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1. Introduction

1.1. We study exact solutions to the Euler equations of dynamics of an ideal incompressible fluid

1
%_‘tf +(V-grad)V = —;gradp, divvV =20 (L.1)

and the corresponding vortex knots. Here V (¢,x) is the fluid velocity vector field, p(¢,x) the pressure, the
density p is supposed to be constant.
As known, the Euler equations yield the Helmholtz equation [4,35] for the vorticity:

deurlV

= 1.2
e curl(V x curl V), (1.2)

which implies that the vorticity vector field curl V “is frozen in the flow” (or is transformed in time by the
flow diffeomorphisms). This yields that any knot formed by a closed vortex line at a time ¢ is transformed
by the flow into an isotopic knot.
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For a concrete solution to the Euler equations (1.1), to classify all its vortez knots IC C R2, up to the

1sotopy equivalence.

Definition 1. Moduli space S(D) of vortex knots for a solution to equations (1.1) in an invariant domain
D C R3 is a set that is in a one-to-one correspondence with all classes of isotopy equivalence of vortex knots
K C D existing for the considered solution at a given time t.

Applying Helmholtz theorem [35] we see that the moduli space §(D) does not depend on time ¢ and hence
is an invariant of the ideal fluid flow. The moduli space §(D) evidently does exist for any hydrodynamic
flow and always is either finite or countable. Indeed, this follows from the fact that there is only a countable

set of isotopy classes of smooth knots in R® [11,27].

Remark 1. According to the historical studies by Epple [13], the works by Helmholtz [35], Kelvin [31-33] and
Tait [29.30] on vortex knots published in 1850s-1880s had laid the foundation of the topological methods
of hydrodynamics. Fig. 1 illustrates the Tait’s classification [30] of simplest knots.

1.2. Equations of viscous magnetohydrodynamics in case of constant density p have the form

ov 1 1
— +(V-grad)V=——gradg+ —curl B x B + vAV, 1.3
5 T (V- grad) ; o (1.3)
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oB

= curl{V x B), divV =0, divB =0,
where B is the magnetic field, x4 the magnetic permeability, » the kinematic viscosity and A the Laplace
operator. As shown by Newcomb [25], the second equation (1.3) implies that the magnetic field B is trans-

formed in time by the flow diffeomorphisms (or “is frozen in the flow”).

Definition 2. Moduli space S(D) of magnetic field B knots for a solution to equations (1.3) in an invariant
with respect to the vector fields B and V domain D C R3 is a set that is in a one-to-one correspondence
with all classes of isotopy equivalence of knots K C D formed by the closed magnetic field B lines for the
considered solution at a given time .

The frozenness of the magnetic field B lines in the magnetohydrodynamics flow yields that the moduli
space S(D) does not depend on time ¢ and hence is an invariant of the solution to equations (1.3).

Thus we arrive at the two problems of finding the moduli spaces §(D) of (a) vortex knots for solutions to
the hydrodynamics equations (1.1) and () knots formed by the closed magnetic field B lines for solutions
to the MHD equations {1.3).

Remark 2. The authors of [12] published an existence Theorem 1.1 which states that for any link L C R?
and any A # 0 “one can transform L by o C* diffeomorphism ® of R3 arbitrarily close to the identity in any
C™ norm, so that ®(L) is a set of stream lines of a Beltrami field u, which satisfies curlu = Au in R3 7, It is
evident that the existence Theorem 1.1 [12] does not give solution to the problem of finding of the moduli
space S(R?) of all non-isotopic vortex knots for a concrete exact fluid flow. This problem was not discussed
in paper [12] and it is not the inverse problem for the one studied in [12].

1.5. We consider the steady Euler equations in the Bernoulli form
_ p, 1 0 . _
V x curl V = grad - + §|V| , divvV =0 (1.4)

and the plasma equilibrium equations in magnetohydrodynamics (V = 0):
B x curl B = grad (—pp), divB =0. (1.5)

Due to the evident equivalence of equations {1.4) and (1.5) any result concerning one of them is equally
applicable to another.

Kruskal and Kulsrud in their pioneering paper [18] of 1958 proved for equations (1.5) that surfaces
P(x) = const. “by B - Vp = 0 are “magnetic surfaces”, in the sense that they are made up of lines of
magnetic force, and simultaneously by j - Vp = 0 they are “current surfaces”. If such a surface lies in a
bounded volume of space and has no edges and either B or j nowhere vanishes on it then by a well-known
theorem [1] it must be a toroid (by which we mean a topological torus) or a Klein bottle. The latter, however
is not realizable in physical space.”

In the 1959 paper [26] Newcomb stated “It is easy to verify that the lines of force on a pressure surface
are closed if and only if i(P) /2 is rational; if it is irrational, the lines of force cover the surface ergodically.”
Here i(P) is the rotational transform connected with the safety factor g(P) [20] by the relation q(P) =
27 /i(P). The safety factor q is binded with stability of the considered plasma equilibrium [14,20].

In 1965 the analogous results for the equivalent equations (1.4) were published by Arnold in [2] and in
[3] where he added to [18.20] a statement that if a Bernoulli’s surface M intersects the boundary of the
invariant domain D then M has “co-ordinates of the ring” and “all streamlines on M are closed.”
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Remark 3. The steady equations in ideal magnetohydrodynamics (with vanishing viscosity v) have the form:

1 p 1
V xcurlV— —B x curl B = grad (2 + —|V|2) ) (1.6)
pu p 2
curl(VxB)=0, divV=0, divB=0.

For the collinear vector fields V(x) = vB(x), equations (1.6) reduce to
Y pp
(v*pp — 1)B x curl B = grad (,uﬁ+ T|B]2> , divB=20. (1.7)

It is evident that for any constant vy # +1/,/pp equations (1.7) are equivalent to equations (1.4) and (1.5).

1.4. We study in this paper the special steady solutions which do not satisfy the Kruskal and Kulsrud
conditions [18] because for them pressure { is identically constant. We consider vector fields B(x) satisfying
the Beltrami equation

curl B = AB. (1.8)

Beltrami vector fields (1.8) evidently are solutions to equation (1.5) with = const. [9,10,37]. The equivalent
hydrodynamics equilibria (1.4) are defined by equations

curlV=2\V, p=0C-— §|V|2. (1.9)

Chandrasekhar [9] and Chandrasekhar and Kendall [10] and Woltjer [37] presented an infinite basis of
solutions to the Beltrami equation (1.2) in terms of the Bessel and Legendre functions. Results of [9,10.37]
were used in many publications, see for example [3,19,24,28].

In papers [6,7] we derived an integral representation of Beltrami fields (1.8) which depends on an arbitrary
vector field T(x) tangent to the unit sphere S2.

The spectrum and the eigenvector fields for the boundary eigenvalue problems for the operator curl on
different domains in R? were studied in works [8,19,24,34,38], that use the Chandrasekhar, Kendall [10] and
Woltjer [37] representation of Beltrami fields in terms of Bessel and Legendre functions.

1.5.  Inhydrodynamics the vortex field curl V(x) is frozen in the flow; for the MHD solutions the magnetic
field B(x) is frozen in the flow. For Beltrami fields (1.8), (1.9) the vortex field and magnetic field are
proportional. Therefore our study is equally applicable to both equations (1.8) and (1.9). For concreteness,
we consider the hydrodynamic flow V(x).

In Sections 2-3 of this paper we construct exact solutions for the axisymmetric fluid flows with velocity
vector fields

Loy, 10y, M (1.10)

V= \ i
r Oz +r8re’;+ y ¥

in the cylindrical coordinates r, 2, ¢. The solutions are presented in terms of elementary functions and not
in terms of the Bessel and Legendre functions as in [9.10,37]. Here 9(r, z) is the Stokes stream function [4]
and &., &,, &, are the unit orts in the directions of coordinates r, z, .

Remark 4. The spheromak plasma equilibrium B, (x) was derived for the first time by Woltjer [37] and was
applied by him to model the Crab Nebula. The corresponding magnetic field has form (1.10) with the flux

function
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W(r,z) = Ar? (%)3/2 J3/2(AR), (1.11)

where R = v/r2 4 22 and J3/9(u) is the Bessel function of order 3/2. The spheromak magnetic field B4(x)
(1.10)—(1.11) is considered either in the whole space R? or in a ball R < a provided that parameter X is
defined by the equation J3/2(Aa) = 0. The term “spheromak” for the plasma equilibrium inside a sphere was
first introduced by Rosenbluth and Bussac in 1979 paper [28]. The review of the studies of the spheromak-like
plasma configurations is given in [16].

