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ABSTRACT

Exact up-down asymmetric solutions to the Navier-Stokes equations for a viscous and incompressible fluid with time-dependent viscosity
¥(t) are derived. Transformations of the exact solutions are defined that produce an infinite sequence of new solutions from each known
one. The solutions are presented in terms of elementary functions and have no singularities. Three infinite-dimensional families of new exact
axisymmetric unsteady solutions to the viscous magnetohydrodynamics equations are derived. Dynamics of vortex rings and vortex blobs is
studied for some exact up-down asymmetric incompressible viscous fluid flows and viscous plasma flows.
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. INTRODUCTION

We derive new exact solutions to the Navier-Stokes equations
for a viscous and incompressible fluid

v .

ot
where V(x, t} is the fluid velocity, ¥(x, #) is the gravitational poten-
tial, p(x, t) is the pressure, p is the constant fluid density, and V? is
the Laplace operator. As known, " the kinematic viscosity v essen-
tially depends on temperature. Since the latter depends on time ¢, we
assume that viscosity v = v(z) is an arbitrary piecewise continuous
non-negative function of £.

Theory of Navier-Stokes equations for a viscous and incom-
pressible fluid was developed in monographs " and in many other
works. Several important exact solutions to the Navier-Stokes equa-
tions were found during the past century. The reviews  are devoted
to both the steady and time-dependent exact solutions, see also
Refs. 17 and

In this paper, we introduce new axisymmetric unsteady exact
solutions to the Navier-Stokes equations depending in the cylindri-
cal coordinates 7, z, and ¢ only on r and z. For the derived exact
solutions, fluid velocity V(r, z, t) and its vorticity V x V(r, z, t) are
not collinear and satisfy the equation V x V = &V — a’&ré,, where a
and ¢ are arbitrary nonzero constants and &, is the unit vector field
in the ¢-direction.

We construct an infinite-dimensional space of solutions for
which fluid velocity V(r, z, ) is up-down asymmetric that means

V-V V=—1V +V‘I’+VV2V, vV-Vv=0, (1.1)
VP

V(r, z, t) is not invariant under the reflection z - —z. The solutions
are analytic in the whole space R’ and are defined for all moments
of time ¢. We present transformations acting on the space of exact
solutions which generate an infinite sequence of new exact solutions
from any known one.

We investigate dynamics in time ¢ of the vortex rings and vor-
tex blobs which are (for any fixed moment of time ¢o) the maximal
compact domains invariant with respect to the vorticity vector field
V x V(r, z, tp). We show that for the derived exact solutions to
the Navier-Stokes equations, the vortex rings and vortex blobs are
not frozen into the viscous fluid flow and collapse and disappear
ast — oo,

New exact axisymmetric unsteady solutions to equations of
viscous and incompressible magnetohydrodynamics (MHD) are
derived. The solutions describe three different regimes of plasma
relaxation.

Il. NEW EXACT Z-AXISYMMETRIC SOLUTIONS

A. An infinite family of exact solutions

Proposition 1. The z-axisymmetric incompressible fluid velocity
fields

i 4 @.1)

&+ —¢&
r ¢
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represent exact solutions to the Navier-Stokes equations pro- ?X - _l i ( % )A 1 0 (a% ) (6'/’1 ) &
vided that the pressure p(r, z, t) is defined by the formula ot r Oz "Tror\ ot ot
prot) =p[C+¥(nat) + i (nat) - V(nz )P /2], ()L e+ 1 e+ e, g2k, varey)|
(2.2) r
_ 2 ey s
and the stream function y,(r, z, t) is an arbitrary solution to equations =~ (V- {(28 + aréy)]. .11
Substitution of expressions and into Eq. proves
&y _lon 82'/;1 - 2[11,1 - ,frz], (2.3) that it is identically satisfied. Therefore, formulas - define
orr ror 0Of exact solutions to the Navier-Stokes equations . o
o
{;I/ = = —a’w(t) [v1 - &%), (24) Remark 1. Equation is a special nonhomogeneous case of
the Grad-Shafranov equation
where o, £, and C are arbitrary constant parameters and &,, &, and P i
&, are the unit vector fields tangent to the cylindrical coordinates r, z, Wirr — -l-llllr + gz = P _g=, (2.12)
and . r dl//1 dl[/l
. o corresponding to functions P(y,) = —a*£y; and G(y1) = ay;.
Proof. Equation implies V - V(r, z, t) = 0. Therefore, vec- Equations and after substitution y(,2,t) = &
tor fields V(r, z, t) describe incompressible fluid flows. The +{/(r, % ) reduce to equations
corresponding vorticity field has the form
&y 10y 0% oy
oy, o : —— - s e =L o, =L = (D)7 .
TxV(nat)=-2 atl +2 B‘I;l 2 GRS v L L i Ol 213)
1{ & 19 P The second one of Eq. implies that the function (r,z,t) has
== (_V/Zl _on 11;1 ) the form §(r,z, t) = f(¢)y(r, z), where the time-dependent function
r\ or ror 67' f(t) satisfies the equation
Substituting here Eq. » we get df(t t
. f ( ) __aw(e)f (), F(t) = exp[ [ v(-r)d-r]. (2.14)
V x V(r,z,t) = aV(r,z,t) - a"¢ré,. (2.5)
. . Due to the first one of Eq. » the time-independent function y(r,
Equation yields z) obeys the equation
(VxV)xV=(aV-a’ré,) x V=-atré, x V. (2.6) 2 2
( 2 ’ a—'f 1oy, 3—‘f = —ay. (2.15)
Using here Eq. and identities &, x & = —&;, &, x & =&, &, x ot ror 0Oz
&, = 0, we derive The corresponding stream function y(r, z, ¢) is
(Vx V) x V = (~aEréy) x [-é%e ; li)ﬁ‘* + e, | n(nat) = & +f(1)y(na). (2.16)

