphisms
defined by the axisymmetric pure poloidal gas flows preserve the val-
ues of function H(x,t) (12) [because for such flows, M(x,t) = 0].
Hence, all associated geometric objects such as the range of function
H(x,t), its level sets 7(x,t) = p for any constant g, its points of
local maxima, local minima, and saddles together with the values of
function H(x, t) at them are frozen into the axisymmetric gas flows.

Remark 4. The known data * about the atomic and thermonu-
clear explosions under water indicate that the dynamics of water
after the explosion is approximately z-axisymmetric with initially
vanishing swirl. Equation (2) and equation DM(r, z, t)/Dt = 0" are
also applicable for the z-axisymmetric incompressible fluid flows.
Therefore, as above, we get that if w(r, z, tp) = 0 at an initial moment
of time fy, then the swirl w(r, 2, ) vanishes at any time t. As
known, " for an ideal incompressible fluid with constant density
p» the vorticity vector field V x V(x,t) satisfies the equation anal-
ogous to with Q(x,t) = V x V(x,t). Therefore, putting in the
above proof p(x,t) = 1, we get that for the incompressible fluid flows
without swirl the function,

Uz — Ur

P = ’ (25)

Hx,t) =

Ver(x,t) "

satisfies Eq. (23). Hence, function is a material conservation law
for the ideal incompressible fluid flows with p = const and with the
initially vanishing swirl.

Equation is also valid for the ideal incompressible fluid
with p(x,t) = 1. Therefore, for the general axisymmetric flows with
non-vanishing swirl, we have DH(x, ¢)/Dt # 0.

lll. INVARIANT FUNCTIONS ¥(y) AND ¥ (x) FOR THE
GAS DYNAMICS INSIDE THE MUSHROOM CLOUDS

The level sets in R? of the z-axisymmetric function | (x, t)| are
the surfaces,

K[f(t) : [#(x, )| = 4 = const, (26)
that also are z-axisymmetric. The surface Kﬁ( t) can have several dis-
joint connected components. If a connected component of a level
set Kj () is a smooth manifold, then due to its axial symmetry, it is
topologically either a torus T2 or a sphere §2 or a circle §'.

Since function [H(x,t)| is non-negative, it has a minimum
value inside the mushroom cloud, which we denote as ).

Let Of,(t) be the domain inside the mushroom cloud defined
by the following conditions:

Oz(t) :

The boundary of domain O;(t) is the surface Kﬁ (1) . The con-
servation of the function H(x, t; along the compressible gas streak-
lines implies that the surface K;(#1) of a constant level of function
[H(x, t1)| = p is transported by the gas flow diffeomorphisms at any
time ¢ > ¢ into the surface Kﬁ(t) defined by the same con-
stant value g of function [H(x,t)|. Therefore, the domain O:(tl)

is transported along the gas streaklines at any time ¢ > #; into
the domain Oz(t). Hence, the domains (’);(t) and their boundary

wmLH(G) <p > (27)
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surface K,f(t) are frozen into the flow, in the standard terminology.
Hence, the total mass of gas inside the domain O} (¢),

/(;3 o PE1E (28)

is conserved in time t. Here, dx is the element of volume in R?, Con-
servation of mass is true inside any domain D(t) that is frozen
into the gas flow; see Refs. 7 and 8. We study below its dependence
on the parameter 4 for the concrete domains Oﬁ(t).

Any z-axisymmetric flow of inviscid compressible gas in the
mushroom cloud has an invariant function,

Y(u) = o260 p(x,1)dx, (29)

that is the total mass of gas frozen into the gas flow domain O3 (1)
The function Y(u) is continuous and piece-wise differentiable wzth
respect to the independent variable y. Function W(y) is monotonously
increasing with y, and its derivative d¥ (u)/dp > 0, ¥(u;) = 0.