1.6. In Section 4 we present a method for constructing the moduli spaces of vortex knots S(D) for the
axisymmetric Beltrami fields (1.10). The method is based on the investigation of the functions of periods
Te(H) (in a special time variable T) of closed trajectories of certain 2-dimensional dynamical system in
invariant domains D C R%. The system is obtained by: (1) a reduction of the main axisymmetric dynamical
system in R3

%)tf = curl V(x) (1.12)
for the considered fluid flow in the cylindrical coordinates r, z, ¢ to a 2-dimensional system in the plane R2
with coordinates r, z; (2) a special choice of the time variable 7 satisfying equation d7/dt = H(r, z)/(27r?)
that becomes singular at the boundaries H(r, z) = 0 of the invariant domains Dj. The function H(r,z) is
a first integral of the dynamical system (1.12) and coincides with the stream function ¢¥(r, z) (1.10). The
function of periods 7(H) is connected with the safety factor q(H) and the pitch p(H) of the corresponding
helical trajectories of curl V(x) on the invariant tori T% by the relations

r(H) = a(H) = 5-p(H). (1.13)

All vortex knots for the derived exact axisymmetric fluid flows are torus knots K, 4 that correspond to
the rational values of function of periods 7(H) = p/q. Closed vortex lines with 7(H) =n and 7(H) = 1/n
where n is any integer form “unknots” and are isotopic to a trivial embedding of a circle. Therefore the
moduli space S(D) of vortex knots is the set of all rational numbers in the range of function 7(H) where
numbers n and 1/n are excluded.!

Note that one cannot find explicitly even a single value of any function of periods 7. (H). However we have
calculated using two limiting procedures the exact values of the lower and upper bounds for the ranges of
the continuous functions 74 (H) for each invariant domain Dj. The both bounds are finite positive numbers
and are presented by exact formulae containing the roots of equations tanr = Q(r) where Q(r) are certain
rational functions. Qur construction of the moduli spaces §(D) is based on the derived lower and upper
bounds for all functions of periods 7 (H) for k = 1,2,---.

The methods of this paper can be applied to some other partial differential equations studied in [5].

in exact form for the spheromak solution.

In Section 8 we demonstrate that the moduli space of vortex knots S(R®) for the steady spheromak
solution V(x) to the Euler equations (1.1) in R3 is naturally isomorphic to the set of all rational numbers
p/q in the interval

T1x

~ 0.8252, 1.14
2(r2, — 2 (1.14)

L: 0b<7T< M=

! For the analogous MHD solutions the moduli space S(D) of magnetic field knots is the set of all rational numbers in the range
of the safety factor q(H) where numbers n and 1/n are excluded.



26 O. Bogoyavlenskij / J. Math. Anal. Appl. 450 (2017) 21-47

where 71, ~ 2.7437 is the first positive solution to equation tanr = r/(1 — r2). The interval I; (1.14) is the
complete range of function of periods 7(H) in the whole space R3. The complete range of the pitch function
p(H) is 27 - I.

The same moduli space S(R?) exists for the magnetic field B knots for the spheromak plasma equilibrium
solution to equations (1.5) and for the MHD equilibrium solutions to equations (1.7).

1.7. Moffatt stated in [21] on page 129 that for the spheromak fluid flow V, (that is one of the considered
flows) in the first invariant ball B3 the pitch p (that is p = 27q) takes all values from zero to infinity, hence
q € (0,00). The same claim is made in [22] (see pp. 30-31) for the spheromak magnetic field B,. As a
consequence Moffatt affirmed that for the spheromak magnetic field B, (and for the analogous fluid flow
V) the closed magnetic field lines (vortex lines) represent all torus knots K, , for any rational values of
q = p/q. The analogous statements are made on page 29 of (23] for the general axisymmetric fields B(r, z).
We prove in Section 7 that these statements of [21--23] are incorrect and that the safety factor q for the
spheromak field in le takes values only in an interval of a small length £ &2 0.110017. Therefore the Moffatt
statements of [21-23] that the pitch p (or the safety factor q = p/2r) takes all values from the infinite
interval (0, 0c0) do not correspond to the facts.

For the spheromak flow V(x) (1.10)—(1.11) in the whole Euclidean space R3, equation (1.14) yields that
only those torus knots K, , are realized as vortex knots for which 0.5 < p/q < 0.8252.

1.8. In Section 9 we construct the moduli spaces of vortex knots §,,,(B3) (m = 1,2, - . -) for the spheromak
fluid flows V,,,(x) inside a ball B3 of radius a which are tangent to the boundary sphere S2. The integer
m > 1 is equal to the number of invariant under the flow Vy,,(x) spheres Szk of radii ax < a inside the
ball BS. We show that the moduli spaces of vortex knots S,,(BZ) and S;(B?) are different for m # ¢, do not
depend on the radius a and that S,,(B3) approximate S(R*) when m —s oo.

2. Exact solutions to the Euler equations

2.1. The change of variables Z; = Az; yields the equivalence of eigenvector fields for the curl operator
(1.9) in R® with eigenvector fields corresponding to the eigenvalue A = 1. Therefore we will consider first
Beltrami fields with A = 1:

curl V(x) = V(x). (2.1)

We will return to the case of general eigenvalues A in Section 9.
As is known [9.10], for any constant vector A the vector fields

V(x) = curl(f(x)A) + curlcurl(f(x)A), Af(x)+ f(x)=0 (2.2)

satisfy Beltrami equation (2.1). Here A is the Laplace operator and f(x) is its eigenfunction.
For the spherically symmetric eigenfunctions f(x) = f(R) the Helmholts’ equation Af = —f takes the
form

2 f = F (2.9

The analytic spherically symmetric eigenfunctions f(R) are proportional to

sin R

N (2.4)

Gi(R)
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Using identity curlcurl S(x) = —AS(x) + grad div S(x) and equation (2.3) we find for vector field (2.2):
V(x) =curl(fA) + fA + graddiv(fA). (2.5)

Using identities curl(fA) = grad f x A and div(fA) = grad f - A = Va f, we transform vector field V(x)
(2.2)-(2.5) into

V(x) = fA + (grad f) x A + grad(Va f). (2.6)

Derivative of f(R) = G1(R) (2.4) in the direction of vector A is VAG; = grad G; - A = (x- A)G4, where
1 dGl _ 1 sin R

= Go(R) = IR -2 (cosR 7 ) . (2.7)

Function G3(R) is analytic. Indeed, using classical series for sin R and formulae (2.4), (2.7) we get the

convergent series

Ga(R) = —22 ”QZ:?)R. (2.8)

n=0

Hence we ﬁnd G’z(O) = —1/3. Using Watson’s formula for the Bessel functions J,11/2(R) [36], p. 56, we
find G2(R) = —/n/2R™3/2J3)5(R

Lemma 1. Function Ga(R) (2.7) satisfies equation

4
Gy + —R-G’z = —G,. (2.9)

Proof. Function G1(R) (2.1) satisfies equation (2.3). Substituting G{ = RG (2.7) into equation (2.3) we get
(RGq) 4 2G2 = —G, that is RGY + 3G2 = —G;. Differentiating this equation and substituting G} = RG,
(2.7) we get RGY + 4G5 = —RG3. This equation evidently yields equation (2.9). O

2.2. For function f(x) = G1(R), using grad G1(R) = R~1G{(R)x we get the vector field V;(x, A) (2.6):

el G LG

Using equation (2.3) for function f(R) = G1(R) we find

1dG> 1 (G 1 e 1 B
Eﬁ = E (f —-——R‘E +G1 = ﬁ(3G2+G1)—G3- (2-11)
Function G3(R) is analytic. Indeed, using equation (2.11): G3 = G4/R and series (2.8) we derive the

convergent series G3(R) =45 7 ((-1)" %RZ" Hence we get G3(0) = 1/15.
By induction we define functions

_ 1dGn-1(R) .
Gn(R) = R dr N=203,---. (2.12)
Formulae (2.8), (2.12) imply that all functions Gn(R) are analytic and Gn(0) # 0. For functions Gy (R)

we evidently have



28 O. Bogoyaulenskij / J. Math. Anal. Appl. {50 (2017) 21-47

oG
B_ZN =2GnN+1, (2.13)

in the Cartesian coordinates z, y, z.
Substituting formulae (2.7) and (2.11) into (2.10) we get for vector A = &,

Vl(X) = (G1 -+ Gz) é,+Gyx x &, + (X . éz)G3X = (214)
(yGa + 22G3)8; + (—2Ga + y2G3)éy + (G1 + G2 + 2°G3)é,,

where &, &,, &, are the Cartesian unit orts. This formula together with the pressure = const. gives an
exact solution to the plasma equilibrium equations (1.5). Vector field (2.14) coincides with the “spheromak”
magnetic field By(x) (1.10)~(1.11) which was first derived by a different method by Woltjer in [37]. The
same vector field Vi(x) (2.14) together with the pressure p(x) = C — p|V1(x)[2/2 defines the spheromak
exact solutions V,4(x) to the steady Euler equations (1.4).

