
Examples of Applications of the COM-Poisson code

Daniel Durnford

October 26, 2018

This document contains several examples/demonstrations of applications of the COM-Poisson code. These
can be useful to con�rm that the code and look-up tables are set up properly, run diagnostic tests, and showcase
the various utilities of this code. The code to perform the demonstrations is in the �le Examples.cc, which
contains an exact copy of the main functions of COMPoisson.cc. Before proceeding, prepare the code following
the same procedure as with COMPoisson.cc (see the README �le). Examples.cc contains a function to perform
each demonstration (Example1(), Example2(), etc.). These can be copied into COMPoisson.cc, so they can be
used as trouble-shooting tools for that code as well. To run each demonstration, simply call the appropriate
function in main() of Examples.cc. The examples are described below.

1 Drawing random numbers from the COM-Poisson distribution

The point of this example is to build a distribution with a desired mean µ and Fano factor F (using COM-
Poisson, Bernoulli, Poisson, or a Gaussian where appropriate), draw random numbers from that distribution,
and plot them in a histogram. This simple function can serve as a good �rst test to con�rm that the code
is set up properly. The code to execute this example is contained in the function Example1(mu,F). Simply
call this function in main() with the desired mean and Fano factor as inputs, re-compile Examples.cc, and run
Examples.exe. Running the code with the line Example1(10., 0.2); should produce the histogram shown in Fig.
1. The function Example1() works in the following way:

1. First, the look-up tables are loaded by calling the function TableReader().

2. The function BuildCOM(mu,F, verbose) is called to build a probability distribution for the speci�ed mean
and Fano factor. This function decides which method is appropriate (i.e. Bernoulli, COM-Poisson, etc.),
then creates and stores its cumulative distribution function in the global std :: vector “cdf ′′.

3. The function cdfDraw(draw) is used to draw random numbers from the distribution.

4. A histogram of the random numbers is created.

X
4 6 8 10 12 14

0

500

1000

1500

2000

2500

 = 10, F = 0.2µ

Figure 1: Example of a histogram of random numbers drawn from the COM-Poisson distribution with µ = 10
and F = 0.2, made with the function Example1().

1



2 Speed test comparing fast and slow versions of the code

The functions BuildCOM() and PCOM() (which returns the probability of getting x with a given µ and F ,
see �Function Summary�) were not written carelessly with regards to computational e�ciency, but they can
at times be somewhat slow. This is because they perform a series of checks for various contingencies and
comparisons between the various methods to deliver the most accurate results possible. Faster versions of
these two functions (BuildCOM_Fast() and PCOM_Fast()) were created without all the �bells and whistles�,
potentially sacri�cing a marginal amount of accuracy for faster computation times. This example demonstrates
the relative computation speed of the two versions of BuildCOM(). The code to execute this example is contained
in the function Example2(). Call this function in main(), re-compile Examples.cc, and run Examples.exe, which
should produce the plot shown in Fig. 2. Note that using your computer for other tasks at the same time could
bias the results of the test. The function Example2() works in the following way:

1. First, the look-up tables are loaded by calling the function TableReader().

2. Then in a for-loop, the functions BuildCOM(mu,F, verbose) and BuildCOM_Fast(mu,F) are called M
times each for logarithmically increasing values of µ (and F = 0.2 by default).

3. The time taken at each value of µ is recorded and plotted as a function of µ for both versions of the code,
as shown in Fig. 2.

µ

1−10 1 10 210

T
im

e 
[s

]

5−10

4−10

3−10

2−10

1−10

1

BuildCOM()

BuildCOM_Fast()

Speed Test

Figure 2: A speed test comparing BuildCOM() and BuildCOM_Fast() as a function of µ, made with the
function Example2().

The features visible are due to the four regimes de�ned in the BuildCOM() and PCOM() codes: the Bernoulli
regime, look-up table regime, asymptotic regime, and Gaussian regime (from low µ to high µ). The Bernoulli
and Gaussian regimes are fast with BuildCOM_Fast() because they use analytical functions, but are slow with
BuildCOM() because of the series of choices (if-statements) considered before using them.

