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Valencia, Spain
joraucam@upv.es

Daniel Pérez-López
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Abstract—Linear programmable photonic integrated proces-
sors have emerged as an alternative hardware platform for
quantum, deep learning, and microwave photonic systems. Cali-
bration and control of the photonic processor using deep learning
techniques has proven to be challenging due to the one-to-many
problem. This means that a given functionality of the processor
can be achieved using different settings of the controllers. In this
paper, we demonstrate how tandem neural networks can over-
come this limitation in meshes of Mach-Zehnder interferometers
by employing forward and inverse networks. This approach is
independent of the mesh architecture and introduces a novel
method for controlling photonic linear processors using deep
neural networks. We provide an experimental demonstration
using a 3x3 linear processor, achieving a control resolution higher
than 7 bits.

Keywords—integrated photonic circuits, deep learning, control
algorithms, programmable photonics

I. INTRODUCTION

There has been growing interest in the development of linear
programmable photonic integrated processors that can serve
as an alternative to current electronic systems [1]. Photonic
processors are used as matrix multiplication accelerators in
deep learning and wireless communications applications [2],
performing linear operations “on the fly” in the optical domain.
These photonic platforms can provide higher bandwidth, par-
allelism and lower latency compared to traditional processors.
Moreover, linear photonic processors are among the main
candidates for the future of quantum computing and quantum
communication systems [3].

Different architectures for integrated photonic linear opera-
tors have been proposed. The most popular are those based on
microring resonators (MRR) [4] and Mach-Zehnder Interfer-
ometers (MZI) [5]. When it comes to MZI-based meshes, they
can be arranged in different architectures to implement any
unitary linear transformation U(N). One of the most common
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a)
Fig. 1. Linear programmable photonic processor using the Clements archi-
tecture. a) 4 x 4 matrix multiplier. Green boxes represent the basic building
blocks of the system. Orange devices represent phase shifters. Basic building
blocks consist of a tunable MZI with an external phase shifter.

used architecture is the rectangular or Clements one [6], which
benefits from balanced insertion losses among the system. A
general scheme is shown in Fig. 1. The basic building block
consists of a tunable MZI and a phase shifter (PS) in one of
the external arms. A final column of phase shifters enables the
implementation of any U(N) transformation.

To implement the desired matrix, electrical currents have
to be applied to each of the phase shifters. Thus, precise
calibration of each phase shifter is crucial. This entails hav-
ing a precise mapping between the applied current and the
implemented phase shift. In the case of thermo-optical phase
shifters, the relationship between the applied current C and
the phase shift θ is the following:

θ = θ0 + αC2 (1)

where θ0 is the initial state when no current is applied, α
the tunning coefficient that needs to be characterized and C
the applied current. To calibrate the full system, a step by
step procedure needs to be followed. In each step, one of
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the MZI structures is isolated from the rest of the system
ensuring the input light exclusively goes through one of the
input waveguides of the MZI, and the output light is guided
to one of the outputs of the mesh. The applied current on
the MZI is then swept and the optical power at the output is
recorded. The dependence of the optical output power with
the applied phase shift is:

Pcross = Pin cos2(θ)
Pbar = Pin sin2(θ) (2)

where Pin represent the input optical power, and Pcross and
Pbar represent the optical output power at the bar and cross
port, respectively. The obtained curve is fitted using (1) and
(2), and the free parameters θ0 and α are estimated. The
isolating procedure is architecture dependent. For the case
of the rectangular mesh a calibration procedure has been
proposed [7]. Once the calibration is finished, a decomposition
process is necessary to relate the target matrix with the current
that needs to be applied to each phase shifter in the mesh. This
method usually assumes ideal components on each of the MZI,
which is not the case in practice due to fabrication imper-
fections. These deviations from the ideal behaviour introduce
discrepancies between the target matrix and the real matrix
implemented on the chip. A calibration and decomposition
algorithm to incorporate the effects of fabrication errors has
been demonstrated in [8]. Nevertheless, other sources of errors
such as thermal drift, thermal cross-talk and quantization errors
cannot be characterized using this procedure.