2.3. Let us use cylindrical coordinates r, ¢, z which are connected with the Cartesian coordinates z, v,
z by relations r = /2% + y2, x = rcos g, y = rsing. The corresponding orthogonal unit orts are

~

&;, @&, =cospé; +sinpé,, é,= —sinpé,+cospsd, =&, x &,. (2.15)

The eigenfunction equation for Laplace operator for the axisymmetric functions f(r, z) takes the form

Af(,2) = for+ 2hot for =~ 1, (216)

where f., frr, .. mean partial derivatives. The change of variables ¥ = r/), Z = z/) establishes equivalence
of eigenfunctions (2.16) with eigenfunctions corresponding to an arbitrary eigenvalue —\2. Therefore it is
sufficient to consider only eigenfunctions (2.16) with eigenvalue —1,

The eigenfunction G1(R) (2.4) has the form

sin\/r? + 22

e 2.17
Ve 4 22 (2.17)

Gi(r,z) =
Since equation (2.16) is invariant under translations z — z — zp we get that any shift G1(r,z — z) in
the z-direction also satisfies equation (2.16). Due to the linearity of equation (2.16) we obtain a family of
eigenfunctions

N —
; sin /72 + (z — z)?
In(rz) =) ar——Fe—ee—o—, (2.18

1; Vet (2 — z)? )

where ag, 2 are arbitrary constants.

2.4. The linearity of the both equations (2.2) and (2.16) and their z-translational invariance yield that
together with the exact solution G (R) all its z-derivatives 8"G1(R) /02" of an arbitrary order n are solutions
to the Helmholtz equation (2.16) and the corresponding vector fields V,,1(x) = "V 1(x)/8z" are solutions
to the Beltrami equation (2.1). Using formulae (2.12) and (2.13) we get the following exact solutions to the
Helmholtz and Beltrami equations:

_ 6G1 . 8V1 (X)

fa(x) = 2Ga, Va(x) = e ((z + y2)Gs + £2°Gy)é, + (2.19)

((y —z2)Gs + yz2G4)éy + 2(G2 +3Gs + 22G4)éz,
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9%V (x)
0z2

(~zGs + 2(3y — 22)G4 + y2°Gs5)8y + (G2 + (2 + 3)G3 + 2(z + 5)G4 + 2°Gs)é,.

G

f3(x) = 2 = Gz + 2°Gs, V3(x) = = (yGs + 2(3z + yz)Ga + 22°Gs)é, +  (2.20)

The steady vector fields V(x) and V3(x) together with the pressure px(x) = C — p|Vi(x)|?/2 define exact
solutions to the Euler equations (1.1). The same is true for their z-derivatives of an arbitrary order n.

Remark 5. The most detailed analysis of the force free magnetic fields B and Beltrami flows is presented
in [8,19]. These works extensively use the Chandrasekhar, Kendall and Woltjer [9,10.37] general solution of
the Beltrami equation in terms of the Bessel and Legendre functions. The exact solutions (2.19) and (2.20)
are presented in terms of elementary functions and are absent in the works [#,19].

2.5. For any eigenfunction f(r, z) satisfying equation (2.16) we consider the &,-axisymmetric vector
field S(x) = f(r,z)é, which satisfies equation AS(x) = —8(x) in view of equation (2.1G). Therefore we
define vector field V(r, z) by formula analogous to (2.5). We have the identities curl(f(r, 2)&,) = —f,&,,
grad div(f(r, 2)é.) = frz€r + f,.&.. Substituting this into formula (2.5) we get V¢(r, 2) = = f&, + fr.&r +
(f.» + f)&.. Transforming the last term here according to equation (2.16), we find

(rf,)rés. (2.21)

==

. 1 R
Vf(T‘,Z) = _.fretp + ;(rfr)zer -

For the Cartesian coordinates z, y, z we have %ﬁf = %f cosyp — r(—(i{f sin ¢, %‘f = %f sin @ + r%ﬁt‘i cos .

Hence using formulae (2.15} we find

i(mé +yé +zé)—gé +rd—‘pé +%é
g e T Y T AR = S T % T a o
Therefore dynamical system (1.12), (2.21) takes the form
dr 10 af dz 190 of dp  198f
dt  rdz <T8r>’ ¢t ror (TE>’ dt ~ ror (222)
and describes dynamics along magnetic field lines.
It is evident that system (2.22) has first integral
0f(r, z)
H =— 2.2
(r2) = —r L2, (223)

and therefore its dynamics occurs on invariant submanifolds which are defined by the equations H{(x) =
H = const. The dynamical system (2.22) takes the form
dr 10H dz 10H dp 1

—_—=———, —== = —H. 2.
dt roz' dt ror’ dt r? (2:24)

Remark 6. First integrals (2.23) corresponding to the exact solutions (2.19) and (2.20) are obtained from

the first integral H(r, 2) = —r0G1(R)/0z by the z-differentiation of the first and second order respectively.

The same for the corresponding dynamical systems (2.24).
3. Invariant domains and equilibrium points
Let us consider the exact solution to the steady Euler equations (1.4) that is the vector field V;(x)

(2.14) with pressure p(x) = C — p|V1(x)|?/2. The axisymmetric form of this vector field is (2.21) with the
eigenfunction f = G1(R) = (sin R)/R (2.4). The function H(r, z) {2.23) takes the form
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Fig. 2. Plots of functions y; = tan, yp = r and y3 = r/(1 — r2).

1 dG1(R)
— _p2 1 | — 2
H(r,z) = —r B 4R r*G2(R). (3.1)
Using this formula and formulae (2.7), {2.11):
_1dGi(R) 1 sin R
G2(R) = R 4R "I cos R 7 ) (3.2)
_1dGy(R) 1 5 Sin R
G3(R)—R B Rt (3 - R*) 7 3cosR |,
we derive
OH = ,dGR R ,
% - " ar 9., =" 2G3, (3.3)
O0H dG2 OR
—_— ——2 — 2—— = - - 8 .
o rGy — 7 iR or 2rGy — r°Gs
Substituting formulae (3.3) into (2.24) we find
dr 18H dz  10H _ 9
E = —;—a—z = T'ZGg(R), 'a—t = ;E‘ = —2G2(R) el i Gg(R), (34)
de 1
FTi r_zH' (3.5)
The function H(r,z) = —r?Gg(R) is zero on the line r = 0 and on infinitely many semicircles R = Ry,
r > 0 where Go(Ry) = 0 that in view of (3.2) means
tan Ry = Ry. (36)

This equation has infinitely many solutions as follows from the plots of functions y; () = tanr and y5(r) = r,
see Fig. 2. The equation tan R = R together with its smallest positive root “krg = 4.493” first appeared in
[28] where the term “spheromak” for a plasma equilibrium inside a sphere was first introduced.
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Fig. 8. Invariant domains D, of dynamical system (3.4}, its equilibrium points and separatrices.

Solutions Ry to equation (3.6) satisfy the relations

1 1
km < R < (k+ 5)7r, R~ (k+ 5)7r, k — oo. (3.7)
The first four numerical solutions are
Ry~ 44934, Ry~ 7.7253, Rz~ 10.9041, R, = 14.0662. (3.8)

These numbers coincide with the first four “values of /\S) on the ball B3(1)” presented in [8].

We consider the dynamical system (3.4) in the invariant domains Dy : 72 + 22 < R?, 7 > 0 and D, :
RZ_ | <r*+2> < RZ, r >0, n > 2. Function H(r,2) = —r2Gy(R) is zero on the boundary of each
domain D,,, see I'ig. 3.

Lemma 2. Dynamical system (5.4) in each invariant domain D, has only one equilibrium point (1., 2z = 0)
that is the point of a non-degenerate mazimum of function H(r,z) in each domain Dar,1 and the point of
its non-degenerate minimum in each domain Day. Function H(r,z) > 0 in domains Dag41 and H(r,z) < 0
in domains Day. All equilibrium points (rn.,z = 0) are centers and all trajectories of system (3.4) in each
invariant domain D, are closed curves.

