

Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

Aidin Jabbari

Department of Civil Engineering

Queen's University Kingston (ON) Canada

Introduction

- Lake Trout
 - A valuable natural resource in both economic and ecological terms
 - length: 30-80 cm, weight: 1-5 kg
 Ontario record: 28.6 kg
 - *Relatively rare: only 1% of Ontario lakes contain Lake Trout*
 - 20-25% of Lake Trout lakes are in Ontario

Lake Ontario, Lake Huron, Lake Superior and across the deep, cold lakes of the Canadian Shield (www.ontario.ca)

Introduction

- Narrow physiological tolerances for temperature and dissolved oxygen (DO) Temperature: 6-15°C DO: 9-12 mg/L
- Vulnerable to many stresses including climate warming: Increased solar radiation Thicker Epilimnion Increased fish metabolism Decreased concentrations of DO

Effect of climate change on restriction of pelagic habitat availability for Lake Trout (Ficke et al., 2007)

Introduction

- Significant weather changes in central Canada by 2100 (GCM): Winter: increase by 3-5°C
 Summer: increase by 6-9°C
 Climate changes _____>lower water levels _____>less hypolimnion volumes
 Severe hypoxia
- *Kling et al. (2003):*

Higher air temperatures \implies longer and stronger summer thermal stratification period \implies increase the duration of DO depletion in the hypolimnion & decrease the vertical DO flux

Project Overview

• A 3-part study to:

Analyze sediment cores to understand the past Develop empirical formulae to model the present Apply computational models to forecast the future

Develop and calibrate models on a common set of study lakes

Apply models to lakes of significant interest to supporting organizations New toolset for lake and resource managers

Theme 3

Computational modeling

- A simple DO sub-model has been embedded in the 1D bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM).
- This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS).
- The model can simulate physics and biogeochemistry over timescales relevant to climate change.
- Calibrated and validated by hind-casting T and DO profiles from 2 Lake Trout lakes:

Harp Lake & Eagle Lake

Harp Lake: model set-up

Maximum depth: 34 m Square root of the surface are: 843 m Extinction coefficient: 0.5 1/m Simulations time: 1978-2008 Optimum HOD: 0.03 Grid spacing: 1 m Time steps: 10 min

Harp Lake: Meteorology

Maximum depth: 30 m Square root of the surface are: 250 m Extinction coefficient: 0.3 1/m Simulations time: day 173-328, 2011 Optimum HOD: 0.085 Grid spacing: 1 m Time steps: 10 min

Eagle Lake: Meteorology

Eagle Lake: Results

Eagle Lake: Results

Eagle Lake: Results

Summary and Future works

Summary

- Temperature and DO for two Lake Trout lakes are validated.
- The model can predict temperature and DO with RMS error <2 °C and <4.5 mgL⁻¹, respectively.

Future works

- *Modification of HOD and bottom stress*
- Validating the model against DO reconstructions from the sediment cores
- Predicting future DO concentrations in Canadian Lake Trout lakes under future climate change scenarios.

Thank you