oy, Ow,
=%t [ g:l € a‘/; ez] = V[—“ fyi(nz, t)]- (2.7) B. Transformations of exact solutions

Appl)’l ng the well-known identity (V- V)V = (V x V) x V + ¥ Equation is a special linear case of the Grad-Shafranov
('VI /2) and Eq. , we represent the Navier-Stokes equa- equation for the axisymmetric plasma equilibria. Equa-
tions in the form tion is invariant under arbitrary shifts z -+ z + u, and any
differentiations 8"/9z". Therefore, for each concrete solution to
ov 3 Eq. » one can construct [using the linearity of Eq. ] an
Bt - —V[—p Y-y (nat) + _IVI ] OVV. (28 jpfinite sequence of exact solutions
e es . N m-1 I
Substituting into formula for the pressure p(r, z, £), we get Y (1,2) = Z i (rztu) 13 S bl 6} méz:——zk,,,),
k=1 n=1
v(t)V V. (2.9
ot where an, U, and by, are arbitrary constants. The corresponding
Using identity V2V = V(Y- V) —¥ x (V x V) and equations ¥ - V exact solutions to Egs. and have the form
=0, >and V x (ré,) = 2&;, we find

Yimn (12, t) = & +f(t)[i any(rz + un)
VIV =~V x (aV - a?Eréy) = —a’[V - £(2¢, + aréy)].  (2.10) n=1

N m-1 71
Using Eq. , we find the time-derivative of the vector field V + Z bicn M ] (2.17)
as k=1 n=1 0z"
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has the following well-known exact solution

¥(r,z) = -*G2(aR) = -a;%[cos(aR) - Si“TE;R—)

Equation

], 2.18)

where R = V72 + 22 and Gy(u) = 4 X(cosu — u~! sinu). The exact
solution was first discovered in hydrodynamics by Hicks

in 1899" and 57 years later was rediscovered in plasma physics
by Chandrasekhar = and Woltjer as a model of axisymmetric
plasma equilibria. The corresponding fluid (or plasma) flow is now
called the spheromak field. Moduli spaces of vortex knots for the
spheromak vector field in different invariant domains were pre-
sented in Ref. 21, and for other solutions to Eq. in Ref.
The safety factor for axisymmetric flows of barotropic gas and ideal
incompressible fluid was studied in Ref.
The vector field V1 (r, z, £) with the stream function

yi(rz.t) = & — f(£)r Gy (aR) (2.19)
has the form
Vi(r,2,t) = a’rzf (t)Gs(aR)é,
+ [ZE -f(#)(2Gz(aR) + azrng(aR))]éz
+ar[§ - f(£)G2(aR)]é,, (2.20)

sinu — 3 cos u]
together with

where the function Gs (1) is Ga(u) = u™*[(3 — w?)u!
and f(t) is the function . The fluid velocity
the pressure

p(nzt) = p[C +¥(r,2,t)

+ @ - F(H)Ga(aR)] - %|V1(r, Z t)|2]

forms the new exact solution to the Navier-Stokes equations

The poloidal sections of the stream surfaces y:(r, z, £) = const
for any fixed time ¢ coincide with trajectories of the fluid in vari-
ables r and z defined by the vector field Vi(r, z, £) . The stream
function is evidently invariant under the reflection z - -z.
Therefore, the poloidal sections yi(r, z, ) = const also are invari-
ant. In this sense, the exact solutions and are up-down
symmetric.

