Innovation, Sciences et
Développement économique Canada
Office de la propriété intellectuelle du Canada

Innovation, Science and
Economic Development Canada
Canadian Intellectual Property Office

Brevet canadien / Canadian Patent

2,918,136

Numéro de brevet
Patent number

Le commissaire aux brevets a accordé
un brevet pour l'invention décrite dans
le mémoire descriptif portant le
numéro de brevet susmentionné. Le
mémoire descriptif est accessible dans
la Base de données sur les brevets
canadiens sur le site Web de I'Office de
la propriété intellectuelle du Canada.

The Commissioner of Patents has
granted a patent for the invention
described in the specification under
the above-noted patent number. The
specification is accessible in the
Canadian Patents Database on the
website of the Canadian Intellectual
Property Office.

Commiissaire aux brevets
Commissioner of Patents

Titre de l'invention / Title of invention
MEMOIRE A ECRITURE UNIQUE A TAUX DE SOMMATION ELEVE

HIGH SUM-RATE WRITE-ONCE MEMORY

Breveté(s) / Patentee(s)
QUEEN'S UNIVERSITY AT KINGSTON

Inventeur(s) / Inventor(s)
HUA, JAY; YOUSEFI, SHAHRAM

Date de l'octroi et de la délivrance du brevet /
Patent grant and issue date
2023-08-15

Date de dép6t de la demande /
Filing date of the application
2016-01-18

Date d'accessibilité au public /
Date application open to public inspection
2016-07-19

Canada

I*I Innovation, Sciences et Innovation, Science and CA 2918136 C 2023/08/15

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 91 8 1 36
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépét/Filing Date: 2016/01/18 (51) CLInt./Int.Cl. G77C 16/10(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2016/07/19 (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2023/08/15 HUA, JAY, CA;

YOUSEFI, SHAHRAM, CA

(73) Propriétaire/Owner:
QUEEN'S UNIVERSITY AT KINGSTON, CA

(74) Agent: SCRIBNER, STEPHEN J.

(30) Priorité/Priority: 2015/01/19 (US62/104,911)

(54) Titre : MEMOIRE A ECRITURE UNIQUE A TAUX DE SOMMATION ELEVE
(54) Title: HIGH SUM-RATE WRITE-ONCE MEMORY

Sum-rate vs t writes

-©-Yaakabi Block Code [35]
"|-E-Upper-bound (2.8)
—=Binary MOH Code
Y ; {-©-Position Modulation {386]
2 3 4 5 8 7 8 9 10
t writes

(57) Abrégé/Abstract:

Provided are modified one-hot (MOH) constructions for WOM codes with low encoding and decoding complexity, that achieve
high sum-rates. Features include maximizing writing of data information values for successive rewrites, all-zero and all-one cell
state vectors that represent a unique data information value that can be written for many generations, a very high number of writes,
and does not sacrifice capacity. One embodiment comprises ordered or unordered MOH code that approaches the upper-bound
for large n wits. According to the embodiments, before an erasure is needed, the majority of the wits are encoded, which provides
level wearing and maximizes life of cells.

C an a dg http:v/opic.ge.ca - Ottawa-Hull K1A 0C9 - atp:/eipo.ge.ca OPIC

QPIC - CIPO 191

10

15

20

25

High Sum-Rate Write-Once Memory

Field

This invention relates to methods and constructions for operating a digital memory.

Background

Flash memories are used everywhere to store files, media, and programs due to their
portability. Solid state disks (designed with flash memories) are replacing traditional hard disk
drives due to their superior data read time and transfer rates. Programming a memory cell
(hereinafter referred to as a “cell”) is done by electron injection (i.e., hot electron injection creates
an electric field) to increase the voltage incrementally above a charge threshold. Conversely,
erasing is done by removing electrons to decrease the charge level to zero. The main disadvantage
is the limited number of erases (10,000 to 100,000) during the flash lifecycle. The write and
subsequent re-write processes require a suitable block of cells (10°) that allows electron injection
to increase the desired cells from a lower voltage level to a higher voltage level. If there are not
enough suitable cells then an erasure (cell voltages are dropped to the lowest level) is needed.
Within a block, any single cell’s voltage level can be increased as needed (i.e., programmed),
however all cells within the block must have their voltage charges lowered if an erasure is needed.
As a result, data may be erased needlessly, because deleting a single cell is impossible without
changing the physical medium completely. Since the main constraint of encoding involves only
increasing a cell’s levels (i.e., cannot decrease), previous work has shown that using permutations
of cells can allow data values to be rewritten.

Basic single cell level (SCL) flash memory uses two cell levels, each respectively

representing either the on state or off state. Currently, multiple level cells (MLC) with four cell
-1-

Date Regue/Date Received 2022-03-21

10

15

20

25

CA 02918136 2016-01-18

levels and triple level cell (TLC) with eight cell levels are also used. Current research is focused
on three issues: error correction, interference, and increasing cell sum-rate. Increasing cell sum-
rate is of particular interest; however, truly high cell sum-rates have not been achieved, and
current state of the art codes use a high number of cells to achieve a particular sum-rate in

relation to a specified number of writes.

Summary

Provided herein are methods and constructions for operating a digital memory. Relative
to prior methods, the embodiments vastly improve trade-offs between the number of rewrites
before erasures and the amount of encoded data in all the generations.

Embodiments include methods and constructions for WOM and WAM codes with low
encoding and decoding complexity while achieving the highest sum-rates.possible after
approximately 1000 writes. In the binary embodiments, the constructions achieve the highest
sum-rates for # > 7 and approach the capacity as # and ¢ are increased.

Binary, ternary, and quaternary MOH code embodiments are all within constants 1.44,
3.89 and 6.49 bits in their sum-rates from the capacity in the very worst cases. Since for MOH
codes according to embodiments described herein, t and n are essentially equal, only 1000 cells
are needed to achieve a sum-rate 1.44 bits away from the capacity. This makes cell block sizes

(n) much smaller when compared to the current state of the art WOM codes. Thus,

embodiments are very practical to implement since a typical block size in a flash memory is 10°.
The embodiments also allow very high number of writes and do not sacrifice capacity. Before
an erasure is needed, the majority of the writable cells are encoded, such that even wearing of
cells is achieved, thereby extending the life of the cells.

Decoder embodiments do not need to store the number of writes in extra storage units

and can be easily used for any ¢ -ary digital memory system. Encoder and decoder embodiments
have a practical running time complexity that is polynomial in 7.
Embodiments include one or more of the following features:

1) Achieve very high sum-rate;

10

15

20

25

30

CA 02918136 2016-01-18

2) Before each erasure, at least (n - 1) out of n cells are encoded, such that over time,
substantially all cells are subjected to the same number of writes, and will reach failure after the
same number of writes;

3) Polynomial in # complexity decoding and encoding, wherein no extra wits are needed
to storc a generation number;

4) The encoding is not complex in that each value encodes the same cell to reach another
value without dependence on a current generation,

5) Allow (n — 1) writes;

6) From 1 and 5, the traditional trade-offs between high sum-rate and high writes are
vastly reduced.

According to one aspect, there is provided a method for operating a digital memory,
comprising: minimizing a number of memory cells encoded for a write operation; and avoiding
erasing memory cells by re~using written memory cells; wherein a sum-rate of the digital
memory is maximized.

In certain embodiments, minimizing the number of memory cells or maximizing the sum
rate may require writing more than one cell at some generations.

In another embodiment, minimizing the number of memory cells comprises encoding one
cell for each write operation.

In one embodiment, minimizing the number of memory cells comprises constructing cell
state vectors that are uniquely decodable.

One embodiment further comprises decoding each permutation of memory cells into a
unique value.

One embodiment comprises encoding cells synchronously, wherein a cell state vector is
related to a selected generation.

In one embodiment, the digital memory is a write-once memory (WOM), or a write-
asymmetric memory (WAM).

According to another aspect there is provided programmed media for use with a
processor, comprising: a code stored on non-transitory storage media compatible with the
processor, the code containing instructions to direct the processor to operate a digital memory

by: minimizing a number of memory cells encoded for a write operation; and avoiding erasing

10

15

20

25

30

memory cells by re-using written memory cells; wherein the code maximizes a sum-rate of the
digital memory.
According to another aspect there is provided a digital memory device comprising the

programmed media and digital memory.

Brief Description of the Drawings

For a greater understanding of the invention, and to show more clearly how it may be
carried into effect, embodiments will be described, by way of example, with reference to the
accompanying drawings, wherein:

Fig. 1(a) is a diagram representing a flash memory module partitioned into blocks and
pages, according to the prior art;

Fig. 1(b) is a schematic representation within a block of cells of a flash memory module,
according to the prior art;

Fig. 2 is a plot of sum-rates for a binary MOH code and the upper-bound for WOM
codes;

Fig. 3 is a plot of the difference between the capacity and MOH sum-rate for various 7
values;

Fig. 4 is a plot showing sum-rates achieved by prior art methods and an MOH code
according to one embodiment;

Fig. 5 is a plot of sum-rates for ¢ -ary MOH codes and upper-bounds for WAM codes;

Fig. 6 is a plot showing differences between the upper bound and achieved ternary and
quaternary sum-rates for various 7; and

Fig. 7 is a flow chart showing a method for increasing a sum-rate of a digital memory,

according to an embodiment of the invention.

