Department of Mathematics and Statistics

Department of Mathematics and Statistics
Department of Mathematics and Statistics

Special Colloquium


Kaitlyn Hood (MIT)

Friday, February 15th, 2019

Time: 2:30 p.m.  Place: Jeffery Hall 234

Speaker: Kaitlyn Hood (MIT)

Title: Modeling Laminar Flow: Hairy Surfaces and Particle Migration

Abstract: Hairy surfaces are ubiquitous in nature and exhibit a wide range of functions, such as sensing or feeding in marine crustaceans. New fabrication techniques allow for functional engineered structures at the scale of hairs. However, flows at the intermediate Reynolds numbers relevant to these structures give rise to nonlinear equations of motion, which combined with the fine structure of hair arrays, can become numerically intractable. I derive a simple design principle for engineering hairy surfaces. This principle centers on the boundary layer depth of a single hair over a range of Reynolds numbers, which renders numerical calculations feasible in many geometries. Similarly, particles or cells suspended in flow are an essential component to lab-on-a chip technology for medical diagnostics. High speeds in these devices give rise to intermediate Reynolds numbers, and a range of nonlinear but deterministic behavior. I develop a mixed asymptotic and numerical model to predict the migration of particles across streamlines, and verify this theory against experimental data.

Kaitlyn Hood is an NSF Postdoctoral Fellow at Massachusetts Institute of Technology. She received her Ph.D. in Applied Mathematics at the University of California, Los Angeles, 2016. Her research interests include mathematical modelling of hydrodynamics, numerical techniques for nonlinear and singular PDEs, and studying the role of inertia in laminar flows.