Remark 2. If f(t) > fo = const as ¢ — oo, then the viscous
flow tends to the steady solutions to Euler equations for the
ideal incompressible fluid that were studied first by Hicks in Ref.
and later in Refs. 24 and 25. If f(f) - 0 as t — oo (for example,
if ¥ > vy = const > 0 or v(£) > v/t), then the derived exact solu-
tions with stream functions yimn(r, z, £) tend to the steady
flow V(r,z) = aéré, + 2£&, that has a constant vorticity V x V(r,z)
= 2a£é, and hence has no vortex rings and blobs (see their definition
in Sec. 1). Therefore, the vortex rings and blobs for the exact flow

collapse and disappear as t > oo.

lil. DYNAMICS OF VORTEX RINGS AND BLOBS FOR
SOME UP-DOWN ASYMMETRIC EXACT FLUID FLOWS

A. Vortex rings and vortex blobs

In this section, we study some exact up-down asymmetric vis-
cous flows. The stream functions yimn(r, z, t) are up-down

scitation.orgljournal/phf

asymmetric if at least one coefficient by, # 0 for n = 2¢ + 1. There-
fore, the generic stream functions and the corresponding exact
fluid flows are up-down asymmetric.

Equation implies that, for any fixed moment of time #y, the
surface y1(r, z, to) = const (the angle ¢ € S' is arbitrary, 0 < ¢ < 27;
here and below S! is the unit circle) is an invariant submanifold for
the vorticity vector field V x V(r, z, to). This follows from formula

:V x V = aV — a*éré,, and the z-axisymmetry of the flow.

Since the surface (1, z, o) = const is z-axisymmetric, it is a
disjoint union of either some spheres §? or some tori T? = Co(w)
x $! or some cylinders C? = Ry, (1) * S'. Here, Cyy () and Ry, 1)
are the level curves 1 (r, z, t) = const in the poloidal plane (r, z) for
a fixed time ¢ = to. The curves Cy, ¢y, C (r.2) are closed, and the
curves Ry, ¢,y € (r,z) are infinite.

Assume that a surface y(r, z, tp} = C; bounds a compact con-
nected domain D;. We call the domain D; maximal and denote it
Dy if it is not contained in any bigger compact connected domain
D, bounded by a surface y (1, 2, to) = C;. If such a maximal domain
Dm intersects the axis of symmetry r = 0, then topologically it is a ball
B2, which we call a vortex blob because it is invariant with respect
to the vorticity field V x V(r, z, to).

If a maximal compact invariant domain D,, does not intersect
the axis of symmetry r = 0, then it is topologically a 3-dimensional z-
axisymmetric ring B2, (o) x S', where B (t) c (r,z) topologically
is equivalent to a 2-dimensional ball in the poloidal plane (r, z). The
boundary of the ring B}, (o) x S' is a torus T = Cy, () x S', where
Cot) = aleﬂ(to) is a closed level curve y1(r, z, to) = Cpy £ 0, ¢ = 0.
Since the ring BZ(fo) x S' is invariant with respect to the vorticity
field V xV{(r, z, tp), we call it a vortex ring. In view of Eq. , the
vortex rings and vortex blobs are also invariant with respect to the
velocity field V(r, z, to).

For the z-axisymmetric flows, the vortex rings and vortex blobs
are represented by their intersections with the poloidal plane (7, z)
where ¢ = 0. Below, we study dynamics of the poloidal sections of
the vortex rings and blobs for the concrete exact solutions which
are obtained from the spheromak solution by transformations

B. Up-down asymmetric exact solutions

We use the following elementary functions G(u) connected
with the Bessel functions J,—1/2(1):

_ﬂ]__\/m

1
Gy (u) = -—z[cosu ~7 J312(1)s

Go(a) = 3G = [ (3222 300 ]=\£—5ﬂ/—?]s/z(u),

Ga(w) = 3-Gs(w)

72
= —773417/2(“)-
(3.1)

All functions G, (u) are even [Gn(—u) = G,(u)] and are analytic
everywhere and have the nonzero values at v = 0: G2(0) = —1/3, G3(0)
= 1/15, and G4(0) = —1/105. All functions G,(u) tend to zero as |4
— oo and have infinitely many roots u; satisfying the equation G, (1)

1
= —6[(6 - IS)ﬂ —(* -15) cosu]
u
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= 0. The range of the function G2(u) is the segment I* = [-1/3, &,
~ 0.028 72].