Recently, a data-driven model has been proposed to include
the neglected effects in the previous approaches [9]. The au-
thors demonstrate the use of a neural network based model for
the calibration of a linear photonic integrated circuit without
prior assumptions on the architecture of the chip. However,
the proposed model only solves the so called forward or
calibration problem. In the forward problem, a set of currents
applied to the mesh is fed into the model and it predicts the
expected implemented matrix on the chip, see Fig. 2 a).

It is still missing a way to solve the inverse or programming
problem, which involves inputting the target matrix to be
implemented into the model and obtaining the set of currents
necessary for achieving it. The inverse problem is particularly
relevant for applications in artificial intelligence or wireless
communications but it is challenging to solve using deep
learning models due to the one-to-many mapping. The one-
to-many mapping appears because one target matrix can be
obtained with many different sets of currents and this lack
of uniqueness limits the learning capabilities of simple feed-
forward neural networks. In the forward problem this mapping
is one-to-one, as for one set of input currents there is only
one possible output matrix. A schematic of these mappings
is presented in Fig. 2 b). Solving the inverse problem would
allow the control of photonic integrated circuits without use
of the previously explained calibration and decomposition
algorithms.

In this work, we propose the use of a tandem neural network
(TNN) to solve the inverse problem. Tandem neural networks

a)

b)
Fig. 2. a) The forward problem takes as input the applied electrical currents
and returns the expected matrix. The backward problem takes the target matrix
as an input and predicts the set of electrical currents that are necessary
to apply. b) Schematic of the one-to-many problem, one matrix can be
implemented from different sets of currents.

consist of a forward model that is pre-trained to solve the
calibration problem and one inverse network to solve the
programming problem. TNN have been previously used for
the inverse design of photonic devices [10], which faces the
same one-to-many problem. We show how tandem neural
networks can efficiently solve the one-to-many mapping using
experimental data gathered from a 3x3 photonic processor
with the Clements architecture. First, a fully-connected neu-
ral network is trained to solve the forward problem. Then,
this trained neural network is connected with another fully-
connected neural network, serving as the inverse model. The
tandem network is then trained optimizing the loss between
the target matrix inputted into the inverse network and the
output matrix generated by the forward network.

II. EXPERIMENTAL SETUP: DATA ACQUISITION

For the acquisition of experimental data, we used a 3x3
linear mesh with the rectangular architecture. A photo of
the fabricated device can be seen in Fig. 3. The photonic
circuit is composed of three fundamental building blocks, each
comprising a tunable MZI and a thermo-optical phase shifter.
In this experimental demonstration, we disregarded the final
column of phase shifters because direct photodetection was
used. The chip was fabricated by Advanced Micro Foundry in
a Silicon-On-Insulator platform.

Light is coupled into the chip through edge couplers and
then divided into three paths using an integrated splitter tree.
Prior to the rectangular mesh, an MZI column allows the
modulation of the input vector that is subsequently multiplied
by the photonic matrix. After multiplication, the outputs are
photodetected on-chip and the resulting currents are recorded.
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Fig. 3. Picture of the chip used to gather the data to train the tandem
network. It is a 3x3 mesh consisting on 3 building blocks using the Clements
architecture. The building block (black square) consists of one MZI and one
external PS.

To generate the dataset for the tandem network, first we
generate a set of 6 currents from a uniform random distribution
between 0 and 0.94 mA, which corresponds to the half-
period of the MZI. These currents are then applied to the
phase shifters within the mesh using multi-channel current
sources. To measure the implemented matrix on the mesh,
we need to input the identity matrix (I on Fig. 3) so that
after the multiplication and photodetection we can measure
the implemented matrix M = |U |2 = IU .

The identity matrix cannot however be directly encoded into
the chip as we can only input 1x3 vectors. To circumvent this
issue, for each of the samples on the dataset, we split the
measuring process into three steps. In each step, one column
of the identity matrix is encoded into the chip. At the output,
the corresponding column of the photonic matrix is measured.
After this process, the columns are merged and the full 3x3
matrix is obtained.

III. TANDEM NEURAL NETWORK: TRAINING AND
RESULTS

The proposed tandem neural network consists of two dis-
tinct fully-connected feedforward neural networks connected
as depicted in Fig. 4. The forward model is first trained to
predict the implemented matrix on the chip by minimizing
the root mean squared error (RMSE) between the implemented
matrix measured on the fabricated mesh, Mo, and the predicted
matrix Mf . For our models, we use the squared of the currents
instead of the currents, inspired by the physical behaviour of
the thermo-optic phase shifters explained in (1).