Proof. Let us find values of function G3(R) at the points R,,. Substituting G(R,) = 0 into formula (2.11)
we get
sin R, . 1
= —sign(sin R, ) ————
Foi gn(sin R,) NS

Here we used identity sin? z = tan® z(tan® z + 1)~ and equation (3.5). Hence functions G5(R) and G3(R)
cannot be zero simultaneously. Therefore equations (3.4) yield for their equilibrium points: z = 0 and

G3(Rn) = - # 0. (3.9)
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2G2(r) + 72G3(r) = 0. The latter equation by virtue of formulae (3.2) is sinr(1 — r2)/r — cosr = 0 and has
the equivalent form

(3.10)

t = .

L
The plots of functions y;(r) = tanr and y3(r) = r/(1 — r?) in Fig. 2 clearly show that equation (3.10) has
infinitely many solutions

1
(k — 5)7r < Pw < kW, TR = kT, k — o0. (3.11)
Comparing formulae (3.7) and (3.11) we see that in each invariant domain Dy, there is only one equilibrium
point (rg«, 2k« = 0). The invariant domains D, and equilibrium points (7., z = 0) are shown in Fig. 3.
At the equilibrium points r, = R,, z, = 0, we find from equations (3.1), (3.2)

sin 7, sin 7, T
H(ry, z) = —COSTy = 1- .
T T tanr,

Substltutmg here equation (3.10) we get H(r., z.) = r,sinr,. Using identity sinr = sign(sinr)|tanr|(1 +
tan?r)~1/2 and substituting (3.10) we get

re

H(ri,2.) = H, =7, sinr, = sign(sinr,) ———=——. 3.12
(rer2) gusinr.) e (3.12)
Using formulae (3.1) and (3.3) we derive
8H 2 2 3 dGs
g _8Q. =g 22 1
oy~ H TG =1 R AR’ (3.13)
62 H 2 20H 3r’dG: | r* dG ¢ d’G
O Ly, 2O 974G, iy i, o0
or r rd R dR ' R dR R’ dR
0?H a(r*G3) O°H 9 d(r?Gs)
— =y 9 = — B P —L 1
8z0r T 0 B rls -2 0z (3.15)
At the equilibrium points (7, z, = 0) we have 8H/8r = 0. Hence from (3.13) we find
dG 2
200, = p, 22 _ 2
T*G3 = Tx dR 'rf H* (316)
Substituting formula (3.16) into equation (3.14) and using r. = R, we get
0*H 6 2d2G2
a2~ T TegmE (3.17)
Substituting into (3.17) d?Gs /dR? from equation (2.9) and using equations (3.1) and (3.16) we find
8%H 6 4 dG, 2 (2-1r2)
_———__H* = 1 :_H*_ x = . H*' h
or? r? r (R dR +G2) r2 H r2 (3.18)
From equations (3.15) and (3.16) we find at z, = 0:
2 2 2
O°H OH _ —r2Gy = —=H,. (3.19)

820r 0. 822 72
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For all solutions 7, to the equation (3.10) we have r2 > 2. Hence formulae (3.18), (3.19) and (3.12) prove
that the equilibrium points (r., z. = 0) of system (6.3) are non-degenerate local minima of function H(r, z)
if H(r,,0) = H. = r,sinr, < 0 and local maxima if H, = r,sinr, > 0.

Formulae (3.1) and {2.8), G2(0) = —1/3, show that H(r, z} > 0 in the domain D;. Since Ry, Ry, R3, - - - are
subsequent zeroes of function G3(R) and dGy/dR(R,) = R,G3(R,) # 0 (3.9) we get that function G4(R)
changes its sign near each zero R = R,,. The same is evidently true for function H(r, z) = —r?G2(R) (3.1).
Since boundary of each domain D,, contains two semicircles R = R, and R = R,,_1, we find by induction
that H(r, z) > 0 in domains Dag4; and H(r, z) < 0 in domainsg Dgy.

Since function H(r,z) does not have other critical points inside D, we find that all curves of constant
level of H(r, z) are closed curves Cg, H = const. Since H(r, 2) is a first integral of system (3.4) we get that
all trajectories of the system in invariant domain D,, are closed curves Cy that go around the equilibrium
point (rp., 2 = 0). Therefore all equilibrium points (rn«, z = 0) are centers. [l

Lemma 3. All equilibrium points (r =0,z = £R,) are saddles. The semicircles R = R, are separatrices of
dynamical system (3.4) which go down from the equilibrium points (r = 0,z = R,,) to the equilibrium points
(r=0,2=—R,) ifn=2k+ 1 and in the opposite direction if n = 2k.

Proof. At the equilibrium points (r =0,z = gR,,), 6 = %1, dynamical system (3.4) has the eigenvalues
Ar = 0R,G3(Ry), Az = —20R,G3(Rn). (3.20)

Therefore (since G3(R,,) # 0, (3.9)), all equilibrium points (r = 0, z = ¢R,,) are saddles. Their separatrices
are the semicircles R = R, and open intervals on the axis z, 7 = 0 between these equilibrium points, see
Fig. 3.

As above, since Rj, Ry, R3,--- are subsequent zeroes of function Gg(R) and Gz(0) = —1/3, we find
from formulae G3(R) = R™'dGs(R)/dR (3.2) and G3(R,) # 0 (3.9) that G3(R;) > 0, G3(Rax) < 0,
G3(Rak+1) > 0. Hence formulae (3.20) yield A\(r = 0,2 = —Ragt1) < 0, \r(r = 0,2 = Rag41) > 0,
Ar(r =0,z = —Rg;) > 0, An(r = 0,z = Rgi) < 0. Hence dynamics on the semicircles R = Rop41 is down
and dynamics on the semicircles R = Ry, is up, see Fig. 3. [

Corollary 1. Rotation along the closed trajectories in the invariant domains Dapy1 18 clockwise and is

counter-clockwise in the domains Day.

Proof. Boundary of each domain D,, contains two semicircles R = R, and R = R,,_1. Dynamics on these
separatrices is shown in FFiz. 3. Hence by the continuity we get the clockwise rotation along closed trajectories
in domains Do+ and the counter-clockwise rotation along trajectories in domains Dgg. O

4. A method for finding the moduli spaces of vortex knots

4.1, We call a dynamical system in an invariant domain D C R3 non-degenerately integrable if its
trajectories are either quasi-periodic or periodic curves on the invariant tori T> C R® and topology of
trajectories is not the same for all tori that means the topology is changing from one torus to another.
Lemma 2 yields that all invariant submanifolds H(r,z) = const. # 0 of system (3.4)—(3.5) are tori T% =
Cy x 8! C R3, where circle S* corresponds to the angular variable .

To prove that topology of trajectories on the tori T% is changing from one torus to another we choose
another time variable 7 that simplifies the analysis:

dr H

— = . 4.
dt  2mr2 (4.1)
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It is evident that topology of trajectories does not depend on their parametrization and is the same in time
t and time 7. In the new time 7, the dynamical system (2.24) takes the form

dr 2mr OH dz  2nr OH

- Ho @ B (4.2)
dy

The main advantage of the time change (4.1) is that the 7-derivative (4.3) of the angular variable ¢ is a
constant equal to 27.

System {1.2) evidently is a reparametrized Hamiltonian system with Hamiltonian function H(r,z) =
—rf.{r, z). The invariant submanifolds of system (2.24) defined by equation H(r,z) = 0, namely all semi-
circles R = R, and the axis z, »r = 0, become the singular subsets of system (4.2).

Corollary 2. All trajectories of the dynamical system (4.2) are closed curves and their rotation around the
equilibrium points (r,.,0) is clockwise.

Proof. Applying Lemma 2 we get that all trajectories of system (4.2) in any invariant domain D,, are closed
curves that go around the equilibrium point {r,.,0). The time change (4.1) preserves direction of time in
invariant domains Dsy; where H(r, z) > 0 and reverses it in the domains Doy, where H(r, z) < 0. Therefore
using Corollary 1 we get that the rotation along all closed trajectories of system (4.2) is clockwise. 0O

4.2. Lemma 2 yields that in each invariant domain Dy all trajectories of system (4.2} are closed curves
Cy: H(r,z) = H. For each invariant domain Dj, we define a function 74(H) equal to the minimal period
of trajectory Cy C Dy, of system (4.2). Functions 7 (H) are defined in different domains 0 < |H| < |H |k«
and have different ranges. Since trajectories Cy continuously depend on parameter H and system (4.2) is
smooth in the interior of each domain Dy we get from the general theory of dynamical systems [15] that
functions 7 (H) are continuous.

