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Abstract—Broadcast-and-weight (BaW) photonic neural net-
works can process high-bandwidth signals with limited chip
area, but they traditionally lack topological reconfigurability.
We propose using a fully-connected recurrent BaW system as
a topologically reconfigurable network and demonstrate a multi-
layer feedforward network implemented on such a system.

I. INTRODUCTION

In a broadcast-and-weight (BaW) photonic neural network,
neurons receive all inputs on a single waveguide, each encoded
on a distinct wavelength of light—wavelength-division multi-
plexing [1]. Tunable micro-ring resonators (MRRs) transfer
a portion of each wavelength onto a second waveguide, the
“drop” waveguide, leaving the remainder on the “through”
waveguide. The two waveguides terminate at two identical
photodetectors (PDs), which are connected such that their
photocurrents subtract. The output is a current corresponding
to the weighted addition of all input signals. The current
drives an output micro-ring modulator with a nonlinear transfer
function, implementing neuron nonlinearity while also re-
encoding the signal on an optical carrier for future propagation.

BaW networks are limited by their lack of full reconfigura-
bility: the network topology is, in general, hard-coded during
device fabrication. This can significantly extend the length of
the design cycle and limit the breadth of applicability of such
networks.

To address this limitation, we propose to apply a fully-
recurrently-connected BaW network as a topologically recon-
figurable feedforward or recurrent network. With wavelength-
division multiplexing, fully-recurrent networks become highly
area-efficient, as all connections may be implemented with
a single waveguide. All neurons encode their outputs on
carriers within this waveguide, and the waveguide then splits
to provide all signals to all neurons, as shown in Fig. 2a.
Any other network can be created from a fully-recurrent
network by disabling connections, assuming enough neurons
are available. However, ensuring the appropriate connections
remain disabled even as other weights are tuned is made
challenging by micro-ring cross-talk and other non-idealities.
Nevertheless, we successfully demonstrate a multi-layer two-
neuron feedforward BaW network implemented on top of
a three-neuron fully-recurrently connected integrated silicon
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Fig. 1. Experimental Setup. The photonic chip is interfaced electrically
through a custom PCB and wirebonds and interfaced optically via a fiber
V-groove array.

photonic system. To the authors’ knowledge, this work rep-
resents the first experimental demonstration of feedforward
cascaded BaW neurons.

II. METHODS

Fig. 1 shows the experimental setup. An integrated silicon
photonic chip containing the network under test is wirebonded
to enable connection to a printed circuit board (PCB) with con-
trol devices. A number of Keithley 2606B source-measurement
units provide analog electrical input/output (I/O) through the
PCB. External lasers provide optical signals that are coupled
onto the chip via a fiber V-groove array and grating couplers,
with one signal modulated in intensity using an HP 8157A
variable optical attenuator (VOA). All other optical processing
and detection occurs on-chip. Each of the three integrated
neurons include four MRRs with resonances tuned by N-doped
heaters. On chip germanium-on-silicon photodetectors enable
optoelectric conversion. Each neuron’s output current drives a
PN-junction micro-ring modulator, which may also be tuned
thermally using embedded resistive heaters. Optical intensity
in a “through” waveguide corresponds to negative weighting
current and drives the associated PN-junction micro-ring in
forward bias, resulting in a strong modulation effect. Output
modulators are thermally tuned such that in the absence of PN-
junction current they are at maximum resonance and thereby
allow minimum intensity to pass. Any forward-bias current
results in increased output intensity.

We implement the two-neuron network shown in Fig. 2b. A
single external input signal encoded onto an optical carrier is
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Fig. 2. Experimental setup and data. (a) Diagram of the experimental setup and integrated chip devices. (b) Diagram of the network topology during the
experiment. (c) Neural network transfer function while sweeping each activated weight. Default weights: w1 = −0.8, w3 = −0.3, w4 = 1. (d) Nonlinear
activation function of the photonic neurons, collected by measuring total photocurrent while sweeping the level of heating of one output modulator.

received by both neuron 1 (N1) and neuron 2 (N2), after being
weighted by the appropriate MRR—w1 and w3, respectively.
The third neuron is available on-chip but disabled. A second
optical carrier is modulated by the output modulator of N1 and
loops back to both active neurons. The recurrent connection,
weighted by w2, must be actively maintained at zero to
prevent hysteresis or other recurrent artifacts. w4 controls the
connection between the neurons.

MRR calibration is implemented as a two-step process. Each
MRR is first current-swept individually to identify its approx-
imate zero-weight current (i.e. the applied thermal current
resulting in minimum neuron output current). Once the full set
of zero-weight currents has been approximated, all currents
are set, and neuron output currents are further minimized.
The Nelder-Mead derivative-free gradient descent algorithm is
applied to simultaneously optimize all weights, similar to the
approach of [2]. Online optimization of the weights ensures
the effect of MRR crosstalk is mitigated. With accurate zero-
weight points identified, positive or negative weights may be
set with deviations to either side of the identified currents.

To optimize the N1 activation function, the associated
optical carrier’s power is raised sufficiently to induce optical
nonlinearity in the output modulator, though not so high as to
result in hysteresis. The nonlinearity sharpens the transition
of the modulator away from resonance under forward-bias
current, resulting in a well-defined neuron nonlinearity, as
shown in Fig. 2d. The N2 output nonlinearity is disabled, with
the output current directly measured.

III. RESULTS AND DISCUSSION

Fig 2c shows the transfer function of the neural network as
each weight is swept. The single-input, single-output network

can be independently controlled along three distinct dimen-
sions, behavior that cannot be replicated without multi-layer
operation and neuron nonlinearity. These data validate the
BaW architecture for multi-layer neural network operation
and indicate that a recurrent architecture represents a fea-
sible method of achieving topological reconfigurability for
these systems. Though such a fully-connected network is
limited to dozens of neurons by the micro-rings’ free spectral
range, small photonic neural networks have shown significant
promise toward applications that require high bandwidth and
low latency processing, including model-predictive control [3]
and submarine fiber nonlinearity compensation [4]. Achieving
topological reconfigurability overcomes a significant barrier to
maturation and broader application of BaW networks.
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