The inverse model, has its outputs connected to the inputs
of the forward model. The weights on the inverse model are
optimized to minimize the RMSE between the matrix fed into
the inverse model, denoted as Mi, and the predicted matrix
by the forward model, Mf . During the training of the inverse
model, the weights of the forward model remained fixed.

For both the forward and inverse model, we used a dataset
of 7900 experimental samples gathered as explained in Section
II. 70% of the dataset was used for training, 15% for validation
and 15% for testing. Each of the samples consisted on a
set of 6 currents and 9 weights. Both currents and weights
were normalized between [-1,1]. The two models were trained
using the L-BFGS optimizer and the Pytorch library. We

Fig. 4. Schematic of the tandem neural network used for the inverse
programming of the photonic chip.

Fig. 5. Comparison between the weights predicted by the forward model and
the experimental target weights.

employed the hyperbolic tangent activation function between
all the layers and the hyperparameters of the model were
optimized using the Optuna framework and the validation set.
The optimized hyperparameters are shown in Table I. Training
is early stopped if the loss on the validation dataset does
not improve more than 0.001 for more than 50 epochs, that
means, one complete pass of the training dataset through the
algorithm.

A. Forward Model

The forward model is trained during 464 epochs and
achieved an RMSE of 0.0045. The results on the test dataset
are shown in Fig. 5 where we compare the predicted weights
with the experimental target weights. The standard deviation
of the difference between the predicted and target weights is
0.005, which corresponds to a programming precision of 8-Bit
[11].

B. Inverse Model

We trained the inverse model using the previously described
TNN. The model is trained during 638 epochs and achieved
an RMSE of 0.014. The importance of the tandem network
to train the inverse model is appreciated in Fig. 6 a). In the
single NN case we trained the same neural network used for
the inverse model but without the pretrained network, trying
to minimize the difference between the target and predicted
currents. It can be seen that only using a single NN the learning
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a) b) c)
Fig. 6. Tandem neural network results: a) difference between the validation error during the training of the inverse model when using a single feedforward
network (red) and the proposed tandem network (blue), b) comparison between the predicted and target weights using the tandem network and c) distribution
of the difference between the target weights and the predicted weights (∆W ) for each of the 9 weights of the 3x3 matrix.

TABLE I
MODEL HYPERPARAMETERS

Forward Model Inverse Model
# Layers 3 2

# Units per layer 190 - 172 - 101 388 - 95
Learning rate 1.056 1.019

capabilities of the inverse model are restricted. The training
stops after less than 150 epochs with a validation error more
than 15x higher than the obtained when using the TNN.

The weights predicted by the TNN are compared with the
target weights that are fed into the inverse model. The results
are shown in Fig. 6 b). The model achieves an r-squared
of 0.998 and the difference between the target and predicted
weights has a standard deviation of 0.015, corresponding to
a programming precision > 7-Bits. A detailed plot of the
distribution of the errors for each of the 9 weights in the 3x3
matrix is presented in Fig. 6 c). All the weights present a
precision higher than 7-Bits which demonstrate the ability of
the proposed TNN to learn the structural pattern behind the
training data. Once the inverse model is trained, it can be
decoupled from the forward model and used to control the
integrated photonic processor.

IV. CONCLUSION

In this work, we present the use of a tandem neural network
to control linear integrated photonic processors. The TNN
proves to be a powerful solution for addressing the one-
to-many problem, where different sets of applied electrical
currents can yield the same matrix output. The effectiveness
of the models is demonstrated using experimental data taken
from a 3x3 photonic mesh in a rectangular architecture. We
compare the use of our model with a single network showing
that the our proposal achieves results more than 15x better
in terms of performance. Finally, the TNN can control the
photonic mesh with a resolution higher than 7 bits avoiding
the need of prior calibration and decomposition algorithms. To
the best of our knowledge, this is the first time and inverse

model is used for the programming of photonic processors.
These results are architecture agnostic and provide a promising
direction for employing deep learning models in the control of
programmable integrated photonic devices for applications in
artificial intelligence, wireless communications and quantum
systems.
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