3 Performing an evaluation of the accuracy of the look-up tables

This example allows you to perform an evaluation of the accuracy of the look-up tables, similar to Fig. 6 of [1].
This involves drawing N random points (N = 105 by default) in (µ, F ) parameter space, using the appropriate
method to build a distribution, calculating the errors of the obtained mean and Fano factor relative to the
desired values, and plotting these values in histograms. The code to execute this example is contained in
the function Example3(). Call this function in main(), re-compile Examples.cc, and run Examples.exe, which

2



Error
9−10 8−10 7−10 6−10 5−10 4−10 3−10 2−10

1

10

210

310

410

µError in 

Error
9−10 8−10 7−10 6−10 5−10 4−10 3−10 2−10

1

10

210

310

410

Error in F

Figure 3: The error in µ and F from BuildCOM() of 105 points drawn randomly in 0 < µ < 100 and 0.1 < F < 1,
made with Example3().

should produce the plot shown in Fig. 3. The version of the look-up tables used to generate these plots is
�Table4_Alpha�. The function Example3() works in the following way:

1. First, the look-up tables are loaded by calling the function TableReader().

2. In a for-loop:

(a) A random value of the mean mu_draw is chosen between 0 and 100, and a random value of the Fano
factor F_draw is chosen between 0.1 and 1.

(b) The function isSoft(mu,F, 0.001) is called to check if this pair of points falls on or below the Bernoulli
modes to within 0.1%. Points below the Bernoulli modes are not possible, and points on the Bernoulli
modes illicit the use of the Bernoulli distribution itself, so these points are skipped.

(c) Then the line BuildCOM(mu_draw,F_draw, false); is used to de�ne the distribution with the ap-
propriate method. BuildCOM() will set the globally de�ned values of λ and ν as G_l and G_v
(unless the method used is a Gaussian distribution or Bernoulli distribution).

(d) Next, the mean and Fano factor obtained are calculated by calling Moments(G_l,G_v);. The
resulting mean, variance, and Fano factor are stored globally asG_mu, G_var, andG_F respectively.

(e) The relative error between the intended and obtained mean and Fano factor are calculated as:

mu_error =

∣∣∣∣mu_draw −G_mu

mu_draw

∣∣∣∣× 100% and F_error =

∣∣∣∣F_draw −G_F

F_draw

∣∣∣∣× 100%

3. The results from each iteration in the for-loop are stored and plotted as histograms like those shown in
Fig. 3.

One can see that overall, the look-up tables and COM-Poisson code are accurate to 0.1% (and often much
better) for all values of µ and F in this range.

4 Simulating the detection e�ciency of an experiment

This example simulates the detection e�ciency of an ionization-measuring device with the COM-Poisson code,
similar to Fig. 4 of [1]. This involves drawing random numbers from a probability distribution de�ned for a given
µ and F , and counting the proportion of random numbers that fall above a given threshold (set to µ = 4 by
default in this example), as a function of µ (here µ is both the mean number of ion pairs for a given distribution
and also an energy scale with units of the number of pairs). The code to execute this example is contained in
the function Example4(). Simply call this function in main(), re-compile Examples.cc, and run Examples.exe,
which should produce the plot shown in Fig. 4. The function Example4() does the following:

1. First, the look-up tables are loaded by calling the function TableReader().

2. Then, in a for-loop for 1000 logarithmically spaced value of µ and a given value of F :

(a) The line BuildCOM(mu,F, false); de�nes and builds the CDF of the probability distribution.

3



(b) 104 random numbers are drawn from this distribution using cdfDraw().

(c) These numbers are then re-drawn from a Gaussian distribution with σ = 0.25.

(d) The proportion of counts above the threshold of µ = 4 is calculated and recorded.

3. All of the above is done in a for-loop to perform this for multiple values of the Fano factor (F =
0.2, 0.4, 0.6, 0.8, and 1).

4. The proportion of events above threshold (the �detection e�ciency�) is then plotted as a function of µ for
each value of F , as in Fig. 4.

µ

1−10×5 1 2 3 4 5 6 7 8 9 10 20 30

D
et

ec
tio

n 
E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1 F = 0.2

F = 0.4

F = 0.6

F = 0.8

F = 1

Figure 4: The simulated detection e�ciency of an ionization measuring experiment with a threshold of µ = 4
and Gaussian resolution with σ = 0.25, for di�erent values of F , made with Example4().

[1] D. Durnford, Q. Arnaud, & G. Gerbier. �A novel approach to assess the impact of the Fano factor on
the sensitivity of low-mass dark matter experiments�. Accepted for Publication in Phys. Rev. D (2018).
arXiv:1808.06967.

4


	Drawing random numbers from the COM-Poisson distribution
	Speed test comparing fast and slow versions of the code
	Performing an evaluation of the accuracy of the look-up tables
	Simulating the detection efficiency of an experiment