Detailed Description of Embodiments

According to a broad aspect of the invention, there are provided digital memory devices,
and methods and programmed media for operating a digital memory. The term “operating” is
intended to include writing data to and/or reading data from a digital memory.

Embodiments described herein include write-once memory (WOM) codes implemented

in memory hardware that include one or features that address deficiencies of previous write-once

Date Regue/Date Received 2022-03-21

10

15

20

25

30

CA 02918136 2016-01-18

memory. The one or more features may include one or more of providing very high sum-rates,
maximizing the number of writes before erasures, balancing wear of the cells to ensure proper
data retention and to increase the longevity of flash memory, storing as much information as
possible before an erasure is needed. The embodiments may be applied to, for example, flash
memory with any g cell levels. For example, one embodiment provides WOM codes that
achieve higher sum-rates than currently known, while simultaneously achieving high rewrites.
Embodiments may be constructed in any suitable code that can be executed by a
processor associated with the memory, for controlling operation of the memory. Thus,
embodiments may be implemented in any device that uses memory. The executable
programmed instructions for directing the processor to implement embodiments of the invention
may be implemented in one or more hardware modules and/or software modules resident in the
processing system or elsewhere. In one embodiment the programmed instructions may be
embodied on a non-transitory computer readable storage medium or product {e.g., a compact
disk (CD), etc.) which may be used for transporting the programmed instructions to the memory
of the data processing system and/or for executing the programmed instructions. In one
embodiment the programmed instructions may be embedded in a computer-readable signal or
signal-bearing medium (or product) that is uploaded to a network by a vendor or supplier of the
programmed instructions, and this signal or signal-bearing medium may be downloaded through
an interface to the data processing system from the network by end users or potential buyers.
The maximum achievable number of information bits stored per cell for any number of
writes is referred to as the capacity. No practical coding scheme is currently known that
achieves sum-rates that equal the capacity. Increasing the number of rewrites before an erasure
is needed will prolong the lifespan of a flash memory device, since the number of erasures per
transistor is limited. The primary challenge is to develop efficient coding that can re-use dirty
(written) cells to increase the storage as many times as possible (i.c., increasing writes) before an
crasure is needed. Currently-known codes use a large number of cells to achieve a particular
sum-rate in relation to the specified number of writes. In contrast, the embodiments described
herein achieve higher sum-rates for the same number of writes, and also use fewer cells. This
means that for the same number # of cells used, the embodiments will multiply the sum-rates
when compared to previously-known codes. In some embodiments, the maximum or upper

bound sum-rate is approached. As described herein, embodiments are based on finite values

10

15

20

25

30

CA 02918136 2016-01-18

rather than values derived asymptotically as n cells approach infinity.

For example, for a typical 16 Megabyte (MB) flash memory storage device without any
coding, the entire device (n = 128,000,000 cells), can allow storage of exactly 16 MB of
information (per crasure) for just one write. However, in accordance with coding embodiments
described herein, by increasing the sum-rate to, e.g., 1.5, the flash code would now allow 24 MB
of information per erasure spread over multiple writes on the same device. Since a storage
device would incur multiple operations to store segmented information (a typical storage device
retains thousands of smaller files instead of one big file), the increase in sum-rate through such
coding is thus highly desirable.

Previous work (R. L. Rivest and A. Shamir, Inform. and Control, 55:1-19, 1982) showed
a construction for a two-write WOM code using three cells to represent two bits of data. There
have becen WOM constructions based on coset coding via linear block codes and lattice coding,
and position modulation techniques. Some non-decodable WOM constructions require
additional knowledge of current data generation (j-th write) to correctly decode, which can be
obtained by using log(s — 1) additional cells, where ¢ is the number of rewrites. In contrast to that
previous work, decodable code embodiments described herein do not require extra storage on the
Jj-th write, which reduces any overhead.

Embodiments are described herein primarily with respect to WOM codes, where each
cell state is either 0 or 1. However, write asymmetric memory (WAM) constructions may also
be made in accordance with the approaches described herein. One aspect of the embodiments is
based on an approach wherein only one cell is cncoded for each write. By just using one cell,
there is a reduction in the redundancy of representing valid data for many future rewrites. This
approach is referred to herein as modified one-hot (MOH) code. As described herein, this
approach achieves higher sum-rates than currently known WOM constructions. As one example,
a complete construction for a 6 write binary code is described below. The achieved Surr;—rate is
at least 2.102 compared to the previous best known sum-rate 0of 2.1331 (E. Yaakobi, et al., IEEE
Trans. Inform. Theory, 58:5985-5999, 2012). For writes greater than 6, embodiments described
herein achieve the highest sum-rates currently known. Further, embodiments described herein
achieve the highest rates for ¢ > 7 and approach the upper bound (i.e., capacity) as #z increases to
large values. In addition, as described herein, MOH code construction embodiments achieve the

capacity once ~ (10°) cells are used. Further features include balanced wear of the cells, no-cost

10

15

20

25

30

CA 02918136 2016-01-18

decoding, and low complexity encoding. MOH code addresses the major deficiencies in
achievable sum-rate, maximizing writes, and retention quality by balanced wearing.

For WOM codes, if there are n total cells and only one cell is used for each rewrite, the
largest number of writes, £, is upper bounded by #n. In general, the more rewrites supported
results in lower instantaneous rates for each write. That is, to save more 0 state cells for future
writes, there must be a limit on the number of bits previously written. As a typical example, a
position modulation code for # = 6 writes requires n = 196 cells. Embodiments described herein
provide improvements by targeting this large amount of overhead, wherein MOH code is optimal

for both ¢ writes and the achieved sum-rate as ¢ = n.

Comparison with Position Modulation

Prior work (Y. Wu and A. Jiang, /EEE Trans. Inform. Theory, 57:3692-3697, 2011)
focussed on small rewrites and moderate data sizes, instead of asymptotic behaviour. The
cardinality of an information set can be written depending on the number of k encoded cells. The
lexical order of a sequence of cells is computed by choosing i spots out of &. This gives position
modulation code polynomial encoding and decoding complexity. This construction had the
highest sum-rates for 5 writes at 1.63, 6 writes at 1.71, 8 writes at 1.88, 9 writes at 1.95, and 10
writes at 2.01. For writes up to 50, the sum-rate of position modulation is limited to under 2.8.
For comparison, the technique of Rivest and Shamir (1982) referred to above provides a sum-
rate of less than 2 for writes up to 50. In contrast, in the MOH code embodiment in the example
described herein, for 6 writes, only 7 cells are needed compared to 196 cells used by position
modulation. If eight cells are used, a MOH code construction can allow a seven write code with

a sum-rate of at least 2.3563.

Comparison with Coset Coding

Prior work (E. Yaakobi, et al., IEEE Trans. Inform. Theory, 58:5985-5999, 2012)
provided a flash construction based on linear codes. Linear codes are extensively used for error
detecting and correcting in communication systems. An (n, k) linear code utilizes n bits to

represent & bits of information; there are (1 - k) redundant bits or parities for error detection and
correction. Consider a lincar block code with (n — k) x n parity-check matrix H. 2" information

ko k .
vectors are divided into 2" disjoint cosets. Each coset has 2 elements. For the first write, m of

10

15

20

25

30

CA 02918136 2016-01-18

the n cells are flipped from state “0” to state “1”. This n sequence of the states is referred to as

the vector s after the first write. To write a (n — k)-bit message vector y for the second write

given the initial state s, the encoder looks for a vector ¢ > s such that cH g y. The message for
the second write is carried by the coset index (syndrome). The encoding and decoding scheme is
also polynomial complexity. This work provided a 2-write WOM code using 33 cells to achieve
a sum-rate of 1.49. In contrast, for 31 cells, embodiments described herein achieve a sum-rate of
at least 3.77 (i.e., a 253% increase) while supporting 30 writes. This translates to extending the

memory life by 15 times.

Modified One-Hot Code

The minimal number of cells to encode for each generation (i.e., each write iteration) is at
least one cell. In these embodiments, the objective is to provide a code that uses only one cell at
each write, and at the same time is able to represent as much as possible, or all, of the data to be
stored. As described herein, this may be achieved by constructing cell vectors that will always
be uniquely decodable. As described hercin, this requires a unique decoder design that decodes
any cell permutation into unique values. In addition, the embodiments include one or more
features such as: encoding and decoding schemes that are generation-independent, such that the
encoding and decoding schemes are always substantially the same regardless of the current
number of writes or cell states; code that is synchronous, wherein a cell state vector can only be
reached at a particular generation and is thus decodable without knowing the generation number;
and a construction that can approach or achieve the upper bound using a finite number of cells.
In one embodiment, for example, the construction uses just 7 cells for 6 writes, and achieves a
sum-rate of at least 2.102. Not only does MOH code achieve higher rates for the same number
of writes, but it also uses much smaller values of n. Using block code construction, Yaakobi, et
al (2012), discussed above, achieved a high rate for 2 writes using 33 cells, whereas using two
fewer cells the rate achieved using a MOH code according to one embodiment is doubled and the
number of rewrites supported increases by 15 times.