Trajectories of system (4.2)—(<.3) move on invariant tori T% = Cy x S in the 3-dimensional space r, z,
© where the circle ' corresponds to the angular variable pmod(27).

Proposition 1. Topology of trajectories is changing from one torus 'JI‘%lrl to another T%Iz if and only if the
function of periods T(H) is not constant.

Proof. If the continuous function 7(H) # const. then it takes all rational and all irrational values in some
interval (a, b).

Let a closed trajectory Cy, have a rational period 7(H;) = p/q. During the time 7(H;) the angular
variable ¢ is changed for 2n7(H;) because dp/dr = 27. After ¢ complete turns of trajectory around the
closed curve Cy, the angular variable ¢ is changed for g(2r7(H1)) = 2mp, because 7(H;) = p/q. Hence all
trajectories on the torus T} are closed curves.

Now let a closed trajectory Cy, have an irrational period 7(Hjy). Then after any N complete turns of
trajectory around the closed curve Cg, the angular variable ¢ is changed for 2n N7(Hz). For any integers
N and M we have 2n N7(H3) # 2nM because 7(Hz) is irrational, 7(Hy) # M/N. Hence all trajectories on
the torus T%, are non-closed infinite curves which are dense on T%,.

Hence topology of trajectories is changing from one torus to another if function of periods 7(H) is not
constant.

If 7(H) = 7 = const. then trajectories on all tori either are all closed (if 7 is rational) or are all
dense (if 71 is irrational). This means that if function 7(H) is constant then all trajectories have the same

topology. O
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Structure of knots:

All trajectories on the torus T% with the period 7(H) = p/q (p and q are coprime) are closed curves
which make ¢ complete turns around the meridians and p complete turns around the longitudes of the
torus T%. Hence they form a torus knot K, .

For example, all trajectories on T% with the period 7(H) = 3/4 make 4 turns around the meridians and
3 turns around the longitudes. They form a non-trivial torus knot K3 4 that is shown in Fig. & below.

A torus knot K, , and its mirror image K, ; have opposite directions of rotation around the meridians.

Corollary 3. If for some integers p and q a torus knot K, o is realized by vortez lines for the spheromak fluid
flow then its mirror image K, 4 is not realized.

Proof. Indeed, by Corollary 2 all closed trajectories of dynamical system (4.2) rotate in the clockwise
direction, so the opposite (counter-clockwise) rotation is not realized. O

4.8. The main method

To construct the moduli space S(D) of vortex knots it is necessary to find the ranges of all functions of
periods 7 (H) for the invariant domains Dy, for k = 1,2, 3, ---. Indeed, using the proof of Proposition 1 and
Corollary 3 we get that all rational numbers p/q from those ranges define all torus knots K, 4 realized by
vortex lines for the spheromak flow. To find the ranges of the continuous functions 7 (H ) we calculate their
limits

li H li H 4.4
g e(H), ol 7 (H), (4.4)
where Hy. are the values of function H(r, z) at the equilibrium points (ri., zgx«). Then since the limits occur

to be different and the functions 73 (H) occur to be monotonous in their domains we get their ranges between
the above limits. This leads to the construction of the moduli spaces S(R®) and &,,,(B2) in Sections 8 and 9.

5. Limits of functions 7,(H) at H — Hy.

Lemma 4. Functions of periods 7.(H) have the following limits at the equilibrium points (Tg«, zks = 0) in
the tnvariant domains Dy:

. _ . Tk
Hin}{k‘ T(H) = 1(Hgy) = —\/W' (5.1)

Proof. System (4.2) implies that all equilibrium points with 7 # 0 and H # 0 satisfy equations H/dz = 0,
OH/dr = 0. Hence all equilibrium points with r # 0 are extrema of the function H(r,z). We have shown
in Lemma 2 of Section 3 that these extrema necessarily are either non-degenerate local minima or non-
degenerate local maxima of function H(r, z) and that in each domain Dy, there is only one local minimum
or local maximum.

Dynamics of any nonlinear dynamical system 7 = fi(r, 2), # = fa(r, z) near its non-degenerate equilibrium
point a(rg, z0) is approximated by the linear system in variations [15]:
0f2

Jor + E(a)dz, (5.2)

dir _ 9fy,
dr = 8r

)or + %(a)dz,

déz o 6f2

A e
where dr(t) = r(t) — ro, 82(t) = 2(t) — zp. For system (4.2) we have at the equilibrium points ax(r = ri,,
z=0):
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Bfl -0 % _ _27T7‘k* 32H 8f2 _ 27T’I“k* 62H % -0
or ' 8z  Hg, 822’ Or  Hy, o2’ 8z
Hence the corresponding system in variations (5.2) yields
d*r (27 \° O°H ( )52H (a0)ér
dr? Hy., Gz k) g (k0T
Substituting here the values of partial derivatives (3.18) and (3.19) we get
d?sr g2, —2
o 8p2lkr T .
= 8w . T (5.3)

All solutions to equation (5.3) have the form dr(7) = Asin(2nwiT + ¢) where wj, = V2(rl, = 2)/7k«. The
solutions evidently are periodic with period Ty = 1/wy. Since the limit of the periods of oscillations of a
non-linear system near its non-degenerate center is equal to the period of oscillations of the corresponding
system in variations [15] we get the equation (5.1). 0O

Remark 7. Since in each invariant domain D; there is only one point of extrema (Tkxs k4 = 0) we obtain
that this point is a global minimum or maximum of function H (r, z) for the whole domain Dy. Hence we get
that all curves Cy of constant levels H(r, z) = const. of function H consist of one component. There is a one
to one correspondence between the curves Cy C Dy, and values of function H(r, z) in domain Dy: different
curves correspond to different values of function H. For the complete system (4.2)—(4.3) we conclude that:
(a) constant levels of first integral H(r, z) = const. # 0 define invariant tori T2, = Cg x S' € Dy, x S! € R?
and (b) different tori in Dy x §* correspond to different values of H(r, z).

Remark 8. The first four positive numeric solutions to equation (3.10) are
T1e R 27437, 719, = 6.1168, r3. =~ 9.3166, 74 ~ 12.4859. (5.4)

Using numerical values (5.4) we find values of function H (7., zk«) (3.12) at the first four equilibrium points
(’I"k*, Zx — 0):

Hi,~1.0631, Hj, ~—1.0131, Hs, ~1.0059, H,, ~ —1.0037.

Formulae (3.11), (3.12) yield that function |H(ri.,0)| is monotonously decreasing to its limit 1 when
k — o0.

Remark 9. Using numerical values of rg. (5.4) we find from (5.1) the first four values of the limit periods
Tk(Hk*)

Tl(Hl*) ~ 08252, TQ(HQ*) ~ 07268, T3(H3*) ~ 07154, T4(H4*) =~ 0.7117. (55)

Function r/4/2(r? — 2) is monotonously decreasing from co at r = v/2 to 1/v/2 ~ 0.7071 when r — oo.
Therefore the limit periods 74 (Hy.) = 7x4/+/2(ri, — 2) (5.1) have different values at the different critical
points (7k«, zkx = 0). Evidently formula (5.1) yields

lim 7 (Hge) = (5.6)

k—o00

Sl -

because ri. — 00 at k — oo, see (3.11) and Fig. 3.
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6. Limits of functions 7 (H) at H — 0

Lemma 5. Functions of periods have the following limits in domains Dy:

1

Dl : Hlﬁo Tl(H) =1 = ZI‘-RI (61)
. 1
D, k>2: HI}EI)OT]C(H) =pr = g(Rk — Rk—l)- (6.2)

Proof. Dynamical system (3.4)-(3.5) after the time change (-.1) takes the form

dr Gs(R) dz P Gs (R)

—=-2 — = .

I Tz Ga(R)’ = 4w -+ 277 GalB)’ (6.3)
de

Formula (3.9) yields G3(R) 5 0. Hence system (6.3) is singular at the semi-circles 72 + 2% = R, 7 > 0 on
which Ga(Ry) = 0.
System (6.3) evidently has invariant line L : r = 0 on which the system takes the form
dr dz
—_ = — =47, .
dr 0 dr i (6:5)

For the absolute value V(r, z) of the vectors (6.3) we find

Lo 1 (rdr\? rd2\?\ _ , ,G2 2Gs | 4G}
mv (r,z)—m((a) +<a;)>—TZG—§+4+4’I" G—2+7‘ E,g— (6.6)
2 2
T 22 4Gs3
T (23 + 4G3Gl) + 4+ 1452
Gg( 8 28 G2

At the points Py : 7 =0,z = £Ry, R = Vr? + 22 = R}, we get from (3.9)

2°GE + 4G2G3 = }m > 0. (6.7)
Hence in an e-neighborhood of each point Pyt we get from (6.6), (6.7): V > 4.

