Is climate warming altering nutrientoxygen dynamics in Canadian Lake Trout lakes?

Clare Nelligan, Adam Jeziorski, Kathleen M. Rühland, Andrew M. Paterson and John P. Smol

Lake Trout in Canada

- Widely distributed cold-water taxa
- Large bodied (30-80 cm in length)
 & late maturing (5-10 yrs)
- Valuable natural resource that is important to Canada's recreational fisheries

Ontario

- Relatively rare only 1% of Ontario lakes contain Lake Trout (This represents 20-25% of all Lake Trout lakes worldwide)
- General decline in both sport fishery and habitat (OMNR 2006)

Habitat Requirements

Lake Trout have narrow physiological tolerances for temperature and dissolved oxygen (DO)

Habitat Degradation Within Lakes

Lake Trout have narrow physiological tolerances for temperature and dissolved oxygen (DO)

The Role of Total Phosphorus (TP) in Hypolimnetic Anoxia

Management efforts currently centered on controlling TP

However, depleted DO has been observed in lakes with stable *or* declining TP (Summers et al. 2012)

Suggests the influence of other factors

Multiple Stressors

Multiple Stressors

Mate Warming Climate W

Climate Change

Mean annual air temperature in Ontario has increased by ~1.4°C since the mid 1900s with further increases predicted over the next century (Chiotti and Lavender 2008, McKenney et al. 2010)

Impacts of warming are clearly observed across Ontario

Climate Change

Increased Air Temperature

Altered Stratification

Altered Overturn

Altered
Seasonal DO
Depletion

It is important to understand how climate change may be altering the relationship between TP & DO

Project Objective

Investigate past TP-DO dynamics in 3 Ontario Lake Trout lakes with differing levels of shoreline development

(2 control lakes and 1 impacted lake)

Research Questions

- 1. How have diatom and chironomid assemblages changed over the past ~200 years in 3 Ontario Lake Trout lakes?
- 2. How have TP and DO changed?
- 3. How do control and impacted lakes differ?
- 4. Are the nature and timing of changes consistent?

Lake Selection

Three monitored lakes were selected:

- Two with minimal shoreline development Harp (HP) and Red Chalk (RC) lakes
- One with moderate development pressure Eagle (EG) lake

Methods

 Sediment cores collected from Harp, Red Chalk, and Eagle lakes

Methods

- Sediment cores collected from Harp, Red Chalk, and Eagle lakes
- VRS-inferred chlorophyll-a determined for each core

Methods

- Sediment cores collected from Harp, Red Chalk, and Eagle lakes
- VRS-inferred chlorophyll-a determined for each core
- Downcore diatom
 assessment to reconstruct
 TP has been completed
- Downcore chironomid assessment to reconstruct DO has been completed for Harp Lake

REFERENCE LAKES Harp and Red Chalk

- Seven lakes in the southcentral Ontario have been monitored continuously since the late-1970's
- Both lakes have minimal shoreline development
- Considered reference lakes for this investigation

Harp

 Z_{max} : 37.5m, pH: 6.42, TP: 6.35 µg/L Number of Cottages: under 100

Red Chalk

 Z_{max} : 38 m, pH: 6.45, TP: 4.65 µg/L

Number of Cottages: 10

Regional Temperature Increases

Climate station located ~35 km from Harp and Red Chalk lakes

MAAT increased by ~0.78°C since late-1880s

Reference Lakes Diatom Results

- Subtle changes are evident in both Harp and Red Chalk
 - Increases in small, fast-growing planktonic taxa
 - Decreases in benthic and heavily silicified tychoplanktonic taxa

Indicative of a climate signal – longer ice free season and increased thermal stability (Rühland et al. 2015)

Harp Lake Diatom Results

Red Chalk Diatom Results

DI-TP Results

: 9.02 μg/L

: 6.35 μg/L

: 5.74 μg/L

DI-TP shows no trend

: 5.84 μg/L

: 4.65 μg/L

: 4.74 μg/L

Harp Lake Chironomid Results

Harp Lake VWHO Results

Predicted VWHO values indicate VWHO was historically variable around the provincial standard of 7mg/L