MOH codes as described herein address the major deficiencies of current write-once
memory, use values of » that are practical and match typical block sizes used in industry.
Encoders and decoders use common digital logic and circuitry. Thus, embodiments can be easily

implemented without long development and production times. Embodiments may be constructed

10

15

20

25

30

CA 02918136 2016-01-18

in any suitable code that can be executed by a processor associated with the memory, for
controlling operation of the memory. The embodiments are compatible with existing flash
memory hardware configurations, such as those available from manufacturers including, e.g.,
Intel, Micron, and Spansion. Accordingly, implementation of embodiments is straight-forward
as no hardware re-design is required. However, it will be appreciated that embodiment described
herein and variants thereof may also be implemented in custom hardware configurations and

other digital memory technologies.

NAND Technology

MOH code embodiments as described herein are suitable for use in NAND technologies
such as those manufactured by, e.g., Intel, Micron, and Spansion. NAND technologies usually
can store higher densities (compared to NOR), and are used mainly for mass digital storage
applications in camcorders, smartphones, tablets, flash drives, and solid state disks (SSD).
Single level charge (SLC) cells contain two levels of voltage charge region, which allows one bit
of data capacity (binary one-hot code) per cell. Multilevel charge {MLC) cells contain, for
example, four levels of charge; this allows two bits of data capacity (quaternary one-hot code)
per cell.

Fig. 1(a) shows a typical SLC 128 Megabit (Mbit) NAND memory cell organization, and
Fig. 1(b) is a zoomed in view of a section of a block/page. The structure as shown in Fig. 1(a)
illustrates a page of the smallest number of cells that can be read from memory. Fig. 1(b) shows
that any single cell can be programmed as needed. However, the smallest number of cells that
can be erased is a block as shown by the shaded region in Fig. 1(a). Based on devices from
Micron, as one example, a 128 Mbit memory has 1004 to 1024 valid blocks, and 2008 to 2048
for a 256 Mbit version. For eight bit devices, there are 16 bytes (8 bits = 1 bytc) usually reserved
for error correcting code (ECC) per page. For 16 bit devices, there are eight words reserved for
ECC per page. A page for the eight bit device consists of 4096 + 128 = 4224 bits, or cells. This
equates to a block of 131072 + 4096 = 135168 cells. A single cell can thus cause an erasure to
135167 other good cells during a block erasure. Larger densities of NAND (e.g., 1 Gbit) use
blocks with 64 pages, 2048 + 64 bytes per page, for a total of 1024 blocks. This equates to a
block of roughly 1081344 cells.

In accordance with embodiments described herein, sum-rates achieved using MOH code

10

15

20

25

30

CA 02918136 2016-01-18

greatly outperforms current state of the art coding schemes for these parameters (e.g., cells up to
10%). For mass digital storage manufacturers like Intel®, SSDs can support densities up to 512
Gigabytes (GB) and 1 Terabyte (TB). Page sizes for these SSDs are typically 4 Kilobytes (KB)
and 8 KB.

NOR Technology

NOR flash are produced in smaller densities in the range of 2 Mbit to 1 Gbit. The smaller
densities are typically used in low digital storage requirements such as system caches. A 2 Mbit
flash memory may have a block size of 64 KB, and 128 KB to 256 KB for larger densities.
Unlike NAND, each cell can only store one bit of data, and each block is not partitioned into
smaller péges. Physically, NOR cells are zeroed when the bit is high (one). MOH code
embodiments as described herein may be suitable for use in NOR technologies, where, at least in
some cascs, additional simple logic may be implemented. For example, an inverter may be used
when decoding and encoding, insofar as NOR may be considered as a logic complement of

NAND.

Flash Model

Linear WOM codes are a broader family of one-hot codes. Rivest and Shamir (1982)
showed that for a fixed size data set M, with cardinality |M|, a valid cell state or codeword will
represent each element m €M. These codes are linear in the sense that codewords (¢l + ¢2) mod
q is another codeword c¢3, where q is an integer value. The fixed sum-rate for a restricted A and
q =2 is log(n)/4, and the number of ¢ writes supported is ¢ = |M}/4. To guarantee |M| for each
successive write, the minimum number of ¢ is A4/4. That is, [M] is the same for any write.

However, as described herein, if |M] is unrestricted for successive writes, the achievable
sum-rate is much higher. That is, for each j-th write, |Mi + 1| = [Mi| — 1. The decoder for a
Linear WOM code is just the modulo-¢ sum of all the cells in the programmed state. A
trajectory code is a Linear WOM code where ¢ = |M| (A. Tiang, et al., IEEE Trans. Inform.
Theory, 59:4530-4541, 2013), wherein for a fixed M, the decoder is a modulo-A4 sum of all the
cells in the programmed state.

In contrast, in the embodiments described herein, M is not fixed, and such an example is

described below and compared with the current state of the art. In addition, as described below,

- 1Q~

10

15

20

25

30

CA 02918136 2016-01-18

Linear WOM codes are expanded for WAM constructions by constructing an alternate decoder
definition.

Notations used herein are as commonly used in WOM codes. The memory cell-state
vector ¢ = (ci, ¢2,..., cn) €0, 1}"is a g-ary vector of length n. Each ¢ is known as a codeword
that is outputted from an encoder. For a binary cell, injecting a cell’s gate with electrons past
each threshold voltage Vi results.in a cell state increase from “0” to “1”, converscly removing
electrons below Vry transitions the state down to “0”.

Definitions are as follows:

Definition 1. A cell that can be programmed is a wit. A wit is a g-ary digit in GF(q).

For example, a SLC wit is a binary digit.

A flash code uses » wits to store information. The encoding and decoding operations are those
of the Galois Field of order ¢, GF(g). For example, in GF(2), multiplication () is a logical AND,
and addition is a logical exclusive OR (XOR).

M; represents the set of data values to be written in the j-th write. The cardinality of a set is
denoted by |-|.

Definition 2. A code is restricted if | Mj| is the same for all ;.

Definition 3. A code is generation-independent or synchronous if an encoded message
(codeword or the content of the n cells) can only be written at a specific write/generation.

Definition 4. A non-synchronous code allows a codeword to represent different messages
at different generations. It is un-decodable without using extra storage wits to keep track of the
generation number.

Definition 5. A WOM code is a coding scheme used for a two-level cell (SLC) that has
cell states of 0 and 1.

Definition 6. A WAM code is a coding scheme used for cell levels that are greater than
two. For example, this this is suitable for MLC and TLC flash memory.

Definition 7. For the sake of brevity, each addition or multiplication required for the
encoding or decoding processes is counted as 1 floating point operation or FLOP.

Definition 8. O(") is the Big-Oh expression for quantifying the asymptotic running time

taken by an algorithm to run as a function of the input size.

-11-

10

15

20

25

CA 02918136 2016-01-18

In one embodiment, let & : Mj — GF (q)n and D : GF(q)n — M; denote the encoding and
decoding functions of the j-th write. Then the state of the cells for a message m is given by the

g-ary vector g1{m) = ¢ with Di(e1(m)) =m for the first write.

The instantaneous rate on the j-th write is defined to be

log, | M, |
R =2t Ll o)

n

Thus, the sum-rate equation for ¢ writes is

!
Rsum = ZR_I " (2)
Jj=l

Results are compared to the current highest rates as well as to the upper bound, that is, the
capacity (C) as found by Fu and Han Vinck (IEEE Trans. Inform. Theory, 45: 308-313, 1999):

&msczm&v+fq} 3)

The proof in Fu and Han Vinck shows that the capacity is the maximum total number of
mformation bits stored in one cell during the £ writes. The rate per write of a code is equivalent
to the number of information bits stored per celt for the j-th write. For a r-write flash code, the
sum-rate is the equivalent to the total number of information bits stored per cell during the ¢
writes. Thus, it is reasonable to compare the sum-rate to the capacity as both expressions
measure the total number of information bits stored in one cell during the ¢ writes.

Standard digital circuitry one-hot encoding requires n = [M}] bits to encode. In these
embodiments one-hot coding is not used for the binary value zero, thus the total number » of wits
needed for an alphabet M is

n= M1 @
By using just one wit per write, the one-hot code will support at least

t=n—1=M/-2. (5)

Code Construction

The general approach in the MOH coding embodiments described herein 1s to use a

single wit to encode a message at each write. For example, a decoder is provided to uniquely

decode every possible combination of the codeword ¢ for the n wits. For n wits, there are 2"

~-12 -

10

15

20

25

CA 02918136 2016-01-18

combinations. One embodiment does not restrict ¢, that is, the entire cell vector space is used
and any vector is a valid codeword. Such an embodiment relies on a perfect storage channel.
That is, there can be no errors in storing the states of a cell. To ensure robustness and reliability,
error control coding must be added on top of the storage code. This contrasts with block codes,
where valid codewords (¢) are usually limited strictly to less than 2”. However, many flash
codes are constructed with the foundation of block codes. A reason for this is the practical
polynomial-time encoding and decoding complexities. Also, by using coset coding
decomposition, it is possible to find a new codeword such that the new codeword can be written
on top of the previous generation codeword. As used herein, a WOM code is modified one-hot
encoded if and only if only one cell is used to encode each new message from generation to
generation, and each codeword ¢ is uniquely decodable. Fora ¢ vector of weight 1 (first write),
for example, there are n possible unique vectors. A MOH construction may be defined as
follows:

Modified g-ary one-hot construction. Let M, be the set of messages for the j-th
write. Let L be the number of messages in M, and unrestrict the subsequent (¢ —1) writes by
reducing the size of | M ; | by one message for each successive j-th write. In other words,

]Mj]Z!A/IH1~l,forj=2,---,t. (6)
Let x be defined as follows:
x= ﬁogq Ll M
Store a vector m & M ; as the message for the current j-th write and read a vector y € M, the

message stored in the previous write. Use g(m) =¢ and D(¢) = m to denote the encoder and

decoder, respectively. The state is raised at most one wit for each write.