Function H(r,z) = —r?G2(R) is zero on the boundary of each domain D;. When first integral H (ry2)
tends to zero, the trajectory Cy : |H(r, 2)| = ¢o < €2 in an invariant domain Dy, is in Ce-neighborhood of
the boundary of this domain. Boundary of domain D; consists of the segment [y : r = 0,-R; £2< R;and
the semi-circle Sy : 724+ 22 = R%, r > 0. Trajectory Cy at H —» 0 moves near the boundary 8D; = I, US:
and consists of an arc A, of length ~ 2R near the segment I;, two small arcs B, 4 of length ¢ near points
P14 and an arc C) of length ~ mwR; near the semicircle S;. For the speed V (6.6) of dynamics along these
arcs we have from (6.5) and (6.6)—(6.7) at H — 0:

Va, —>4n, Vg, >4n, € —0, Vg —>co. (6.8)

The period 71 (H) of trajectory Cy is equal to the total time of dynamics around the closed curve Cy that

18

2R1 £ £ WRl
_ i L 6.9
Va, Vb, Va,_ Ve (6.9)

Tl(H)

Using formulae (6.8) we find that function 7, (H) (6.9) has the limit value (6.1) at H — 0.
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Fig. 4. Phase portrait of dynamical system (4.2) in the invariant domains D;, D2. All rotations are clockwise.

Boundary of domain Dy, consists of two segments [y 4 : 7 =0, Rym; <2< Rpand Iy _: r=0, —R; <
z < —Rj_1, and two semicircles Sy, : 7242 = RZ, r > 0and Sg_1: r?+22 = R}_|, r > 0. Trajectory Cy
of system (6.3) in the domain Dy at H — 0 moves near its boundary 8Dy = It |J Tr— U S U Sk—1 and
consists of two arcs Ag.+ of length = (R — Ri—1) near the segments I 4, four small arcs By 4 and Br 1.+
of length e near four points P; + and Py_1.4 and arcs Cy, of length =~ Ry and Cy_; of length ~ 7R;_1
near the semicircles Sy and S;_1, see Figs. 3 and 4. For the speed of trajectory along these arcs we find
from (6.6), (6.7) at H — 0:
VAk.i — 4, VBk.;H VBIc—-L:l: > 4w, & —0, Ve, Vo, — 0. (610)

The period 7;,(H) of trajectory Cp is equal to the total time of dynamics around the closed curve Cy that
is
Ry —Rp_1 Rp~ Ry, 2e 2e mR, wRe_

o (H) = + + + + + : 6.11
H(H) Va, ., Var _ VBe: Veiorx Voo Voo, (6.11)

Using formulae (6.10) we find that function 7 (H) (6.11) has the limit value (6.2) at H — 0. 0O
Remark 10. Using numerical values (3.8) we find the first four values of pg:
p1~0.7151, py ~0.5144, ps ~ 0.5062, pg =~ 0.5033. (6.12)

From equation (3.6) and Fig. 2 we see that p; > 1/2 and p, (6.2) is a monotonously decreasing function

of k. In view of (3.7) we get
lim pp= lim —(Re— Re_1) = - (6.13)
kDo PE T g g R T 1) = 5 '

Numerical values (6.12) show that the convergence to the limit 1/2 (6.13) is rather fast.
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L(H)
NCH)=08252 - = = = = = =« o e m e i

BO)=071S1 = F = m e e TR ST

I_

0.5000

L}
I
0 T = [H|
11.0631

Fig. 5. Numerical calculations of functions of periods T1(H), 72({H|), 7s(H) and 74(|H|).

7. Dynamics of vortex lines
Proposition 2. For the spheromak solution to the steady Euler equations

Vi(z,y,2) = (yGa + 22G3)8; + (—2G2 + y2G3)&, + (G1 + G + 2°G3)8,, (7.1)
r= C - pclvl(ma Y, z)lz/zv

the dynamics of its vortex lines is non-degenerately integrable in each invariant domain Dy xS k=1,2,--.
Here R = /3% +y2 + 22 and analytic functions G1(R), G2(R), G3(R) have form (2.4) and (3.2).

Proof. The vector field Vi(z,y,2) (7.1) coincides with (2.14) and has the z-axisymmetric form (2.21) with
f(r;2) = Gi(r, z) = sin(R)/R. Hence dynamics along the vortex lines dx/dt = curl Vi (x) = V;(x) occurs
on the & -axisymmetric tori T% defined by equations H(x) = —(z? + 2)G2(R) = H = const.

The results obtained in Sections 5 and 6 prove that in each invariant domain Dy, the functions of periods
7x(H) are continuously changing between the limits py = (Ry — Rp—~1)/2r at H —» 0 and the limits
To(His) = ra/\/2(r3, — 2) at H — Hy.. To establish the behavior of the functions 7, (H) between these
two limits we have calculated the functions numerically for k& = 1,2,3,4. The results of the numerical
calculations are shown in I'ig. 5 which evidently demonstrates that the functions 7, (|H|) are monotonous.
Hence when 0 < |H| < |Hg.|, the functions are changing monotonously in the following ranges

1 Thow
= —(Ry — Ry_ <T(H) < ——
Pk 27r( k — Rk—1) < Tp(H) NGRS

= Tk(Hk*), (72)
where p1 = R;/(27). Since the highest lower bound p; (6.2) is monotonously decreasing to the limit 1 /2
(6.13) when k — oo and function 7 (Hk.) is monotonously decreasing to its limit 1/v2 = 0.7071 (5.6)
and 1/2 < 1/+/2, we obtain that for each & the limits pj, and 7;(Hy,) in (7.2} are different for all invariant
domains Dy. Hence for each domain Dy the continuous function 74(H) is not constant.

Applying Proposition 1 we conclude that dynamical system (6.3)-(6.4) is non-degenerately integrable in
each invariant domain Dy, x S1. O

Remark 11. The plots of continuous functions of periods 7i.(H) for the invariant domains Dj, are shown in
Fig. 6 for k=1 and in Fig. 7 for k > 2. For the first four invariant domains D) we find from the formulae

(6.12) and (5.5):
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D,

H 1 10631 H

Fig. 6. Function of periods 71 (H) for invariant domain D, .

1

Dkxk 22

e |H.} [H}

Fig. 7. Function of periods 7x(H) for invariant domain Dy, k > 2.

Dy : 0.7152 < 7 (H) < 0.8252, Ds: 0.5144 < 15(H) < 0.7268, (7.3)
Dy : 0.5062 < 3(H) < 0.7154, D, : 0.5033 < 7o(H) < 0.7117.

The formulae (7.3) for domain D; yield that in the first invariant ball B,, the safety factor q(H) = 11 (H)
takes values only in the interval of a small length £ ~ 0.110017. Functions 74(H) take all values between
their two limits: px at H = 0 and 7 (Hy«) at H = Hy,. For the knot K3 4 in Fig. 8 we have 7, (H;) = 3/4 (see
Fig. 6) and for the knot K33 we get 73(h) = 2/3, see Fig. 7. The limit values at k — oo are pp —> 1/2,
‘Tk(Hk*) — 1/\/5 ~ 0.7071, IHk*I — 1.

Proposition 3. Ezact vector fields V§(r,z) (2.21) defined by the eigenfunctions f(r,2) (2.18) satisfying
conditions

a+Fan=1, a>0, |ml<e<<l, (7.4)
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Fig. 8. The torus knot K3, 4 with period 71(H,) = 3/4 is realized by closed vortex lines in the first invariant ball ]an

Jor a sufficiently small € provide a family of solutions to the FEuler equations which possess a non-degenerate
integrability of dynamics of vortex lines.