Apylying transformation (2.17) with a, =0, m=2, N =1, and
by = a™ to the stream function y(r, z) (2.18), we get a new exact
solution to Egs. (2.3) and (2.4),

a y &y
v(nzt) =&+ a_12_‘l’1 gzz D . & - '[%rz —————a[GB(:R)] !

Using formula (3.1), G3(u) = 4™ dG,(u)/du, we get

va(r2,t) = *[€ - 2 (£)Gs (aR)]. (3.2)
The corresponding velocity field (2.1) has the form

Va(r,2,t) = 1f (1) [G3(aR) + &’2*Gs(aR) &,
+[2€ - 2 (£)[2G3(aR) + &’ Ga(aR)] ]2
+ar[€ — zf () Gs(aR) &y, (3.3)

where G4(u) = 4~ dG3(u)/du, see formulas in (3.1). Applying results
of Sec. [1, we get that the fluid velocity field Vi (r, z, t) together
with the corresponding pressure p(r, z, ) (2.2) forms a new exact
solution to the Navier-Stokes equations (1.1),

Evidently, the stream function (3.2) and the velocity field Va(r,
z, t) (3.3) are not invariant under the reflection z — —z. Hence, the
new exact solution (3.3) is up-down asymmetric.

The velocity field (3.3) for any fixed time ¢t defines the following
dynamical system in B™:

% = _%% =1f(t)[Gs(aR) + &*Z'Gs(aR)],  (3.4)
% _ %% - 28— 2f(1)[2G5(aR) + a2r*Ga(aR)],

d
T = alt-F (G (aR)], (35)
where 7 is a new independent parameter.

C. Poloidal sections of stream surfaces

Figures 1-10 show (for = 1 and & > 0) poloidal sections y(r,
z, t) = const of the stream surfaces for the velocity field V,(r, z, t)
(3.2) for a sequence of increasing moments of time ¢ —oo, t; < £ <
«+ < tg, 00. The arrows in Figs. 1-10 show the direction of dynamics
defined by the system (3.4). The equilibria of the dynamical system
(2.4) for a given moment of time ¢ are the points of extrema of the
stream function 2 (r, z, £) (2.2). The stable equilibria are denoted as
¢j; the unstable saddle equilibria are denoted as 4; and s;. The saddle
equilibria s; belong to the boundaries of vortex rings and a; belong
to the boundaries of vortex blobs. It is evident that no equilibrium
points of system (3.4) belong to the plane z = 0 or any sphere R = R;
where G3(aR;) = 0. The vortex rings are shown in Figs. 1-8 in pink
color, and vortex blobs are shown in blue.

Remark 3. The stream function forz = —& has the form
W(rz.t) = PP[-€ — 2f ()G (aR)]. (3.6)

Formulas yield ¥2(r,2,t) = —ya(r, —2z, ). Hence, poloidal sec-
tions ¥2(r, 2, t) = C) are obtained from the sections y(r, z, £) = ~C;

scitation.org/journal/phf

12.32

9.10

5.76

-5.76

-9.10

-12.32

FIG. 1. Poloidal sections y-(r, z, £) = const of stream surfaces for ime { — —oo0, &
> 0.

by the reflection z — —z. Therefore, the figures showing the poloidal
sections ¥2(r,z,¢) = const for £ = —& < 0 can be obtained from
Figs. 1-10 for £ > 0 by the reflection z - —z.

D. Evolution of vortex blobs and vortex rings in time

Proposition 2. Each vortex blob for the viscous fluid flow
stays for all times t either in the domain z > 0 or in the domain z < 0
and never crosses the plane z = 0. For all times t, each vortex blob
stays inside a spherical shell R, < R < Ry.y, where Ry and Ry, are
subsequent roots of the equation G3(aR) = 0 and never crosses the
sphere R = Ry or R = Ryy. Inside each vortex blob, the equation

sign(z)sign(Gs(aR)) = sign(£) (3.7)

holds. Each vortex blob Dy (to) for any time t > ty contracts inside
itself: Dy(t) < Dm(to), until it collapses at some time t = t. into a
point (r =0, z = z.), where t.. and z. satisfy the equation

2+ G3 ((xZ*) = E/f(t)(- )7 (38)
provided that f(t) - 0 as t — oo,
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11.6

9.6

5.6

0.07

-5.9

-8.7

FIG. 2. Poloidal sections y.(r, z, t1) = const of stream surfaces for time t,: f{t;)
= ¢/0.005.