Remark. It is important to note here that L should be the largest information input size
in bits for a given MOH code for two reasons. First, information is mostly transmitted/stored in
bits due to real-life practical convenience in digital circuitry. Second, the encoder and decoder
are constructed to operate on each element over the length of a message vector. This means the
same encoder/decoder is used as long as the input bits are smaller than the value of x for the

subsequent j =2,...,¢, writes. However, if the input size becomes larger for each subsequent

write then we may need to recalculate x to determine the appropriate length of the

~13-

10

15

20

25

CA 02918136 2016-01-18

corresponding message vector. If the value of x increases, then the length of ¢ will also
increase and may not guarantee a successful rewrite.
Remark. The embodiment decreases the size of the information set by one, as shown in

(6), to store the maximum theoretical input size for each write of MOH code. In reality, there
will be a rounding down from x to p, where p, = Llog2 M| | for some subsequent ; -th write.
One can use a table to find the correct mapping from the x bits to p, bits. This will result in
extra storage costs depending on the mapping. However, it is also possible to hardwire the
mapping from x bits to p; bits in a similar fashion as Meggitt decoders by, for example, using
combinatoric logic gates. Thus, it is assumed that it is possible to find a practical mapping from
x bitsto p; bits. An exact mapping may be determined accordingly.

Remark. It is shown below that it is ﬁossible to not decrease the information set size.
This may be done by encoding more than 1 wit. It is more beneficial to encode more than 1 wit
during the last write(s), in terms of maximizing the number of information bits stored per cell
during the last few writes. Thus, embodiments can be optimized by allowing more than 1 wit to
be encoded per write. However, investigations using multi-hot ¢ncoding for smaller writes
(¢t <50) found that the sum-rate increase was only approximately 1 percent compared to one-hot
encoding. Accordingly, a trade-off exists between this 1 percent sum-rate gain versus the
possible increase in encoding/decoding complexity.

The g -ary MOH encoder and decoder are defined using addition and subtraction over
GF(q).
Moedified g-ary one-hot encoder. A 1-to-1 mapping of a vector h= (h,hy, e h) 1O,
denoted by F(-), is defined as follows:
i =F(h)
S (8)
k=1

In other words, let a vector % represent the index i in base g where the first index of h is the
most significant digit. For instance, if ¢ =2, x=3, and h= (1,0,0),then i =4.

The MOH encoder is defined by
e(m)=7¢ ®

-14 -

10

15

where C is the programmed cell state vector from the previous write but with the wit ¢, raised to

the next available state. In order to find 7 , we need to solve for each A, ,k=1,2,---,x, over

/] >

GF(q) by the following

h,=m,—y,, fork=12L ,x. (10)
Once % is found, i is determined with (8). Then c, is raised to the next state. An example of an
encoding sequence is summarized in Algorithm 1 and shown in Fig. 7. This embodiment uses
approximately 2rlog2 n'| FLOPs to calculate the mapping from htoi, rlog2 n | FLOPs to find
each /,, and thus requires a time complexity of O(logzn). The decoding complexity in Step 1

will be presented later with the decoder.

Algorithm 1. Steps to encode a message.

Step 1. Decode the previous message .

Step 2. Determine 7 if the current message is the same as y , do nothing if they are the same.

If not, go to step 3.

Step 3. Find A,, for k=12,---,x, by using (10).

Step 4. Find i by using (8).

Step 5. Update ¢ by raising c, to the next state.

Modified g-ary one-hot Decoder. In one embodiment, the decoder is defined by
D(c)=m. (11)

To find m, solve for each element in 7, denoted by m, , in the following

my =Zci.hk(i)a fbrk:l’z""’xa (12)
i=1

-15 -

Date Regue/Date Received 2022-03-21

CA 02918136 2016-01-18

where h,c(") is the k -th element of 2 ,and 2 is the vector & corresponding to i given by the
mapping of (8). This embodiment works for all ¢ > 2. The number of FLOPs needed to solve
(12) is approximately 27, thus the time complexity is O(nlog,n) without considering the 4 to i
mapping. With the mapping, the complexity becomes O(n” log, 7).

5 An example of a pseudo-code for a binary MOH decoder in given in Algorithm 2.

Algorithm 2. Binary Modified One-hot Decoder.

for k=1 to x-th power

lill

2/c

for /=1 to 2%

| M|

Call EncFunc(z,z + —)
2

z=z+12{|x2

Increment / by 1
end for
Increment & by 1

end for

EncFunc (x, y)

m, =0

while(x less than y)
m, =m, +h,
Increment x

end while

This means that any #-length binary MOH code can be decoded using the same decoding
10 algorithm. Algorithms 1 and 2 may be used as shown in the next two examples. The first

example is for the case when ¢ = 2 and the second example is for the case ¢ =3 .

-16-

CA 02918136 2016-01-18

Example 1. To illustrate a series of writes for n=7 and ¢ = 2, parameters for this code
are | M, |=8 and x=3 from (4) and (7). Let y =(0,0,0) be the only element in the set M,

initially. Each y, is read using the decoding function
7
yo=2¢-h?, fork=123.
=1
5 Each 7 is stored by following the five steps from Algorithm 1. Suppose the message m
changes as
(0,0,0) = (0,0,1) —» (1,0,0) — (0,0,0) ,

then the states ¢ = (¢, c,,...,c;) will change as

(0,0,0,0,0,0,0), (13)
10 N3
(1,0,0,0,0,0,0), (14)
v
(1,0,0,0,1,0,0), (15)
\2
15 (1,0,0,1,1,0,0). (16)

To show (15} using Algorithm 1: Step 1 of Algorithm 1 requires decoding the previous message
¥ . Algorithm 2 may be used directly, or a hoto i mapping table may be created. Choosing the

latter option, the mapping of F(%) is shown in Table 1.

20 Table 1: F(E) , the mapping from htoi.
i h=(h, by, hy)
1 001
2 010
3 011
4 100

-17-

CA 02918136 2016-01-18

5 101
6 110
7 111

Start with step 1 of Algorithm 1 with the help of Table 1 as follows:

é =(1,0,0,0,0,0,0).
e =Zci-hkm, Jor k=12 x,
=l
=y e et to,
=(,
=y, =¢tete e, a7
= (),
Sy, =ttt
=1.

In step 2, ¥ =(0,0,1) is not the same as m = (1,0,0) so proceed to step 3 as follows:

h, =m,—¥,, for k=12, x.
>k o=m-y,
=1,
—>h, =m, =Y, .
5 B (18)
=>h =m-y,
=1,

Step 4 requires using Table 1 to map from 4 =(1,0,1) to i =35. Finally, instep 5 ¢; is raised by
one state and ¢ = (1,0,0,0,1,0,0) results. Next is an example for the case ¢ =3.
Example 2. To illustrate a series of writes for n=8 and, ¢ =3, parameters for this

code are

M [=9 and x=2 from (4) and (7). Let y =(0,0) be the only element in the set M|

10 initially. Each y, is read using the decoding function

V= Zc‘. '}ik(i), for k=1,2.

-18 -

CA 02918136 2016-01-18

Each m is stored using Algorithm 1. Suppose the message m changes as
0,0) »(2,1) > (1,00 > (0,1),

then the states ¢ = (¢, c,,...,¢,) will change as

(0,0,0,0,0,0,0,0), (19)
5 N
(0,0,0,0,0,0,1,0), (20)
J
(0,0,0,0,0,0,1,1), @n
2
10 (1,0,0,0,0,0,1,1). (22)

To show (21) using Algorithm 1, the mapping of F(/;) is shown in Table 2.

Table 2. F(/—i) , the mapping from htoi.

i B=(h,h)
1 01
2 02
3 10
4 11
5 12
6 20
7 21
8 22

15 Start with step 1 of Algorithm 1 with the help of Table 2 as follows:

-19 -

CA 02918136 2016-01-18

¢ =(0,0,0,0,0,0,1,0).
b2 = zn:c,. -hkm, Jor k=12,
=y = (,c: +e,+e) (e e +6) 2,
=2. (23)
=y, =(¢+c,+e¢)-1+(c, +e5+¢5)-2,
=1,
Instep 2, ¥y =(2,1) is not the same as 7 = (1,0) so proceed to step 3 as follows:
h =m, — Y., for k=12.
~>h =y,
i 24)

Step 4 requires using Table 2 to map from h=(2.2) to i =8. Finally, in step 5 raise ¢, by one
5 state and ¢ =(0,0,0,0,0,0,1,1) results. To formulatc a sum-rate expression, binary and ternary
one-hot code examples are presented in the following sections.
Further examples are provided to illustrate a set of possible message vectors in each M,
calculating a sum-rate for the MOH code, and determining ¢ for a g -ary MOH code.

Example 3. This example relates to a binary MOH code. Suppose 8 data messages are

10 to be stored initially, as in Example 1. Table 3 below shows a MOH encoding map for 8 values.

Table 3: Binary MOH encoding for binary messages.