Proof. Any vector fleld Vy(r,z) (2.21) together with the pressure p = C — pelV(r,2)|?/2 is an exact
solution to the Euler equations (1.3). The eigenfunctions f(r,z) (2.18) defined by conditions {7.4) are
e-small perturbations of the eigenfunction Gi(r, z) (2.17). The corresponding vector fields Vi(r,2) (2.21)
define integrable dynamical systems (4.2)—(4.3) that are e-small perturbations of the integrable system
(6.3)-(6.4) for the eigenfunction Gi(r,z) (2.17). Since the period 7(H) of closed trajectories Cy depends
continuously on the small perturbations, we obtain that function of periods f(fl } for the perturbed vector
fields Vf(r, z) also is not constant. Hence by Proposition 1 the integrability of the perturbed dynamical
system (4.2)-(4.3) is non-degenerate. [J

8. Moduli space S(R3) of vortex knots

8.1. Let us consider trajectories of dynamical system (4.2)-(4.3) on the invariant tori T2, = Cy x S!
where closed curves Cy C R? are defined by equations H (r,2) = H = const. and circle §' corresponds to
the angular variable ¢. Suppose that for a value H = Hy the function of periods 7(H) has a rational value
7(Ho) = p/q with coprime p and q. Then all trajectories of system (4.2)~(4.3) on torus ’JI‘%,0 make g complete
turns over its meridians and p complete turns over the longitudes. Hence all these trajectories form a torus
knot Kpq. An important invariant of any knot K C R3 is its Alexander polynomial which is an invariant
of the fundamental group 1 (R® — K) of the complement of the knot K. The Alexander polynomial for a
torus knot K, ; has the form [11,17]:

_ (e -1@-1)

pa(t) = @D 1) (8.1)

The Alexander polynomial is defined up to an arbitrary factor +t". Evidently, the knots K, q and K,
have the same polynomial (8.1). The polynomial A, ,(t) has degree n = pg+1~p—qg= (p~1)(g— 1).
Since p and g are coprime, the degree n is always even. For p/q = 1/¢ and for p/q = p/1 the polynomial
A, 4(t) = 1 and the corresponding closed curves are unknots.

The minimal degree n of the Alexander polynomial of a torus knot is 2. From the above equation 2 = n =
(p—1)(g—1) we get {p,q} = {2,3}. The corresponding Alexander polynomial (8.1) is Ay 3(t) = t2 — ¢t + 1.

8.2, There is only one quartic Alexander polynomial of a torus knot K, .. It corresponds to the knot
K35 and has the form Ag5(¢) = ¢4 — 3 +#2 — ¢t + 1.



42 O. Bogoyaulenskij / J. Math. Anal. Appl. 450 (2017) 21-47

There are only two Alexander polynomials of degree six for the torus knots K, ;. They correspond to the
knots K3 4 and Ky 7 and have the form Ag 4(¢) =5 —t3 + 13—t + 1, Ag7(t) =16 — 5 + ¢4 =13 412 — ¢t + 1.

Remark 12. The Lemma 6 below was first presented in [17] as Theorem 2.2.2. Its proof is given in sec-
tions 6.1.17 and 12.2.15 of [17] and is based on “Kurosh subgroup theorem” and uses the notions of “non-slice
and non-amphicheiral” knots. Neither of those is necessary to prove Lemma 6; therefore we present here for
the readers’ convenience the new and straightforward proof.

Lemma 6. If two torus knots K, ; and Kj 4 are equivalent then either 5/ = p/q or §/p = p/q.

Proof. If the two knots are equivalent then their Alexander polynomials (S.1) after multiplication by factors
+{™ coincide:

(P -1)(t—-1) (P9 -1)(t—1)
(-0 -1)  @# -1 -1)

(8.2)

Polynomial A, 4(t) (8.1) does not have any real roots and all its complex roots lie on the unit circle || = 1.
The root with minimal argument is 7; = exp(27i/(pg)). The equality of polynomials (&.2) yields

exp(27i/(pq)) = exp(2ni/(53)).

Hence we get pg = $§. Since the degrees of polynomials (8.2) coincide we have pg+1—p—¢q = pG+1—5—4.
Therefore p + ¢ = $ + §. The two equalities pg = §§ and p + ¢ = 5 + § imply that either § = p, § = g or
g=p,p=gq. 0O

Lemma 6 evidently implies the following
Corollary 4. The torus knots Kp 4 and Kz 5 with p/q < 1 and §/§ < 1 are not equivalent if p/q # /4.

Remark 13. The torus knots K34 and K5 are realized by the vortex lines in the first invariant ball B
(that corresponds to the invariant domain Dy x S') because the fractions 3/4 and 4/5 are in the range of
function 7 (H), see formulae (7.3) and Fig. 6. Formulae (7.3) and Fig. 7 show that fractions 3/4 and 4/5
do not belong to the ranges of functions 7i(H). Therefore applying Corollary 4 we find that the torus knots
K34 and Ky 5 are not realized in the invariant spherical shells between two invariant spheres S3_; and S?
for any k& > 2 (the shells correspond to the invariant domains Dy x S’l). The torus knot K3 4 is shown in

Fig. S.

Theorem 1. For the spheromak fluid flow (7.1} the moduli space S(R?) of vorter knots is naturally isomorphic
to the set of all rational numbers p/q in the interval
1 T1%

I: _<T<M=_:
v2 L VAL D)

=T (Hl*) ~ 08252, (83)
where 1. ~ 2.7437 is the first positive solution (5.4) to the equation tanr = r/(1—r?). The torus knots K 4
with p/q € I are mutually non-equivalent. All vortez torus knots K, 4 have a clockwise rotation around the

meridians.

Proof. Proposition 1 implies that for all fractions p/q from the range of a function of periods 7 (H) the
torus knots K 4 are realized by the vortex lines in the invariant domain Dy x 8, k > 1. For k = 1 the
domain D; x S! corresponds to the first invariant ball ]le and for k& > 2 the domain Dy x S! corresponds to



O. Bogoyavlenskij / J. Math. Anal. Appl. {50 (2017) 21-47 43

the invariant spherical shell between two invariant spheres S?_, and S?. In Sections 5 and 6, we have shown
that the lower and upper limits of ranges (7.2) of functions 7% (H) monotonously decrease when k — co:

1 Thx 1
Pk i, =, Tk(H}c*) e e ‘L — (84)
2 NG R
Hence the union of the ranges (7.2) of all functions 7(H) is the interval I; (8.3). Hence for any fraction
p/q € I the corresponding torus knot K, , is realized by the closed vortex lines.
The mutual non-equivalence of the torus knots K, , follows from Corollary 4 since p/q < T1(Hya) =
0.8252 < 1. Their clockwise rotation around the meridians follows from Corollary 2 of Section 4. 0O

Let us define two intervals Iy and I,

1 1 1 T1x
I3: - —= 1, Iy —, My = . 8.5
: (2 \/§> : (\/5 ' \,/2(_—7'%*—2)) (85)
Proposition 4.

(a) Any torus knot K, , with p/q in the interval I3 (3.5) is realized by the vortez lines in infinitely many
invariant domains Dy, x S1.

(b) Any torus knot K ; with p/§ in the interval Iy (8.5) is realized only in finitely many invariant domains
Dk X Sl.

Proof. (a) Using the limits (&.4), we see that any fraction p/q € I3 belongs to the ranges of all functions
7x(H) starting from some k;. Therefore the corresponding knot K, 4 is realized in all invariant domains
Di x St for k > k.

(b) Since $/G > 1/v/2 and limg e Tk (Hyx) = 1/1/2 we find from (7.2) that the P/G € I does not belong
to the ranges of all functions 7, (H) starting from some integer ko. Hence applying Corollary 4 we see that
the torus knot Kj; is realized by the vortex lines only in finitely many invariant domains Dy x S? for
1<k<ks. O

Remark 14. For k > 2, the ranges of all functions 74,(H) for domains D;, contain the fraction 2 /3 =7 (ht),
see formulae (7.3) and Fig. 7. Hence the torus knot Ky 3 (trefoil knot) is realized by vortex lines in all
invariant domains Dy x S for k > 2 at H = hy. However it is not realized as a vortex knot in domain
D, x S* because 2/3 is not in the range of function 71 (H), see Fig. 6.

9. Moduli spaces S, (B3) of vortex knots

9.1. In this Section we find the moduli spaces of vortex knots for the axisymmetric fluid flows V(x)
inside a ball B3 (z% + y? + 22 < a?) which are solutions to the equations

curl V(x) = AV(x), (V(x) n(x)|sps = 0. (9.1)

Here n(x) = x/a is the unit normal vector field on the boundary sphere S2 = dB3. The second equation in
{9.1) evidently is the non-penetration condition and means that the boundary sphere S$2 is invariant under
the flow V(x). The equations {9.1) mean that the vector field V(x) is a solution to the boundary eigenvalue
problem [8,19.24,34,38] for the curl operator on the ball B3.