Note: Model is inferring end-of-summer VWHO concentrations

IMPACTED LAKE Eagle Lake

- Moderate shoreline development since the late 1800's
- MVWHDO concentration below provincial standard of 7 mg/L
- Reclassified from a "threatened" to a "highly sensitive" Lake Trout lake in 2007
- Development subsequently restricted

 Z_{max} : 31.1m pH: 7.9 TP: 9 µg/L

Shoreline development as of 2002:

- -13 permanent residence
- 234 seasonal residences
- -67 vacant lots
- -2 camps (~ 545 campers)
- -5% of shoreline is Crown land

Eagle Lake Diatom Results

- Shift in diatom assemblage ~1985
 - Decrease in Stephanodiscus minutulus
 - Increase in small Cyclotella taxa (C. comensis, C. gordonensis,
 C. michiganiana)
- Increase in chlorophyll-a

Suggests that production is increasing independent of nutrients

Eagle Lake Diatom Results

Eagle Lake DI-TP Results

Decreasing DI-TP trend consistent with monitoring data

Model may be underestimating historical TP

1975: 17.3 μg/L

1981: 9.8 μg/L

2003: 7.4 μg/L

2012: 9 μg/L

Regional Temperature Increases

Climate Station ~50 km from Eagle Lake

Warmed by ~2.5°C since the late-1880s

Regional Temperature Increases

Increase in VRS-chla and Cyclotella taxa may be associated with warming

Recent DO declines more likely due to regional warming than shoreline development

Conclusions

- Results for Harp and Red Chalk lakes show subtle changes in diatom assemblages over the last ~200 years
- DI-TP shows minimal changes in both lakes
- Suggests that TP
 increases are not
 responsible for any
 oxygen depletion in these
 systems

Conclusions

- -Results for Eagle Lake suggest decreasing TP and increasing overall production
- -Increase in production may be due to lengthened growing season
- No evidence that TP is linked to the observed declines in hypolimentic oxygen

Next Steps

- Compare DI-TP with chironomid-inferred DO for Red Chalk and Eagle lakes
- Apply models to Lake Trout lakes of interest across Ontario

Acknowledgements

- Roberto Quinlan, Kelli Charbonneau and Joseph Vaitekunas
- NSERC
- Environment Canada
- Ontario Ministry of the Environment and Climate Change
- Ontario Ministry of Natural Resources and Forestry
- Federation of Ontario Cottagers' Associations
- Lake of the Woods Water Sustainability Foundation

Thank you, Questions?

Key Literature

- Ficke, A. D., C. A. Myrick, and L. J. Hansen. 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17:581-613.
- OMNR. 2006. Inland Ontario Lakes Designated for Lake Trout Management. 58 pp.
- Plumb, J. M., P. J. Blanchfield. 2009. Performance of temperature and dissolved oxygen criteria to predict habitat use by lake trout (*Salvelinus namaycush*). Canadian Journal of Fisheries and Aquatic Sciences 66:2011-2023.
- Summers, J. C., K. M. Rühland, J. Kurek, R. Quinlan, A. M. Paterson, and J. P. Smol. 2012. Multiple stressor effects on water quality in Poplar Bay, Lake of the Woods, Canada: a midge-based assessment of hypolimnetic oxygen conditions over the last two centuries. Journal of Limnology 71:34-44.
- Rühland, K., A. M. Paterson, and J. P. Smol. 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 35:110-123.
- Yan, N. D., A. M. Paterson, K. M. Somers, and W. A. Scheider. 2008. An introduction to the Dorset special issue: transforming understanding of factors that regulate aquatic ecosystems on the southern Canadian Shield. Canadian Journal of Fisheries and Aquatic Sciences 65:781-785.