Proof. Any vortex blob D, intersects the axis of symmetry
r = 0. Hence, its boundary also intersects the axis 7 = 0. The bound-
ary atany time ¢ = ty satisfies the equation v, (7,7, ) = Cr. Since the
boundary intersects the axis r = 0 and the stream function (7, z, £)

vanishes at r = 0, we conclude that C,, = 0. Hence, the boundary
of each vortex blob satisfies the equation y,(r, z, £} = 0. This equation
in view of has the equivalent form

2Gs(aR) = E[f (). (39)

Since the function f(t) = exp[—a2 Jov(1)dr] > 0 and £ # 0, we get
from Eq. that, at the boundary of each vortex blob, z # 0 and
Gs(aR) = 0 for all times ¢,

The inequality z # 0 at the boundary 8D, of a vortex blob Dy,
yields that the boundary 8Dy, lies either in the domain z > 0 or in the
domain z < 0. Hence, all interior points of the blob Dy, also lie in the
domain z > 0 or in the domain z < 0. Therefore, sign(z) is the same
for all points of the vortex blob Dy, for all times ¢.

The inequality G3(aR) # 0 at the boundary of each vortex blob
implies that the boundary 8D, lies between two spheres R = Ry and
R = Ry,1, where Ry and Ry, are two subsequent roots of the equation

ARTICLE
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=

///// ( —

FIG. 3. Poloidal sections (r, z, tz) = const of stream surfaces for time f,: f(f,)
= £/0.0075.

Gs(aR) = 0. Hence, all interior points of the blob D, also lie between
the two spheres R = Ry and R = Ry,;. Therefore, sign(Gs{aR)) is the
same for all points of the blob D, for all times .

Equation is true at the boundary 8D, of a vortex blob D,
and evidently implies Eq. at the boundary. Since both sign(z)
and sign(Gs(aR)) are constant inside the whole vortex blob D, we
get that Eq. holds for all points of the vortex blob Dy, for all
times .

The coordinate z of a point (2, R) on the boundary of a vortex
blob D,(t) is uniquely defined by Eq. :z=¢/[f(£)G3(aR)). For
any fixed ty and R = Ry, all points of the arc (2, Ro) satisfying inequali-
ties §/[ f(to)G3(aRo)] < |2| < R are interior points of the blob D, (o)
because no one of them belongs to the boundary 8Dm(). Since the
function f(#) monotonously decreases when time ¢ is grow-
ing, we get that |z| = |&/[f(¢)G3(aRo)]| monotonously increases until
at some time #;, the arc collapses into the point |z| = Ry. The time
fy satisfies the equatlon f(ty) = |§/[RoGs(aRy)]|. Therefore, for all
times £ > tp and ¢ < #;, each vortex blob D,,,(¢) is embedded into the
blob Dy (%): D (t) € Dim(to).
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FIG. 4. Poloidal sections yafr, z, £3) = const of stream surfaces for time t5: f(f)
= §/0.01.

Assuming that f(t) - 0 as £ - oo, we get that the vector field
Valr,z, t) tends as £ — oo to the steady vector field

V(r,z) = 2£&, + alré, (3.10)

that has no vortex ring or blobs, see . Therefore, each vor-
tex blob for the vector field eventually collapses at some time
t = t. into a point (r = r. = 0, z = z+) on the axis of symme-
try. Since Eq. is true at the boundary of the vortex blob for
all times ¢ < ¢, and at the moment ¢t of collapse, the radius R is
R=/(r*)?+ (z*)? = |z"|, and we get that Eq. att =t yields
Eq. . u}

Remark 4. Equation G3(aR) = 0 due to formulas in has
the equivalent form
3aR
3—a?R?’
It is evident that Eq. has infinitely many roots with asymp-
totics aRy ~ (k + 1) at k » oo. The first four roots of Eq.

tan(aR) = (3.11)

scitation.org/journal/phf

i /

K -

) / \\\\\

( NN
™, y
FIG. 5. Poloidal sections y(r, z, t4) = const of stream surfaces for time ty: f(ts)
= £/0.02.

zf
/

are

&Ry ~ 57635, aR; ~9.0950, aR3 ~ 12.3224, aRy ~ 15.5146.
(3.12)

The vortex blobs are obtained from the pink domains in -3 by
rotating them around the axis z, and the vortex rings are obtained by
rotating the pink domains. The above results concerning the location
of vortex blobs are in a complete agreement with the numerical data
shownfora=1and{>0in -5 and the approximate formulas
for the roots Ry, of the equation G3(aR) = 0. Assuming that f(f)
— o0 as t — —oo (for example, if v(t) > vp > 0), we get from Eq.
that zG3(aR) — 0 at the boundary of a vortex blob as ¢t — —oco.
Hence, the boundary of a vortex blob asymptotically consists of
parts of spheres 7 = R, and R = Ry,; where G3(aRy) = Gs(aRy,,)
= 0 and a part of the plane z = 0. The limiting poloidal sections of
the corresponding domains are shown in in blue color. The
complementary pink parts of are filled by vortex rings.
-10 fllustrate dynamics in time ¢ of vortex blobs and
vortex rings. Equation for the boundary of vortex blobs implies
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\