Proof. Equations (4) and (5) yield that the material derivative

of the gas density p(x, ) is
Dp _9p
Dt 0Ot

Differentiating the integral with respect to time ¢ and using the
frozenness of the domain 2 . (t) into the gas flow and the material

derivative and equation D(dx)/Dt =(V-V)dx, ~ we get

d Dp D(dx)]
_— LH)dx = ol bk 3
dt o;(t)p(x ) /o!()[ dx+p Dt

= oo [PV +p(T V)ldr =0

+V-Vp=—p(V-V) (30)

Therefore, the integral is conserved in time ¢ and, hence,
depends only on the variable 4. We denote it as a function ¥(u)
To prove the differentiability of function ¥(x) , We assume
that Ay is a sufﬁc1ently small number [Ay| « 1. The surfaces
,4+A,1(t) and K} . (t) have zero intersection and bound a domain
Ofmy(t) between them. The distance [%(x) — x| between a point
x € K;(t) and the point closest to it &(x) € K7,,,(t) satisfies the
following equation:

Ap = [VH(x, t][%(x) - x|. (31)

The continuity of functions p(x,t) and H(x,t) implies that the
difference W(u + Ap) ~ ¥(p) is equal to the integral

[93 plxt)dx s f,\ ” P O(x) - xjds,  (32)

Mﬂ()

where ds is the element of area on the surface K,f (). Substituting the
expression of [k(x) — x| from Eq. into (32), we get

pxt) g (33)

W(p+Ap) -¥(u) ~ Ap K2 m

Equation implies that function ¥ () is continuous. In the limit
Ay — 0, we find from the following:
o Y(urAp) - ¥(p) _ d¥(p) [ p(x:t)
1 = = ————ds, (34
a0 Ay du &) [VH(x )] (4

scifation.orgljournal/phf

provided that the denominator |V#(x, t)| in the integral (34) is non-
zero. Evidently, it is zero only if VH(x,t) = 0. Hence, the function
W¥(u) is differentiable at all 4 for which the level set K2( t) does not
contain critical points of function H(x, t).

Equation yields d'¥(@)/du > 0. Hence, function W(y) is
monotonously increasing. The definitions and of domain
(93 and function ¥ (y) imply that ¥(u;) = 0. u]

Any z-axisymmetric inviscid gas flow has the invariants

Ye(u) = [O:(QP

which, for any differentiable function G(x), are continuous and piece-
wise differentiable functions of the independent variable y.

(% 1)G(|H(x,1)[)dx, (35)

Proof. Differentiating the integral W¢{y) with respect to

time ¢, we get

d¥e(u) Dp D(dx)

gt - ./c;;(z)[(D_tdx+P Dt
DG(H(x.t)|)

X — ]dx

Jotree ) + o)

Substituting here Eqgs. and and equation D{(dx)/Dt =
(V-V)dx," we find that
d¥elw) _,
dt '

Therefore, functions ¥e(u) are invariants of the gas
flow. a

To prove the differentiability of functions ¥¢(u), assume as
above that Ay is a small number |Ay| « 1. The continuity of func-
tions p(x, £) and G(H(x,t)) implies that the difference Wg(u + Ay)
— ¥s(p) is equal to the integral

Joy DS~ [ a6 DDIEC0 s,

(36)
where ds is the element of area on the surface Kz(t) Substituting
the expression of |%(x) — x| from formula into Eq. , we
get

ds. 37
e VRG] 7

Yo(u+du) - Yo(u) ~ by

implies that function ¥¢(y) is continuous. In the limit
the following:

Equation
Ay — 0, we find from

lim ot Ap) —¥e(u) _ d¥e(p)

_ p(x )G(H(x, 1)])
Ap—0 Ay dy fKZ(r) ds

[VH (%, 1)] ’
(38)
provided that the denominator in the integral is non-zero. As
above, this is true for all 4 for which the level set Kz( t) does not
contain critical points of function H(x,t) .
Functions We(u) are connected with function V(u) by

the following formula:

Phys. Fluids 32, 106103 (2020); doi: 10.1063/5.0023495
Published under license by AIP Publishing

32, 1061034



Physics of Fluids

d‘I’(f)

Vo) = f (e =) (39)

Proof. On the surface K.(t), function |H(x,t)| has con-
stant value |’H(x,t)| = u. Hence, on the surface Kz(t) we have

G(|H(x, t)]) = G(g). Inserting this into Eq. (38), we ﬁnd that
d‘I’G(#) () p(x% 1)
&2 () [VH(x,1)|
Substituting here formula (34), we arrive at the following differential
equation:
d‘I’ d‘I’

Integrating Eq. (40) and usmg the evident equahty We(p1) =0, weget
formula (39). o
Example 1. For the function G(|#|) = |H|, Eq. (35) yields
) = [, ploDH(5Ddx (4D

"

Equation takes the following form:

() = [ 620 pv G0 - [ v

where we used the equality ¥(u;) =0.
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The functions ¥(u) and ¥e(y) [ and ] are new
invariants of the z-axisymmetric inviscid gas flows inside the mush-
room clouds.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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