Let us show in a straightforward way that the spheromak vector field Vi(z,y,2) (7.1) generates an
infinite series of exact axisymmetric solutions to the boundary eigenvalue problem (9.1):
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Vim(Z,y,2) = Vi(AnZ, A% Am2), Am =a 'Ry, (9.2)

where R, is the m-th positive solution to the equation tanR = R (3.6). Since the spheromak vector field
Vi(z,y,2) (2.14), (7.1) satisfies equation (2.1), we find that for any \ vector field Vi(Az, Ay, Az) satisfies
Beltrami equation curl V(x) = AV(x). The first integral H(r,z) = —r2Ga(R) (3.1) of the vector field
Vi(z,y,2) (2.14) yields the first integral Hy(r, 2) = —A2r2G3(AR) of the vector field V;(Az, Ay, \z). Since
all invariant submanifolds H(r, z) = C with a non-zero constant C # 0 are tori T%, we get that the sphere
S2 of radius a is an invariant submanifold for the vector field Vi(Az, Ay, Az) if and only if the equation
Hx(r,z) = =A*r?G3(Xa) = 0 holds on SZ. Therefore Aa must satisfy the equation Go(R) = 0 (3.2) that
implies that Aa must be equal to one of the roots R,, of equation tan R = R (3.6). Hence we get an infinite
series of eigenvalues A, = R, /a and eigenvector fields Vi (z,y,2) (9.2) for the boundary eigenvalue
problem (9.1}

7

Theorem 2. The moduli space S,(B3) of vortex knots for the fluid flow Vim(z,y,2) (9.2) inside o ball B
is naturally isomorphic to the set of all rational numbers p/q in the interval
1

— (R — Rm_1) <7 < M; = 0.8252, (9.3)

Im i or

where number M is defined by equation (8.3). The space Sy,(B2) does not depend on the radius a. The
torus knots Ky o with p/q € Jm are mutually non-equivalent. All vortez torus knots Ky g have a clockwise
rotation around the meridians.

Proof. The equation for the vortex lines for the m-th flow (9.2) has the form

dx
i curl Vi (Apx). (9.4)

Substituting here Beltrami equation (9.1) and multiplying with A, we get

d(Amx)

T A2 V().

Hence the vortex lines for the vector field (9.2) inside the ball B ([x| < a) after change of time dr/dt = A2,
and substitution A, x = y satisfy equation

%X — cwl Vi(y) = Vi(3). 9.5)
p

Since |y| = [Aml|x| < Rp, the vortex lines (9.4) for the flow (9.2) inside the ball B? are mapped by the
diffeomorphism y = An,x into the vortex lines (1.12), (9.5) for the spheromak fluid flow Vi (z,v,2) (7.1)
inside the invariant sphere S2, of radius R,,.

The interior of the invariant with respect to the flow (9.5) sphere S2, is the union of m invariant domains
Dy x 8, k=1,2,---,m, the interval —R,;, < z < Ry, r = 0 and m — 1 intermediate invariant spheres S3,
k=1,2,---,m— 1. In each domain D; x S, the function of periods 7(H) (see Section 4) is changing in
the interval (7.2):

1

= %(Rk - Rk—l) < Tk(H) < Tk(Hk*)-

Pk
Since any two subsequent intervals (pk, 7x(His)) and (Prt1, 7k+1(Hr+1+)) have non-zero intersection and
both bounds py and 74(Hg.) monotonously decrees when k grows we find that the union of intervals
(P, Tk (Hix)) for k= 1,2, - m is the interval J,, (9.3)

;
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As is shown in Section 4, any vortex torus knot K, 4 of the spheromak flow in R3 corresponds to the
rational value p/q of some function of periods 7(H) and vice versa. All realized by the system (9.4), (9.5)
vortex knots K, have a clockwise rotation around the meridians because by virtue of Theorem 1 this is
true for all vortex knots for the spheromak flow (7.1). Hence using Theorem | we obtain that the moduli
space S, (B3) of vortex knots for the m-th flow (9.2) is isomorphic the set of all rational numbers p/q in
the interval J,,, (9.3) and does not depend on the radius a of the ball B3. [

Using formulae (6.12) for the numbers py = (Rx — R—1)/(2n) for k = 1,2,3,4 we find the approximate
bounds of the first four intervals J,, (9.3):

Ji: (07151, 0.8252), Jp: (0.5144, 0.8252),
Js:  (0.5062, 0.8252), Jy: (0.5033, 0.8252).

In the limit m — oo we find from equation (6.13) that J,, — I; where the interval I : (1/2, 0.8252) is
defined by formulae {8.3).

10. Conclusion

We have derived exact solutions to the steady Euler equations (1.4) with velocity vector fields

Vi) = 12 (ﬂ) 612 ( of ) Y, (10.1)

7z \ dr ror \"or

and pressure p = C — p|V7(x)|/2, where functions f(r, z) have the form

N . 2 2 . I 2 2

sin /72 + (z — z) sinvr? + z
In=) ap—Fg———— Gi=—Fr, 10.2
;;1 V2 (2 - 2)? Vr? 422 1o

where ay, z; are arbitrary constants. The functions f(r,z) are eigenfunctions of the Laplace operator:
Af = —f (2.16). The exact solutions (10.1)-{10.2) satisfy also the Beltrami equation curl V = V (2.1).

We have proved that dynamical systems of vortex lines dx/dt = curl V¢(x) are integrable and their
dynamics occurs on invariant tori T} = Cy X S', defined by equation H(x) = H = const., H(x) =
—r8f(r,z)/0r. Here Cy C R? is a closed curve H(r,z) = H = const. and circle S! corresponds to the
angular variable . For function f = Gy, system (1.12) has infinitely many invariant domains Dj x S!
bounded by the spheres R = Rj, and R = Ry satisfying equation H (x) = 0; the numbers R;, are roots of
the equation tan R = R.

The rational values of functions of periods 7 (H) = p/q define tori T% on which all trajectories of system
(1.12) are closed curves and make g complete turns around the meridians and p complete turns around the
longitudes. These trajectories form the torus knots K, , (p and g are coprime).

For the exact spheromak fluid flow V,(x) = Vg, (x) (7.1}, (10.1), we have demonstrated in Theorem 1
that the moduli space S(RR3) of all non-isotopic vortex knots in R3 is naturally isomorphic to the set of all
rational numbers p/q in the interval I; : 1/2 < 7 < M; = 0.8252. In Proposition 4 we proved that torus
knots K, , with 1/2 < p/q < 1/+/2 are realized on infinitely many invariant tori T2 C Dy x ST for k > 2,
while torus knots with 1/v/2 < p/q < M, are realized only on finitely many tori.

For the spheromak flow V,(x) (7.1) in R3 we proved in Theorem ! that all its vortex knots are torus
knots K, , with rational numbers p/q belonging to the short interval (0.5,0.8252) and not with any rationals
from the infinite interval (0,00). This gives a counterexample to Moffatt’s statements of [21-23] that for
the spheromak fluid flow V (that is one of the flows studied in [21}, pp. 126-129) and for the spheromak
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magnetic field B, [22], pp. 30-31, all torus knots K, , for any rational numbers p/q € (0, ) are realized
as vortex knots (correspondently as the magnetic field B, knots).

In Section 9 we have shown that the spheromak fluid flows Vim(z,y,2) = Vg, (Am, Am¥, Amz) are
solutions to the boundary eigenvalue problem for the curl operator on a ball B3 of radius a, provided
that A, = R,,/a and tan R,, = R,,,. We have proved in Theorem 2 that the corresponding moduli space
Sm(B2) of vortex knots is naturally isomorphic to the set of all rational numbers in the interval J,, :
(Rm — Rpm—1)/(27) < 7 < M; =~ 0.8252, where Ry is the k-th positive root of equation tan R = R.
Therefore the moduli spaces S,,(B3) do not depend on the radius a of the ball B3, all spaces S,,(B3) are
different (for different m’s) and approximate the moduli space S(R?) because (R, — Rm_1)/(27) — 1 /2
when m — co.

In view of the equivalence of equations (1.4) and (1.5) as well as equations (1.4) and {1.7) the above results
are equally applicable to the moduli spaces of knots formed by the magnetic field lines for the solutions
By(x) and Bg, (x) (10.1)~(10.2) to the plasma equilibrium equations (1.5) with pressure § = const. and to
the more general MHD equilibria (1.7) with V(x) = yB(x).
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