Codeword ¢ =(q,c,,...,¢;) Message m = (m;,m,,m,)
0000000 000
1000000 001
0100000 010

-20-

10

15

20

CA 02918136 2016-01-18

0010000 011
0001000 100
0000100 101
0000010 110
0000001 111

Note that in MOH coding embodiments, the all-zero codeword (i.e., 0000000 in Table 3)
is being used whereas the traditional one-hot encoder does not allow the all-zero codeword. In
fact, a weight of 1 is traditionally used to encode every message and requires n,,,,,, Wits to
encode | M | messages in the traditional coding. Thus, for the same data alphabet size, the MOH
coding always uses one fewer wit in the codeword compared to the traditional one. In
mathematical terms, MOH code according to these cmbodiments uses

n={M|-1

wits. The decoder D : ¢ — m takes the states of the 7 cells as a vector ¢ and outputs a 3 bit
vector m. Using (12), the specific decoder to find each m,, for k =1,2,3, is simplified as

m =c,+cs+c,teg,

my,=c,+¢;+cg ¢y,

my=c +o+es+e;.
Using Table 3, it is verified that this decoder is valid for the MOH encoding scheme. Parameters
for this code are n =7, and ¢t =6 from (4) and (5). It will be shown why ¢# 7 below. Thatis, a

6-writc binary WOM codc using 7 wits 1s constructed to store information.

Illustrated next is a series of encoding tables for 6 writes. Table 4 shows the i-th
highlighted wit to encode to store a message vector m for the first write. We see {c,}., from

Table 4 for all entries agrees with (12).

-21-

10

15

CA 02918136 2016-01-18

Table 4. Encoding map for the first write.

From 3 /To m 001 010 011 100 101 110 111

000 1000000 | 0100000| 0010000 | 0001000 | 0000100 | 0000010 | 0000001

For example, suppose m = (1,1,1) is to be stored in the first write. The initial erased cell

state vector is ¢ = (0,0,0,0,0,0,0) and D(¢) = (0,0,0) . Using (10), h= (1,1,1) which corresponds
to the seventh cell. In Table 4 the seventh cell is highlighted when the message (1,1,1) is stored.
Thus 8 different messages are stored in the first write, and nothing is done to ¢ if m = (0,0,0) is

to be stored in the first write. Now unrestrict the second write to store as much information as

possible. Table 5 below shows the encoding map for the second write.

Table 5. Encoding map for the second write.

From y/To m 001 010 011 100 101 110 111

D (1600000)=001 na 1010000 | 1100000 | 1000100 | 1001000 | 1000001 | 1000010

D (0100000)=010 0110000 na 1100000 | 0100010 | 0100001 | 6101000 | 0100100

D (0010000)=011 | 0110000 | 1010000 na 0010001 | 0010010 | 6010100 | 0011000

D (0001000)=100 | 0001100 | 0001010 | 0001001 na 1001000 { 0101000 | 0011000

D (0000100)=101 | 0001100 | 0000101 | 0000110 | 1000100 na 0010100 | 0100100

D (0000010)=110{ 0000011 | 0001010 | 0000110 | 0100010 | 0010010 na 1000010

D (0000001)=111{ 0000011 | 0000101 | 0001001 | 0010001 ; 0100001 | 1000001 na

The first column in Table 5 shows the possible states for each ¢ and the decoded y
message after the first write. The first row in Table 5 shows the possible messages m that can
be written. The remaining columns show the highlighted i-th wit to program to store a new
message . If the message does not change, then there are no changes to ¢ . This is denoted by

na. Thus, 7 different messages are provided to store for the second write.

-22 -

CA 02918136 2016-01-18

Table 6. Encoding map for the third write.

From 5 /To m

001

010

011

100

101

110

111

D (0110000)=001

na

0110100

0111000

0110001

0110010

D (0001100)=001

na

0011100

0101100

0001101

0001110

D (0000011)=001

na

0010011

0100011

0000111

0001011

D (1010000)=010

na

1010010

1010001

1011000

1010100

D (0001010)=010

0011010

na

1001010

0001011

0001110

D (0000101)=010

0010101

na

1000101

0000111

0001101

D (1100000)=011

na

1100001

1100010

1100100

1101000

D (0001001)=011

0101001

1001001

na

0001011

0001101

D (0000110)=011

0100110

1000110

na

0000111

0001110

D (1000100)=100

1000110

1000103

na

1100100

1010100

D (0100010)=100

0100110

0100011

na

1100010

0110010

D (0010001)=100

0010101

0010011

na

1010001

0110001

D (1001000)=101

1001001

1001010

na

1011000

1101000

D (0100001)=101

0101001

0100011

1100001

na

0110001

D (0010010)=101

0011010

0010011

1010010

na

0110010

D (1000001)=110

1001001

1000101

1160001

1010001

na

D (0101000)=110

0101001

0101100

0111000

na

1101000

D (0010100)=110

0010101

0011100

0110100

na

1010100

D (1000010)=111

1000110

1001010

1010010

1100010

na

D (0100100)=111

0100110

0101100

0110160

1100100

na

-23-

10

15

D (0011000)=111{0011010 | 0011100 0111000 | 1011000 na

Table 6 shows the all possible encoding for the third write. The blank entries in the

tables represent the rate loss for the j-th write due to an unwritable message. With each write,
the cardinality of M is reduced and a mapping from the acceptable 7 -tuples to p -tuples is

established, where p; =logz |M|, for j # 1. In practice, this means accept 3 bits of input

information but will need to round down to the nearest power of ¢ . This means 2 bits of input

information for the subsequent writes until the need to round down to 1 bit. This can be done via
a table or proper combinatorial logic designs such as, for example, those used for Meggit
decoders. However, it may be assumed that information input does not need to be in powers of
g and the mapping from a larger data set to a smaller data set is well defined. Thus, it may be
assumed that the controller knows to restrict the input message corresponding to each blank entry
in subsequent encoding tables.

The encoding maps for the fourth, fifth, and sixth writes are shown in Tables 7-9, and the

encoding map for m = (0,0,0) is shown later on.

Table 7. Encoding map for the fourth write.

Date Regue/Date Received 2022-03-21

From y /To m 001 010 011 100 101 110 111

D (0011010)=001 na 0111010 | 0011110 0o11011

D (0010101)=001 na 0110101 0011101 0010111

D (0101001)=001 na 0111001 0101101 0101011

D (0100110)=001 na 0110110 0101110| 0100111

D (0011100)=010 na 1011100 | 0011110 | 0011101

D (1001001)=010| 1011001 na 1001011 1001101

D (1000110)=010| 1010110 na 1000111 | 1001110

D (0010011)=010 na 1010011 0011011 | 0010111
=24 -

CA 02918136 2016-01-18

D (0101100)=011 1101100 na 0101101 | 0101110

D (0100011)=011 1100011 na 0100111 0101011
D (1001010)=011} 1101010 na 1001011 1001110

D (1000101)=011 1100101 na 1000111 1001101
D (0110100)=100 0110110 0110101 na 1110100

D (0000111)=100 na 1000111 | 0100111 10010111
D (1010010)=100| 1010110 1010011 na 1110010

D (1100001)=100 1100101 | 1100011 na 1 1110001
D (0111000)=101 0111001|0111010 1111000 na

D (0001011)=101 1001011 na 0011011.0101011
D (1010001)=101| 1011001 1010011 na 1110001
D (1100010)=101} 1101010 | 1100011 na 1110010

D (0110001)=110 0111001} 0110101 na 1110001
D (0001101)=110 0101101 | 0011101 na 1001101
D (1011000)=1101 1011001 1011100 | 1111000 na

D (1100100)=110;1100101 | 1101100 1110100 na

D (0110010)=111 0110110 0111010 1110010 na
D (0001110)=111 0011110]0101110 1001110 na
D (1010100)=111}1010110 1011100 1110100 na
D (1101000)=111| 1101010} 1101100 1111000 na

-25-

CA 02918136 2016-01-18

Table 8. Encoding map for the fifth write.

From 3 /To m 001 010 011 100 101 110 111
D (1011001)=001 na 1111001 { 1011101 1011011
D (1010110)=001 na 1110110 1011110} 1010111
D (1101010)=001 na 1111010 1101110 1101011
D (1100101)=001 na 1110101 1101101 1100111
D (0111001)=010 na 1111001 0111011 0111101
D (0110110)=010 na 1110110 0110111|0111110
D (1101100)=010 1111100 na 1101110 1101101
D (1100011)=010 1110011 na 1101011} 1100111
D(0111010)=011 1111010 na 0111011 0111110
D (0110101)=011 1110101 na 0110111 0111101
D (1011100)=011 1111100 na 1011101 1011110
D (1010011)=011} 1110011 na 1010111 | 1011011
D (0011110)=100 0011111 na 1011110(0111110
D (0101101)=100 ‘0101111 na 1101101 0111101
D (1001011)=100| 1001111 na 1101011 1011011
D(1111000)=100| 1111100 | 1111010 1111001 na
D (0011101)=101 00111111011101 n 0111101
D (0101110)=101 0101111 1101110 na 0111110
D (1000111)=101{ 1001111 na 1010111 ; 1100111
D(1110100)=101 | 1111100} 1110101 | 1110110 na

-26-

CA 02918136 2016-01-18

D (0011011)=110 0011111 0111011 na 1011011

D (0100111)=110 0101111 0110111 na 1100111

D (1001110)=110 1001111 1101110/1011110 na

D (1110010)=110| 1110011 1111010 1110110 na

D (0010111)=111 0011111 0110111} 1010111 na

D (0101011)=111 0101111 0111011 1101011 na

D (1001101)=111 1001111 1011101] 1101101 na

D(1110001)=111|1110011 | 1110101 ' 1111001 na
Table 9. Encoding map for the sixth write.

