

Coupling a Regional Climate Model to a Lake Tile Model for Prediction of Dissolved Oxygen Profiles in Lakes

<u>Aidin Jabbari¹</u>, Leon Boegman¹, Murray MacKay², Kris Hadley³, Andrew Paterson³, Adam Jeziorski⁴, Clare Nelligan⁴, Lewis Molot⁵, and John P. Smol⁴

1. Environmental Fluid Dynamics Laboratory, Department of Civil Engineering, Queen's University

2. Science and Technology Branch, Environment and Climate Change Canada

3. Ontario Ministry of the Environment and Climate Change, Dorset Environmental Science Centre, Dorset

4. Paleoecological Environmental Assessment and Research Lab, Biology Department, Queen's University

5. Faculty of Environmental Studies, York University

Outline

- Part I: Introduction
- Part II: Bottom boundary layer mixing sub-models
- Part III: Photosynthesis and water column respiration
- Part IV: Summary and Conclusions

Introduction

Lake Trout

- Vional fisheries:
- length: 30-80 cm, weight: 1-5 kg
 Ontario record: 28.6 kg
- Valuable ecologically and economically
- Great importance to Ontario's recreational fisheries: over \$2.5 billion to the provincial economy (OMNR 2014)

Lake Ontario, Lake Huron, Lake Superior and across the deep, cold lakes of the Canadian Shield (www.ontario.ca)

- Narrow tolerances for temperature (T) and dissolved oxygen (DO)
 Temperature: 6-15°C
 DO: 9-12 mg/L
- Vulnerable to many stresses including climate warming: Increased T Thicker Epilimnion

Increased fish metabolism Decreased concentrations of DO

Effect of climate change on restriction of habitat availability for Lake Trout (Ficke et al., 2007)

Project Overview

• A 3-part study to:

Analyze sediment cores to understand the past Develop empirical formulae to model the present Apply computational models to forecast the future

Harp Lake and Eagle Lake

Variable	Harp Lake	Eagle Lake
$Z_{max}(m)$	37.5	31.1
TP (µg/L)	5.74	9.00
DOC (mg/L)	4.41	4.05
pH	6.42	7.9
Surface Area (km ²)	0.71	6.65
Length of shoreline (km)	4.74	41.4
Number of cottages	~100	>300

Historical warming near Harp and Eagle Lakes

A) Mean annual air temperature (MAAT) from a climate station located in Beatrice ~35 km from Harp (B) MAAT from Kingston located ~50 km south of Eagle Lake.

Methods

- 1D bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM) embedded in Canadian Regional Climate Model (CRCM)
- Lakes represented as 1 m² watercolumn tiles (Mosaic approach)
- Hundreds of small lakes represented with a few idealized lake tiles
- Surface mixed layer model for surface layer with no mixing below SML (MacKay 2012)
- Added a simple DO sub-model (Hamilton and Schladow 1997)
- DO flux at surface and SOD applied to the first cell $SOD = \mu_b DO / (DO + K_m) \alpha_{sed}^{T-20}$
 - $\mu_b = 0.46 \text{ gm}^{-2}\text{d}^{-1}$ (maximum biochemical sediment oxygen uptake)

 K_m =1.5 mgL⁻¹ (half saturation constant)

 α_{sed} =1.08 (sediment temperature multiplier) *T* = water temperature

Harp Lake: model set-up

• Calibration and validation:

30 years of bi-weekly observations July 5th, 1978 to December 31th, 2007 Maximum depth: 34 m Square root of the surface are: 843 m Extinction coefficient: 0.5 1/m Grid spacing: 0.5 m Time steps: 10 min HOD= 0.03 gm⁻³d⁻¹

Harp Lake: Meteorology

Eagle Lake: model set-up

• Calibration and validation:

5 years of high-frequency (10 s to 10 min) observations June 22nd, 2011 to July 29th, 2015 Maximum depth: 30 m Square root of the surface are: 250 m Extinction coefficient: 0.3 1/m Grid spacing: 0.5 m Time steps: 10 min HOD= 0.08 gm⁻³d⁻¹