FIG. 6. Poloidal sections y(r, z, t5) = const of stream surfaces for time ts: f{fs)
= £/0.03.

that, for £ + 0, each vortex blob stays for all times ¢ either in the
domain z > 0 or in the domain z < 0 and never crosses the plane z = 0.
This is visible also from -4, From these figures, it is evident
that, for the exact solution » the vortex rings and vortex blobs
collapse and disappear when ¢ — oo,

The more general stream functions

oy (rz.t) b i (r,z.t)

Oz 2 0z2
= P*[£ - &f(£)[b12Gs(aR) + by(G3(aR) + 2’2’ Ga(aR))]]
(3.13)

vs(rz,t) = &% + by

are up-down asymmetric if b; # 0. The corresponding exact solu-
tions to the Navier-Stokes equations are vector fields V(r, z, £)

scitation.orgljournal/phf

z f

a
3.98 4o

1.16

T

FIG. 7. Poloidal sections y(r, z, t) = const of stream surfaces for time t5: f(fs)
= £/0.07.

m — 1 and generalizing the stream functions y»(r, z, #) and y3(r,

z,t)

IV. APPLICATIONS TO VISCOUS AND
INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

A. Exact axisymmetric solutions with collinear
plasma velocity and magnetic field

Let us present some applications of the above results to plasma
physics. As known, ' equations of viscous and incompressible mag-
netohydrodynamics (MHD) have the form
av 1

1 P 2 2
— = (VxV)xV+—(VxB)xB-V|L + 2|V’ - ¥]| +v¥?V,
ot (VxV)x +py( xB)x [p+2I | ] v

of form and the pressure p(r, z, t) of form . The solutions (4.1)
are evidently up-down asymmetric if b; #0. 9B
Using results of Sec. [I, one can construct infinitely many VX (VxB)+vmV’B, (4.2)
exact solutions - with the stream functions yn(r, z, t)
containing partial derivatives Bkwl(r, z, 8 for k = 1, ..., v-V=0, vV-B=0, (4.3)
31, 123108-7
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2 z g { J
Q |
B |

il

FIG. 8. Poloidal sections yafr, z, f7) = const of stream surfaces for time t;: f{t7)
=/0.09.

where B is the magnetic field, y is the magnetic permeability, and
vm(t) is the magnetic viscosity; other notations are the same as in
Secs. | and
First we consider z-axisymmetric solutions to Egs. -

with the collinear magnetic field and plasma velocity: B(r, z, )
= AV(r, 2, t), where A is an arbitrary constant. Assume that plasma
velocity V(r, z, £) has the form with the stream function
y1(r, 2, t) satisfying Eqs. and . In Sec. 11, we proved that
there exists an infinite-dimensional space of such vector fields. Let
us verify that Eqs. - are satisfied provided that the kine-
matic viscosity v(tf) and magnetic viscosity vm(t) coincide: v (#)
= ¢(t). It is evident that Eq. holds. Using Eq. , we

| (/
?

\\,

|

]
[ ‘ r
IJ. | llh\\\l} f[

FIG. 9. Poloidal sections y,(r, z, ts) = const of stream surfaces for time tg: f(ts)

= £/0.105.

Therefore, Eq.

ov _ —v[; +Lvp —‘P—azf(

2

ot

1

takes the form

2

1- %)w(r,z,t)] +VVV.
(4.5)

Defining pressure p(r, z, t) by the formula

p(rzt) = p[C -

AZ

%|V(r,z,t)|2 +¥(rzt) + azf(l - ;;)1//1 (r,z,t)],

find (4.6)
. A2 we reduce Eq. to the equation
~(VxV)xV+—(VxB)xB= V[azf(l - —)Vll(r,z,t)].
pu PH ov 2
(4'4) E = v(t)V V. (47)
31, 123108-8
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1 | |

FIG. 10. Poloidal sections y;({r, z, {) = const of stream surfaces for time t — co.

The collinearity of vector fields B and V yields V x B = 0.
Therefore, Eq. is equivalent to

% = vm(t)V’B. (4.8)
The assumptions v(t) = v,(t) and B(r, z, £) = AV(r, z, t) yield that
Egs. and are equivalent. Equation coincides with
Eq. . We have proved in Proposition 1 that Eq. is identi-
cally satisfied by the vector field with the stream function y, (r,
2, t) satisfying Eqs. and .