From y /To m 001 010 011 100 101 110 m

D (1111100)=001 na 1111101]1111110

D (1110011)=001 na 1110111]1111011

D (1001111)=00t na 1011111 1101111

D (1111010)=010 na 1111011 1111110

D (1110101)=010 na 1110111 1111101

D (0101111)=010] 0111111 na 1101111

D (1111001)=011 na 1111011 1111101

D (1110110)=01t na 1110111 1111110

D(0011111)=011|0111111 ;1011111 na

D (1011101)=100 1011111 na 1111101

D (1101110)=100 1101111 na 1111110

-27-

CA 02918136 2016-01-18

D (0111011)=100| 0111111 na 1111011

D (1011110)=101 1011111 na 1111110
D (0110111101 0111111 1110111 na

D (1101101)=101 1101111 na 1111101

D (1010111)=110 1011111 1110111 na

D (1101011110 1101111 1111011 na
D(0111110)=110; 0111111 na 1111110
D (1011011)=111 1011111 1111011 na
D(0111101)=111]0111111 1111101 na

D (1100111)=111 1101111} 1110111 na

Now analyze the encoding maps for each write. The ¢, -th wit to program for each

previous message-to-current message for all 6 writes is recorded in Table 10.

Table 10. Encoding for each message.

From y /To m 001 010 011 100 101 110 111
001 na e c, ¢ cy <, Co
010 Gy na ¢ Gy ¢, ¢, e
011 c, c na &8 A cs cy
100 Cs c, < na o c, [N
101 ¢4 ¢, C G na C; &
110 ¢, ¢, ¢ Cy 1o na o
111 G Cs c, e <, ¢ na

-78-

CA 02918136 2016-01-18

We see {c,}, from Table 10 for all entries agree with (10). The analysis was stopped at
6 writes because two wits are used for the last write to include storing the message m = (0,0,0) .
This is because only ¢ = (1,1,1,1,1,1,1) can be written for the seventh write otherwise. A goal of
the embodiments is to maximize the sum-rate for a ¢-write code. By allowing two wits for the

5 last write, higher sum-rates in terms of ¢ writes are achieved. This is shown below in the binary

code analysis section. The results from Table 4 to Table 9 show that there are 16 unique vectors
¢ for each m message. Since there are 27 =128 total unique ¢ vectors, there must be 16 left to

represent m = (0,0,0). The 16 unique vectors that decode to 7 = (0,0,0) are shown in Table 11

below. Thus, 7= (0,0,0) may be stored in 4 different generations.

10
Table 11. All vectors that decode to m=(0,0,0).
00000001 1111111 0111100 1000011 0001111{1110000 1001100 0110011
1010101 10101010/ 0011001 111001101 0100110 1011001 0101001 | 1010110
From the encoding map tables, it is clear that to store the message vector (0,0,0) from a
message vector ¥y, the i-th wit corresponding to h= 3 must be encoded. This is summarized
15 below.
Table 12. Writing for 7=(0,0,0).
To m/From y 001 010 011 100 101 110 111
000 ¢ c, o) ¢, 5 N o
Again, the entries for {¢,}, in Table 12 agree with (10).
20

Sum-rate Analysis for Binary Codes

A sum-rate expression for binary MOH code is presented. For any n, there are exactly

¢t =n—1 writes. For each successive J-th write, decrease in data size by 1, as given by (6). This

was shown in Example 3.

-29-

10

15

20

25

Then obtain a simplified sum-rate expression for our MOH code, R, , as follows:

]
Ryor = Z

CA 02918136

2016-01-18

logle }

J=1

25)

In Example 3, calculate the sum-rate for a binary MOH code with n="7 cells using the following

M, |

for the 6 writes. This equates to a sum-rate of 2.102 using (25). Recall from Table 9 that the

| M, =8
M, =7
M, =6
M, =5
| M, |= 4
| Mg |=4,

sixth write can store 3 different messages using 1 wit. However, two wits may be used for the

sixth write. This is discussed with reference to Table 13.

Table 13.1 Sum-rates of binary MOH codes by using 1 wit or 2 wits for the last write.

n=6and (=6

n=7and =6

n=Tand t=7

n=8 and t=7

2.05

2.102

2.1856

2.2355

The second column in Table 13 shows the sum-rate of the binary code from Example 1 as

calculated using (25). The third column with n=7 and ¢ =7 shows a larger sum-rate than

column two. However, column 1 with #=6 and = 6 has a lower sum-rate than column two.

This means if a designer of a MOH code wants to achieve a higher sum-rate in terms of 7, the

last write should use 2 wits. On the other hand, to achieve a higher sum-rate in terms of n, one

wit should be used for all writes. An embodiment allowing two-wit encoding for only the last

write would require the lowest overhead and is the most likely scenario. This is because the

encoder may be instructed to use two-wit encoding once a data alphabet of size 3 in reached.

This would mean the second-to-last write available is reached.

-30-

CA 02918136 2016-01-18

Performance of a binary MOH code is shown in Fig. 2. Equation (25) was used to
calculate the points for the plot of the dashed curve for various ¢ writes. Equation (3) was used
to calculate the upper-bound of sum-rates for any WOM code for the shown number of ¢ writes.

Let Fg,q=2,3,---, represent the asymptotic g -ary gap to capacity constant as ¢ goes to infinity.
5 F, denotes the binary gap to capacity constant as follows:
F, =C-Rypy

* log, | M
—yn{logz(lJrz)-zf’g2I fﬂ 26

=1 n

= L ~1.44.
In2

Proof. Using change of variable | M ; |=/ in the above finite sum,

L log, (1M
lim [logz a+0-Y ﬁi__wag}

1 4

r “og, (!]
- lim log, 1+ -3 220 @7)
oo | 2 |
a £l Y]
Iog{ﬂl}
10 =lim| log,(1+8) - 2 (28)
{0
] log, ((¢+1)!
= lim 10g2(1+t)-m§2«(~%—~w)~)~J (29)
t—x
s
log, ([f’]})-"
“lim———L— (30)
20 Z
-
t+1) ¢
—hmlogz(T) (31)
=yt B, ﬂ
ol
- . D)
= 10g:2 }g}g WW‘:/—EW' (32)
LS
15 =log, Pm“}:/“j;“ (33)

-31-

10

15

20

25

CA 02918136 2016-01-18

!
=log, lim—r= (34)
I—)w’ ['
=log, (e), (33)

where the last equality follows by the fact that 1ime% = ¢ and (32) follows from the
V3!

following theorem (Limit of Composite Function): If lim g(x) = ¢ and function f is continuous
at a, it follows that lim f[g(x)]= f[lim g(x)].

Fig. 3 is a plot of the difference between the capacity and the achieved sum-rates for ¢
values up to 524,286. The numerical results from Fig. 3 illustrate a ceiling starting at 7 =10
with 1.44 sum-rate distance. Thus, the achieved sum-rate will reach the best gap to capacity
when n ~1000 wits in the worst case. Modified binary one-hot code is thus a near-capacity-
achieving code.

Performance for smaller ¢ writes will now be described. Fig. 4 shows the highest
previously reported sum-rates for ¢ <10.

Yaakobi’s (Yaakobi and Shpilka, Proceedings of the 2012 IEEE Int. Symp. on Inform.
Theory, ISIT2012, Cambridge, U.S.4, pp. 1386-1390, 2012) construction shows an unpredictable
sum-rate curve as ¢ is increased. This is because the rates from Yaakobi’s construction were
found through a computer search. Thus the structure of the code changes for different ¢-write
codes. Conversely, MOH code embodiments and the position modulation code shows a smooth
increase as ¢ is increased. This is because the same encoder and decoder expressions can be
adapted for increasing block sizes. Thus the rate-loss scales in proportion to ¢ and 7.
Conversely, the encoder and decoder is vastly different for each ¢-write code constructed by
Yaakobi, thus the amount of overhead (rate-loss) is harder to generalize. The gap in sum-rate
between MOH code embodiments and the position modulation code widens as the value of ¢ is
increased. For example, at # =50, an MOH code can achieve a sum-rate of 4.3385 compared to

a sum-rate of 2.8 achieved by the position modulation code.

-37-

10

15

20

25

CA 02918136 2016-01-18

Table 14. Block sizes for various ¢ write codes for MOH and position modulation code.

t writes 2 3 4 5 6 7 8 9 10
Position modulation n value [10]] 98 124 |+ 150 | 172 196 216 | 238 | 258 | 278
MOH code n value 3 4 5 6 7 8 9 10 11

Table 14 shows the block sizes used for each ¢-write code for position madulation and an

MOH code embodiment. No comparison was made with Yaakobi’s block size as the valucs

were not clearly reported aside from their 2 -write code which used a block size of 33 wits.

From Table 14 and Fig. 4, it can be seen that the MOH code embodiment achieves higher sum-

rates while using small block sizes for each r-write WOM code. In general, the larger the block

size used results in a higher sum-rate achieved. Thus, for a comparable value of n, a MOH

embodiment can extend the life cycle of a flash device by allowing more writes and store more

information bits per cell when compared to position modulation code.