Eagle Lake: Meteorology

Part II: Bottom boundary layer mixing sub-models

Bottom boundary layer mixing sub-models

- a)
- h_{BML} following a mixed layer approach (Imberger, 1985; Spigel et al., 1986)
- Fully turbulent BML with uniform DO resulting from shear-induced mixing

 $d(uh_{BML})/dt = u_B^{*2}$ u: mixed-layer velocity u_B^* : bottom friction velocity $(u_B^* = 0.2u_S^*)$

b)

• DO flux computed from Fick's Law

 $J = -K \, dDO \, / \, dz$ $K = 10^{-7} \, \text{m}^2 \text{s}^{-1}$

K: average diffusivity from microstructure profiler

Mixed-layer models in large lakes

Patterson et al (1985, FRESH. BIO.)

Harp Lake: Results

Eagle Lake: Results

- Less error in DO prediction in BBL using the Fickian flux sub-model
- Smooth decrease in DO profiles using Fickian flux approach
- Fickian flux approach even improves DO predictions above the BBL
- Mixed layer approach is successful in the surface

Re dependence of mixed layer models

$$Re_{SML} = h_{SML} u_{S}^{*} / v$$
 $Re_{BML} = h_{BML} u_{B}^{*} / v$

• In Lake Erie: $u_B^*=0.2$ cm/s and $h_{BML} \approx 7$ m; $Re_{BML} > 10,000$ and BML approach is successful

Results: Harp Lake *Re* **and mixed layer height**

- $h_{SML} > h_{BML}$; $h_{BML} < 10 \text{ m}$
- Re_{BML} < Re_{SML}; Re_{BML} barely exceeds 10,000 BML approach is not accurate
- $Re_{SML} \ge 10,000$; higher turbulence at the surface \implies SML approach is successful

Results: Eagle Lake *Re* and mixed layer height

- $h_{SML} > h_{BML}$; $h_{BML} < 10 \text{ m}$
- *Re_{BML} < Re_{SML}*; *Re_{BML}* barely exceeds 10,000 **BML** approach is not accurate
- $Re_{SML} \ge 10,000$; higher turbulence at the surface \longrightarrow SML approach is successful

Results: Mixing in turnover events

- *Re_{SML}* can be applied to understand lake turnover and re-oxygenation of the hypolimnion in spring and fall.
- Poor re-oxygenation of hypolimnion in spring 2014 turnover
- $Re_{SML} \approx 13,000 \ (h_{SML} \approx 3m)$ is low compared to Re_{SML} in other years

• Part III: Photosynthesis and water column respiration

Methods

Photosynthesis production

Parameterization of the specific production as a function of the light intensity (Platt et al., 1980)

 $P^{B} = P_{S}^{B} \{1 - exp(-\alpha I/P_{S}^{B})\} exp(-\beta I/P_{S}^{B})$ $P_{S}^{B}: \text{Maximum potential specific productivity (41.5 mg O_{2}/mg Chla/h)}$ $I: \text{ light intensity (W/m^{2})}$ $\alpha: 0.2 \text{ mg } O_{2} \text{ m}^{2}/\text{mg Chla/hr/W}$ $\beta: 0.45 \text{ mg } O_{2} \text{ m}^{2}/\text{mg Chla/hr/W}$

Respiration

Respiration in upper mixed layer=1.8 photo-assimilation Respiration in bottom mixed layer=0.2 photo-assimilation

Results

Results: Harp Lake GCM

Summary and Conclusions

- In small lakes: $Re_{BML} < Re_{SML}$; $Re_{SML} > 10,000$ (Re_{BML} barely exceeds 10,000)
- For Reynolds numbers < 10,000 the flow remains transitional and a Fickian diffusion model is appropriate
- For Reynolds numbers > 10,000, we expect a fully turbulent boundary layer and a mixed layer model should be used
- The best DO predictions are from the simple Fickian flux submodel at the BBL, but a mixed layer approach in the surface
- Parameterization of the specific production as a function of the light intensity and respiration as a factor of photo-assimilation improves the results

Thank you!