Therefore, the plasma velocity V(r, z, ) , , and
and magnetic field B(r, z, t) = AV(r, z, £) and pressure p(r, z, f)

define exact solutions to the viscous and incompressible MHD
equations - .

For the constructed field-aligned solutions, magnetic surfaces
W1(r, 2z, t) = const coincide with the vortex surfaces. Let plasma
velocity has the exact up-down asymmetric form V;(7, z t)
Then, dynamics of magnetic rings and blobs which coincide with the

scitation.orglfjournal/phf

vortex rings and blobs is the same as for the exact solution stud-
ied in Sec. [II. As time t — oo, the plasma velocity V(r, 2, ) and
magnetic field B(r, z, £) tend to the steady fields [see Eq. 1

V(r.z.t) — 288 + abréy, B(r,z,t) — 2088, + allré,,  (4.9)

having constant vorticity Q@ = 2a£é; and constant electric current
J = 2aAgé.. Therefore, during the plasma relaxation, all magnetic
rings and blobs collapse and disappear, see -10.

B. Exact solutions with time-dependent plasma
velocity and constant electric current

Assume that the kinematic viscosity v(¢) and magnetic viscosity
vm(t) do not coincide and that plasma velocity V(r, z, t) has the form

with the stream function y1(r, z, #) satisfying Eqs. and
. The space of such vector fields is infinite-dimensional.
Let us verify that Eqs. - hold provided that the mag-

netic field B(r,z) = Bré,, where § = const. In the Cartesian coordi-
nates x, y, and z, the magnetic field B(r, z) is B(x, y, 2) = —fyéx+Bxé,.
It is evident that

V xB(r,z) =28¢, V-B(r,z)=0, V’B(rz)=0.
The first Eq. yields that electric current J(r, 2) = V x B(r, z) is
constant. From this equation, we find

(V xB(1,2)) x B(r,z) = 28, x (Bré,) = —28°ré, = V(—ﬁzrz).
(4.11)

(4.10)

From Egs. and , we find

(VxV)xV+ L (VxB)xB V[“Z&I/ (r.2,1) ﬁzrz]
- - = 1\ 4 - |
P pu
(4.12)
Substituting Eq.

into Eq. » we get

N _ ol vpowo g BrY, v
T V[p+2|VI ¥ -a'fy(nzt) + o + YWV,

(4.13)

Let us define pressure p(r, z, t) by the formula

2
p(r.z,t) = p[C - %IV(r,z, O +¥(r.z,t) +a2&//1(r,z, t) - p_:]
(4.14)

Substituting Eq. into » we reduce it to Eq. that is
equivalent to Eq. that due to Proposition 1 is identically satis-
fied by the vector field V(r, z, t) with the stream function y(r,
z, t) obeying Eqgs. and . Therefore, Eq. holds.

Using formula , we find

VxB= [—19‘&@ Lo, -"i‘r”—‘éq,] x (Bré,)

Phys. Fluids 31, 123108 (2019); doi: 10.1063/1.5128370
Published under license by AIP Publishing

r Oz r Or
- allll N 3% s
= —,3[ 3 5, ez] =V (r.zt). (4.15)
Equation yields
V x (VxB)=—pV x Vyi(r,2t) = 0. (4.16)
31, 1231089
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Equation and equations OB(r, z)/0t = 0 and ViB(r,2) =0
imply that Eq. is identically satisfied.

Therefore, the plasma velocity V(z, z, t) 5 ,and
and magnetic field B(r,z) = Pré, with constant electric current J
= 23&, together with the pressure p(r, z, t) form exact solutions
to the viscous MHD equations -

Taking plasma velocity in the up- down asymmetric form Va(r,
zt) , we get exact solution describing relaxation of plasma with
collapsing vortex rings and blobs in the presence of the magnetic
field B(r, z) = Bré, with constant electric current J = 2&,.

C. Exact solutions with constant plasma vorticity
and time-dependent magnetic field

Suppose that the kinematic viscosity v(¢) and magnetic viscosity
v (t) are arbitrary and that magnetic field B(r, z, £) is defined by the
formula analogous to >

1 31[/1 e 1 31/11 N ayy ,
B > %3 = - - ¢, .
(rz il r B ==& (4.17)
where the magnetic function yi(r, z, f) satisfies Egs. and

with magnetic viscosity v (f) instead of v(¢). Analogously to
Eq. , we find

(VxB)xB= V[—azfv/l(r,z, t)]

Let us verify that Egs. - are satisfied provided that
plasma velocity has the form V(r,z) = yré,, where y = const.
Evidently, we have

(4.18)

VxV(rz) =29, V-V(rnz)=0, VV(rz)=0. (419)