Remark. In general, MOH code embodiments have a lower rate loss in between each

consecutive write in comparison to other unrestricted codes. This can be easily seen by the fact

that the data information set size decreases by one for each write. On the other hand, Yaakobi’s

code construction usually has a higher rate loss in between writes. This means most of the stored

information bits per cell is achieved in the first half of a ¢-write code. For example, fora 6 -

write Yaakobi WOM code, the rate loss between the fourth write to the fifth write is 0.1216. In

comparison, the rate loss between the fourth and fifth write of a 6 -write MOH code embodiment

is just 0.046

In summary, for a block size of n cells, MOH coding embodiments as described herein

achieve larger sum-rates, while also allowing a larger number of writes, and achieve the highest

sum-rates for £ > 6 writes. This translates into a longer life cycle for a flash memory device, as

the need for an crasure is delayed. MOH coding also uses at least (n—1) of the n wits per

erasure. This means that over time, nearly all of the floating gate cells will reach failure at the

same time for each n block.

A g -ary MOH code embodiment is compared to the stacked WOM constructions in the

next section, starting with a temary example.

-33.

10

CA 02918136 2016-01-18

Ternary Modified One-hot Codes
A ternary MOH code embodiment is presented to show the size of the data set for cach
successive write. This will aid in calculating achievable sum-rates. Encoding maps are shown

where the procedure is parallel to the binary code in Example 3.

Example 4. To store, e.g., 9 messages in the first write, n =28 from (4). A ternary

decoder for a message vector m over GF(3) is
my =(cy+c,+cs) I+ (e, +¢;+¢g)-2,
my, =(c,+c, +c;) 1+(c, +¢c5+¢5)- 2,

which is a simplified expression for (12). A MOH encoding for terary messages is

shown in Table 15.

Table 15. Modified one-hot encoding for ternary messages.

Codewords ¢ =(¢,,¢;,...,¢5)1 Message m = (m,,m,)
00000000 00
10000000 01
01000000 02
00100000 10
00010000 11
00001000 12
00000100 20
00000010 21
00000001 22

-34-

CA 02918136 2016-01-18

As with the binary example, the encoding map for the second and third write will be shown.
Table 16 shows the encoding map for the second write for a ternary MOH codes. The first
column again shows the message corresponding to the states of ¢ after the previous write. The
term £(m) = ¢ is used in the first columns of the encoding tables in this example due to the
limited space available. Note that the highest state “2” for any wit is not reached until the second
write at the earliest. Table 16 also shows that the available messages to be stored is the same as

the first write. In other words | M, |=| M, |. Table 17 shows the encoding map for the third

write. For the third write, | M, | =1 different messages are stored.

-35.

[U00uaCU

7 N

CA 02918136 2016-01-18

TO0000TO | T000000T 70000000 T0000T00 | 10010000 =(z7)3
yiuoouay
20|)T000010 01100000 0T00T000 | 0TO00EO0
00T0000T ©ll 01100000 00TTO000 | 00TOTO00
00020000 | 00011000 1| 000T00I0 00TT0000 | TODICONO
0O0OTI00 | 000TTO00 Bl 0TO0TCO0 | 00TOTO00
0000TT0D | 00000Z00 00000101 10000700 | OTC00TO0 =(01)3
guuLcuty
0T0000T0 00070010 20| (00000%0 =(p0)3
QuyLUUU L
00L0000T | T000000T 00000101 0000000 eu =(10)2
w oL /A
17 0 I 0 00 Wo1

"3p0d ATeUls} 10] 9LIM PUODIS "9 J[qe

-36-

CA 02918136 2016-01-18

TCO00100
TOTOOT00 | Z000DT0D | TI000TO0 | TOO00ECO | TOOTOTOD + TCOOTTOO B TOD00TTO | TOOOOTOT =(g0)3
S As}
00T00007 | TOO0000T | QT00000T | ODOOCTOZ | O0OTCO0T | 000OTO0Z U 000COCTT =(70)3
TCOTO000
TI0T0000 | TOTTODO0 | TOOTO00O ¢ TOCTIONO | TOOTOTO0 | TONEC000 | TOOTO00T w0 I0OTO0TO =(10)3
goiotady
OTTOTO00 | O0&0T000 | IOTCTR00 | O0TOZO0O | O0IOTIOND | OOTTIO0G | COTOT0oT B ODT0TOT0 =(10)2
gToolicy
0Z000T00 | QTTOO0TO0 4 TI000TO0 | OTOOTTICO | OTOCOZ0S | DIOTIOTCO | 01000101 sU L OI000TI0 =(10)2
Jootaoou
OT0000z 00100020 1 TO0C00Z0 | 0000T0Z0 | GO0O0TIZO ¢+ 0DOTN0CO | 000000TT el ={10}2
futinioug
c000T000 + TTIO0T000 | TOLOLCOD § 10OL10CC | 10D0Z000 | TO00YICO | 10001010 ¢ 1000100t vl
11010000 OT1I000C | OTOG00C0 | OTOLI0UG | OI0T0I00 | OLOI0CLO ¢+ 0I0T0001 wi
TOT00I0D 1 OTTO0TOO | 00E00TO0 | OCTEOTON 00100800 | 0OTODTEO | 00I0D10T #i
TO0000TT | OTO0O0TT | OOTICOOTT | OOOTGOTT | OO0OOTOTT | OCOOOTTL | OOCOQ0ZT | COO0OOTZ Bl
e 12 07 ol 11 01 0 10 ac
"APOO AIRUID) I0f JLIM PIYT LY d[qRL

-37-

CA 02918136 2016-01-18

UUUUUL L

0000CETO | OO0INTIO | 0DOOTTIO =W 00000180 | QO000TTY ¢+ OOTIOTITO | TO00TTIO | OTO000TIO =({Z1)3
LoooToaT
00C0TIOT | OCOTTO0T | 0000Z00T BU L QOODTIONTT | OO00T00Z | GOTOTO0T | 100071007 + 01001001 =(71)3
qyEssey
ZON0OTO00 | Z0000TO0 ¢ gO0TC00O0 | 20006001 B ZOOOCOTIC | 2TO0CCO0 | 20100000 =(11)2
OTIoooo0
OTTIOTO000 | OTT00TIO0 | OTTTON00 | OTTOG00T BU L QTTIOCOTO | OZTO0000 | 071200000 | 11700000 =(11)3
UCUTOO10
000%00I0 | ODOTOTTI0 | O00ZO0T0 | COOTUOIT BU L 000TO0Z0 . OLOTOOTO | GOTT00T0 ¢ TO0I00To =(11)3
JUOOUTUT
Oo0C0%E0T | COOTOI0T | 00OD0DIOG ®U L QC000TIT | OIODOIDT | OOLO0TOL
QOZTO000 | DOZOIONC | OOZ0OTO0 | COTO00IC | D0C0060T U 1020000 DIZOD0O0

TIOTIC0CO | TIOOTCOD | TTICCOTOD | 1TT00GOTO | 1TO000OT =W ZT1000000 11100000

QCOLI0NTI0 | O000E0T0 ¢+ OCOOTTIO | D000TOZO | ODDOTOTY w0 T000T0T0 | OIO0T0T0 ¢ DOTIOI0TO
R JLOU0 L
000T000T | O00TTOO0T | OOOTIOTOT | COOTIOOTL | 00010002 €U T00TO00T | OTOTO00T | O0TTo00T =(01)2
VISRV VNIY]
00gT0000 | TOTTIO000 | OTTTIO000 | OOTTIOLOO | 00TEZO000 | OO0TTTO00 w0 OOTTIOCI0 | OOTI0OOT =(z70)3
, OTCOTO00

OTT0T000 | TTO0TO00 | 0Z00TO00 | OTOOTI0O | OT0T 1000 |+ NTO0TO00 w0 QI00TO0TO | 01001001

‘9P0o Areuls] 10§ OJUM PIIYT, “(PJU0d) L] d[qeL

-38 -

00102000

=(g)s

00110100

UUUIUTYn

]

]

Cogo0oto

o

&

01100001

01626000

0100110

11000070

01100001

CA 02918136 2016-01-18

10011000

=(00)7

GUU

=(0g)#

aorontn

=(o7)®

00U

el

"9p0d AIeuId} 10§ UM PIYL, (P IU0d) LT AqeL

tes. Then the number of writes for a ¢ -ary MOH

-39-

Wrl

just 1 wit for all

ing ju

by

Consider encod

is given

code

CA 02918136 2016-01-18

t=n(q-1).

(36)

This example is thus a 16-write ternary MOH code. The wit ¢; to program for all writes is

shown in Table 18.

Table 18: Encoding map for a ternary MOH code for n=8.

From y/To m 00 01 02 10 11 12 20 21 22
00 na G & €3 G4 s S G Cg
01 c, na ¢ s o) ¢ Cq C ¢
02 e) na ¢y c; Cy ¢y < g
10 s c, Cy na c Cy c, c, Cs
11 Cg C T c, na C, Cs ¢ ¢4
12 < G 3 4 & na €y = G
20 Cy ¢ s < < Cy na G c,
21 s G Cs Cy s & & na G
22 c, cy cy c; TN s o ¢, na

Verifying (10) finds the i-th wit to program over GF(3) by using entries from Table 18.

For instance, to store a new message m = (1,2) when the message y = (2,2) is decoded from the

current ¢ . Then the sixth wit is used to program to a higher state. Using (10), solve for

h,k=12 by

h, =m, —y,for k=12
—h =1-2,

=7,
—h, =2-2,

=0,

thus 4 = (2,0) and converts to i =6.

-40-

(37

10

15

20

25

CA 02918136 2016-01-18

Sum-rate Analysis for g -ary Modified One-hot Codes

Start by analyzing the sum-rate of the above temary MOH code example. From Tables
15-17 of Example 4, the first two writes guarantee | M, |= n+1 messages. The third write
decreases in data alphabet size by 1. The simulation shows the data alphabet size for the fourth
write is the same. Relate this sequence to that of a binary MOH code. In other words, the size of
the message sct decreases after every (¢ —1) writes. Physically, this means in the worst case, a
floating gate cell has reached the highest state allowable and can no longer be programmed. For

Example 4, then

M, =9,
M, =9,
|, -8,
M, -8,
ML IFT,
M T,
Mi=2,
IM1=2.

Fig. 5 shows the sum-rates of a ternary and a quaternary MOH code along with the
corresponding ternary and quaternary capacities for any WAM code. The upper solid curves
represent the sum-rates achieved for a quaternary MOH code and the quaternary capacity. The
middle solid curve represents the capacity for a ternary code. The two dashed curves represent
the sum-rates for a ternary code and the sum-rates for a stacking of two binary MOH codes.

It was shown above that a binary MOH code as described herein outperforms previous
binary WOM codes. A further embodiment includes stacking of binary MOH code to construct a
quaternary WAM code. Quaternary MOH code embodiments outperform the quaternary stacked
construction in terms of the achieved sum-rate for the same number of writes. The gap between
the two quaternary sum-rates increase as ¢ increases. This widening gap is a result of a slower

rate loss caused by the combination of the smaller sizes of n for the same ¢ and the fact that

.41 -

| M, | decreases in size by 1 for every (¢ —1) writes. [} denotes the ternary gap to

capacity constant as 7 goes to infinity, as follows:

F, 3 C- RMOH | | Iy |
1+2 ' lo ; 38
:}Eg[logz{) j—;—gzn J } (38)
Likewise, F, denotes the quaternary gap to capacity constant as 7 goes to infinity, as follows:
F, . C- RMOH
s e = I

In Fig. 6, differences between the upper bound and the achieved sum-rates for the ternary and

quaternary MOH codes for 7 values up to 531,439 and 1,048,574 are shown. The numerical
results from Fig. 6 show that /;, =3.89 and F, =6.49 for a 7 value of approximately 1000

writes. Thus, the ternary and quaternary MOH codes are both also near-capacity-achieving

10 codes.

15 Equivalents

While the invention has been described with respect to illustrative embodiments thereof,
it will be understood that various changes may be made to the embodiments without departing
from the scope of the invention. Accordingly, the described embodiments are to be considered

merely exemplary and the invention is not to be limited thereby.

20

-42-

Date Regue/Date Received 2022-03-21

10

15

20

25

30

Claims

1. A method for operating a digital memory, comprising:

minimizing a number of memory cells encoded for a write operation; and

avoiding erasing memory cells by re-using written memory cells;

wherein a sum-rate of the digital memory is equal to or less than 1.44 bits away from a
capacity of the digital memory for a binary code; or

wherein a sum-rate of the digital memory is equal to or less than 3.89 bits away from a
capacity of the digital memory for a temary code; or

wherein a sum-rate of the digital memory is equal to or less than 6.49 bits away from a

capacity of the digital memory for a quaternary code.

2. The method of claim 1, wherein minimizing the number of memory cells comprises

encoding one cell for each write operation.

3. The method of claim 1, wherein minimizing the number of memory cells comprises

constructing cell state vectors that are uniquely decodable.

4. The method of claim 3, further comprising decoding each permutation of memory cells

into a unique value.

5. The method of claim 1, comprising encoding cells synchronously, wherein a cell state

vector is related to a selected generation.

6. The method of claim 1, wherein the digital memory comprises write-once memory

(WOM),

7. The method of claim 1, wherein the digital memory comprises write-asymmetric memory

(WAM).

8. The method of claim 1, further comprising using error control coding.

-43 -

Date Recue/Date Received 2022-03-21

10

15

20

25

30

9. Computer readable programmed media for use with a processor, comprising:

a code stored on non-transitory storage media compatible with the processor, the code
containing instructions to direct the processor to operate a digital memory by:

minimizing a number of memory cells encoded for a write operation; and

avoiding erasing memory cells by re-using written memory cells;

wherein the code comprises:

a binary code that provides a sum-rate equal to or less than 1.44 bits away from a
capacity of the digital memory; or

a temary code that provides a sum-rate equal to or less than 3.89 bits away from a
capacity of the digital memory; or

a quaternary code that provides a sum-rate equal to or less than 6.49 bits away from a

capacity of the digital memory.

10. The computer readable programmed media of claim 9, wherein minimizing the number

of memory cells comprises encoding one cell for each write operation.

11. The computer readable programmed media of claim 9, wherein minimizing the number

of memory cells comprises constructing cell state vectors that are uniquely decodable.

12. The computer readable programmed media of claim 11, further comprising decoding

each permutation of memory cells into a unique value.

13. The computer readable programmed media of claim 9, comprising encoding cells

synchronously, wherein a cell state vector is related to a selected generation.

14. The computer readable programmed media of claim 9, wherein the digital memory

comprises write-once memory (WOM).

15. The computer readable programmed media of claim 9, wherein the digital memory

comprises write-asymmetric memory (WAM).

-44 -

Date Recue/Date Received 2022-03-21

10

16. The computer readable programmed media of claim 9, further comprising error control

coding.

17. A digital memory device comprising the computer readable programmed media of any

one of claims 9-16 and digital memory.

18. The digital memory device of claim 17, wherein the digital memory comprises write-

once memory (WOM).

19. The digital memory device of claim 17, wherein the digital memory comprises write-

asymmetric memory (WAM).

-45 -

Date Recue/Date Received 2023-02-21

CA 02918136 2016-01-18

Block=32 Pages
Page=528 Bytes (512+16)

ﬂ*;gﬁw “ — '{}

bytes 16 bytes

Fig. 1(a) (Prior art)

Bitline{BL) 8L BL
Word line{WL}
WL
WL | 1 i 1
i t i

1T

Fig. 1(b) (Prior art)

CA 02918136 2016-01-18

Sum-rate vs t writes

10% ey

@

g

E 10 -"

s 4 -

w

10°
10°

=
G
18
joN
o
(&)
Je!
Q.
1]
[o)]
@
©
£
e §
w

p § i-f‘%“F"{t)Jhe gap of binary one-hot code from upper-botnd in terms of t

10 10° 10° 10* 10° 10°
t writes

Fig. 3

CA 02918136 2016-01-18

Sum-rate vs t writes

3.5

1 T j 7 ¥ l ¥
" e
-

b e T
£

-©-Yaakobi Block Code [35]
-E-Upper-bound (2.3)
——Binary MOH Code
-©~-Position Modulation [36]

8 9 10

t writes

Fig. 4

Sum-rate vs t writes

Sum-rate

107

RN " ey

>Ternary MOH code

~.i-E~Upper bound (2.3) for any ternary code
CF#Quaternary MCH code

-1 -&-Upper bound (2.3) for any quaternary code

~$r-Quaternary code using two binary MOH codes

10° 10* 10° 10°
i writes

10

Fig. 5

CA 02918136 2016-01-18

[}

o

~

Sum-rate gap to capacity

W

&
g

B SR

i

;! '—e—F(t)-Thé gap of iémary MOH cﬁédé from uhper—bound interms of t

' I F(t)-The gap of quaternary MOH code from upper-bound in terms of t

-t
OOQA

10° 10° ’ 10° 10° 10°
t writes

Fig. 6

Start. New message to
encode.

»

A

Step 1. Decode previous
message using decoder.

Step 2. Is new
message
different from No
previous
message?

Step 3. Find h« by
Next message. subtracting new message
Return to Start, from previous message.
repeat t times.

Step 4. Find i, the one
unique cell to raise to the
next state.

A

Step 5. Raise cell ¢; to the
next state.

v

After t times the total sum-
rate will be 1.44 bits away
from the capacity of the
digital memory.

Fig. 7

Date Recue/Date Received 2022-03-21

Abstract

Provided are modified one-hot (MOH) constructions for WOM codes with low encoding
and decoding complexity, that achieve high sum-rates. Features include maximizing writing of
data information values for successive rewrites, all-zero and all-one cell state vectors that
represent a unique data information value that can be written for many generations, a very high
number of writes, and does not sacrifice capacity. One embodiment comprises ordered or
unordered MOH code that approaches the upper-bound for large 7 wits. According to the
embodiments, before an erasure is needed, the majority of the wits are encoded, which provides

level wearing and maximizes life of cells.

-46 -

Date Recue/Date Received 2023-02-21

Sum-rate vs t writes

i i i i

== Binary MOH Code
-&-Position Modulation [36]

. {-©-Yaakabi Block Code [35] ‘
"-E-Upper-bound (2.8)

t writes

8 g

10