Hence, vorticity Q = V x V = 2y&, is constant in the space and
—2y8, x (yréy) = 2y'ré, = V(5*r)).  (4.20)

imply

- (VxV)xV=

Equations and

1 22 o ]
(V¥ xV xV+—VxB)xB=V[ r - —ywy(rzt)]
(VxV) o yr- g e
(4.21)
Substituting Eq. into » we reduce it to the equation

v 22 o 2
o - V[p SV - -y + o wn(nzt)|+vWwV.
(4.22)

Let us assume that the pressure p(r, z, t) has the form

2
p(rzt) = p[C— %|V(r,z,t)|2 +¥(r,zt) +y°7 - 0;—;1//1(r,z, t)].
(4.23)

Equation with the pressure is identically satisfied
because AV(r, z)/6t = 0 and V2V(r, z) = 0. Hence, Eq. holds.
Using formula , we find
18y, 10y, ayn,
V(2) % B(rm) = yrég x [ -2 e 2 e g |
i, R
[ Be+ Se] - yvninan,

£ = £ follow from -

scitation.orgfjournal/phf

Hence, we get V x (V x B) = yV x Vyi(r, z, t) = 0. There-

fore, Eq. reduces to Eq. . The latter equation is iden-
tically satisfied because magnetic field B(r, z, t) has the
same form as V(r, z, t) s , and , and hence,

Eq. coincides with Eq. , validity of which was proved in
Proposition 1.

Therefore, the plasma velocity V(r,z) = yré, having constant
vorticity ) = 2yé, and magnetic field B(r, z, t) with the mag-
netic function ¥ (r, z, £) satisfying Egs. and together with
the pressure p(r, z, £) form exact solutions to the viscous and
incompressible MHD equations -(4.3).

Let the magnetic field B(r, z, t) has the exact up-down
asymmetric form . -10 of Subsection describe
the evolution of magnetic rings and magnetic blobs in time . For
the exact solution, the plasma relaxes as ¢ — oo to the state

B(r,z,t) — 28&; + akré,, V(r,z) = yré,

having constant electric current J = 2afé;. As t — oo, all magnetic
rings and blobs collapse and disappear (see —10). The plasma
vorticity remains constant: {) = 2yé;.

V. CONCLUSION

We presented an infinite-dimensional space of new exact time-
dependent axisymmetric solutions - to the Navier-Stokes
equations . The solutions are analytic in the whole space R®
and exist for all times t. The vorticity field and velocity field
for the derived fluid flows are connected by Eq. 1 (VxV)
x V = —a?£Vy, and therefore are not collinear.

Applying transformations w1th Gn=0,2p, =0,and N =1

to the stream function y1(r, 2, ) = [£ - (G (aR)] (7 19), we get
an infinite sequence of stream functions,
ym(rzt) =&’ + Zb M
8"Gy(aR
=7 [5 -f(®) Zb 2(“ )] (5.1)

exact solutions V(r, z, £) to the Navier-
Stokes equations; here, m = 2, 3, .. .. The stream function ¥, (r, z, t)

for m =2 and b; = 1/ has the form the following form:
v2(r,z.t) = *[& - 2f (t)G3(aR)], where the function Gs(u) is pre-
sented in . The stream function y(r, z, t) and the corresponding
vector field Va(r, z, £) and are up-down asymmetric. The
stream functions Y (7, z, £) and the corresponding vector fields

are up-down asymmetric if at least one coefficient b, # 0 for
n=2k+1.

For the exact up-down asymmetric fluid flows , we studied
the dynamics of vortex rings and vortex blobs. -10 describe
the poloidal sections of the stream surfaces y.(r, z, t;) = const for
ten different moments of time ¢: —oo, 11, ¢3, t3, t4, 15, ts, t7, L3, +00 for
& > 0. The figures for the exact solution with the parameter
after the reflection z > —z.

The derived exact viscous flows for f() = exp[—a’ /g v(t)dr]
— 0 ast - oo tend to the steady flow V(r,z) = afré, + 2£&, that has
a constant vorticity V x V(r,z) = 2afé, and therefore has no vortex
rings and blobs. Hence, for the constructed exact solutions to the

that define by formula

Phys. Fluids 31, 123108 (2019); doi: 10.1063/1.5128370
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Navier-Stokes equations, the vortex rings and vortex blabs collapse
and disappear as t — oo.

The methods developed for the Navier-Stokes equations in .

Secs. 11 and Il are applied in Sec. to the equations of vis-
cous and incompressible magnetohydrodynamics. Three infinite-
dimensional families of exact solutions are obtained which describe
three different regimes of plasma relaxation.
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